
Department of Computer Science

University of Fribourg (Switzerland)

Defence Mechanisms against

Vulnerabilities in Network Protocols and

Risk Assessment of Data Packets

Doctoral Thesis

Submitted to the Faculty of Science of the University of Fribourg to obtain the

degree of Doctor Scientiarum Informaticarum

by

InSeon Yoo

Thesis No.1520

University of Fribourg

2006

mailto:in-seon.yoo@unifr.ch

UNIVERSITY OF FRIBOURG

FACULTY OF SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

Doctor Scientiarum Informaticarum

Defence Mechanisms against Vulnerabilities in Network Protocols

and Risk Assessment of Data Packets

by InSeon Yoo

Accepted by the Faculty of Science of the University of Fribourg (Switzerland) as rec-

ommend by the following professors:

• Prof. Béat Hirsbrunner (President of the examination committee)

Department of Computer Science, University of Fribourg, Switzerland

• Prof. Jan HP Eloff (external examiner)

Department of Computer Science, University of Pretoria, South Africa

• Prof. Stephanie Teufel (internal examiner)

iimt (international institute of management in telecommunications), University of

Fribourg, Switzerland

• Prof. Ulrich Ultes-Nitsche (thesis supervisor)

Department of Computer Science, University of Fribourg, Switzerland

Fribourg, 26 May 2006

Thesis Supervisor: Prof. Ulrich Ultes-Nitsche Faculty Dean: Prof. Marco Celio

http://www.unifr.ch
http://www.diuf.unifr.ch
http://www.diuf.unifr.ch
mailto:in-seon.yoo@unifr.ch

UNIVERSITY OF FRIBOURG

ABSTRACT

FACULTY OF SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

Doctor Scientiarum Informaticarum

by InSeon Yoo

Currently, the Internet is not a privilege for specific groups any more. The wide coverage

of the Internet brought lots of risks as well as convenience. Network security problems

are the familiar loss of confidentiality, integrity and availability. One of the solution

technologies is a defence system to protect network-connected resources, which is called a

firewall. The more serious network threats are, the more important the role of the firewall

is. As high technologies have developed, the ways of attacks are getting even more

serious. To prevent new attacks, new defence mechanisms also need to be developed.

This thesis looks for defence mechanisms against network attacks, which use vulnera-

bilities in network protocols, and risk assessment of data packets, then apply them to

network security systems, in particular, to a firewall system, which is called Janus. The

start of this research is based on the MPhil thesis, “An Intelligent Firewall Architec-

ture Model to Detect Internet-Scale Virus Attacks”. With the concept of an intelligent

firewall in mind, research on potential technologies applicable to Janus has been con-

ducted. The goal of this research is to extend the abilities of packet-filtering firewalls

aiming to reduce possible problems and attacks by improving firewall technologies. Janus

is an adaptive firewall architecture based on a packet-filtering firewall, which can deal

with protocol anomaly detection and verification, and email classification. Furthermore,

Janus can conduct virus detection in attached files without the use of virus signatures.

The non-signature-based virus detection approach currently is capable of detecting 84%

of the virus-infected files in the sample set, which includes polymorphic and encrypted

viruses. At the moment, the false positive rate is 30%. The combination of the classical

virus detection technique for known viruses and this SOM-based technique for unknown

viruses can help systems even more secure. The contribution of this work is to pro-

pose various approaches for building defence mechanisms, and developing the adaptive

firewall model further based on the proposed defence technologies.

http://www.unifr.ch
http://www.diuf.unifr.ch
http://www.diuf.unifr.ch
mailto:in-seon.yoo@unifr.ch

UNIVERSITÄT FREIBURG (CH)

ZUSAMMENFASSUNG

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

DEPARTEMENT FÜR INFORMATIK

Doctor scientiarum informaticarum (Dr. sc. inf.)

vorgelegt von InSeon Yoo

Heutzutage ist das Internet kein Privileg mehr für eine bestimmte Personengruppe. Die

weite Verbreitung des Internets brachte viele Risiken wie auch Annehmlichkeiten. Prob-

leme der Netzwerksicherheit sind der bekannte Verlust von Vertraulichket, Inegrität und

Verfügbarkeit. Eine Lösungstechnologie ist ein Verteidigungssystem, das mit dem Net-

zwerk verbundene Resourcen schützt, die Firewall. Je grösser Netzwerkbedrohungen

werden, umso wichtiger wird die Rolle der Firwall. Durch die weiterentwickelte Tech-

nologie werden die Angriffe immer bedrohlicher. Um vor neuen Angriffen zu schützen

müssen, neue Verteidigungsmechanismen entwickelt werden.

Die vorliegende Doktorarbeit untersucht Verteidigungsmechanismen gegen Netzwerkan-

griffe, die Schwachstellen in Netzwerkprotokollen ausnutzen, und betrachtet Risikobe-

wertung von Datenpaketen, um sie dann auf Netzwerksicherheitssysteme anzuwenden,

im besonderen auf ein Firewallsystem, das Janus genannt wird. Der Anfang dieser

Forschung basiert auf der MPhil Arbeit “An Intelligent Firewall Architecture Model to

Detect Internet-Scale Virus Attacks”. Mit dem Konzept einer intelligenten Firewall im

Auge wurde an möglichen Technologien geforscht, die auf Janus anwendbar sind. Ziel

dieser Forschung ist es, die Fähigkeiten einer paketfilternden Firewall auszubauen, um

mögliche Probleme und Angriffe durch verbesserte Firewalltechnologien zu reduzieren.

Janus ist eine adaptive Firewalltechnologie, die auf einer paketfilternden Firewall basiert

und die mit Protokollanomalieerkennung, Verifikation und E-Mail-Klassifikation ausges-

tattet ist. Weiterhin kann Janus Virenerkennung in Dateien, die einer E-Mail angehängt

sind, durchführen, ohne dabei Virensignaturen zu verwenden. Der nichtsignaturbasierte

Virenerkennungsansatz ist derzeit in der Lage, 84% von vireninfizierten Dateien in einer

Stichprobe zu erkennen, die auch polymorphe und verschlüsselte Viren enthält. Die

False Positives Rate liegt im Moment bei 30%. Die Kombination klassischer Viren-

erkennungsverfahren mit dieser SOM-basierten Technik für unbekannte Viren kann dazu

beitragen, Systeme noch sicherer zu machen. Der Beitrag dieser Doktorarbeit ist es,

verschiedene Verteidigungsmechanismen anzubieten und mit diesen das adaptive Fire-

wallmodell weiterzuentwickeln.

Contents

Abbreviations and Acronyms xv

Acknowledgements xvii

1 Introduction 1

1.1 Defence Mechanism and Network Protocols 1

1.2 Likelihood of Attacks . 2

1.3 Risk Assessment of Data Packets . 3

1.4 Exclusions . 3

1.5 Reader’s Guide . 3

2 Motivations 5

2.1 Research Objective . 5

2.2 Increasingly Serious Attacks . 6

2.3 Classification and Recognition . 6

2.4 Faces vs. Packets . 7

2.5 Current Network Security Systems’ Problems 8

2.6 Requirements To Assess Data Packets In Firewalls 9

2.6.1 Data Packet Detection . 9

2.6.2 Dynamic Packet Handling Ability 10

2.7 Proposed Firewall Architecture . 10

2.7.1 Packet Verifier . 11

2.7.2 Packet-Based Classification Engine 12

2.7.3 Smart Detection Engine . 12

2.8 Current Status of Virus Detection . 13

3 Analysis of Vulnerabilities in Network Protocols & Mechanisms 15

3.1 Protocol Anomaly-Based Attacks . 15

3.1.1 IP Spoofing & Incomplete Three-way Handshake 15

3.1.2 SYN flood attack . 16

3.1.3 Ping of Death . 17

3.1.4 Land Attack . 17

3.1.5 Smurf attack . 17

3.1.6 Teardrop attack . 18

3.1.7 UDP Flood Attacks . 18

3.2 Widespread Malicious Code . 19

3.2.1 Activation Techniques . 20

3.2.2 Propagation . 20

vii

viii CONTENTS

3.2.3 Propagation Features of Email Worms 20

3.2.3.1 W32/Dumaru@MM . 21

3.2.3.2 W32/Myparty . 21

3.2.3.3 VBS/BubbleBoy . 21

3.2.3.4 W32/SirCam . 21

3.2.3.5 Nimda Worm . 21

3.2.3.6 W32/BadTrans . 22

4 Protocol Anomaly Detection and Verification 23

4.1 Requirements of Network Protocols For Anomaly Detection 24

4.1.1 IP Protocol . 24

4.1.1.1 IP Fragmentation . 26

4.1.2 ICMP Protocol . 27

4.1.3 UDP Protocol . 28

4.1.4 TCP Protocol . 28

4.2 TCP Runtime Verification Model . 32

4.2.1 Current TCP Model . 32

4.2.1.1 Problems with Extraneous State Transitions 33

4.2.1.2 Problems with Simultaneous Open 35

4.2.2 Generating TCP Verification Model 35

4.2.2.1 Removing Unnecessary States In Implementation 35

4.2.2.2 Reorganizing Sequences Of States 37

4.2.2.3 Removing Server-side-dependent Termination 38

4.2.2.4 Simplified TCP Verification Model 40

4.2.2.5 Example Cases of TCP State Transition 41

4.3 SDL Modeling For Prototyping Packet Verifier 42

4.3.1 Dynamic Semantics Of Finite State Machines 42

4.3.2 SDL’s Underlying Model . 43

4.3.2.1 Process Model . 44

4.3.2.2 Communication Model 44

4.3.3 Generating the Specification . 45

4.3.4 SDL Creation based on the TCP Verification Model 46

4.4 Countermeasures Against Protocol Anomaly-Based Attacks 50

4.4.1 Incomplete Three-way Handshake 50

4.4.2 IP Spoofing . 50

4.4.3 SYN flood attack . 52

4.4.4 Ping of Death & Land Attack . 52

4.4.5 Fragment attack . 52

4.4.6 ICMP flood (Smurf attack) & UDP flood attack 53

5 Email Classification For Risk Assessment 55

5.1 Background of Bayesian Networks . 56

5.1.1 Bayes’ Theorem and Bayesian Inference 56

5.1.2 Naive Bayesian Classifier . 57

5.2 Generating a Naive Bayesian Classifier . 58

5.2.1 Statistical Characteristics of Email 58

5.2.2 Choosing Evidence Factors . 61

CONTENTS ix

5.2.3 A Naive Bayesian Classifier Against Email Viruses 62

5.3 Generating OBDDs For Email Classifier Model 65

5.3.1 Ordered Binary Decision Diagrams 65

5.3.2 OBDD Representation From The Naive Bayesian Classifier 65

5.3.3 Email Classifier With OBDDs . 67

6 Virus Visualization & Recognition 71

6.1 Background of Self-Organizing Map . 72

6.1.1 SOM Algorithm . 73

6.1.2 SOM’s Properties . 74

6.1.2.1 Quantization . 75

6.1.2.2 Projection . 75

6.2 File Format & Virus Types . 75

6.2.1 Parasitic Viruses . 76

6.2.2 Macro Viruses . 77

6.2.3 Polymorphic viruses . 78

6.3 SOM Training & Visualization . 78

6.3.1 Data Preparation for SOM Training 78

6.3.2 Visualization Method . 79

6.3.3 Process of SOM training and visualization 80

6.3.3.1 SOM projection . 81

6.3.3.2 SOM Distribution . 83

6.4 Virus Visualization Using MATLAB . 84

6.4.1 Initialisation . 84

6.4.2 Normalisation . 85

6.4.3 Creation . 85

6.4.4 Visualization . 85

6.5 Result of Virus Visualization . 86

6.5.1 Example Case: Win95 CIH Virus 86

6.5.2 Example Case: Win95 Boza Virus 88

6.5.3 Example Case: Win32.Apparition 89

6.5.4 Example Case: Win32.HLLP.Semisoft 89

6.5.5 Example Case: MacroWord97.Mbug Virus 90

7 Application Cases 93

7.1 Janus Firewall System . 93

7.1.1 Background of Packet Filtering & Packet Classification 93

7.1.1.1 Packet Filters . 95

7.1.2 Process of Janus System . 96

7.1.3 Placement of the Janus system . 97

7.1.4 Packet-filter & Classifier . 99

7.1.4.1 Access Lists . 100

7.1.4.2 Address Notation . 102

7.1.4.3 Structures For Filtering Ruleset 102

7.1.4.4 Message Pattern Matching Algorithm 103

7.1.5 Packet Verifier . 104

7.1.6 Email Classifier . 107

x CONTENTS

7.2 Janus VirusDetector . 109

7.2.1 Test Data Collection . 109

7.2.2 Process of Virus Detection . 110

7.2.3 Result of Virus Detection . 112

7.2.4 Unencrypted Parasitic Viruses . 113

7.2.5 Polymorphic and Encrypted Parasitic Viruses 117

7.2.6 False positive vs. False negative in VirusDetector 119

7.2.7 Discussion of VirusDetector . 120

8 Conclusions 123

8.1 Overview . 124

8.2 Summary . 124

8.3 Future Work . 127

A TCP Runtime Verification Model SDL Specification 131

B Background of Packet Classification and Filtering 137

B.1 Packet Filtering . 137

B.1.1 Packet filter rules . 138

B.1.2 Theoretical Bounds on Packet Classification 140

B.2 Related Work on Packet Classification & Filtering 140

B.2.1 Table-driven Methods . 141

B.2.1.1 Tuple Space Search . 141

B.2.1.2 Multi-dimensional Range Matching 143

B.2.1.3 Scalable High Speed IP Routing Lookup 144

B.2.2 Specialised Data Structures . 146

B.2.2.1 Grid of Tries . 146

B.2.2.2 Expression Trees . 146

B.2.2.3 Binary Directed Acyclic Graphs 147

B.2.2.4 Decision Graphs . 147

B.2.2.5 Hierarchical Intelligent Cuttings 148

B.2.2.6 Binary Decision Diagram 148

B.2.3 Hardware-based Classification . 150

C Virus Detection Result by Janus VirusDetector 153

Bibliography 167

Curriculum Vitae 181

C.1 InSeon Yoo . 181

C.1.1 Education . 181

C.1.2 Research Interests . 181

C.1.3 Research Experience . 182

C.1.4 Awards & Certificates . 183

C.1.5 Extracurricular Activities . 184

C.1.6 Computer Technical Experiences 185

C.1.7 Publications . 185

List of Figures

2.1 Face models, all different faces, but still have common features 8

2.2 Packet-Based Detection Components in the intelligent firewall. 11

3.1 IP TearDrop Attack - Correct reassemble 18

3.2 IP TearDrop Attack - Incorrect reassemble 18

4.1 IP v4 header. 24

4.2 UDP header. 28

4.3 TCP header. 29

4.4 TCP connection state diagram from TCP/IP Illustrated Vol. 1 - The Protocols, 18.6 33

4.5 Extraneous state in the TCP state-transition diagram [Extention of Figure 4.4] 34

4.6 Impossible state transition in the existing TCP Protocol State Machine . 36

4.7 Client/Server Interaction . 37

4.8 TCP Verification Model (First) . 38

4.9 Three Groups in TCP Verification Model (Second) 39

4.10 Simplified TCP Verification Model (Final) 40

4.11 TCP Connection Establishment and Termination 41

4.12 System of the TCP Protocol State Machine 46

4.13 LISTEN State of the TCP Protocol State Machine 47

4.14 SYN RCVD State of the TCP Protocol State Machine 47

4.15 ACK WAIT State of the TCP Protocol State Machine 48

4.16 CLOSING State of the TCP Protocol State Machine 48

4.17 CLOSE WAIT 2 State of the TCP Protocol State Machine 49

4.18 ESTABLISHED State and CLOSE WAIT 1 state of the TCP Protocol State Machine 49

5.1 A Structure of a Naive Bayesian Classifier 57

5.2 A Naive Bayesian classifier for detecting abnormal emails. 63

5.3 Decision Tree Representation of Malicious Email 65

5.4 The removal process to build a reduced OBDD. 66

5.5 A reduced OBDD of Email Viruses . 67

5.6 OBDD representation of UBEs and abnormal mail classification 69

6.1 Virus positions in EXE and document files. 76

6.2 Structure of Windows Executable file . 76

6.3 Macro virus position in an infected document. 78

6.4 Table-format data: fixed length and the sample variables 79

6.5 Process of SOM training and visualization 80

6.6 Example of SOM training and visualization 82

6.7 Example of SOM distribution with labelled data 83

xi

xii LIST OF FIGURES

6.8 SOM projections of two different Windows EXE files before infection . . . 86

6.9 SOM projections of Windows EXE files infected by Win95.CIH viruses . . 87

6.10 Virus SOM Distribution of CIH 1.2 and 1.3 viruses. 87

6.11 SOMs of Win95 Boza.A and Boza.C viruses. 88

6.12 SOM Distribution of Boza.A and Boza.C viruses. 88

6.13 SOM projection and distribution of WinNT apparition virus. 89

6.14 SOM projection and distribution of Win32.HLLP.Semisoft virus. 90

6.15 SOMs of Word97 file infected by Macro viruses. 90

6.16 SOM distribution of Word97 file infected by Macro viruses 91

7.1 Conceptual model of packet classification 94

7.2 Work flow to make a decision in the adaptive detection model. 96

7.3 Janus Network Configuration . 98

7.4 In a single server environment with the use of a crossover cable 98

7.5 In a multi-server environment . 99

7.6 In a grouped server environment . 99

7.7 The linked list structure for filtering ruleset in Janus. 102

7.8 TCP Verification Model . 107

7.9 The process of virus detection in VirusDetector 110

7.10 Virus Detection Example . 111

7.11 In B/W Umatrix, bigger values are selected and replaced by char S’. . . . 112

7.12 SOM Umatrix and detection result of CIH 1.2 virus 113

7.13 SOM Umatrix and detection result of CIH 1.3 virus 113

7.14 SOM Umatrix and detection result of CIH 1.4 virus 113

7.15 SOM Umatrix and detection result of W95 Anxiety.1397 virus 114

7.16 SOM Umatrix and result of of W95 Anxiety.1399b virus 115

7.17 Virus Detection Result Scene 3: normal executable file cases. 116

7.18 VirusDetector’s Error Curve based on factor values 120

A.1 Process StateTransition of the TCP Protocol State Machine in SDL . . . 131

A.2 Process StateTransition of the TCP Protocol State Machine in SDL . . . 132

A.3 Process StateTransition of the TCP Protocol State Machine in SDL . . . 133

B.1 Illustration of markers and precomputation 142

B.2 Illustration of search strategy . 143

B.3 Hash tables for prefix lengths . 144

B.4 Binary search on hash tables . 145

B.5 Binary search on trie levels . 145

B.6 Geometrical representation of seven filters 149

B.7 A possible tree for filters in Figure B.6 . 149

List of Tables

2.1 Example of NetBIOS name service packets 10

4.1 TCP states table . 40

5.1 Email messages and Virus & UBE numbers in a Year 59

5.2 Email messages and Virus & UBE numbers in a Month 59

5.3 Email messages and Virus & UBE numbers in a Week 59

5.4 Email UBE Statistics (Total:291985) . 60

5.5 Detected viruses which were entering ECS Department. (Total: 17300) . 60

5.6 Classification of Windows File Worms. 61

5.7 Results of posterior probabilities from the Naive Bayesian Network . . . 63

5.8 Results of posterior probabilities from the Naive Bayesian classifier 64

5.9 the truth table of malicious email . 64

5.10 the truth table of UBE and that of abnormal mail 68

6.1 Location starting point information of Test files (Unit: bytes) 77

6.2 Test file information . 84

7.1 An example of a CISCO router access list. 95

7.2 Example of Janus Rule . 101

7.3 TCP states table . 107

7.4 Win9x Virus Detection Result by VirusDetector. 114

7.5 Win32 Virus Detection Result by VirusDetector. 115

7.6 Normal Executable Program’s Virus Check Result by VirusDetector . . . 116

7.7 Win9x Encrypted Parasitic Virus Detection Result by VirusDetector. . . 117

7.8 Win9x Polymorphic Virus Detection Result by VirusDetector. 118

7.9 Win32 Encrypted Parasitic Virus Detection Result by VirusDetector. . . 118

7.10 Win32 Polymorphic Virus Detection Result by VirusDetector. 119

B.1 An general form and an example of a CISCO access rule. 139

C.1 Win9x Encrypted Parasitic Virus Detection Result by VirusDetector . . 153

C.2 Win32 Encrypted Parasitic Virus Detection Result by VirusDetector . . 154

C.3 Win9x Polymorphic Virus Detection Result by VirusDetector 154

C.4 Win32 Polymorphic Virus Detection Result by VirusDetector 155

C.5 Win9x Virus Detection Result by VirusDetector 156

C.6 Win9x Virus Detection Result by VirusDetector (Cont.) 157

C.7 Win9x Virus Detection Result by VirusDetector (Cont.) 158

C.8 Win32 Virus Detection Result by VirusDetector. 159

xiii

xiv LIST OF TABLES

C.9 Win32 Virus Detection Result by VirusDetector (Cont.), 160

C.10 Win32 Virus Detection Result by VirusDetector (Cont.), 161

C.11 Win32 Virus Detection Result by VirusDetector (Cont.), 162

C.12 Win32 Virus Detection Result by VirusDetector (Cont.), 163

C.13 Win32 Virus Detection Result by VirusDetector (Cont.), 164

C.14 Normal Executable Program’s Virus Check Result by VirusDetector . . . 165

Abbreviations and Acronyms

IDS Intrusion Detection Systems

OBDD Ordered Binary Decision Diagram

SOM Self-Organizing Map

DNS Domain Name Service

RFC Request for Comments

BCc Blind Carbon copy

RPC Remote Procedure Call

IP Internet protocol

ECN Explicit Congestion Notification

DF Don’t Fragment

MTU Maximum Transmission Unit

MF More Fragments

TTL Time to live

ICMP Internet Control Messaging Protocol

UDP User Datagram Protocol

TCP Transmission control protocol

URG Urgent

ACK Acknowledgement

RST Reset

FIN Final

MSS Maximum Segment Size

WS Window Scale

SACK Selective Acknowledgement

TS TimeStamps

MSL Maximum Segment Lifetime

SDL Specification and Description Language

ITU International Telecommunication Union

CEFSM Communicating Extended Finite State Machine

FSM Finite State Machine

EFSM Extended Finite-State Machine

ISNs Initial TCP Sequence Numbers

UBEs Unsolicited Bulk Emails, spams

xv

xvi ABBREVIATIONS AND ACRONYMS

M a group of malicious packets

E specific evidence about malicious packets

SMTP Simple Mail Transfer Protocol

CC Carbon Copy

H the header field of a mail packet

Fr the sender field of a mail packet

To the recipient field of a mail packet

EF the attachment field of a mail packet

BDDs Binary decision diagrams

INF If-then-else Normal Form

NewEXE portable executable format, NE, PE, LE, LX

DOS Denial of Service

Umatrix unified distance matrix

Virus mask a particular pattern which signals the presence of a virus in SOM projection

DS DOS stub

PE NewEXE header

PR program code

VS virus code

DiffServ Differentiated Services

Acknowledgements

Most of all, I shall give all glory, honor and thank to my heavenly Father, Jesus Christ,

my Lord and Saviour with my faith and obedience. I have never been alone and by the

grace of Jesus Christ, I am what I am. I want Him to reap His full inheritance from my

life. This work could be a start for it.

By the grace of God I am what I am,

and His grace toward me did not prove vain;

but I labored even more than all of them,

yet not I, but the grace of God with me.

- 1 Corithians 15:10.

Then there are a few people I would like to thank, since I do not often get the chance.

First, my parents - they made me as I am, I just hope to be worthy of their efforts. Next

my supervisor, Prof. Dr. Ulrich Ultes-Nitsche, who spared no effort to ensure that I

have everything I needed and then special thanks to April Isadora Lloyd who encourage

me to have confidence in my English. Finally, Lucette & Danilo Hasler, Sr. Lorena and

all the others who gave their time, love and energy.

He knows the way that I take;

when he has tested me, I will come forth as gold.

- Job 23:10.

InSeon Yoo

Fribourg in Switzerland

November 2005

xvii

To my friend, Jesus Christ and my parents. . .

xix

Chapter 1

Introduction

’I wish it need not have happened in my time!’, said Frodo.

’So do I’, said Gandalf, ’and so do all who live to see such times.

But that is not for them to decide.

All we have to decide is what to do with the time is given us.’

- The Lord of The Rings, J.R.R. Tolkien

Currently, there are many different types of network security systems e.g., intrusion

detection systems (IDS), anti-virus systems, firewalls, routers, proxies and so on. Often

these techniques are employed together. Since any organization connected to the Internet

deployed already some kind of routers, and most routers have at least simple packet

filtering capabilities, routers are often used in addition or instead of more complex

firewall products. However, routers and many other simple packet filters lack good

packet handling ability for defence against network attacks which use vulnerabilities of

network protocols and mechanisms. Therefore, various defence mechanisms need to be

held in depth, and risk assessment of data packets must be established in the defence

mechanisms.

1.1 Defence Mechanism and Network Protocols

There are many other components in the TCP/IP protocols for managing communica-

tions and providing higher-level services. Most of them were developed in the days when

the network had only trusted hosts, and security was not a concern [Anderson(2001b)].

The fundamental problem of the lower-level TCP/IP protocols is that there is no real

authenticity or confidentiality protection in most mechanisms. Furthermore, there are

not only security problems — e.g., TCP sequence number prediction, abuse of the rout-

ing mechanisms and protocols, and so forth — in the TCP/IP protocol suite (details

can be found in [Bellovin(1989)]), but also implementation problems — e.g., no initial

1

2 Chapter 1 Introduction

slow start, inconsistent retransmission, extra additive constant in congestion avoidance,

excessively short keepalive connection timeout, insufficient interval between keepalives,

window probe deadlock, stretch ACK violation, retransmission sends multiple packets,

failure to send FIN notification promptly, failure to send a RST after half duplex close,

failure to RST on close with data pending, and so on — in the TCP protocol (known im-

plementation problems in detail are reported in RFC 2525 [V. Paxson and Volz(1999)]).

Therefore, defence mechanisms must overcome these problems altogether, which can be

abused by attackers.

1.2 Likelihood of Attacks

The mathematical concept of probability is inadequate to express our mental confidence

or diffidence in making such inferences, and that the mathematical quantity which ap-

pears to be appropriate for measuring our order of preference among different possible

populations does not in fact obey the laws of probability. To distinguish it from probabil-

ity, R. A. Fisher has used the term “likelihood” to designate this quantity [Fisher(1925)].

In this thesis, the likelihood of attacks is defined as our confidence to have certain oc-

currence of specific attacks and attackers’ preference to use certain patterns of attacks.

We look at the likelihood that a particular threat 1 using a specific attack, will exploit

a particular vulnerability of a system that results in an undesirable consequence, which

is called risk 2. The likelihood is not a probability, but an estimate of the threat po-

tential of each adversary 3 group to cause an undesired event at information resources.

The relative threat potential is based on characteristics of the adversary group and the

information resources. The vulnerabilities in network protocols still exist as long as the

structure of network and network protocols are not changed completely. As technologies

are getting better, the attack skills are also getting smarter in every way. Hence, the

likelihood of attacks using vulnerabilities in network protocols and mechanisms are still

high although new technologies to detect or security systems’ abilities are developed

significantly. Therefore, we need intelligent defence mechanisms.

1Def. from [NSFISSI(1997)]. Any indication, circumstance, or event that can cause the loss of,
damage to, or the denial of an asset.

2Def. from [NSFISSI(1997)]. (Likelihood of attack) * (Consequence) * (1 - System Effectiveness) =
RISK.
The likelihood of a successful attack is the probability that an adversary would succeed in carrying out
an attack.

3Def. from [NSFISSI(1997)]. Any entity that conducts, or has the capability and intention to conduct,
activities detrimental to interests or assets.

Chapter 1 Introduction 3

1.3 Risk Assessment of Data Packets

In this thesis, the risk assessment of data packets is defined as that it is about un-

derstanding likely threats to network systems and the process of determining whether

proposed or existing defence mechanisms are adequate to protect information resources

from the threats. The threats to network systems are considered either using vulner-

abilities in network protocols and mechanisms or using common network mechanisms

with malicious code in data packets. The former can be active attacks including typical

denial service attacks, – e.g., ping attacks, SYN flood attacks, land attacks and tear

drop attacks – IP spoofing, spams (including phishing [Wikipedia(2005)]), and denial

of service Internet worms. On the other hand, the latter can be passive attacks using

social engineering methods including viruses and Internet worms.

Various existing security systems have specific defence mechanisms against specific at-

tacks. In this thesis, firewalls are the main concern for risk assessment of data packets.

Since firewalls are not smart enough to protect information resources from the above-

mentioned threats, this thesis proposes defence mechanisms to improve firewall tech-

nologies. Among passive attacks, Internet worms are focused on the propagation feature

using email, thus the detection of viruses, Internet worms and spams is considered in an

email defence mechanism. With these threat models, defence mechanisms are developed

and applied to an adaptive packet-filter firewall, Janus.

1.4 Exclusions

This thesis is not concerned with flaws in particular implementations of the protocols,

such as those used by Internet worms [Spafford(1988), Seeley(1988), Eichin and Rochlis(1988)].

Rather, generic problems of the protocols themselves are discussed, and various require-

ments for network defence systems are addressed. Careful implementation techniques

can alleviate or prevent some of these problems. Generic Internet protocols will be dis-

cussed. Neither is this project concerned with physical eavesdropping, nor with altered

or injected messages. This thesis discusses such problems only as far as they are facili-

tated or possible because of protocol problems. For the most part, there is no discussion

here of vendor-specific protocols. This thesis does discuss some problems with Berkeley’s

protocols, since these have become de facto standards for many vendors, and not just

for UNIX systems.

1.5 Reader’s Guide

The rest of the PhD thesis is organised as follows. Chapter 2 contains motivation of this

project, research aims and its objectives. It also describes the requirements to assess

4 Chapter 1 Introduction

data packets in firewalls and the proposed firewall architecture. In addition to these,

the current state of virus detection is mentioned.

Chapter 3 briefly addresses analysis of vulnerabilities in network protocols and mecha-

nisms. There are protocol anomaly-based attacks and widespread malicious code, espe-

cially through email mechanism.

Chapter 4 looks at protocol anomaly detection and verification. It also describes the

threat models of protocol anomaly-based attacks and summarizes specific requirements

of network protocol anomaly detection. Then a TCP runtime verification model is

proposed taking into account current problems of TCP state transitions and genera-

tion of steps in the TCP verification model is presented. Furthermore, SDL modelling

is presented for prototyping an application and defensive measures against protocol

anomaly-based attacks.

Chapter 5 introduces email classification for risk assessment. It includes email viruses

and worms, which spread via emails. A Naive Bayesian classifier and a reduced ordered

binary decision diagram (OBDD) representation are used for email classification.

Chapter 6 presents virus visualization and recognition using Self-Organizing Maps (SOMs).

It briefly discusses SOM algorithms and processes, and describes the application of SOM

to detect virus patterns, which is discussed in Chapter 7, where application cases such

as the Janus firewall system and Janus VirusDetector are introduced. The applications’

implementation is outlined as well as experiments conducted as part of the research

method and their results. Then these results with regard to the research’s objectives

are discussed and evaluated.

Finally, Chapter 8 draws conclusions with a summary of the major shortcomings of the

Janus project and a brief discussion of future research.

Chapter 2

Motivations

If you don’t defend your rights,

you lose them by attrition.

- Lawrence Ferlinghetti

2.1 Research Objective

This research aims to develop cost-effective defence mechanisms and apply those mecha-

nisms to a packet-filter firewall in order to improve the firewall ability to defend against

network attacks and to manage risk assessment of data packets efficiently. As a result,

this research can also improve firewall technologies. Another motivation is to reduce

risk through preventing some malicious packets e.g., email viruses from entering the

secure network. Therefore, this project also seeks to answer the questions considering

risk assessment of data packets: “how to detect worms/viruses, which are replicated

via emails, at the level of a firewall without cooperation with an anti-virus server?”,

“how to detect email viruses without knowing their signatures?”, “how to determine

the probability whether the mail is abnormal?”, and “how to detect virus patterns in

virus-infected files?”. Theoretically, it is impossible to generate a program, which can

solve the general virus detection problem. This theorem has been proved in different

ways in the literature. Since the general virus detection problem is not solvable, we have

to reduce the problem.

To achieve the research objectives, specific requirements of network protocol usage and

malicious code propagation via email has been identified, run-time verification model,

email classificaiton model and virus recognition have been designed, and a prototype of

a packet-filter firewall has been implemented as a proof of concept.

5

6 Chapter 2 Motivations

2.2 Increasingly Serious Attacks

Internet viruses include file viruses, file worms, and network worms. These Internet

viruses are being spread via systems’ security holes, emails, messengers, etc. A virus

is a piece of code that adds itself to other programs and cannot run independently.

As Microsoft Windows became popular, Windows viruses and Windows-application-

derived viruses using Visual Basic for Applications (VBA) spread widely. A common

way of Windows virus dissemination is through emails. In addition, a worm is a program

that can run by itself and propagate a fully working version of it to other machines. A

network worm is a worm, which copies itself to another system by using common network

facilities, and causes execution of the copy on that system. A recent serious attack was

Code Red. The Code Red worm is a malicious self-propagating code [CERT(2002a)]

that spreads surreptitiously through a hole in certain Microsoft software. The Code

Red, which left computers open to hijacking, has caused a lot of traffic being sent,

clogging the bandwidth on the Internet. An infected system will show an increased

processor and network load. The worm could easily permit hackers to take control of

hundreds of thousands of infected machines.

The biggest impact of these worms is that their propagation creates a DOS attack in

many parts of the Internet, because of the huge amount of traffic generated. DOS

attacks can interrupt services by flooding networks or systems with unwanted traffic.

A service will be denied, because the network or system is overwhelmed. Distributed

systems based on the client/server model have become increasingly popular. Therefore

Distributed Denial of Service (DDOS) attacks are also getting escalated. In an DDOS,

an attacker controls a number of handlers. A handler is a compromised host with a

special program running on it. Each handler is capable of controlling multiple agents.

An agent is a compromised host, which is responsible for generating a stream of packets

that is directed towards the intended victim.

2.3 Classification and Recognition

Classification and recognition are considered in this thesis. We can give the following

situation: we may be given a set of observations with the aim of establishing the existence

of classes or clusters in the data. Or we may know for certain that there are so many

classes, and the aim is to establish a rule whereby we can classify a new observation into

one of the existing classes.

The task of classification could cover any context in which some decision or forecast is

made on the basis of currently available information, and a classification procedure is

then some formal method for repeatedly making such judgments in new situations.

Chapter 2 Motivations 7

If we create some classifier, the classifier should be considered of accuracy, speed, com-

prehensibility and time to learn [D. Michie and (Eds)(1994)].

1. Accuracy. There is the reliability of the rule, usually represented by the proportion

of correct classifications, although it may be that some errors are more serious than

others, and it may be important to control the error rate for some key class.

2. Speed. The speed of the classifier is a major issue in real critical circumstances.

90% accurate may be preferred over one that is 95% accurate if it is 100 times

faster.

3. Comprehensibility. If it is an administrator that must apply the classification

procedure, the procedure must be easily understood else mistakes will be made in

applying the rule. It is important also that the administrators believe the system.

4. Time to Learn. Especially in a rapidly changing environment, it may be necessary

to learn a classification rule quickly, or make adjustments to an existing rule in

real time.

The problem concerns the construction of a procedure that will be applied to a continuing

sequence of cases, in which each new case must be assigned to one of a set of predefined

classes on the basis of observed attributes or features.

The other is Pattern Recognition. There are many kinds of patterns; visual patterns,

temporal patterns, logical patterns. Using a broad enough interpretation, we can find

pattern recognition in every intelligent activity. No single theory of pattern recognition

can possibly cope with such a broad range of problems. There are several models,

statistical pattern recognition, syntactic or structural pattern recognition, knowledge-

based pattern recognition and so on. These pattern recognitions could be viewed as a

classification.

However, both of them are defined and used like this in this thesis: classification is based

on finding proper information and establishing links between data, on the other hand,

recognition is based on making a decision about the information after classifying data.

2.4 Faces vs. Packets

What is the feature of packets carrying virus codes? Compared with anti-virus systems,

firewalls only deal with packets. In order to detect virus packets, we need to know the

characteristics of virus packets. Assessment of packets has quite similar aspects like

that with faces. Faces have images or specific characteristics like distance from nose

to chin to identify a person. As Figure 2.1 shows, we can see several faces, nobody

8 Chapter 2 Motivations

Figure 2.1: Face models, all different faces, but still have common features

is the same, but everybody has common features, such as hair, eyes, one nose, one

mouth and ears. Some pictures are collected from the FBI fugitive database. In terms

of likelihood of attacks, the FBI keeps fugitive information, since they can use this

information for several purposes to detect criminals. For example, they can sketch the

figure of a criminal according to this information. So, what kind of information is useful

to them? For example, size of eyes, distance between two eyes, colour of hair, eigenvector

of faces, and so on. Likewise, we need a function helping us to estimate, whether or

not packets are malicious and can cause undesired events. In addition, to reduce the

undesired events, assessment of packets is necessary.

2.5 Current Network Security Systems’ Problems

DOS attacks are easy to perpetrate and almost impossible to defend against even whilst

firewalls and Intrusion Detection Systems (IDSs) are installed. Even if the Intrusion

Detection Systems generate alerts, log packets, send emails, and call pagers, the attacker

could still get in, and by the time somebody could respond the damage would be done. A

malicious attacker could spoof attacks from many sources and effectively deny everybody

access to the server. This is considered to be an unacceptable risk. A firewall would be of

no help either. The web server has to remain available to the public and the vulnerability

is in the web server software such as IIS. A firewall has no way of determining if a request

being sent to a web server is benign or malicious. While the firewall could stop traffic to

ports that do not need to be publicly accessible, it is useless in this situation. Increasingly

complex security scenarios and incorrect configurations contribute to a firewall’s inability

to provide gateway security. A firewall is also only able to deal with traffic that passes

through the firewall, with all internal traffic completely unchecked.

When a virus associated with DOS spreads through the Internet, virus scanning proxy

Chapter 2 Motivations 9

servers and IDSs or Firewalls must cooperate to prevent these attacks. Although anti-

virus servers and software have served users well for a lengthy period, today’s fast-paced

technology means that viruses travel much faster than signature updates can keep up

with. This kind of software often relies on databases containing these virus signatures,

which catch and define viruses. It is therefore essential to ensure that the database of

signatures is as up-to-date as possible. This implies that a mechanism guarantees that

the latest signatures are updated, as and when new viruses are detected. Therefore a

process of automatic updating of signatures, a built-in feature found in most anti-virus

products, as well performing the necessary upgrade maintenance are critical actions.

These are steps that cannot be left up to human processing, but must be automated

to be kept up-to-date at all times. This type of solution has become vital due to the

different ways that a virus can enter an organisation. This means that protection is

needed at each of the levels, stopping a virus where it enters rather than having to clean

up after it has spread.

2.6 Requirements To Assess Data Packets In Firewalls

2.6.1 Data Packet Detection

As social engineering attacks and security-vulnerability-exploiting attacks had been sur-

veyed in the MPhil thesis [Yoo(2004b)], attack trends of Internet-scale viruses are that

they are automatic and sophisticated with intruders misusing infrastructure for their

own purposes. To identify Internet-scale viruses, in addition to the usual network con-

trol ability of a firewall, data packet detection is compulsory. A packet-header check in

a firewall is not sufficient to detect infrastructure based attacks. It is, for example, not

sufficient to identify multiple file extension, domain-name-style file names and long sub-

jects in email attachments. Win32/SirCam, Win32/Gibe, Win32/Myparty, Nimda, and

Win32/BadTrans misuse this point [Yoo and Ultes-Nitsche(2003), Yoo and Ultes-Nitsche(2004a)].

Anti-virus software can detect viruses in programs using a unique character, called a

virus signature, a peculiar attack pattern will also appear in the data packets such as

Code Red’s packet. IDSs run a process known as anomaly detection. An IDS constantly

monitors network traffic and compares the stream of network packets with what it per-

ceives as normal network traffic. Anomaly detection appears to be applicable not only to

intrusion detection but also to virus monitoring [Swimmer(2000)], now not being applied

to the level of the full network traffic, but to single data packets. The improved virus

monitor will examine data packets as usual. Besides checking against known malicious-

code patterns, it will check whether it sees a pattern that it perceives as potentially mali-

cious and will react accordingly, e.g. by creating some sort of warnings. However, during

the investigation of data packets in a selection of the good packets, a very similar pattern

was identified to packets, which seem to contain malicious code, e.g. the BAT911/Chode

10 Chapter 2 Motivations

worm. These were packets sent by Microsoft Servers to NetBIOS and DNS lookup ser-

vices. For example, port 137 is reserved for the NetBIOS name service and port 138

is reserved for the NetBIOS datagram service. The subsequent packet was assumed to

contain the signature of the “BAT911/Chode” worm even though it was a benign packet

(see Table 2.1) [Yoo and Ultes-Nitsche(2002b), InSeon and Ultes-Nitsche(2002)].

Table 2.1: Example of NetBIOS name service packets

05/24-13:10:13.082716 152.78.70.46:137 -> 152.78.70.127:137
UDP TTL:128 TOS:0x0 ID:47635 IpLen:20 DgmLen:78
Len: 58
..
0x0030: 00 00 00 00 00 00 20 45 45 46 44 46 44 45 46 43EEFDFDEFC
0x0040: 41 43 41 43 41 43 41 43 41 43 41 43 41 43 41 43 ACACACACACACACAC
0x0050: 41 43 41 43 41 42 4C 00 00 20 00 01 ACACABL

2.6.2 Dynamic Packet Handling Ability

Although a firewall is able to control a network and maintain its connectivity, it handles

packets only statically. Through open ports, a firewall would not inspect/control packets

willingly. According to the analysis of distributed denial of service attack tools, it is well

known how to use tools such as TFN [Dittrich(1999c)], TFN2K, Trinoo [Dittrich(1999a)]

and Stacheldraht [Dittrich(1999b)]. These programs use not only TCP and UDP packets

but also ICMP packets. Moreover, because the programs use ICMP ECHOREPLY

packets for communication, it would be very difficult to block attacks without breaking

most Internet programs that rely on ICMP. Since TFN, TFN2K and Stacheldraht use

ICMP packets, it is much more difficult to detect them in action, and packets will go right

through most firewalls. The current only sure way to destroy this channel is to deny all

ICMP ECHO traffic into the network. Furthermore, the tools mentioned above use any

port randomly; it is hard to prevent the port from an attack in advance using the fixed

port close scheme in current firewalls. Therefore, to prevent degradation of service on

the network and to deny this kind of malicious packet, dynamic packet handling on the

level of firewalls is crucial [Ultes-Nitsche and Yoo(2003), Yoo and Ultes-Nitsche(2003),

Ultes-Nitsche and Yoo(2004), Yoo(2004a)].

2.7 Proposed Firewall Architecture

Janus project intends to extend packet-filter firewalls with intelligent components. The

firewall model has packet-based components: a packet verifier, a packet-based classifica-

tion engine, a smart detection engine, and a policy interpreter. The architectural firewall

model is depicted in Figure 2.2. This architectural firewall model has been developed in

the MPhil thesis [Yoo(2004b)].

Chapter 2 Motivations 11

Figure 2.2: Packet-Based Detection Components in the intelligent firewall.

Decoded packets pass into the packet verifier and the packet-based classification engine

in parallel. The packet verifier checks all protocols’ sanity and validates expected usage

of protocols. The packet-based classification engine aims to classify packets, which could

be malicious and estimate the probability of their maliciousness. On the other hand, the

smart detection engine aims at recognizing malicious patterns in data packets that have a

certain probability of being malicious. The smart detection engine analyses the payload

of the packets and aims to detect anomalous patterns in the payload. Finally, the policy

interpreter analyses the information it gets from the two engines and decides on whether

to drop the packet or let it pass through the firewall based on its specific security policy

[Yoo and Ultes-Nitsche(2003), Ultes-Nitsche and Yoo(2003), Yoo(2004a)].

2.7.1 Packet Verifier

The purposes of the packet verifier are validating compliance to standards, and vali-

dating expected usage of protocols e.g. protocol anomaly detection. It aims to cover

the TCP/IP/ICMP protocols. The packet verifier checks the protocol header part of

packets, verifies packet’ size, checks TCP/UDP header length, verifies TCP flags and

all packet parameters, does TCP protocol type verification, and analyses TCP protocol

header and TCP protocol flags. In the IP protocol, according to the Internet Protocol

Standard [Postel(1981b)], an IP header length should always be greater than or equal to

the minimal Internet header length (20 octets) and a packet’s total length should always

be greater than its header length. IP address checks are also important since land attacks

use the same IP address for source and destination. According to the TCP standard

[Postel(1981c)], neither the source nor the destination TCP port number can be zero, and

12 Chapter 2 Motivations

TCP flags, e.g. URG and PSH flags, can be only used when a packet carries data. Thus,

for instance, combinations of SYN and URG or SYN and PSH become invalid. In addi-

tion, any combination of more than one of the SYN, RST, and FIN flags is also invalid.

Finally, the packet verifier sends the result of validation to the packet-based classification

engine [Yoo and Ultes-Nitsche(2004b), Ultes-Nitsche and Yoo(2004), Yoo(2004c)].

2.7.2 Packet-Based Classification Engine

The purpose of the packet-based classification engine is to make a decision whether

the packet classes are filtered into the smart detection engine or are dropped accord-

ing to their probabilities of being malicious. This classification is based on a struc-

tural analysis of data packets. The structural analysis is mainly concerned with in-

formation that can be obtained from a packet’s header plus certain information in its

payload. To make a statistical relation between interesting events among incomplete

data, Bayesian networks [Pearl(1988)] or probabilistic graphical models have been cho-

sen, in particular the Naive Bayesian network [Langley and Sage(1994)] among several

Bayesian network models. In the MPhil thesis, certain packet characteristics has been

analysed that allows me to attach to packets probabilities of their maliciousness. The

analysed file characteristics are used as the parameters of the Naive Bayesian network

[Yoo and Ultes-Nitsche(2004b), Ultes-Nitsche and Yoo(2004), Yoo(2004c)].

2.7.3 Smart Detection Engine

The smart detection engine deals with the filtered packets, which have a high probabil-

ity of being malicious, selected from the packet-based classification engine. The smart

detection engine aims to learn to distinguish anomalous data packets from normal pack-

ets [Cannady and Mahaffey(1998), Lee and Heinbuch(2001)]. However, unlike anti-virus

software, this engine does not need to match the infected part of a program exactly

[G. Tesauro and Sorkin(1996)]. Detecting known viruses in a system or file is a role of

anti-virus software. Note that the smart detection engine deals with virus-infected files

rather than file worms. In the file worm case, the packet-based classification engine aims

to classify this file worm based on the context information. Currently Self-Organizing

Maps (SOMs) [Kohonen(1995)] are applied to the smart detection engine to detect bad

patterns. It is aimed to design the SOM in a way that neurons will flag the presence

of peculiar patterns in data packets and that the position of the active neurons reflects

the position of potentially malicious content in the packet. Basically, all packets with

a probability of being malicious above a certain threshold is filtered into the smart de-

tection engine for examination [Yoo(2004d)]. The threshold has to be set in a relatively

arbitrary fashion first and then be adapted when fine-tuning is applied to the decision

procedures.

Chapter 2 Motivations 13

2.8 Current Status of Virus Detection

The most popular approach to defend network systems against malicious program is

through anti-virus software such as Symantec [Symantec(2002)] and McAfee [McAfee(2002)],

as well as server-based scanners that filter email with executable attachments or embed-

ded macros in documents. However, there is still a problem to deal with unknown or

variants of viruses.

• Monitoring systems exist through organizations such as WildList [WildList(2001)]

and Trend Micro [TrendMicro(2002b)]. WildList is an organization consisting of

64 virus information professionals, who report all computer programs that they

have received and positively identified as malicious. This list does not include

those cases where an attachment is considered suspicious but not yet classified

as malicious, or include any viruses not specifically reported by these 64 partici-

pants. This leaves computer systems vulnerable to attack from unreported viral

incidents [WildList(2001)]. Since the process of reporting is not automated, mali-

cious programs, especially self-replicating programs, can spread much faster than

the warnings generated by WildList.

Trend depends on a proprietary virus scanner HouseCall [TrendMicro(2002a)],

which integrates with the Trend Micro Control Manager to report information

about actual virus infections. It attempts to predict virus outbreaks and prevent

them pro-actively with the use of a dynamic map to analyse worldwide virus trends

in real time [TrendMicro(2002b)]. However, since HouseCall is not widely used,

Trend’s data is incomplete. Furthermore, if Trend’s database is not updated at

the time that a virus infects a system, then the virus remains unreported.

• An anti-virus server is defined as a server-side virus-checking program. Its spe-

cific name depends on the company that produces it; for example, V3Netscan and

V3VirusWall in Ahnlab Inc.[Ahnlab(2002)], and MailMonitor in Sophos [Sophos(2002)].

Anti-virus servers examine network traffic, aiming to prevent malicious code from

entering network nodes by detecting known malicious-code patterns, for instance

in an email attachment. Apparently, they can detect only known viruses. All

of the major anti-virus vendors have produced networked products and systems

that scan incoming email. However, because Trojan horses, worms and viruses

can spread through local networks, shared hard drives and individual document

files, as well as through the Internet, it is always necessary to have virus check-

ing available on each client machine as well as on Internet gateways. Too often,

patterns that identify new malware are not ready until days or even weeks after se-

rious damage has been done. New viruses will only become detectable after their

pattern characteristics have been analysed and are made available. Looking at

techniques applied by other security systems such as intrusion detection systems,

seems to benefit virus detection [Swimmer(2000)].

14 Chapter 2 Motivations

These approaches have been successful in protecting computers against known ma-

licious programs usually employing signature-based methods. Almost all anti-virus

products claim that they can detect 100% of known viruses. However, we realize

that hundreds of new viruses are created every month, they have not yet provided

a means of protecting against unknown viruses, nor do they assist in providing

information that may help trace those individuals responsible for creating viruses.

• There have been approaches to detect new or unknown malicious programs by

analysing the payload of an attachment. The methods used include heuristics

[White(1998)], data mining techniques [Matthew G. Schultz and Zadok(2001b),

Matthew G. Schultz and Zadok(2001a)], and neural networks [Kephart(1994)]. How-

ever, these methods in general do not perform well enough to detect malicious

programs in real time.

IBM researchers [O.Kephart and C.Arnold(1994)] developed a statistical method

for automatically extracting malicious executable signatures. Their research was

based on speech recognition algorithms and was shown to perform almost as good

as a human expert at detecting known malicious executables. Their algorithm was

eventually packaged with IBM’s anti-virus software. Lo et al.[R. Lo and Olsson(1995)]

presented a method for filtering malicious code based on telltale signs for detecting

malicious code. These were manually engineered based on observing the character-

istics of malicious code. Unfortunately, a new malicious program may not contain

any of the known signatures, so traditional signature-based methods may not de-

tect a new malicious executable. In an attempt to solve this problem, the anti-virus

industry generates heuristic classifiers by hand [Gryaznov(1999)]. This process can

be even more costly than generating signatures, so finding an automatic method

to generate classifiers has been the subject of research in the anti-virus community.

To solve this problem, different IBM researchers applied Neural Networks to the

problem of detecting boot sector malicious binaries [G. Tesauro and Sorkin(1996)].

A Neural Network is a classifier that aims to explore in human cognition. Because

of the limitations of the implementation of their classifier, they were unable to

analyse anything other than small boot sector viruses, which comprise about 5%

of all malicious binaries. In similar work, William Arnold and Gerald Tesauro

[Arnold and Tesauro(2000)] applied the same techniques to Win32 binaries, but

because of limitations of the Neural Network classifier, they were unable to have

the comparable accuracy when applying to new Win32 binaries.

Chapter 3

Analysis of Vulnerabilities in

Network Protocols & Mechanisms

The major difference between a thing that might go wrong

and a thing that cannot possibly go wrong is that

when a thing that cannot possibly go wrong goes wrong,

it usually turns out to be impossible to get at or repair.

- Douglas Adams.

Protocols are created with specifications, known as RFCs, to dictate proper use and

communication. An anomaly is defined as something different, abnormal, or not easily

classified, or some action, or data that is not considered normal for a given system,

or network. Protocol anomaly refers to all exceptions related to protocol format and

protocol behaviour with respect to common practice on the Internet and standard spec-

ifications. This chapter discusses vulnerabilities in network protocols and mechanisms

abused by attacks.

3.1 Protocol Anomaly-Based Attacks

3.1.1 IP Spoofing & Incomplete Three-way Handshake

IP Spoofing is an attack where an intruder pretends to be sending data from its own

IP address [Bellovin(1989)]. An IP address either source address or destination address

contained in an IP header is the only information needed by an intermediate routing

device to make a decision on how to route the IP packet. Anyone who has access to

the IP layer can easily modify the source address in the IP header of a packet, spoofing

itself as from another host or even from a non-existing host.

15

16 Chapter 3 Analysis of Vulnerabilities in Network Protocols & Mechanisms

Let us also assume that the hosts A and B communicate with one another by following

the three-way handshake mechanism of TCP/IP. The handshake method is described

below.

A → B: SYN (seq. no. = M)

B → A: SYN (seq. no. = N), ACK (ack. no. = M + 1)

A → B: ACK (ack. no. = N + 1)

Host X does the following to perform IP spoofing. First, it sends a SYN packet to host B

with some random sequence number, posing as host A. Host B responds to it by sending

a SYN-ACK packet back to host A with an acknowledgment number, which is equal

to one, added to the original sequence number. At the same time, host B generates its

own sequence number and sends it along with the acknowledgment number. In order to

complete the three-way handshake, host X should send an ACK packet back to host B

with an acknowledgment number which is equal to one added to the sequence number

sent by host B to host A. If we assume that the host X is not present in the same subnet

as A or B so that it cannot sniff B’s packets, host X has to figure out B’s sequence

number in order to create the TCP connection. These steps are described below.

X → B: SYN (seq. no. = M), SRC = A

B → A: SYN (seq. no. = N), ACK (ack. no. = M + 1)

X → B: ACK (ack. no. = N + 1), SRC = A

At the same time, host X should take away host A’s ability to respond to the packets

of host B. To achieve this, X may either wait for host A to go down (for some reason),

or block the protocol part of the operating system so that it does not respond back to

host B, for example, by flooding B with incomplete connections, such as SYN flooding.

3.1.2 SYN flood attack

In the normal TCP connection establishment, the client system begins by sending a SYN

packet to the server. The server then acknowledges the TCP SYN packet by sending

SYN-ACK packet to the client. The client then finishes establishing the connection by

responding with an ACK message. The connection between the client and the server is

then open, and the service-specific data can be exchanged between the client and the

server.

The SYN flood attack [CERT(2000a)] exploits the TCP/IP three-way handshake mecha-

nism by having an attacking source host send SYN packets with random source addresses

to a victim host. The victim destination host sends a SYN-ACK back to the random

source address and adds an entry to the connection queue. Since the SYN-ACK is des-

tined for an incorrect or nonexistent host, the last part of the three-way handshake is

never completed, and the entry remains in the connection queue until a timer expires,

typically within about one minute. By generating phoney SYN packets from random IP

Chapter 3 Analysis of Vulnerabilities in Network Protocols & Mechanisms 17

addresses at a rapid rate, it is possible to fill up the connection queue and deny TCP

services to legitimate users.

3.1.3 Ping of Death

Attackers send a fragmented ping request that exceeds the maximum IP packet size

(64KB), causing vulnerable systems to crash. The idea behind the ping of death and

similar attacks is that the user sends a packet that is malformed in such a way that

the target system will not know how to handle the packet. The ping of death attack

[CERT(1996)] sent IP packets of a size greater than 65,535 bytes to the target computer.

IP packets of this size are abnormal, but applications can be built that are capable of

creating them. Carefully programmed operating systems could detect and safely handle

abnormal IP packets, but some failed to do this.

3.1.4 Land Attack

The land attack [CISCO(1997)] involves the perpetrator sending a stream of SYN pack-

ets that have the source IP address and TCP port number set to the same value as the

destination address and port number, i.e., that of the attacked host. Some implemen-

tations of TCP/IP cannot handle this theoretically impossible condition, causing the

operating system to go into a loop as it tries to resolve repeated connections to itself

[Fyodor(1997)].

3.1.5 Smurf attack

The smurf attack [CERT(1998)] is a modification of the ping attack and take advantage

of direct broadcast addressing mechanisms by spoofing the target system’s IP address

and broadcasting ICMP ping requests across multiple subnets. A range of IP addresses

from the intermediate system will send pings to the victim, bombarding the victim

machine or system with hundreds or thousands of pings. The two main components

to the smurf attack are the use of forged ICMP echo request packets and the direction

of packets to IP broadcast addresses. On IP networks, a packet can be directed to an

individual machine or broadcast to an entire network. In addition, if ICMP echo request

packets were directed to IP broadcast addresses from remote locations to generate denial-

of-service attacks. Many of the machines on the network will receive this ICMP echo

request packet and send an ICMP echo reply packet back. When all the machines on a

network respond to this ICMP echo request, the result can be severe network congestion

or outages.

18 Chapter 3 Analysis of Vulnerabilities in Network Protocols & Mechanisms

3.1.6 Teardrop attack

The teardrop attack [Hoggan(2000)] exploit IP mechanisms involved in the reassembly

of packets that have been disassembled for efficient transmission. Packet fragments are

deliberately fabricated with overlapping offset fields causing the host to hang or crash

when it tries to reassemble them. Under normal conditions, packet fragments will yield

a positive integer value as can be derived from the diagram below.

Figure 3.1: IP TearDrop Attack - Correct reassemble

However, the teardrop attack sends a fragment that deliberately forces the calculated

value for the end pointer to be less than the value for the offset pointer. This can be

achieved by ensuring that the second fragment specifies a fragment offset that resides

within the data portion of the first fragment and has a length such that the end of the

data carried by the second fragment is short enough to fit within the length specified by

the first fragment. Diagrammatically this can be shown as follows:

Figure 3.2: IP TearDrop Attack - Incorrect reassemble

When the IP module performing the reassembly attempts a memory copy of the fragment

data into the buffer assigned to the complete datagram, the calculated length of data

to be copied (that is the end pointer minus the offset pointer) yields a negative value.

The memory copy function expects an unsigned integer value and so the negative value

is viewed as a very large positive integer value. The result of such an action depends

upon the IP implementation, but typically causes a stack corruption, failure of the IP

module or a system hang.

3.1.7 UDP Flood Attacks

This denial of service attack takes advantage of user datagram protocol (UDP) mech-

anisms. Since no connection setup is required before data is transferred, it is difficult

to bring a host down by flooding the host with just UDP packets. The UDP flood

attack [Ferguson and Senie(2000)] uses forged UDP packets to connect the echo service

‘echoes’ on one machine to the character generation ‘chargen’ service on the other ma-

chine, causing the two machines to consume all available bandwidth on the connection

Chapter 3 Analysis of Vulnerabilities in Network Protocols & Mechanisms 19

between them. The echo service of the former machine echoes the data of that packet

back to the victim’s machine and in turn, the victim’s machine responds in the same

way. Hence, a constant stream of useless load is created that burdens the network.

3.2 Widespread Malicious Code

A worm is a program that self-propagates across a network exploiting security flaws in

widely used services. They are not a new phenomenon, first gaining widespread notice in

1988 [Eichin and Rochlis(1989)]. This project distinguishes between worms and viruses

in that the latter require some sort of user action to abet their propagation. As such,

viruses tend to propagate more slowly. They also have more mature defences due to

the presence of a large anti-virus industry that actively seeks to identify and control

their spread. On the other hand, a worm is a computer program which, when it runs,

finds other computers that are vulnerable and breaks into them across the network. It

then copies itself over, starts itself running on the new hosts, and does the same thing

from there. Thus, it can spread exponentially like an epidemic of human disease. The

worm has several important aspects [Nazario(2004)]; a spread algorithm for finding other

hosts, one or more exploits allowing it to break into other computers remotely, and a

payload, which is what it does to your computer after it is broken into it, rather than

just using it to spread.

A worm is not the same as a virus. However, they are both malicious code that propa-

gates around the network. There are differences as follows:

• If the mail code can break into another computer and start running there imme-

diately with no human intervention, then it is a worm.

• If the malicious code is carried around in some other content and then may or may

not start running on other computers depending on when and whether humans

decide to process that content, then it is a virus.

In short, the distinction is made based on whether or not the malicious code is self-

activating. By this definition, Code Red, Slammer/Sapphire, and Blaster are worms.

ILoveYou and SoBig are viruses. Nimda had both viral and worm spread algorithms.

From an operational perspective, the biggest difference is that worms can spread sig-

nificantly faster, which has strong implications for defences against them. Viruses are

more common, however. By and large, existing anti-viral defences are adequate against

viruses as long as people deploy and update them properly. However, anti-viral defences

are fairly useless against worms, at least during the initial spread of the worm.

This thesis presents an adaptive approach to preventing the damage caused by viruses

that travel via email. The approach protects intranet machines from outside infected

20 Chapter 3 Analysis of Vulnerabilities in Network Protocols & Mechanisms

machines by spreading email viruses. This directly addresses the two ways that viruses

cause damage: fewer machines spreading the virus will reduce the number of machines

infected and reduce the traffic generated by the virus. The approach relies on the payload

inspection and probabilistic decision about potentially malicious packets.

3.2.1 Activation Techniques

Since most people do not want to have a worm executing on their system, these worms

rely on a variety of social engineering techniques. Some worms such as the Melissa

virus [CERT(1999a)] indicate urgency on the part of someone you know - “Attached is

an important message for you”, others, such as the ILoveYou [CERT(2000b)] attack,

appeal to individuals’ vanity - “Open this message to see who loves you”. Although

Melissa was a word macro virus - a piece of code written in Microsoft Word’s built-in

scripting language embedded in a Word document - later human-initiated worms have

usually been executable files which, when run, infect the target machine. Furthermore,

while some worms required that a user starts running a program, other worms exploited

bugs in the software that brought data onto the local system, so that simply viewing

the data would start the program running e.g., Klez [Ferrie(2002)].

3.2.2 Propagation

The distribution of code can either be one-to-many, as when a single site provides a

worm to other sites, many-to-many, as when multiple copies propagate the malicious

code, or a hybrid approach. There are a number of techniques by which a worm can

discover new machines to exploit: scanning, external target lists, pre-generated target

lists, internal target lists, and passive monitoring. Worms can also use a combination of

these strategies.

Two simple forms of scanning are sequential (working through an address block from

beginning to end) and random (trying addresses out of a block in a pseudo-random

fashion). Due to their simplicity, they are very common propagation strategies, and

have been used both in fully autonomous worms [CERT(2001b), eEye(2001)] and worms

which require timer or user based activation [MessageLabs(2002)].

3.2.3 Propagation Features of Email Worms

Email worms can be spread via several ways. However, only email propagation in each

worm is the interest in this thesis. In addition, the project is looking at the way of prop-

agation and virus mail features rather than looking for the presence of a virus signature

or how a program is infected.

Chapter 3 Analysis of Vulnerabilities in Network Protocols & Mechanisms 21

3.2.3.1 W32/Dumaru@MM

The email message created by W32/Gibe [CERT(2002c)] tries to convince users that the

attached file is a patch supplied by Microsoft [Authentium(2004)]. In fact, the attached

file, patch.exe, is a malicious code. It also uses its own SMTP engine to spread.

3.2.3.2 W32/Myparty

The attached file name of the virus is “www.myparty.yahoo.com.” [CERT(2002b)], which

cause the default web browser to run unexpectedly. It has a built-in SMTP engine, which

it uses to send itself via email to all addresses listed in the infected user’s Windows

Address Book.

3.2.3.3 VBS/BubbleBoy

This virus, in the same way as Melissa [CERT(1999a)], exploits MS outlook [VirusBulletin(2004)].

However, unlike Melissa, BubbleBoy does not require the user to open a document to

run. Just reading an email message is enough to be infected. The virus arrives in what

appears to be a standard HTML-enhanced Outlook email message. It copies all the

email addresses into the blind carbon copy (BCc) field of a new email message, then

sends it.

3.2.3.4 W32/SirCam

The virus appears in an email message written in either English or Spanish with a

seemingly random subject line. The email message contains an attachment whose

name matches the subject line and has a double file extension (e.g. subject.ZIP.BAT

or subject.DOC.EXE). The second extension is .EXE, .COM, .BAT, .PIF, or .LNK

[CERT(2001a)]. The attached file contains both the malicious code and the contents of

a file copied from an infected system. In addition, this worm includes its own SMTP

capabilities, which it uses to propagate via email. It determines its recipient list by re-

cursively searching for email addresses contained in all *.wab (Windows Address Book)

files. As a result, propagation via mass emailing causes denial of service conditions.

3.2.3.5 Nimda Worm

This worm propagates through email message consisting of two sections; a blank mes-

sage, and an executable attachment. The first section is defined as MIME type “tex-

t/html”, but it contains no text, so the email appears to have no content. The second

22 Chapter 3 Analysis of Vulnerabilities in Network Protocols & Mechanisms

section is defined as MIME type “audio/x-wav”, but it contains a base64-encoded at-

tachment file “readme.exe”, which is a binary executable [CERT(2001b)].

3.2.3.6 W32/BadTrans

This malicious Windows program distributes as an email file attachment. The filename

in the email attachment of infected email varies from message to message but always

has two file extensions such as filename.ext.ext [CERT(2001c)].

Chapter 4

Protocol Anomaly Detection and

Verification

Data without generalization is just gossip.

Robert M. Pirsig.

Anomaly in packets is different from packet anomalies, because legitimate packets can

contain malicious content, which cause systems to be violated. Therefore, assessing

anomaly in packets is not only to deal with anomalous packets, but also to examine

legitimate packets, which contain malicious content. However, important to note is

that not all threats or attacks exhibit themselves as protocol anomalies. Some types of

application logic attacks, denial of service attacks, viruses, and reconnaissance methods
1 [Chmielarski(2001)] all appear as perfectly legitimate network traffic. On the other

hand, there are some odd-looking but legitimate traffic includes [Julia Allen(2000)], for

instance, storms of FIN and RST packets, fragmented packets with the “don’t fragment”

flag set, legitimate tiny fragments, and data that is different when retransmitted. For

this reason, a well-built detection system will rely on multiple detection mechanisms,

each covering some portion of the threat space. This is often referred to as ‘defence in

depth’. In this chapter, requirements of network protocols and a TCP verification model

are presented. Then a protocol verification program, Packet Verifier is introduced using

SDL model.

1Generally scanning methods, the most popular reconnaissance methods, besides general scanning,
was DNS version query, followed by queries to RPC services.

23

24 Chapter 4 Protocol Anomaly Detection and Verification

4.1 Requirements of Network Protocols For Anomaly De-

tection

This section discusses requirements of network protocols through RFCs, several TCP/IP

books such as [Stevens(1994), Stevens and Wright(1995)], and research papers for IDS

traffic analysis like [M. Handley and Paxson(2001), Shankar and Paxson(2003)]. Inter-

net protocol specifications do not always accurately specify the complete behaviour of

protocols, in particular for rare or exceptional conditions. In addition, different operat-

ing systems and applications implement different subsets of the protocols.

4.1.1 IP Protocol

Figure 4.1: IP v4 header.

The requirements of the IP header part are based on the Internet protocol (IP) speci-

fication [Postel(1981b)], other relative RFCs in each related field and other IDS traffic

analysis work like [M. Handley and Paxson(2001)]. Note that the maximum IP packet

size is 64 Kbytes. The IPv4 header is depicted in Figure 4.1.

• Header length: If the header length field is less than 20 bytes (the header is

incomplete), or, if the header length field exceeds the packet length, the packet

should be discarded. Note that if the header length is greater than 20 bytes, this

indicates options are present.

• Type Of Service/Diffserv [Grossman(2002)]/ECN (Explicit Congestion

Notification) [Ramakrishnan and Floyd(1999)] : These bits have been re-

assigned to differentiated services [K. Nichols and Black(1998)] and explicit con-

gestion notification [Ramakrishnan and Floyd(1999)]. If a site does not actually

use Diffserv mechanisms for incoming traffic, the bits should be zero. If these bits

are not being used internally, the bits should be zero.

• Total length: Total length must contain the total length of the IP datagram.

This includes IP header, e.g., ICMP or TCP or UDP header and payload size in

Chapter 4 Protocol Anomaly Detection and Verification 25

bytes. If the total length field does not match the actual total length of the packet

as indicated by the link layer, then packets whose length field exceeds their link

layer should be discarded.

• IP Identification number: This field uniquely identifies each datagram sent by

a host. It normally increments by one each time a datagram is sent. It is used

to distinguish the fragments of one datagram from those of another. The identi-

fication field, the fragment offset field and the total length field provide sufficient

information to reassemble datagrams. RFC 791 [Postel(1981b)] states that frag-

mentation is necessary when it originates in a local network that allows a large

packet size and must traverse a local network that limits packets to a smaller size

to reach its destination.

• Must be zero: The current IP specification (RFC 791 [Postel(1981b)]) states

that the bit between IP identifier and DF must be zero. Hence, the packet with a

non-zero set bit should be discarded.

• Don’t Fragment(DF) flag: An Internet datagram can be marked “Don’t Frag-

ment”. Any Internet datagram so marked is not to be fragmented under any

circumstances. If Internet datagram marked “Don’t Fragment” cannot be deliv-

ered to its destination without fragmenting it, the packets should be discarded. If

DF is set, and the Maximum Transmission Unit (MTU) anywhere in the internal

network is smaller than the MTU on outside network to the site, DF on incoming

packets should be zero. If the packet with the “Don’t Fragment (DF)” bit set in

the IP header, is too large for a router to forward on to a particular link, the router

must send an “ICMP Destination Unreachable - Fragmentation needed” message

to the source address [Lahey(2000)]. The MTU of a given network link specifies

the largest allowable size of an IP packet on that link. Packets arriving with DF

set and a non-zero fragmentation offset are illegal. Hence, such packets should be

discarded.

• More Fragments (MF) flag, Fragment Offset: These two fields are treated

together because they are interpreted together for IP fragmentation. Packets where

the length plus the fragmentation offset exceeds 65535 are illegal. Hence, the

packets should be discarded.

• Time to live (TTL): As with DF, an attacker can use TTL to manipulate the

packet. Therefore, it is necessary to restore a TTL if that is larger than the longest

path across the internal site. If packets arrive that have a TTL lower than the

configured minimum, then it is necessary to restore the TTL to the minimum.

Since TTL spoofing is considered nearly impossible, a mechanism based on an

expected TTL value can provide a simple and reasonably robust defence from

infrastructure attacks based on forged protocol packets [V. Gill and Meyer(2004)].

Note that TTL should be the same for all fragments of a given IP packet.

26 Chapter 4 Protocol Anomaly Detection and Verification

• Source address: If the source address of an IP packet is invalid in some way, for

example, 127.0.0.1 (localhost), 0.0.0.0 and 255.255.255.255 (broadcast), multicast

(class D) and class E address, source address is the same as destination address

(abused by the land attacks [CISCO(1997)]) , the packet should be discarded.

• Destination address: Like source address, if invalid destination address occurs

with local broadcast address (abused by the smurf attacks [CERT(1998)]), local-

host, broadcast address, and class E address, which are currently unused, the

packet should be discarded.

• IP options: IP packets may contain IP options that modify the behaviour of

internal hosts, or cause packets to be interpreted differently. Therefore, remove IP

options from incoming packets.

• Padding: The receiver explicitly ignores the padding field at the end of a list of

IP options, so it is safe to zero the padding bytes.

The protocol field indicates the next-layer protocol, such as TCP or UDP. According to

local site policy, a firewall can block traffic based on it. Moreover, regarding IP header

checksums, routers normally discard packets with incorrect IP checksums.

4.1.1.1 IP Fragmentation

Fragmentation is necessary in order for traffic, which is being sent across different types

of network media to arrive successfully at its intended destination. The reason for this

is that different types of network media and protocols have different rules involving the

maximum size allowed for datagrams on its network segment or MTU [Anderson(2001a)].

Whenever the IP layer receives an IP datagram to send, it determines which local in-

terface the datagram is being sent on (routing), and queries that interface to obtain

its MTU. IP compares the MTU with the datagram size and performs fragmentation,

if necessary. Fragmentation can take place either at the original sending host or at an

intermediate router [Stevens(1994)]. In order for a fragmented packet to be successfully

reassembled at the receiver of the fragments, the receiver should use these checks in RFC

791 [Postel(1981b)]. All of this information will be contained in the IP header.

• IP identification number field. Must share a common IP identification number

to ensure that fragments of different datagrams are not mixed.

• IP fragment offset field. The fragment offset field tells the receiver the position

of a fragment in the original datagram.

• IP total length field. Each fragment tells the length of the data carried in the

fragment. The fragment offset and length determine the portion of the original

datagram covered by this fragment.

Chapter 4 Protocol Anomaly Detection and Verification 27

• IP more fragmentation (MF) field. The fragment must tell whether more

fragments follow this one or not using DF field.

RFC 791 [Postel(1981b)] states that every Internet module must be able to forward a

datagram of 68 octets without further fragmentation. This is because an Internet header

may be up to 60 octets, and the minimum fragment is 8 octets. However, for the purpose

of security, it is not sufficient to merely guarantee that a fragment contains at least 8

octets of data beyond the IP header. Thus, RFC 1858 [G. Ziemba and Traina(1995)]

states also that if the router’s filtering module enforces a minimum fragment offset for

fragments that have non-zero offsets, it can prevent overlaps in filter parameter regions

of the transport headers. In the case of TCP, the TCP flags field is never contained

in a non-zero-offset fragment. If a TCP fragment has fragment offset set with non-zero

(e.g. FO=1), it should be discarded because it starts only eight octets into the transport

header.

4.1.2 ICMP Protocol

IP itself has no mechanism for establishing and maintaining a connection, or even con-

taining data as a direct payload. The Internet control messaging protocol (ICMP)

[Postel(1981a)] is merely an addition to IP to carry error, routing and control messages

and data. ICMP is used to handle errors and exchange control messages. ICMP can also

be used to determine if a machine on the Internet is responding. To do this, an ICMP

echo request packet is sent to a machine. If a machine receives that packet, that ma-

chine will return an ICMP echo reply packet. ICMP is used to convey status and error

information including notification of network congestion and of other network transport

problems. ICMP can also be a valuable tool in diagnosing host or network problems.

Note that total ICMP header length is 8 bytes and the maximum requested data echo

size is 548 bytes.

• ICMP type: The message type, for example 0 is echo reply, 8 is echo request, 3

is destination unreachable.

• ICMP code: This is significant when sending an error message (unreachable),

and specifies the kind of error.

• ICMP checksum: The checksum for the ICMP header, and it is the same value

as the IP checksum.

• ICMP id: It is used in echo request/reply messages, to identify the request.

• ICMP sequence: It identifies the sequence of echo messages, if more than one

is sent.

28 Chapter 4 Protocol Anomaly Detection and Verification

4.1.3 UDP Protocol

The user datagram protocol (UDP) [Postel(1980)] is a transport protocol for sessions

that need to exchange data. Both transport protocols, UDP and TCP provide 65535

different source and destination ports. The destination port is used to connect to a

specific service on that port. The UDP header is depicted in Figure 4.2.

Figure 4.2: UDP header.

• Source port number: It is the source port that a client binds to, and the

contacted server will reply back to in order to direct its responses to the client.

• Destination port number: It is the destination port, which a specific server

can be contacted on.

• Length: It is the length of UDP header and payload data in bytes. If it does not

match length as indicated by IP total length, then the packet should be discarded.

• Checksum: It is the checksum of header and data.

4.1.4 TCP Protocol

The transmission control protocol (TCP) [Postel(1981c)] is the most used transport

protocol that provides mechanisms to establish a reliable connection with some basic

authentication, using connection states and sequence numbers. The TCP header is

illustrated in Figure 4.3. The size of the TCP header is 20 bytes, without counting its

options. Each TCP segment contains the source and destination port number to identify

the sending and receiving of application programs, respectively. The sequence number

is essential to maintain the bytes of data from the sender to the receiver in proper

order. By communicating the sequence number and the corresponding acknowledgment

number, the sender and the receiver can determine lost or retransmitted data in the

connection. There are six flag bits in the TCP header, namely URG, ACK, PSH, SYN,

and FIN. At any given time, one or more of these flag bits can be set.

TCP provides flow control by advertising the window size. The checksum covers TCP

header and TCP data and assists in determining any error in transmission of TCP header

or data. TCP’s urgent mode is a method for the sender to transmit emergency/urgent

data. The urgent pointer is valid only if the URG flag is set in the header. It helps to

locate the sequence number of the last byte of urgent data. There is an optional options

field as well, taking care of vendor specific information.

Chapter 4 Protocol Anomaly Detection and Verification 29

Figure 4.3: TCP header.

• Source and destination port number: The source port and the destination

port. Ports are used by the kernel to identify network processes. Together with an

IP address, a TCP port provides an endpoint for network communication. Note

that the source address and the port should not be the same as the destination

address and the port (abused by the land attack [CISCO(1997)]).

• Sequence number: The sequence number is used to enumerate the TCP seg-

ments. The data in a TCP connection can be contained in any amount of segments

(single TCP datagrams), which will be put in order and acknowledged. TCP ac-

knowledges all data bytes received from the other end. The initial sequence num-

ber should be chosen randomly or the sequence number incremented randomly.

Bellovin [Bellovin(1989)] describes a fix for TCP that involves partitioning the

sequence number space. Each connection would have its own separate sequence

number space.

• Acknowledgment number: Every packet that is sent and a valid part of a

connection is acknowledged with an empty TCP segment with the ACK flag set

and this acknowledge field containing the value of the next expected sequence

number from the other side and acknowledges all data from the other side up

through this acknowledgment number minus one.

• Header length: The header length gives the length of the header in 32-bit words.

This is required because the length of the options field is variable. With a 4-bit

field, TCP is limited to a 60-byte header. Without options, the normal value of

this field is 5 (20 bytes) (e.g., 5 in decimal and 0101 in binary), thus if it is less

than 5 or if it is beyond end of packet, then the packet should be discarded.

• Reserved: The current TCP specification [Postel(1981c)] states that this field

must be zero.

• Flags: This field consists of six binary flags.

(1) URG: Urgent. It implies the urgent pointer is valid. Segment will be routed

faster, used for termination of a connection or to stop processes (using the telnet

protocol). This is TCP’s way of implementing out of band data. It can be used

30 Chapter 4 Protocol Anomaly Detection and Verification

only when a packet carries data. If an URG packet without an ACK flag, the

packet should be discarded.

(2) ACK: Acknowledgement. It is used to acknowledge data and in the second and

third stage of a TCP connection initiation.

(3) PSH: Push. The systems IP stack will not queue this data, but rather pass it

to the application as soon as possible. This flag should always be set in interactive

connections such as telnet and rlogin. It can be used only when a packet carries

data. If a PSH packet without an ACK flag, the packet should be discarded.

(4) RST: Reset. It tells the peer that the connection has been terminated. All

memory structures are torn down. If a RST packet comes in, data should be

removed.

(5) SYN: Synchronization. It means the synchronize sequence number field is valid.

A segment with the SYN flag set indicates that a client wants to initiate a new

connection to the destination port. This flag is only valid during the three-way

handshake. Note that combination of SYN and URG, or SYN and PSH is invalid.

If a SYN packet with a RST flag, the packet should be discarded.

(6) FIN: Final. The connection should be closed, the peer is supposed to answer

with one last segment with the FIN flag set as well. If a FIN packet without an

ACK or SYN flag, the packet should be discarded without responding.

• Window size: The amount of bytes that can be sent before the data must be

acknowledged with an ACK before sending more segments.

• TCP checksum: It is the checksum of pseudo header, TCP header and payload.

The pseudo is a structure containing IP source and destination address, 1 byte

set to zero, the protocol (1 byte with a decimal value of 6), and 2 bytes (unsigned

short) containing the total length of the TCP segment. If it is incorrect, the packet

should be discarded.

• Urgent pointer: Only used if the urgent flag is set, otherwise this flag should be

zero. It points to the end of the payload data that should be sent with priority.

• Options:

(1) MSS (Maximum Segment Size) option [Lahey(2000)]: The TCP MSS (Maxi-

mum Segment Size) 2 option is only allowed in SYN packets. A TCP packet with

an MSS option and without a SYN flag is illegal. The MSS advertised at the start

of a connection should be based on the MTU of the interfaces on the system.

(2) WS (Window Scale) option [V. Jacobson and Borman(1992)]: The three-byte

window scale option may be sent in a SYN segment by TCP. It has two purposes:

(1) indicate that the TCP is prepared to do both send and receive window scaling,

and (2) communicate a scale factor to be applied to its receive window. Thus, a

2 The maximum amount of TCP data that a node can send in one segment. This should be the size
of the receiver’s reassembly buffer to try to avoid fragmentation. The equivalent at the physical layer is
“Maximum Transmission Unit (MTU)”.

Chapter 4 Protocol Anomaly Detection and Verification 31

TCP that is prepared to scale windows should send the option, even if its own

scale factor is 1. The scale factor is limited to a power of two and encoded loga-

rithmically, so it may be implemented by binary shift operations. This option is

an offer, not a promise; both sides must send window scale options in their SYN

segments to enable window scaling in either direction. This option may be sent in

an initial SYN segment (i.e., a segment with the SYN bit on and the ACK bit off).

It may also be sent in a SYN-ACK segment, but only if a Window scale option

was received in the initial SYN segment. A window scale option in a segment

without a SYN bit should be ignored. The window field in a SYN (i.e., a SYN or

SYN-ACK) segment itself is never scaled. If any packet does not have a SYN flag

set on, the option should be removed.

(3) SACK (Selective Acknowledgement) option [M. Mathis and Romanow(1996)]:

With selective acknowledgments, the data receiver can inform the sender about

all segments that have arrived successfully, so the sender need retransmit only the

segments that have actually been lost. The selective acknowledgment extension

uses two TCP options. The first is an enabling option, “SACK-permitted”, which

may be sent in a SYN segment to indicate that the SACK option can be used

once the connection is established. The other is the SACK option itself, which

may be sent over an established connection once permission has been given by

SACK-permitted. The Sack-Permitted option must not be sent on non-SYN seg-

ments. If the data receiver has not received a SACK-Permitted option for a given

connection, it must not send SACK options on that connection.

(4) T/TCP option [Braden(1995)]: T/TCP is a small set of extensions to make a

faster, more efficient TCP. It is designed to be a completely backward compatible

set of extensions to speed up TCP connections. T/TCP achieves its speed increase

from two major enhancements over TCP: TAO and TIME WAIT state truncation.

TAO is TCP Accelerated Open, which introduces new extended options to bypass

the three-way handshake entirely. Using TAO, a given T/TCP connection can

approximate a UDP connection in terms of speed, while still maintaining the reli-

ability of a TCP connection. In most single data packet exchanges (such is the case

with transaction-oriented connections like HTTP), the packet count is reduced by

a third. The second speed up is TIME WAIT state truncation. TIME WAIT

state truncation allows a T/TCP client to shorten the TIME WAIT state. This

can allow a client to make more efficient that use of network socket primitives and

system memory. This is an experimental TCP extension for efficient transaction-

oriented (request/response) service. It is safe to remove this option.

(5) TS (TimeStamps) option [Stevens(1994)]: TCP is a symmetric protocol, allow-

ing data to be sent at any time in either direction, and therefore timestamp echoing

may occur in either direction. For simplicity and symmetry, we specify that times-

tamps always be sent and echoed in both directions. For efficiency, we combine the

timestamp and timestamp reply fields into a single TCP Timestamps Option. The

32 Chapter 4 Protocol Anomaly Detection and Verification

Timestamps option carries two four-byte timestamp fields. The Timestamp Value

field (TSval) contains the current value of the timestamp clock of the TCP sending

the option. The Timestamp Echo Reply field (TSecr) is only valid if the ACK bit

is set in the TCP header; if it is valid, it echoes a timestamp value that was sent

by the remote TCP in the TSval field of a Timestamps option. When TSecr is

not valid, its value must be zero. The TSecr value will generally be from the most

recent Timestamp option that was received. A TCP may send the Timestamps

option (TSopt) in an initial SYN segment (i.e., segment containing a SYN bit and

no ACK bit), and may send a TSopt in other segments only if it received a TSopt

in the initial SYN segment for the connection. If it is not negotiated in SYN, it is

safe to remove it.

(6) MD5 Signature Option [Heffernan(1998)]: The security of this option relies

heavily on the quality of the keying material used to compute the MD5 signature

[Leech(2003)]. If MD5 is used in SYN, then non-SYN packets without it should

be discarded.

(7) Other options: It is safe to remove other options.

4.2 TCP Runtime Verification Model

4.2.1 Current TCP Model

The transmission control protocol (TCP) [Postel(1981c)] is the most common transport

layer protocol used in modern networking environments. TCP provides reliable data

transfer between different application processes over the network. TCP provides flow

control and congestion control [M. Handley and Floyd(2000)] as well. Initiation, estab-

lishment, and termination of a connection are governed by the TCP state-transition

diagram, which consists of well-defined states and transition arcs between these states

(see Figure 4.4.). Nevertheless, during the past two decades, many security problems

of the TCP/IP protocol suite have been discovered [Bellovin(1989)]. Meanwhile, the

network hackers created a large number of intrusion methods to exploit those vulnera-

bilities.

The TCP state-transition diagram (see Figure 4.4.) is very closely associated with

timers. There are various timers associated with connection establishment or termina-

tion, flow control, and retransmission of data. A connection-establishment timer is set

when the SYN packet is sent during the connection-establishment phase. If a response

is not received within 75 seconds (in most TCP implementations), the connection estab-

lishment is aborted. A FIN WAIT 2 timer is set to 10 minutes when a connection moves

from the FIN WAIT 1 state to the FIN WAIT 2 state [Stevens and Wright(1995)]. If

the connection does not receive a TCP packet with the FIN bit set within the stipu-

Chapter 4 Protocol Anomaly Detection and Verification 33

Figure 4.4: TCP connection state diagram from TCP/IP Illustrated Vol. 1 - The
Protocols, 18.6

lated time, the timer expires. If no FIN packet arrives within this time, the connection

is dropped. There is a TIME WAIT timer, often called a 2 MSL (Maximum Segment

Lifetime) 3 timer. It is set when a connection enters the TIME WAIT state. When the

timer expires, the kernel data-blocks related to that particular connection are deleted,

and the connection is terminated. A keepalive timer can be set which periodically checks

whether the other end of the connection is still active. If the SO KEEPALIVE socket

option is set, and if the TCP state is either ESTABLISHED or CLOSE WAIT, and the

connection is idle, the probes are sent to the other end of the connection once every

two hours. If the other end does not respond to a fixed number of these probes, the

connection is terminated.

4.2.1.1 Problems with Extraneous State Transitions

Let us consider a sequence of packets between hosts X and A. Intruder-controlled host

X needs to perform the following steps to wedge A’s operating steps so that it cannot

respond to unexpected SYN-ACKs from other hosts for as long as two hours.

1. Host X sends a packet to host A with SYN and FIN flags set. Host A responds

with an ACK packet. Host A changes its state from LISTEN to SYN RCVD, and

then to CLOSE WAIT.
3Common implementation values for 2 MSL are 1 minute or 2 minutes.

34 Chapter 4 Protocol Anomaly Detection and Verification

Figure 4.5: Extraneous state in the TCP state-transition diagram [Extention of Figure
4.4]

2. Host X does not send any more packet to host A, thus preventing any TCP state-

transitions in host A.

Examining the state-transition diagram in Figure 4.5, we observe that host A is initially

in state LISTEN. When it receives the packet from host X, it starts processing the

packet. It processes the SYN flag first, then transitions to the SYN RCVD state. Then

it processes the FIN flag and performs a transition to the state CLOSE WAIT. Had the

previous state been ESTABLISHED, this transition to the CLOSE WAIT state would

have been a normal transition. However, a transition from SYN RCVD state to the

CLOSE WAIT state is not defined in the TCP specification. This phenomenon occurs

in several TCP implementations, such as those in the operating systems SUNOS 4.1.3,

SVR4, and ULTRIX 4.3 [Gupta and Mukherjee(1996)]. Thus, contrary to specification,

there exists in several TCP implementations a transition arc from the state SYN RCVD

to the state CLOSE WAIT, as shown in Figure 4.5.

In this attack scenario, the TCP connection is not yet fully established since the three-

way handshake is not completed; thus, the corresponding network application never got

the connection from the kernel. However, host A’s TCP machine is in CLOSE WAIT

state and is expecting the application to send a close signal so that it can send a FIN

packet to host X and terminate the connection. This half-open connection remains in the

socket-listen queue and the application does not send any message to help TCP perform

Chapter 4 Protocol Anomaly Detection and Verification 35

any state-transition. Thus, host A’s TCP machine stuck in the CLOSE WAIT state. If

the keep-alive timer feature is enabled, TCP will be able to reset the connection and

perform a transition to the CLOSED state after a period of usually two hours. Thus, we

observe that extraneous state-transitions exist in several implementations of TCP and

these may lead to severe security violations of the system.

4.2.1.2 Problems with Simultaneous Open

Let us consider the sequence of steps followed by an intruder-controlled host X and host

A. This attack scenario was mentioned in [Gupta and Mukherjee(1996)]. Through these

steps, host X is successfully able to stall a port of host A.

1. Host X sends a SYN packet to host A. A TCP connection is established between

hosts X and A. Host A sends a SYN packet to host X in order to start a TCP

connection and performs a state-transition to the state SYN SENT.

2. When host X receives the SYN packet from host A, it sends a SYN packet back

in response.

3. When host A receives this packet, it assumes that a simultaneous open connection

is in progress; it sends out a SYN-ACK packet to host X and at the same time

switches off the connection-establishment timer and makes a state-transition to

state SYN RCVD.

4. Host X receives the SYN-ACK packet from host A but does not send back any

packet.

5. Host A is expecting a SYN-ACK from the host X. Since host X does not send back

any packet, host A is stalled in the state SYN RCVD.

4.2.2 Generating TCP Verification Model

4.2.2.1 Removing Unnecessary States In Implementation

In practical internetworking with TCP, for example, if an application prematurely closes

in SYN RCVD state, the specification requires the implementation to close the connec-

tion using the FIN, however, the transition from SYN RECV to FIN WAIT 1 cannot

possibly happen (see Figure 4.6). These transactions are part of ideal connection ter-

minations, but are not applicable to real TCP implementations. The working Linux

source (version 2.4.19) does not support this; the Linux implementation dropped the

connection and there was a comment that acknowledges the incorrect handling of this

case. Furthermore, some implementation fails to response a RST packet in SYN RCVD

36 Chapter 4 Protocol Anomaly Detection and Verification

Figure 4.6: Impossible state transition in the existing TCP Protocol State Machine

state, which cause prematurely exit before processing the RST flag. Besides, there are

more unsupported states. The following description of TCP State Transition Diagram

is excerpted from TCP/IP Illustrated Vol. 1 - The Protocols, 18.6 [[Stevens(1994)]]:“

The state transition from LISTEN to SYN SENT is legal but is not supported in some

implementations, e.g., Berkeley-derived implementations.” In FIN WAIT 2 state, “we

have sent our FIN and the other end has acknowledged it. Unless we have done a half-

close 4, we are waiting for the application on the other end to recognize that it has

received an end-of-file notification and close its end of the connection, which sends us

a FIN. Only when the process at the other end does this close will our end move from

the FIN WAIT 2 to the TIME WAIT state. This means our end of the connection can

remain in this state forever. The other end is still in the CLOSE WAIT state, and can

remain there forever, until the application decides to issue its close. Many Berkeley-

derived implementations prevent this infinite wait in the FIN WAIT 2 state as follows.

If the application that does the active close does a complete close, not a half-close indi-

cating that it expects to receive data, then a timer is set. If the connection is idle for 10

minutes plus 75 seconds, TCP moves the connection into the CLOSED state. A com-

ment in the code acknowledges that this implementation feature violates the protocol

4TCP provides the ability for one end of a connection to terminate its output, while still receiving
data from the other end. This is called a half-close. The socket API supports the half-close, if the
application calls shutdown with a second argument of 1, instead of calling close. Most applications,
however, terminate both directions of the connection by calling close.

Chapter 4 Protocol Anomaly Detection and Verification 37

specification.”

4.2.2.2 Reorganizing Sequences Of States

Figure 4.7: Client/Server Interaction

Client/server interaction is illustrated in Figure 4.7. To generate a TCP verification

model, client/server packet interaction is observed neither from the server nor from the

client side but from the viewpoint of an independent observer. For example, in firewalls’

view, close observation of packet communication from external clients to inside servers

or clients is worthwhile. Since a firewall is neither a server nor a client, it needs to look at

the packet-transition sequence of both sides. The firewall also can take communication

flags accordance with states into account.

Figure 4.8 illustrates a TCP verification model after eliminating unnecessary states in

implementation. This TCP verification model captures only the essential details of

the TCP protocol and accepts a superset of what is permitted by the standards. It

is still sufficient to deal with incomplete protocol runs meeting the standards (such as

abuse of incomplete three-way handshake). In order to achieve the goal of identifying

all necessary TCP transition for a set of reachable states, first it is necessary to search

through all the reachable states from the initial state to find their necessary transitions.

It then reduces the number of the searched states.

A TCP connection is always initiated with the three-way handshake, which establishes

and negotiates the actual connection over which data will be sent. The whole session

begins with a SYN packet, then a SYN-ACK packet and finally an ACK packet to

38 Chapter 4 Protocol Anomaly Detection and Verification

Figure 4.8: TCP Verification Model (First)

acknowledge the whole session establishment. In Figure 4.8, a new session starts in

the LISTEN state. Data transfer takes place in the connection ESTABLISHED state.

If the TCP connection is initiated, then the state machine goes through SYN RCVD

and ACK WAIT states to reach the ESTABLISHED state. In order to tear down the

connection, either side can send a TCP segment with the FIN bit set. If an internal

host sends the FIN packet, the state machine waits for an ACK of FIN to come in from

an external host. This scenario is represented by the states FIN WAIT 1, FIN WAIT 2,

CLOSING and CLOSE WAIT 1 states. It is also possible that an external host send a

FIN packet after the ESTABLISHED state. In this case, we may receive a FIN, or a

FIN-ACK from the external host. This scenario is represented by the CLOSE WAIT 2

and LAST ACK states.

4.2.2.3 Removing Server-side-dependent Termination

In view of an independent observer like firewalls, the model can become even simpler

and thus much easier to apply to a real system. We do not need to look at which

state occurs on the server side where the monitoring firewall is located, since server

side initiates termination the independent observer does not need to verify next states

after termination process. Besides, to make the verification steps more abstract, we can

Chapter 4 Protocol Anomaly Detection and Verification 39

ignore three parts, which are marked by a circle as shown in Figure 4.9.

Figure 4.9: Three Groups in TCP Verification Model (Second)

Some terms are used; an internal host as server side, an external host as client side to

make sure that the independent observer like firewalls is located in server side to monitor

all packets.

1. ESTABLISHED to FIN WAIT 1 state. This state transition requires request of

an internal host’s requests in order to tear down the connection. In particular,

since the request comes from the internal host, the independent observer does not

need to trace it down.

2. CLOSING to TIME WAIT state. Since state CLOSING is reached after a FIN has

occurred, Janus in this state can ignore other packets from the client and simply

drop them in any case.

3. CLOSE WAIT 2 to LAST ACK state. This represents the normal closing state of

an external client’s request after a connection has been established. The indepen-

dent observer does not need to trace down the server-side state change.

40 Chapter 4 Protocol Anomaly Detection and Verification

Figure 4.10: Simplified TCP Verification Model (Final)

Table 4.1: TCP states table

Current State New State Action

LISTEN SYN RCVD recv: SYN
SYN RCVD LISTEN recv: RST
SYN RCVD ACK WAIT send: SYN, ACK
ACK WAIT ESTABLISHED recv: ACK
ACK WAIT CLOSE WAIT 2 recv: ACK of SYN, FIN
ACK WAIT CLOSED timeout (60 sec) or recv: SYN
ACK WAIT CLOSING recv: FIN, send: ACK

ESTABLISHED CLOSE WAIT 2 recv: FIN, send: ACK
ESTABLISHED CLOSED recv: RST or SYN, or timeout (30 min)

CLOSING CLOSED timeout (10 sec)
CLOSING CLOSE WAIT 2 recv: ACK

CLOSE WAIT 2 CLOSED recv: ACK, or timeout (10 sec)

4.2.2.4 Simplified TCP Verification Model

After leaving out the three cases above, it is not necessary for ACK WAIT state to

send RST to client side, but need to check whether server side receives SYN or not.

Chapter 4 Protocol Anomaly Detection and Verification 41

The simplified TCP verification model is depicted in Figure 4.10 and the associated

TCP state table with action is presented in Table 4.1 to monitor and control TCP state

transitions. They may change according to the security policy, however, the default

values should be fairly well established in practice. To reduce clutter, the following

classes of abnormal transitions are not shown: conditions where an abnormal packet

is discarded without a state transition, e.g., packets received without correct sequence

numbers after connection establishment and packets with incorrect flag settings.

4.2.2.5 Example Cases of TCP State Transition

Figure 4.11: TCP Connection Establishment and Termination

1. Connection Establishment. A client sends a SYN segment specifying the port

number of the server that the client wants to connect to, and the client’s initial

sequence number (ISN). TCP state changes from LISTEN to SYN RCVD. The

server responds with its own SYN segment containing the server’s initial sequence

number. The server also acknowledges the client’s SYN by ACKing the client’s

ISN plus one. A SYN consumes one sequence number. TCP state changes from

SYN RCVD to ACK WAIT. (see Figure 4.11). The client must acknowledge this

SYN from the server by ACKing the server’s ISN plus one. TCP state changes

from ACK WAIT to ESTABLISHED.

2. Connection Termination. When the server receives FIN, it sends back an

ACK of the received sequence number plus one. TCP state changes from ES-

TABLISHED to CLOSE WAIT 2 (see Figure 4.11). A FIN consumes a sequence

number, just like a SYN. At this point, the server’s TCP also delivers an end-of-

file to the application (the discard server). The server then closes its connection,

42 Chapter 4 Protocol Anomaly Detection and Verification

causing its TCP to send a FIN. Then the client TCP must ACK by incrementing

the received sequence number by one. TCP state changes from CLOSE WAIT 2

to CLOSED.

4.3 SDL Modeling For Prototyping Packet Verifier

The purposes of Packet Verifier are validating compliance to standards, and detecting

protocol anomalies. Packet Verifier checks the protocol header of packets, verifies packet

size, checks TCP/UDP header length, verifies TCP flags and all packet parameters, does

TCP protocol type verification, and analyses TCP Protocol header and TCP protocol

flags. The goal of using the specification and description language (SDL) [CCITT(1992)]

is not to define a formal description of the TCP verification model, but rather to provide

some assurance that the TCP verification model under development are complete and

perform the functions that were intended. This SDL allowed us to locate errors in

requirements of Packet Verifier.

The specification was made by hand (Figure 4.10) first, and then using SDL is to ac-

complish requirement of the TCP verification model. SDL is an International Telecom-

munication Union (ITU) standard, based on the concept of a system of Communicating

Extended Finite State Machine (CEFSM) Model [Hopcroft and Ullman(1979)]. To un-

derstand how SDL can work based on the CEFSM, it is necessary to address the dynamic

semantics of the finite state machine, SDL’s underlying model, and generating the TCP

verification model using SDL. This rapid development of a model for testing and validat-

ing of the contained behaviour of the development verification model was useful. This

process uncovered various ambiguities, unspecified transitions, and a deadlock within

the draft verification model. Thus helping to ensure that at least those errors found

were fixed and applied to development.

4.3.1 Dynamic Semantics Of Finite State Machines

SDL is based on the concept of CEFSMs, which communicate with each other and

their common environment by signals in an asynchronous manner via possibly delaying

communication paths. These signals are buffered on arrival at a process.

A finite state machine (FSM) is defined as a 4-tuple < S, s0, E, f >, where S is a

set of states, s0 is an initial state, E is a set of events with their parameter lists, f

is a state transition relation. However, the construction of an FSM is limited by the

state-explosion problem. An extended finite-state machine (EFSM) solves this problem

by introducing variables in addition to explicit states of the process instance. These

variables become implicit states, being able to take on a number of values themselves.

Each EFSM is defined as a FSM with addition of variables to its states. EFSMs are

Chapter 4 Protocol Anomaly Detection and Verification 43

those defined with additional variables to states as a 5-tuple < S, s0, E, f, V >. Where

S, s0, E, and f as in the case of the FSM and V is a set of local variables along with

their types and initial values, if any. Each state in an EFSM is defined by a set of

variables, including state names. The transition T of an EFSM becomes [< s, v1, . . . ,

vn > + input∗, task∗; output∗ + < s′, v′1, . . . v′n >], where s and s′ are the names of

states, < v1, v2, . . . , vn > and < v′1, v′2, . . . v′n > are values of extended variables, n is

the number of variables, “+” means coexistence, “;” means sequence of events such as

tasks and outputs, and “[,]” denotes a sequenced pair. The difference between an EFSM

and an FSM is that an EFSM associates each transition not only with input and output

actions but also with assignment actions and conditions [Wang and Liu(1993)].

A communicating extended finite-state machines (CEFSM) includes the definitions of

EFSMs and signals [Jan Ellsberger and Sarma(1997)]. There are signals, which means

that channels exist. A CEFSM is defined as a 6-tuple < S, s0, E, f, V, X >. Where

S, s0, E, f , and V as in the case of the EFSM, and X is a set of signals. In CEFSM,

signals are responsible for communicating information from within the CEFSM to other

automata, some of which may be located in the environment of a system. The signals

account for the observable behaviour, which is more important than the actual model

for a specification. In SDL, CEFSM processes use signals to communicate with other

CEFSMs and the environment.

4.3.2 SDL’s Underlying Model

The language SDL is intended for the formal specification of complex, event-driven,

real-time, and interactive applications involving many concurrent activities that com-

municate using discrete signals. It is especially well suited for specification of commu-

nication protocols, reactive systems such as switches, routers and distributed systems.

SDL has been designed for the specification and description of the behaviour of such

systems, i.e., the internetworking of the system and its environments. SDL allows the

hierarchical description of systems. The description starts from a construction called

system, where functional blocks are inserted. A block is a component composed by one

or more processes and/or other blocks. A block consists of processes connected by signal

routes. A process contains a sequential behaviour and concurrency modelled by a set of

processes. Each process is a CEFSM. These machines or processes run in parallel. They

are independent of each other and communicate with discrete messages, called signals.

A process can also send signal to and receive signals from the environment of the system.

The behaviour of a state machine is characterized by a set of transitions. A transition to

another state or the same state occurs whenever an input is consumed. When a process

is in a state, it accepts input. This input can be a signal received by the input port

or timers. When a process enters a new state, it means that a transition terminates.

CEFSM enables decisions to be made in transitions based on the value associated with

44 Chapter 4 Protocol Anomaly Detection and Verification

a variable so that the state which follows when a specific input is consumed is not only

determined by the existing state and input.

The SDL language supports two equivalent notations: the graphical notation (SDL-GR)

and the textual notation (SDL-PR). The SDL-GR is a standardized graphical represen-

tation of the system. SDL elements such as system, block, process, signal etc. are drawn

using standardized graphical symbols. The SDL-PR is a textual phrase representation

of the SDL system, or in other words, it is a SDL source code.

4.3.2.1 Process Model

The Z.100 ITU-T standard defines that the SDL underlying model is a CEFSM (Com-

municating Extended Finite State Machine), where all processes are CEFSMs. For each

process, a finite number of states, inputs and outputs determine its behaviour. Non-

determinism capability allows representing spontaneous transitions, which are transi-

tions without any signal causing them. This is useful to describe unpredictable system

characteristics. In SDL, only one input signal can be consumed/evaluated at each in-

stant. This means that each input signal consumed corresponds to one state transition

in an SDL description.

4.3.2.2 Communication Model

The concurrency model used in SDL allows independent and asynchronous processes

operation. There is no guaranteed relative ordering of operations in distinct processes,

except the ordering created by explicit synchronization among processes through the use

of shared signals. Shared signal events are then the means by which a precise ordering

of events in distinct process can be achieved.

The communication between processes is reliable. It is assured that the receiving process

will consume every signal produced by a sender process. However, it is not guaranteed

that the ordering of the signals generated by all processes is the same of their con-

sumption. This model is adequate to describe events without precise ordering, like

systems that can have their normal flow interrupted. Handshaking or unlimited queues

in practice-bounded queues are used to implement the communication model. For both

cases, each SDL state results in a set of protocol communication signals and area over-

head to implement the protocol. This characteristic may cause large communication

overhead, which can penalize the implementation.

Chapter 4 Protocol Anomaly Detection and Verification 45

4.3.3 Generating the Specification

The TCP verification model is specified with CEFSM and is presented in SDL in this

section. A CEFSM is defined as a 6-tuple < S, s0, E, f, V, X >, as it is mentioned above.

• S is a set of states

• s0 is an initial state

• E is a set of events with their parameter lists

• f is a state transition relation

• V is a set of local variables along with their types and initial values, if any

• X is a set of signals

For a state, an input event, and a predicate composed of a subset of V , the state

transition relation f has a next state, a set of output events and their parameters, and

an action list describing how the local variables are updated.

The purpose of SDL in this project is to verify whether the simplified TCP verification

model follows the standard TCP transitions. To do this, the simplified TCP verifica-

tion model (Figure 4.10) was converted into a SDL specification. The CEFSM of the

simplified TCP verification model is as follows:

• S = {listen, syn rcvd, ack wait, established, closing, close wait 1, close wait 2,

closed}

• s0 = listen

• E = {send(Vi, Xi), recv(Vi, Xi), timeout(Vi)}

• f : {f(Si, Ei, Vi) → (Si+1, Vi+1, Ei+1) }

• V = {tcp id, tcp seq, tcp id seq}

• X = { ACK, SYN, FIN, RST, SYNACK, ACKFIN}

In this SDL specification, among TCP flags, PSH and URG are not included. Timeout,

and checking flags and packet sequences should be dealt with in a low-level implemen-

tation part as well.

46 Chapter 4 Protocol Anomaly Detection and Verification

4.3.4 SDL Creation based on the TCP Verification Model

To detect packet fragmentation, the SDL specification can recall the packet sequence

and proper flag, and the low-level implementation part cooperates with this SDL specifi-

cation, other flag combinations, and timeout. To build the SDL specification, Cinderella

SDL [Cinderella(2003)] was used. Figure 4.12 shows the part of the StateTransition

process built in SDL. Besides, all SDL-GR and -PR of the proposed TCP verification

model can be found in Appendix A.

f is the state transition relation. It represents how to move from the current state to a

new state given a certain action if any.

Note that ‘, ,’ in a set of variables V means no variable changed, ‘{ }’ in a set of events

E means no specific event is required.

Figure 4.12: System of the TCP Protocol State Machine

Chapter 4 Protocol Anomaly Detection and Verification 47

• LISTEN State.

f(listen, recv(tcp id, SYN), tcp id seq = 0) → (syn rcvd, tcp id seq = tcp seq,

send(tcp id, SYNACK))

Figure 4.13: LISTEN State of the TCP Protocol State Machine

• SYN RCVD State.

f(syn rcvd, recv(tcp id, RST), tcp id seq != 0) → (listen, tcp id seq = 0, {}),

f(syn rcvd, send(tcp id, SYNACK), tcp id seq != 0) → (ack wait, , {})

Figure 4.14: SYN RCVD State of the TCP Protocol State Machine

48 Chapter 4 Protocol Anomaly Detection and Verification

• ACK WAIT State.

f(ack wait, recv(tcp id, ACK), tcp id seq != 0) → (established, tcp id seq = tcp seq,

{}),

f(ack wait, recv(tcp id, ACKFIN), tcp id seq != 0) → (close wait 2, tcp id seq =

tcp seq, {}),

f(ack wait, timeout(tcp id), tcp id seq != 0) → (closed, tcp id seq = 0, {F}),

f(ack wait, recv(tcp id, FIN), tcp id seq != 0) → (closing, , send(tcp id, ACK))

Figure 4.15: ACK WAIT State of the TCP Protocol State Machine

• CLOSING State.

f(closing, recv(tcp id, ACK), tcp id seq != 0) → (close wait 1, tcp id seq = tcp id seq,

{}),

f(closing, timeout(tcp id), tcp id seq != 0) → (closed, tcp id seq = 0, {F})

Figure 4.16: CLOSING State of the TCP Protocol State Machine

Chapter 4 Protocol Anomaly Detection and Verification 49

• CLOSE WAIT 2 State.

f(close wait 2, recv(tcp id, ACK), tcp id seq != 0) → (closed, tcp id seq = 0, {F}),

f(close wait 2, timeout(tcp id), tcp id seq != 0) → (closed, tcp id seq = 0, {F})

Figure 4.17: CLOSE WAIT 2 State of the TCP Protocol State Machine

• ESTABLISHED State.

f(established, recv(tcp id, RST), tcp id seq != 0) → (closed, tcp id seq = 0, {F}),

f(established, recv(tcp id, SYN), tcp id seq != 0) → (closed, tcp id seq = 0, {F}),

f(established, recv(tcp id, FIN), tcp id seq != 0) → (close wait 2, , send(tcp id,

ACK)),

f(established, timeout(tcp id), tcp id seq != 0) → (closed, tcp id seq = 0, {F})

Figure 4.18: ESTABLISHED State and CLOSE WAIT 1 state of the TCP Protocol
State Machine

50 Chapter 4 Protocol Anomaly Detection and Verification

• CLOSE WAIT 1 State.

f(close wait 1, send(tcp id, ACK), tcp id seq != 0) → (closed, tcp id seq = 0, {F})

4.4 Countermeasures Against Protocol Anomaly-Based At-

tacks

4.4.1 Incomplete Three-way Handshake

Here countermeasures are presented using the packet verification model and Packet

Verifier against incomplete three-way handshake design in the TCP mechanism.

1. Extraneous state problem. Consider a sequence of packets between hosts X

and A. Host X sends a packet to host A, with both SYN and FIN flags set. Host

A responds by sending a SYN-ACK packet back to host X. In that scenario, the

TCP verification model work as follows: host A changes its state from LISTEN

to SYN RCVD because of receiving the SYN packet, and from SYN RCVD to

ACK WAIT because of sending the SYN-ACK packet, and then because of the

FIN packet, its state moves to CLOSING. Since host A receives a FIN packet,

host A sends a ACK packet to host X, and then its state CLOSING wait for

receiving a ACK packet from host X. Hence, if host X does not send any more

packets to host A, host A waits for 10 seconds and then enters CLOSED.

2. Simultaneous open problem. Host X sends a SYN packet to host A and host

A sends a SYN packet to host X in order to start a TCP connection. When host

X receives the SYN packet from host A, it sends an ACK packet back in response.

When host A receives this packet, its state of host A changed from LISTEN to

SYN RCVD and to ACK WAIT after receiving the ACK packet from host X and

replying with SYN-ACK. Hence, if host X does not send back any SYN-ACK, its

state moves to CLOSED after waiting 60 seconds.

4.4.2 IP Spoofing

IP spoofing attacks are combined by incomplete three-way handshake, predictable IP

identification values and then bogus IP. IP spoofing case, not by one method can solve

this problem, but several combined defence measures are needed to work out.

• Packet verification model and Packet Verifier. IP spoofing case has to

be solved by cooperation between the TCP verification model and IP packet’s

header analysis together. To achieve this kind of problem, we need not only

to check the TCP protocol three-way handshake mechanism but also to check

Chapter 4 Protocol Anomaly Detection and Verification 51

packets’ specific requirement in each packet whether the packet’s IP address and

sequence numbers are valid or forged, such as checking tcp id as combination of

source address, source port, destination address and destination port, and checking

tcp id sequence number, tcp id acknowledge number and TTL.

• Be un-trust relationship. One easy way to prevent this attack is not to reply

on address-based authentication. Disable all the r command such as rlogin, rsh,

rcp, etc. Remove all .rhosts files and empty out the /etc/hosts.equiv file. This will

force all users to use other means of remote access such as telnet, ssh, skey, etc.

• Packet Filtering. Make sure only hosts on the internal LAN can participate in

trust-relationship. No internal host should trust a host outside the LAN. Then

simply filter out all traffic from the outside the Internet that purports to come from

the inside the LAN. And filter out all private network addresses (i.e., 10.0.0.0/24,

192.168.0.0/16 and 172.0.0.0/24) from the outside network.

• Cryptographic Methods. One of methods to deter IP spoofing is to require

all network traffic to be encrypted and/or authenticated. While several solutions

exist, it will be a worthwhile.

• Initial Sequence Number Randomising. Since the sequence numbers are not

chosen randomly, this IP spoofing works. Each connection would have its own

separate sequence number space. Bellovin [Bellovin(1989)] suggested the following

formula:

ISN = M + F (localhost, localport, remotehost, remoteport)

Where M is the 4 microsecond timer and F is a cryptographic hash. F must not

be computable from the outside or the attacker could still guess sequence number.

Bellovin suggests F be a hash of the connection-id and a secret vector such as a

random number, or a host related secret combined with the machine’s boot time.

On the other way, try to run operating systems with less predictable IP identifi-

cation sequences, such as recent versions of OpenBSD, Solaris, or Linux. Solaris

and Linux use peer-specific IPID sequences. In addition, Linux 2.4 zeros the IPID

fields in packets with the DF (Don’t fragment) bit set, since IP defragmentation

is the only critical use of the ID field [Fyodor(2003)].

• Use of IPv6. Another way to secure communication is by using IPv6 instead

of IPv4. RFC 1825 [Atkinson(1995)] specifies two new characteristics of IPv6:

authentication header and encapsulation security payload. The first prevents IP

address faking while the second introduces encryption for IP packet and TCP

header.

52 Chapter 4 Protocol Anomaly Detection and Verification

4.4.3 SYN flood attack

• Packet verification model and Packet Verifier. Host X sends a SYN packet

to host A. Host A acknowledges the SYN packet by sending a SYN-ACK packet to

host X. Host X continuously sends SYN packets without responding with an ACK

packet. In this case, the TCP verification model works as follows: host A changes

its state from LISTEN to SYN RCVD, and to ACK WAIT, and then if host X

does not send ACK packet but sends SYN packet continuously, its state moves to

CLOSED. Since ACK WAIT state waits for ACK packet, and SYN packet is not

right one to move its state, so its state moves to CLOSED.

• Inside operating systems. Some operating systems stop accepting new con-

nections if there are too many forged SYN packets at them. Many operating

systems can only handle 8 packets. Linux kernels and some other systems allow

various methods such as SYN cookies to prevent this from being a serious problem

[Anderson(2001b)]. SYN cookies are a technique used to mitigate the effects of

SYN flood attacks by choosing initial TCP sequence numbers (ISNs) that can be

verified cryptographically. The server’s initial sequence number is generated as

follows [Bernstein(1997)]:

– top 5 bits: t mod 32, where t is a 32-bit time counter that increases every 64

seconds.

– next 3 bits: an encoding of an MSS selected by the server in response to the

client’s MSS.

– bottom 24 bits: a server-selected secret function of the client IP address and

port number, the server IP address and port number, and t.

4.4.4 Ping of Death & Land Attack

• Packet verification model and Packet Verifier. If each IP packet size exceeds

the maximum size (64KB) or if the header length field does not exceeds the min-

imum size (20 bytes), the packet should be discarded. In addition, each packet’s

source address and port number should not have the same as the target address

and port number. Otherwise, the packet should be discarded.

• Inside operating systems. Operating systems should check these packet fields

before accepting the packet.

4.4.5 Fragment attack

• Packet Verifier. If a TCP fragment has non-zero offset (e.g. F0=1), then it

should be discarded.

Chapter 4 Protocol Anomaly Detection and Verification 53

• Router Filtering. Router’s filtering module enforces a minimum fragment offset.

• Inside operating systems. Operating systems can be fixed inserting some pieces

of code to the kernel files to check whether the IP packet’s offset is bigger than

the end of the packet.

4.4.6 ICMP flood (Smurf attack) & UDP flood attack

• Packet Filtering. UDP packets should never be allowed to destine for system

diagnostic ports from outside of administrative domain to reach intranet systems.

To prevent a network from these UDP attacks, turn off broadcast addressing on

all network routers that allow it unless needed for multicast features, or configure

a firewall to filter the ICMP ECHOREQUEST. In addition, UDP services could

be restricted for use only within the internal network, thus keeping UDP available

for network diagnostic purposes only. This prevents its unauthorized use for UDP

flooding attacks. To avoid becoming the victim of the smurf attack, have an

upstream firewall that can either filter ICMP ECHOREPLYs or limit echo traffic

to a small percentage of overall network traffic. Moreover, the border routers do

not allow directed broadcast packets to be forwarded through their routers as a

default.

Chapter 5

Email Classification For Risk

Assessment

What we anticipate seldom occurs;

What we least expected generally happens.

- Benjamin Disraeli.

Email is probably the most valuable service on the Internet. The use of email for com-

munication is constantly growing. Correspondingly, the volume of email received also

grows fast. Nevertheless, it is quite vulnerable to be misused. As normally implemented

[Postel(1982), Crocker(1982)], the mail server provides no authentication mechanisms.

This leaves the door wide open to faked messages. RFC 822 [Crocker(1982)] does sup-

port an Encrypted header line, but this is not widely used. 1 One such misuse is by

email viruses; another is by unsolicited bulk emails (UBEs) as known as spam. This

project focuses on the way of propagation of UBEs, because this propagation is also a

potential way of email viruses. The difference of UBE and Email virus is having malware

contents or not.

UBE is defined as Internet mail or email that is sent to a group of recipients who have

not requested it. A mail recipient may have at one time asked a sender for bulk email,

and then later asked the sender does not send any more emails or has otherwise not

indicated a desire for such additional mail; hence any bulk email sent after that request

was received is also UBE.

Email viruses are defined as viruses or worms that spread using email with attachments.

These email viruses include file viruses or email worms. Email worms are defined as

programs that self-replicate via email. Email statistics of year 2004 about UBEs and

email viruses reported by Postini [Postini(2004)] shows that the percentage of spam

1RFC 1040 [Linn(1988)] is for a discussion of a proposed new encryption standard for email.

55

56 Chapter 5 Email Classification For Risk Assessment

emails is 71.7% (10 out of 13 messages are spam), and that 1 in 26 messages is virus-

infected.

In order to determine a probability estimation which can tell us whether an email is

abnormal, to find relations between email viruses and detectable knowledge, and to

make a statistical relation between interesting events among incomplete data, Bayesian

networks [Pearl(1988)] or probabilistic graphical models have been chosen to use. A

Naive Bayesian classifier among several Bayesian network models has been used to clas-

sify packets of the SMTP protocol. Certain packet characteristics, which is analysed in

[Yoo and Ultes-Nitsche(2002a)], that allow us to attach to packets probabilities of their

potential maliciousness. The analysed file characteristics are used for the parameters of

the Naive Bayesian classifier.

5.1 Background of Bayesian Networks

In order to deal with malicious email attachments, Bayesian networks are used as means

of identifying malicious code.

5.1.1 Bayes’ Theorem and Bayesian Inference

To estimate the probability of the potential maliciousness of packets, it is necessary to

get some specific evidence from data. For independent events E and M , M represents

a group of malicious packets, E represents specific evidence about these packets. If E

and M are independent, we get:

P(M ∧ E) = P(M) ∗ P(E)

However, in cases where E and M are not independent. We must write:

P(M ∧ E) = P(M) ∗ P(E | M)

where, P(E | M) is the probability of the specific evidence given the malicious packets

have occurred. The conditional probability of event E given event M , denoted P(E | M),

is given by,

P(E | M) =
P(E ∧ M)

P(M)

Now since conjunction is commutative,

Chapter 5 Email Classification For Risk Assessment 57

P(M ∧ E) = P(M) ∗ P(E | M) = P(E) ∗ P(M | E)

And by rearranging we get:

P(M | E) =
P(M) ∗ P(E | M)

P(E)

which is known as Bayes’ Theorem. We write,

o P(M | E): Posterior probability, the probability of malicious packets given the

specific evidence, which is what we wish to infer.

o P(E): The probability of the specific evidence; this is a measurable quantity that

we get from existing data.

o P(E | M): Likelihood probability, since we gain it from measurement of evidences.

The probability of the specific evidence given the malicious packets. We can mea-

sure this from the case histories of the malicious packets.

o P(M): Prior probability, the probability of malicious packets that we get from

existing data. Since we knew it before we made any measurements.

Prior probability should be subjective. It represents our belief about the domain we are

considering, even if data has made a substantial contribution to our belief. Likelihood

probability should be objective. It is a result of the data gathering from which we are

going to make an inference. It makes some assessment of the accuracy of our data

gathering. In practice, either or both forms can be subjective or objective. In some

cases, we obtain the prior probability from statistics. For example, we can calculate

the prior probability as the number of instances of a disease divided by the number of

patients presented for treatment. However, in many cases this is not possible since the

data is not there, and there may also be prior knowledge in other forms.

5.1.2 Naive Bayesian Classifier

Figure 5.1: A Structure of a Naive Bayesian Classifier

58 Chapter 5 Email Classification For Risk Assessment

To make inference between interesting events among incomplete data, a Naive Bayesian

Classifier [Langley and Sage(1994)] has been chosen. The Naive Bayesian Classifier is

a simple structure in which nodes that show the same parent node cannot have a con-

nection between them. A Naive Bayesian Classifier is illustrated in Figure 5.1. We

assume each node as a class. This Naive Bayesian Classifier represents each class with

a single probability table. In particular, each table has an associated class probability

P(Ci), which specifies the prior probability that one will observe a member of class Ci .

Each table also has an associated set of conditional probabilities, specifying a probability

distribution for each attribute. The Naive Bayesian classifier relies on two important

assumptions [Langley and Sage(1994)]. First is a single probability table. Instances in

each class can be summarized by a single probability table, and these are sufficient to

distinguish the classes from one another. Another assumption is independence of at-

tributes. The Naive Bayesian classifier requires that the probability distributions for

attributes are independent of each other within each class. One can model attribute

dependence within the Bayesian framework [Pearl(1988)]. However, determining such

dependencies and estimating them from limited training data is much more difficult.

Thus, the independence assumption has clear attractions. It is applicable in many

cases.

To determine the probability of whether packets are malicious, we are getting some

specific evidences from data. For independent events E and M , M represents a group

of malicious packets, E represents specific evidence about these packets. When we use

Bayes’ theorem we have just one hypothesis and one piece of evidence. However, we

have evidence from more than one source in the real world. Therefore, we apply these

several evidences to Bayes’ theorem, then we get:

P(M | E1 ∧ · · · ∧ En) =
P(M) ∗ P(E1 ∧ · · · ∧ En | M)

P(E1 ∧ · · · ∧ En)

Using this equation, the probability of malicious packets is calculated in the next section.

5.2 Generating a Naive Bayesian Classifier

5.2.1 Statistical Characteristics of Email

In order to apply real data, MRTG [Oetiker and Rand(2003)] was used for counting

email messages entering the Southampton ECS department network during the past few

years, and the entire virus database of Ahnlab [Ahnlab(2002)] was analysed, and then

a database of email packets was built. Tables 5.1, 5.2 and 5.3 show email messages and

virus & UBE numbers which were measured by MRTG. Email messages are measured

by MRTG every second. To display the visual representation of this traffic, MRTG

Chapter 5 Email Classification For Risk Assessment 59

uses the weekly representation with 30-minute average data, the monthly representation

with 2-hour average data, and the yearly representation with 1-day average data. Each

number of messages represents a max, an average, and a current in a year, a month, and

a week. MRTG displays this number, which received data during a year, a month, and a

week, in current time per day. For example, a max in a year is chosen by the maximum

received number per day during one year, in a certain time when we measure. Note that

the year data is based on the 1-day average, the month data is based on 2-hour average

data, and the week data is based on 30-minute data. That is the reason that the current

data of a year is different from that of a week and a month.

Table 5.1: Email messages and Virus & UBE numbers in a Year

(Date: Thursday, 25 July 2002 at 11:04)

Type Messages Viruses UBEs

Max 215000 4957 (2.3%) 1881 (0.9%)
Average 8339 165 (2.0%) 706 (8.5%)
Current 9797 274 (2.8%) 1482 (15.1%)

Table 5.2: Email messages and Virus & UBE numbers in a Month

Type Messages Viruses UBEs

Max 215000 395 (0.2%) 1881 (0.9%)
Average 8995 201 (2.2%) 1383 (15.4%)
Current 9633 223 (2.3%) 1586 (16.5%)

Table 5.3: Email messages and Virus & UBE numbers in a Week

Type Messages Viruses UBEs

Max 109000 361 (0.3%) 1710 (1.6%)
Average 8542 293 (3.4%) 1383 (16.2%)
Current 9633 223 (2.3%) 1586 (16.5%)

According to the survey of email virus statistics, which was reported in year 2002

[Yoo and Ultes-Nitsche(2002a)], about 80% of windows file worms were transferred via

email, and approx. 61% of windows file worms had .EXE file extension. In addition, an

average 2% of all emails per month contained virus data (See Table 5.2), 80% of which

were in an Win32 executable file format as Table 5.5 shows. In addition, Table 5.6 shows

the percentage of several file extensions among windows file worm types. Most Internet

viruses 2, which was detected and reported until year 2002, had Win32 executable for-

mat (about 86%) among file/network worms. In executable attachment formats, there

2Internet viruses are the superset of email viruses. It includes email viruses, file worms, networks
worms and so on.

60 Chapter 5 Email Classification For Risk Assessment

are .EXE (64%), .SCR (22%), .COM (6%), .PIF (22%), .BAT (3%), .VBS (2%), and

Others (12%).

The email UBE statistics record [Administrators(2003)] was developed by administrators

in University of Calgary. Their record was remade for the reference as presented in Table

5.4. The dates of records in this table are between 10th May 04:09:39 and 18th May

01:01:11, 2003. Besides, the blocked mails include non-existent and invalid recipients,

non-existent senders’ domain and DNS black lists. However, this table does not contain

the DNS black list information. Note that the UBE numbers of Tables 5.1, 5.2, and 5.3

represent the number of detected UBEs by pattern matching.

Table 5.4: Email UBE Statistics (Total:291985)

Type Number Percent

normal mail 26262 8.99%
blocked mail 249622 85.4%

non-existent and
invalid recipients 751 0.2%

non-existent senders’ domain 248739 85.1%
invalid senders’ address

but not blocked 25074 8%

Table 5.5: Detected viruses which were entering ECS Department. (Total: 17300)

Record date: Thursday, 25 July 2002 at 11:04.

Name Percent

W32/Sircam.A 50%
W32/Flcss 11%

W32/Klez.G 10%
W32/Navidad.B 7%
W32/Badtrans.B 5%
W32/Magistr.A 3%
W32/Navidad 2%
W32/Hybris.B 2%

Others 10%

Chapter 5 Email Classification For Risk Assessment 61

Table 5.6: Classification of Windows File Worms.

Prevalence of Win32 worm via email: total 96 worms

File Format Number Percent

.EXE file 58 60.4 %
.PIF or .SCR file 18 18.8 %

.BAT.COM.EXE.PIF.SCR file
(among these, choose 1 format) 3 3.1 %

.COM file 3 3.1 %
.VBS file 2 2.1 %

Self-executable
compressed format 6 6.3 %

Other 6 6.3 %

5.2.2 Choosing Evidence Factors

A base rate may be defined as the relative frequency with which an event occurs or an

attribute is present in a population [Lanning(1987), V. B. Hinsz and Robertson(1988),

Ginossar and Trope(1987)]. The extent to which base rates are used appears to depend

on the characteristics of the problem at hand. Base rates seem to be used more accurately

when the domain or the experimental process suggests that a statistical kind of answer

is warranted. If we disregard base rates, and rely on the individuality, evidences and

resultant likelihood ratio of abnormal mails will be surely overestimated, especially virus

emails. Therefore, considering the base rate of malicious mail, it is important to choose

high accurate detectable evidences. Each evidence factor has been chosen, which is

related to protocol specifications rather than data content, which can be changeable.

Emails are sent via SMTP protocol [Postel(1982)]. The usage of each protocol header

was analysed to detect protocol anomalies. Email worms use spoofed email addresses

under the guise of trusted sources. Email worms are sent with specific purpose not like

normal mail. They are sent with one to many connections, source IP addresses are

faked or spoofed, a sender’s address is not valid, a sender’s email address is not used

by a valid domain name, a recipient’s address is not used by a valid domain name, a

recipient’s email address is not used by IP address, or recipients are mentioned in BCc

(Blind Carbon Copy) rather than To or Cc (Carbon Copy), and so on. Therefore, four

factors have been selected: the header field, the sender field, the recipient field, and

an attachment field of each email among the SMTP protocol. Each field of an SMTP

packet to classify UBEs is normalized in a checking process in the following way:

o [Sender field] If reverse DNS domain check fails, e.g., non-existent domain, then

set FALSE. If invalid senders’ address, then set FALSE.

o [Recipient field] If non-existent recipient, then set FALSE. If invalid recipients’

62 Chapter 5 Email Classification For Risk Assessment

address, then set FALSE.

Each field of an SMTP packet to classify email viruses is also normalized as follows:

o [Header field] If there are multiple content-type headers, multiple encoding headers,

or multiple non-plain headers, then set FALSE. If content-type header is MIME,

then check whether or not the mail body has content-type;text/html;charset=utf-8

etc. If any match is not found, then set FALSE.

o [Sender field] If sender address is used with an IP address rather than domain

name, then set FALSE. If source address in IP packet is different from sender

address, then set FALSE.

o [Recipient field (To/Cc/Bcc)] If To does not contain a domain name (e.g. id@ip address),

then set FALSE. If To is empty and Cc includes the email address without a do-

main name, then set FALSE. If To and Cc are empty, then set FALSE even if Bcc

contains an address with a domain name.

o [Attachment field] If an attachment is an executable file (.EXE, .SCR, .COM, .PIF,

.BAT, .VBS, and others), then set TRUE.

The raw packets of emails are only dealt and the same protocol mechanism is used for

UBEs and email viruses. Therefore, UBEs’ normalization can be shared with email

viruses’ for classification. However, to increase one’s confidence, it is necessary to divide

the two cases and consider them separately.

5.2.3 A Naive Bayesian Classifier Against Email Viruses

According to the surveyed prior information (Tables 5.5, 5.6, 5.1, 5.2, and 5.3), a prob-

ability to each factor was assigned. Using this data we can determine the probability

of whether mail packets are malicious, denoted P(M), using the header field (H), the

sender field (Fr), the recipient field (To), and the attachment field (EF) as discussed in

the previous subsection. Each field of an SMTP packet is examined in a checking process

to compute a probability value. This Naive Bayesian classifier (Figure.5.2) represents

the probability of being malicious given several evidences such as malformed H, Fr, To,

and EF. The prior probabilities of a malicious mail and the likelihood probabilities of a

malicious executable attachment were assigned as discussed in Section 5.2.1.

The other prior probabilities were assigned as subjective values based on the prior prob-

ability of a malicious mail. As a result, each node has four likelihood probabilities; two

(their status is set with TRUE or FALSE) different probabilities for each node given

two cases (malicious mail is set with TRUE or FALSE) for the potential maliciousness

Chapter 5 Email Classification For Risk Assessment 63

Figure 5.2: A Naive Bayesian classifier for detecting abnormal emails.

of a mail packet, which is denoted by M. The Naive Bayesian classifier was built as in

Figure 5.2, and then an exact inference algorithm was used for Bayesian inference using

MATLAB 5.3 [MATHWORKS(2003)]. The results of posterior probabilities from the

Naive Bayesian classifier are in Table 5.7 .

Table 5.7: Results of posterior probabilities from the Naive Bayesian Network

(Malicious mail M = T)

Probability of Malicious mail given evidences Results

P(M | H = F) 0.4494
P(M | H = F ∧ Fr = F) 0.9662
P(M | H = F ∧ Fr = F ∧ To = F) 0.9992
P(M | H = F ∧ Fr = F ∧ To = F ∧ EF = T) 0.9998
P(M | Fr = F) 0.4167
P(M | Fr = F ∧ To = F) 0.9698
P(M | Fr = F ∧ To = F ∧ EF = T) 0.9923
P(M | To = F) 0.4787
P(M | To = F ∧ EF = T) 0.7860
P(M | EF = T) 0.0755

Through this result, we can predict the probability of data packets being malicious if

certain evidence is given. For example, if only the header field is FALSE (meaning that

it is malformed), the maliciousness probability of a current SMTP packet is 0.4494.

If the sender field and the recipient field are FALSE, the maliciousness probability is

0.9698. If the sender field is FALSE, and the mail includes an executable attachment, the

probability of being malicious is 0.7860. However, note that this executable attachment

is not recognized as a malicious executable file yet in this moment. This Naive Bayesian

Classifier just tells us, because this is an executable file, the probability of being malicious

is estimated by value 0.7860. The detailed process for recognizing this executable file

is the next step. Nevertheless, the value of the probability to be malicious is quite

reasonable.

64 Chapter 5 Email Classification For Risk Assessment

Table 5.8: Results of posterior probabilities from the Naive Bayesian classifier

(Malicious mail M = T)

Probability of Malicious mail

given evidences Results

Fr=T ∧ To=T ∧ H=T ∧ EF=T 5.2013e-004
Fr=T ∧ To=T ∧ H=T ∧ EF=F 3.2524e-005
Fr=T ∧ To=T ∧ H=F ∧ EF=T 0.0926
Fr=T ∧ To=T ∧ H=F ∧ EF=F 0.0063
Fr=T ∧ To=F ∧ H=T ∧ EF=T 0.1867
Fr=T ∧ To=F ∧ H=T ∧ EF=F 0.0141
Fr=T ∧ To=F ∧ H=F ∧ EF=T 0.9783
Fr=T ∧ To=F ∧ H=F ∧ EF=F 0.7376
Fr=F ∧ To=T ∧ H=T ∧ EF=T 0.0562
Fr=F ∧ To=T ∧ H=T ∧ EF=F 0.0037
Fr=F ∧ To=T ∧ H=F ∧ EF=T 0.9210
Fr=F ∧ To=T ∧ H=F ∧ EF=F 0.4216
Fr=F ∧ To=F ∧ H=T ∧ EF=T 0.9633
Fr=F ∧ To=F ∧ H=T ∧ EF=F 0.6212
Fr=F ∧ To=F ∧ H=F ∧ EF=T 0.9998
Fr=F ∧ To=F ∧ H=F ∧ EF=F 0.9969

Table 5.9: the truth table of malicious email

Fr To H EF f

T T T T 0
T T T F 0
T T F T 0
T T F F 0
T F T T 0
T F T F 0
T F F T 1
T F F F 0
F T T T 0
F T T F 0
F T F T 1
F T F F 0
F F T T 1
F F T F 0
F F F T 1
F F F F 1

The results of posterior probabilities from the Naive Bayesian classifier are in Table 5.8.

In addition, to build an ordered Binary decision diagram from the email classifier in

Figure 5.2, the posterior probabilities were extended from Table 5.7 to Table 5.8. The

result of applying a threshold 0.9 is in Table 5.9. These results is used to classify email

viruses whether they confirm maliciousness, depending on whether the probability of

Chapter 5 Email Classification For Risk Assessment 65

maliciousness given the evidences is no less than a certain threshold, say, 0.9. Using this

threshold, an email decision diagram is built in the next section.

5.3 Generating OBDDs For Email Classifier Model

5.3.1 Ordered Binary Decision Diagrams

Figure 5.3: Decision Tree Representation of Malicious Email

Binary decision diagrams (BDDs) [Bryant(1986)] have been recognized as abstract rep-

resentations of Boolean functions. A BDD represents a Boolean function as a rooted, di-

rected acyclic graph. As Figure 5.3 illustrates, a representation of the function f(Fr, To,H,EF)

defined by the truth table Table 5.9, leads to the special case where the graph is actually

a tree. Terminal nodes of out-degree zero are labelled 0 or 1, and a set of variable nodes

v of out-degree two are used. The two outgoing edges are given by two functions low(v)

corresponding to the case where the variable is assigned 0, and high(v) corresponding

to the case where the variable is assigned 1, these are shown as dotted and solid lines,

respectively. A variable var(v) is associated with each variable node.

The key idea of OBDDs [Bryant(1992)] is that by restricting the representation, Boolean

manipulation becomes much simpler computationally. A BDD is OBDD if on all paths

through the graph the variables respect a given linear order x1 < x2 < ... < xn, such

as Fr < To < H < EF . An OBDD is reduced if no two distinct nodes u and v have

the same variable name and low- and high-successor, i.e., var(u) = var(v), low(u) =

low(v), high(u) = high(v) implies u = v, and no variable node u has identical low- and

high-successor, i.e., low(u) 6= high(u) [Bryant(1992)].

5.3.2 OBDD Representation From The Naive Bayesian Classifier

Reduced OBDDs [Bryant(1992)] provide compact representations of Boolean expres-

sions. They are all based on the crucial fact that for any function f : Bn → B, there is

66 Chapter 5 Email Classification For Risk Assessment

Figure 5.4: The removal process to build a reduced OBDD.

exactly one reduced OBDD representing it, for a given ordering. This means, in partic-

ular, that there is exactly one reduced OBDD for the constant true and constant false

function on Bn: the terminal nodes 1 and 0. Hence, it is possible to test in constant

time whether a reduced OBDD is constantly true or false. Furthermore, OBBDs are

good to reason about the properties of any Naive Bayesian classifier. Specifically, when

any Naive Bayesian classifier is represented by an OBDD that is tractable in size even

given an intractable number of instances. The size of the graph representing a function

can depend heavily on the ordering of the input variables.

Table 5.9 represents the truth table of malicious email using a threshold 0.9. Figure 5.3

represents the classifier induced by the Bayesian network using Table 5.9. To build an

OBDD from this decision tree, transformation rules [Bryant(1992)] were applied, e.g.,

remove duplicate terminals, remove duplicate nonterminals, then remove redundant tests

(see Figure 5.4).

The transformation rules are defined in [Bryant(1992)] as follows:

• Remove Duplicate Terminals: Eliminate all but one terminal vertex with a

Chapter 5 Email Classification For Risk Assessment 67

given label and redirect all arcs into the eliminated vertices to the remaining one.

• Remove Duplicatate Nonterminals: If nonterminal vertices u and v have

var(u) = var(v), low(u) = low(v), high(u) = high(v) then eliminate one of the

two vertices and redirect all incoming arcs to the other vertex.

• Remove Redundant Tests: If nonterminal vertex v has low(v) = high(v), then

eliminate v and redirect all incoming arcs to low(v).

After this reduction of the decision tree, an reduced OBDD was produced as in Figure

5.5. This OBDD represents the naive Bayesian classifier induced by the network in

Figure 5.2 with probability threshold 0.9, with respect to variable order (Fr, To, H, EF).

Figure 5.5: A reduced OBDD of Email Viruses

5.3.3 Email Classifier With OBDDs

A truth assignment to a Boolean function B is the same as fixing a set of variables in the

domain of B, i.e., if X is a Boolean variable in the domain of B, then X can be assigned

either 0 or 1 (denoted [X → 0] and [X → 1], respectively). Let X → Y1, Y2 denote the

if-then-else operator. Then X → Y1, Y2 is true if either X and Y1 are true or X is false

and Y2 is true; the variable X is said to be the test expression. More formally, we have:

X → Y1, Y2 = (X ∧ Y1) ∨ (¬X ∧ Y2)

All operators can easily be expressed using only the if-then-else operator and the con-

stants 0 and 1. Hence the operator gives rise to a new kind of normal form.

68 Chapter 5 Email Classification For Risk Assessment

• Definition An If-then-else Normal Form (INF) is a Boolean function built entirely

from the if-then-else operator and the constants 0 and 1 such that all tests are

performed only on variables.

This is known as the Shannon expansion of t with respect to u + v. From the Shannon

expansion we get that any Boolean function can be expressed in an If-then-else normal

form (INF) by iteratively using the above substitution scheme on t. The ordering of the

variables, corresponding to the order in which the Shannon expansion is performed, is

encoded in the BDD [Bryant(1986)]. If abnormal mail classifier is denoted by t, UBEs

part is by u and Email virus part is by v, we by t[0/u+v] denote the Boolean expression

obtained by replacing u + v with 0 in t and then it is not hard to see that the following

equivalence holds:

t = u + v → t[1/u + v], t[0/u + v].

Then the abnormal mail classifier t is true if either u or v are true, which means that

this classifier can say that a mail is abnormal by considering the UBEs part or email

virus part in the detected raw packets. The truth table of the abnormal mail classifier

is in Table 5.10.

Table 5.10: the truth table of UBE and that of abnormal mail

Fr To f UBE Virus f

F F 1 F F 0
F T 1 F T 1
T F 1 T F 1
T T 0 T T 1

Like building the OBDD for email viruses, an OBDD for UBEs also can be built. How-

ever, considering the previous survey and examination of UBEs in Table 5.4, about 85%

of email was blocked and 85.3% of emails was reported as non-existent or an invalid rea-

son. Apart of this statistics, non-existent or invalid senders/recipients are also protocol

anomalies. Therefore, two factors have been chosen, i.e., a sender denoted by Fr and

a recipient by To. A simple Boolean function can be created using the NAND Boolean

operator as follows. The truth table of this Boolean function is in Table 5.10. The

OBDD representations of the UBEs classification and abnormal mail classification is in

Figure 5.6.:

u = ¬(Fr ∧ To)

Chapter 5 Email Classification For Risk Assessment 69

Figure 5.6: OBDD representation of UBEs and abnormal mail classification

The UBEs classifier u is true if either a sender field Fr or a recipient field To are false

as in Figure 5.6, which means that this classifier can say this mail is an UBE by either

a sender field or a recipient field are malformed or wrong.

For the email virus part v, a Boolean function can be built according to Figure 5.5 in

the following way:

v =

(Fr∧¬To∧¬H∧EF)∨(¬Fr∧To∧¬H∧EF)∨(¬Fr∧¬To∧H∧EF)∨(¬Fr∧¬To∧¬H)

The email virus classifier v is true if four factors Fr, To,H,EF are joining towards

terminal (1) as in Figure 5.5, which means that this classifier can estimate that this mail

contains an email virus using these facts; although a sender field is correct, a recipient

field and a header field are wrong and there is an attachment in the mail, or although

a recipient field is correct, a sender field and a header field are wrong and there is an

attachment in the mail, or a sender field and a recipient field are wrong even though a

header field is ok and there is an attachment, or a sender field, a recipient field and a

header field are all wrong whether there is an attachment or not.

The results on email classification which is presented in this chapter will be used in the

intelligent firewall implementation as presented in Section 7.1.

Chapter 6

Virus Visualization &

Recognition

That all knowledge begins with experience,

there is indeed no doubt

but although our knowledge originates with experiences,

it does not all arise out of experience.

- Immanuel Kant.

Virus software is probably the most widely discussed class of computer threat. To qualify

as a virus a program must meet one special criteria [Chantico(1992)]: the code in the

program must be able to replicate or copy itself so as to spread through the infected

machine or across to other machines.

In the general case, malicious software detection is theoretically infeasible. In the spe-

cific case of searching for a particular malicious code instance, it is not only possi-

ble, but performed daily by anti-virus software. Thus, we have good commercial so-

lutions to detecting known malicious code instances. However, the problem of deter-

mining whether software has malicious functionality is not decidable in the general case

[Rubin and Geer(1998)]. That is, we cannot look at a given application and, in gen-

eral, decide whether it contains code that will result in malicious behaviour. This is

equivalent to the halting problem in computer science theory, which states that there

is no general-purpose algorithm that can determine the behaviour of an arbitrary pro-

gram [Davis and Weyuker(1983)]. Aside from the halting problem, the property of being

malicious depends to a large extent on the beholder and the context. For example, a

disk-formatting program might be exactly what the user wants and therefore is not con-

sidered malicious, though when embedded in a screensaver unbeknownst to the user, it

can be considered malicious. Thus, we cannot develop an algorithm to decide malicious-

ness.

71

72 Chapter 6 Virus Visualization & Recognition

The major spread of email viruses in 2005 is through using file worms sent via emails. In

September 2005, the top ten viruses (53.2%) of detected viruses were file worms spread

by either email attachments and/or network shares [Sophos(2005)]. Nonetheless, the

original method of virus infection must not be ignored. These “classical” viruses are the

scope of this chapter. The classic virus-detection techniques look for the presence of a

virus-specific sequence of instructions, called a virus signature, inside the program: if

the signature is found, it is highly probable that the program is infected. For example,

the Win95.CIH/Chernobyl virus is detected by checking for the following hexadecimal

sequence [Wang(1998)]: “E800 0000 005B 8D4B 4251 5050 0F01 4C24 FE5B 83C3 1CFA

8B2B”.

Apart from commercial anti-virus solutions to detecting known viruses in virus-infected

files, what options are we left with in addressing unknown viruses? The research pre-

sented in this thesis differs from traditional approaches to the malicious code problem in

that it does not attempt to define or identify malicious behaviour. Instead, the research

focuses on structural characteristics of malicious executable code. This approach allows

for methods of examining any application, whether previously known or unknown, in

order to determine if it has been tampered with since its original development. Such

tampering usually takes the form of an embedded virus or Trojan horse that is activated

during subsequent executions of the program.

To detect virus patterns including unknown ones in Windows virus-infected executable

files, this project has chosen the unsupervised learning, especially the Self-Organizing

Map (SOM) [Kohonen(1995)]. This chapter explains and presents the non-signature

based virus detection approach using SOM. Virus-infected files cannot hide the presence

of the virus through the SOM projection. As no knowledge (no signature etc) about

a virus is required to detect it, the SOM-based approach can detect not only known

viruses but also unknown ones. As defence in depth strategy, we can build much more

secure systems by accompanying traditional virus-detection techniques based on virus

signatures with the non-signature based virus-detection technique for unknown viruses.

6.1 Background of Self-Organizing Map

This section does not intend to give a complete theoretical foundation of Self-Organizing

Maps (SOMs) [Kohonen(1995)]. In order to understand better of SOMs, some back-

ground of SOMs and relevant part of SOM theories are addressed. (More details can

be found in books on SOMs such as [Kohonen(1982), Kohonen(1988), Kohonen(1995),

Hinton and Sejnowski(1999), Haykin(1999)].)

SOM [Kohonen(1995)] is an unsupervised neural network, which does not require that

the user specifies desired outputs, in contrast to the supervised neural network, which

require that one or more outputs are specified in conjunction with one or more inputs

Chapter 6 Virus Visualization & Recognition 73

to find patterns or relations between data [Haykin(1999)]. SOM is also a feed forward

neural network which uses an unsupervised training algorithm, and through a process

called self-organization, configures the output units into a topological representation of

the original data [Kohonen(1982)].

The SOM algorithm is based on competitive learning. SOM reduces multi-dimensional

data to a lower dimensional map or grid of neurons [Hinton and Sejnowski(1999)]. It

provides a topology preserving mapping from the high dimensional space to map units

[Kohonen(1988)]. Map units or neurons usually form a two-dimensional grid and thus

the mapping is a mapping from a high dimensional space onto a simple topology, e.g.

rectangular or hexagonal. The property of topology preserving means that a SOM

groups similar input data vectors on neurons: points that are near each other in the

input space are mapped to nearby map units in the SOM. The SOM can thus serve as

a clustering tool as well as a tool for visualizing high-dimensional data.

SOM consists of two layers of processing units [Kohonen(1995)]: the first is an input

layer containing processing units for each element in the input vector; the second is an

output layer or grid of processing units that is fully connected with those at the input

layer. The number of processing units at the output layer is determined by the user

based on the initial shape and size of the map that is desired. Unlike other neural

networks there is no hidden layer or hidden processing units [Haykin(1999)].

6.1.1 SOM Algorithm

The principal goal of the SOM algorithm developed by Kohonen [Kohonen(1982)] is

to transform an incoming signal pattern of arbitrary dimension into a one- or two-

dimensional discrete map, and to perform this transformation adaptively in a topological

ordered fashion. When an input pattern is presented to a SOM network, the winning

output unit will be the unit whose incoming connection weights are the closest to the

input pattern in terms of Euclidean distance [Kohonen(1995)]. Thus, the input is pre-

sented and each output unit competes to match the input pattern. The output that

is closest to the input pattern is declared the winner. Often starting from randomised

weight values, the output units slowly align themselves such that when an input pattern

is presented, a neighbourhood of units responds to the input pattern. The connection

weights of the winning unit are then adjusted, i.e. moved in the direction of the input

pattern by a factor determined by the learning rate.

As training progress, the size of the neighbourhood around the winning unit and the

learning rate will decrease [Kohonen(1995)]. Initially large numbers of output units will

be updated, but as the training proceeds, smaller and smaller numbers are updated until

at the end of the training only the winning unit is adjusted. SOM creates a topological

mapping by adjusting not only the winner’s weights, but also adjusting the weights of

74 Chapter 6 Virus Visualization & Recognition

the adjacent output units in close proximity to the neighbourhood of the winner. So,

not only is the winner adjusted, but also the whole neighbourhood of output units is

moved closer to the input pattern.

There are three basic steps involved in the application of the algorithm after initial-

isation, namely, sampling, similarity matching, and updating. These three steps are

repeated until the map formation is completed. The algorithm is summarized as follows

based on Kohonen’s book [Kohonen(1988)]:

1. Initialisation. Choose random values for the initial weight vectors wj(0). The

only restriction here is that the wj(0) be different for j = 1, 2, ..., N,, where N is

the number of neurons in the lattice. It may be desirable to keep the magnitude

of the weights small.

2. Sampling. Draw a sample x from the input distribution with a certain probability;

the vector x represents the sensory signal.

3. Similarity Matching. Find the best-matching (winning) neuron i(x) at time n,

using the minimum-distance Euclidean criterion: i(x) = argminj ||xn − wj ||, j =

1, 2, ..., N

4. Updating. Adjust the synaptic weight vectors of all neurons, using the update

formula

mj(n + 1) =

{

wj(n) + η(n)[x(n) − wj(n)], j ∈ Λi(x)(n)

wj(n), otherwise

where η(n) is the learning-rate parameter, and Λi(x)(n) is the neighbourhood func-

tion centred around the winning neuron i(x); both η(n) and Λi(x)(n) are varied

dynamically during learning for best results.

5. Continuation. Continue with step 2 until no noticeable changes in the feature

map are observed.

The learning process involved in the computation of a feature map is stochastic in nature,

which means that the accuracy of the map depends on the number of iterations of the

SOM algorithm. Moreover, the success of map formation is critically dependent on how

the main parameters of the algorithm, namely, the learning-rate parameter η and the

neighbourhood function Λi are selected. Unfortunately, there is no theoretical basis for

the selection of these parameters.

6.1.2 SOM’s Properties

The SOM has properties of both vector quantization and vector projection algorithms.

Chapter 6 Virus Visualization & Recognition 75

6.1.2.1 Quantization

The quantization from the N training samples to M prototypes reduces the original data

set to a smaller, but still representative, set to work with. Further analysis is performed

primarily, or at least initially using the prototype vectors instead of all of the data.

Using the reduced data set is only valid if it really is representative of the original data.

When the number of prototypes approaches infinity and neighbourhood width is very

large, numerical experiments have shown that the results are relatively accurate even

for a small number of prototypes [Kohonen(1999)]. While the connection between the

density of prototypes of SOM and the input data has not been derived in the general

case, it can be assumed that SOM roughly follows the density of the training data. The

primary benefit of using a reduced data set is that the computational complexity of

subsequent steps is reduced. Another benefit of vector quantization is that it usually

involves averaging of data samples, thus removing zero-mean noise and reducing the

effect of outliers.

6.1.2.2 Projection

Since the prototype vectors of SOM have well-defined positions on the low-dimensional

map grid, SOM is a kind of vector projection algorithm. The projection of a data

sample can be defined to be the index b or location rb of its BMU on the map grid. The

projection is discrete as it can only get as many values as there are map units. Therefore,

different vectors may be projected to the same point. Also, since the shape of the map

is defined beforehand, information of the global shape of the data manifold is lost. The

topological ordering of map units depends primarily on the local neighbourhood, which

is defined on the map grid. Since there are more map units where data density is high,

the neighbourhood in these areas becomes smaller as measured in the input space. Thus,

the projection tunes to local data density.

6.2 File Format & Virus Types

The research differs from traditional approaches to the malicious code problem in that it

does not attempt to define or identify malicious behaviour. Instead, the research focuses

on structural characteristics of malicious executable code. This approach allows for

methods of examining any application, whether previously known or unknown, in order

to determine if it has been tampered with since its original development. The initial

target file format considered is Microsoft Windows executable format as about 80% of

detected viruses or worms were Windows executable files, in particular, approximately

61% had an “.EXE” file extension (reference to section 5.2.1).

76 Chapter 6 Virus Visualization & Recognition

6.2.1 Parasitic Viruses

Parasitic viruses are all viruses, which change the content of target files while transferring

copies of them. The files themselves remain completely or partly usable [Pfleeger(1997)].

The most common method of virus incorporation into a file is by appending the virus

to the end of the file as shown in Figure 6.1. In this process, the virus changes the

header of file in such way that the virus code is executed first. In Windows and OS/2

executables (NewEXE - NE, PE, LE, LX), the fields in the NewEXE header are changed.

The structure of this header is much more complicated than that of a conventional DOS

EXE file, so there are more fields to be changed: the starting address, the number of

sections in the file, properties of the sections etc. In addition to that, before infection,

the size of the file may increase to a multiple of one paragraph (16 bytes) in DOS or to

a section in Windows and OS/2. The size of the section depends on the properties of

the EXE file header [Pfleeger(1997)].

Figure 6.1: Virus positions in EXE and document files.

Figure 6.2: Structure of Windows Executable file

The structure of the data of a virus-infected file is similar to what can be seen in Figure

Chapter 6 Virus Visualization & Recognition 77

6.2, where the positions are octal number. When several virus-infected files have been

examined, most files have the same size of the DOS stub (say, 128 bytes), and vary-

ing other parts. Apart from the virus code, only the PE (portable executable format)

header is filled with quite similar character patterns, containing text, data, source and

relocation information. The program code and data contain compiler-generated charac-

ter sequences. Looking at Figure 6.2, the character sequence of the virus code differs

from the other program code, which means that the program code and the inserted virus

code have different data characteristics, e.g. because the original code was compiled as

one solid piece of code, and the virus is injected only afterwards.

Table 6.1: Location starting point information of Test files (Unit: bytes)

Note. DOS stub always starts from 0000.

Virus file PE header Program Code Virus Code

Win95.CIH Ver 1.2 128 576 11632
Win95.CIH Ver 1.3 128 624 14256
Win95.CIH Ver 1.4 128 576 1968

Win95.Boza.A 128 1024 2016
Win95.Boza.C 256 1536 3072

Win32.Apparition 128 1024 38912
Win32.HLLP.Semisoft 128 1024 41360

Table 6.1 shows the test data file information based on the file structure. If these four

different areas in the virus-infected file are identified, they can be used to prove the virus

visualization correct as done in the next section. Each different area will be labelled,

e.g. DS for the DOS stub, PE for the NewEXE header, PR for the program code &

data, and VS for the virus code. These labels are only used to identify where each part

of the file will be located in the SOM projection, in order to show that the virus code is

located in an area of close neighbourhood; the labels are not necessary for SOM training

and visualization.

6.2.2 Macro Viruses

Another virus type appearing in Windows systems is macro virus. Macro viruses are

programs written in macro languages of programs such as Microsoft Word and Excel

as presented in Figure 6.3. To propagate, such viruses use the capabilities of macro

languages and with their help transfer themselves from one infected file, e.g. document

or spreadsheet, to another. Microsoft Word Version 6 and 7 allows to encrypt macros

in documents [Kaspersky(2000)]. Therefore, some word viruses are present inside the

infected documents in an encrypted, execute-only form.

78 Chapter 6 Virus Visualization & Recognition

Figure 6.3: Macro virus position in an infected document.

6.2.3 Polymorphic viruses

Polymorphic viruses cannot or can with significant effort be detected using virus signa-

tures. Polymorphic viruses try to remain undetected by changing their structure with

each infection. There is no unique signature, which anti-virus programs can search for.

Some polymorphic viruses even use different encryption techniques with every infection.

In this research, polymorphic viruses have not been dealt with separately, because these

polymorphic viruses can be included in parasitic and macro viruses, and they can be

handled in the approach similarly to parasitic and macro viruses. The assumption of

polymorphic viruses is that they are somehow inserted in the executable file, and this

inserted virus code, as described in section 6.2.1, will differ again from the original

program code. Thus, whether encrypted or polymorphic, the virus code can be distin-

guished from original program code as it is injected into an intact, kind of homogeneous

program file.

6.3 SOM Training & Visualization

The SOM Toolbox 2.0 [Esa Alhoniemi and Vesanto(2002)], a software library for MAT-

LAB 6.0 [MATHWORKS(2003)] was used under Linux to visualize virus-infected files.

The visualization experiments were carried out under Linux as a precaution against

infection with any of the viruses used (they were all Windows viruses).

6.3.1 Data Preparation for SOM Training

To train a SOM, a virus-infected file’s binary data was converted into a table of numerical

values. In general SOM data, each row of the table is one data sample, which means

Chapter 6 Virus Visualization & Recognition 79

the entire table consists of n different data samples. The columns of the table are

the variables. The items in one row are values of these variables from the data set.

The number of variables depends on features of data and was chosen to be 8 in the

experiments.

Figure 6.4: Table-format data: fixed length and the sample variables

The 8 variables are presented in Figure 6.4. For the virus-detecting SOM, multiple

bytes were given to each variable to reflect data characteristic features. Each row of

the table is one row of one (possibly virus-infected) file’s binary data, and the table is a

transformed form of the (possibly virus-infected) file (I call it this transformed form of

the file “file under test”).

To match the table structure with multiple bytes per variable in the table, a common

octal-dump open source program (command name “od” in Linux) was rewritten to

remove the front offset information from the dump output, transforming a binary file

into a short-integer typed data format. The short integer format was chosen in order

to keep the range of numerical values relatively small (in C, short integers range from

-32768 to +32767). In this transformation, 4 bytes are assigned to each of the 8 variables

per row, i.e. each input sample of the SOM will contain 32 bytes of the file under test. To

summarize, the table consists of single 8 × 4-byte data samples representing n (number

of rows) different portions of the file under test without overlapping data. It should be

noted that this is an unusual way of using a SOM (it is not trained with n different data

samples but it is “trained” with n fractions of the same sample).

6.3.2 Visualization Method

There are many different methods of displaying SOMs. I use the unified distance matrix

or Umatrix since the shape of the Umatrix corresponds to the density structure of

the input data, and the location of the best-matching prototypes corresponds to the

topography of the input data. Therefore, the SOM “trained” with a file under test

reflects the file’s structure in the Umatrix.

The Umatrix represents the map as a regular grid of neurons, which can be visualized

easily. Every neuron gets a numeric value assigned that corresponds to its local density

in the input-space: the average distance between its prototype and the neighbouring

nodes’ prototypes. A low value corresponds to a high local density, a high value to a

80 Chapter 6 Virus Visualization & Recognition

low local density. For visualization purposes, these values can be converted easily into a

colour scheme: a light (low value) colour corresponds to a high local density, and a dark

(high value) colour to a low local density, or vice versa.

6.3.3 Process of SOM training and visualization

Figure 6.5 illustrates the process of SOM training and visualization. Each step in Figure

6.5 is described subsequently.

Figure 6.5: Process of SOM training and visualization

1. Data buffer represents the input data in a table format. The size of the input

data is arbitrary. In this example we assume we can partition it into four parts

labelled A, B, C and D, each representing n rows of the input data (the entire

input data consists of 4n rows, where n is an arbitrary number). A consists of

n rows containing the data designated by a11, a12, ..., a18, a21, a22, ..., a28, ..., and

an1, an2, ..., an8. Similarly, B, C, and D are defined. There is no data overlap

between any of these parts. Finally, in this step, the entire data is normalized and

then used to train the SOM.

2. At the beginning of the SOM training, the entire data is quantized and in an initial

training step, eigenvectors to each entity are calculated. There exists a random

and a linear initialisation phase in the training of SOMs. In this approach, the

Chapter 6 Virus Visualization & Recognition 81

linear initialisation is used, which uses a linear mapping whose eigenvectors are

used in the initialisation phase.

3. Using certain parameters in the SOM training phase, namely hexagonal topology,

Gaussian neighbourhood, and particular map size values, each row value of the

weight vector is calculated and updated until finding best matches to the input

data.

4. The weight vector is used for updating the vector value in each point (SOM cell).

5. Once the entire weight vector structure is calculated, the values are saved in the

so-called codebook vector. In each step, the winning entry is found in the codebook

using Euclidean distance by going through the list of all weight vectors, each time

computing the distance between the codebook and the input entry from the weight

vector.

6. Once the fine tune is performed, the codebook is fixed and consists of best-matched

vector values.

7. The weight vector and the codebook are referenced and updated for rough tune

and fine tune.

8. The Umatrix is one of methods to visualize a SOM. The Umatrix visualizes the

codebook vector values.

9. The Umatrix visualization reflects the quantized data. Similar data is located in

a close neighbourhood to one another, producing an area of similar data density.

10. Having given different sections of the data with different name allows representing

the location of each group of the data in the Umatrix. The purpose of the illustra-

tion is to cluster around the data in the Umatrix about which we know where it

was located initially in the input data, aiming at identifying what the SOM does

to that data. This cluster of data represents data’s close neighbourhood. Like this,

virus data will turn out to be represented in close neighbourhood to one another,

which can be distinguished from the other data.

6.3.3.1 SOM projection

Figure 6.6 shows a simple example to illustrate the process of SOM training and visual-

ization. It shows that if there is similar “isolated” data in a file, it will be distinguished

from remaining data during the training of the SOM.

1. There is a very small input data set in the data buffer. For simplicity, identical

data rows are labelled with one of the letters A, B, C, D and E. A, B, C, and D

represent exactly one row of data, E represents the last 4 rows of identical data.

82 Chapter 6 Virus Visualization & Recognition

Figure 6.6: Example of SOM training and visualization

We will use this example to present how the Umatrix reflects the existence the

area of identical data labelled with E.

2. This is the input data after normalization. The entire data structure is not changed

- E still represents rows of identical data.

3. After the SOM training process, the codebook is produced as presented in Figure

6.6 (3).

4. The Umatrix presents the codebook vector values. In the example, only the

bottom-right neurons are in close neighbourhood to one another when compared

to other neurons.

5. The illustration presents how SOM training located the data based on their density.

The “E data” appears in an area of neurons with a close neighbourhood relation

to one another, compared to other data, because relatively many identical data

instances (labelled with E) were fed into the SOM to train it. That caused the

SOM to calculate a high density of data belonging to E, meaning that the neurons

are in close neighbourhood to one another. The illustrated data location using the

labels was created after identifying each neuron in the Umatrix with its original

label. We will call the way the original data is distributed in the UMatrix the

“SOM distribution” (explained in the next section using Figure 6.7) with data

labels.

Chapter 6 Virus Visualization & Recognition 83

It is important to note that labels are used only to identify where a previously identified

part of the input data will be distributed. They are not a part of the training process

itself. By using such a labelling, an area in the UMatrix will be shown, so-called the virus

mask, represents indeed virus data. In the virus detection system, which is developed in

Janus project, data is obviously unlabelled, as any prior knowledge is not given about

where, if at all, virus data and other fraction of the data are located.

6.3.3.2 SOM Distribution

This technique was used to identify which data part was located where. Using this SOM

distribution, the virus part was identified and proved that the virus detection approach

using SOM was reasonable. Note that this SOM distribution was only used for the

purpose of proving where input data distributed.

Figure 6.7: Example of SOM distribution with labelled data

The way to produce this distribution of data as presented in Figure 6.7 is a bit different

from normal SOM training. That is the reason why the output of the Umatrix (Figure

6.7 (2)) is different from Figure 6.6 (4).

1. The same data buffer, which was used in Figure 6.6, holds labelled data at the end

of each row. In this case, each row belongs to that label, e.g. the first row belongs

to label ‘a’.

2. This SOM distribution represents each label’s data density. Each label’s data

is located together. This method is used for identifying each data’s location and

density. The SOM distribution proves that the E part is located together in Figure

6.6 (4) and illustrated in like Figure 6.6 (5).

84 Chapter 6 Virus Visualization & Recognition

6.4 Virus Visualization Using MATLAB

This section discuss how viruses can be visualized using the SOM-based approach. In

the SOM projection, a particular pattern will be identified, which signals the presence

of a virus. This pattern will be called the virus mask. Table 6.2 presents the test file

information.

Table 6.2: Test file information

variants of the virus file size

Before infection by CIH1.2 11,632 Bytes
Before infection by CIH1.3 14,256 Bytes
Before infection by CIH1.4 1,968 Bytes

Win95.CIH Ver 1.2 19,536 Bytes
Win95.CIH Ver 1.3 36,864 Bytes
Win95.CIH Ver 1.4 4,608 Bytes

Before infection by Win95.Boza.A 2,016 Bytes
Before infection by Win95.Boza.C 3,072 Bytes

Win95.Boza.A 12,408 Bytes
Win95.Boza.C 16,384 Bytes

Before infection by Win32.Apparition 38,912 Bytes
Win32.Apparition 96,239 Bytes

Before infection by Win32.HLLP.Semisoft 41,360 Bytes
Win32.HLLP.Semisoft 59,904 Bytes
Macro.Word97 mw97a 60,928 Bytes
Macro.Word97 mw97b 53,760 Bytes
Macro.Word97 mw97c 68,608 Bytes
Macro.Word97 mw97d 54,272 Bytes
Macro.Word97 mw97e 62,976 Bytes
Macro.Word97 mw97f 65,536 Bytes
Macro.Word97 mw97g 76,288 Bytes

6.4.1 Initialisation

To train a SOM, a virus-infected file’s binary data was converted into a table of numerical

values as it is explained in Section 6.3.1. The file under test of WIN95CIH12.exe was

fed into a SOM and the SOM was initialised like below.

d = som read data(’Win95CIH12.exe.dat’);

Chapter 6 Virus Visualization & Recognition 85

6.4.2 Normalisation

Although binary data was converted to decimal short format, the range of data is still

big. We need to represent each data item using a value between 0 and 1. To do this,

SOM normalization function was used to normalize data to values between 0 and 1. The

‘range’ option implies values are normalized between [0,1].

sd = som normalize(d, ‘range’);

6.4.3 Creation

To create, initialise and train a SOM, there are some values we need: map size, topology,

neighbourhood, radius values, learning rates, and training length. For example, mapsize:

12x8, topology : hexagonal, neighbourhood: Gaussian, radius values: for rough tune 10,

for fine tune 3, learning rate values: for rough tune 0.05, for fine tune 0.02, trainlength

values: for rough tune 1000, for fine tune 10000.

sm = som make(sd, ‘init’, ‘lininit’, ‘msize’, [12,8], ‘algorithm’, ‘batch’, ‘lat-

tice’, ‘hexa’, ‘neigh’, ‘gaussian’, ‘training’, ‘long’);

6.4.4 Visualization

To visualise the trained SOM, there is a ‘som show’ function. Unified distance matrix

or Umatrix, is a method of displaying SOMs. Umatrix represents the map as a regular

grid of neurons. The size and topology of the map can readily be observed from the

picture where each element represents a neuron. Every node of the SOM’s grid gets a

numeric value that corresponds to its local density in the input-space: the average of

distances between its prototype and the neighbouring nodes’ prototypes. A low value

corresponds to a high local density. A high value corresponds to a low local density.

The numeric values are shown as shades of grey.

The location of the best-matching prototypes corresponds to the topography of the input

data. The shape of the Umatrix corresponds to the density structure of the input data.

This can be done in order to discover the spatial structure of a given set of data samples.

First, when generating an Umatrix, a distance matrix between the reference vectors of

adjacent neurons of two-dimensional map is formed. Then, some representation for the

matrix is selected, e.g., a grey-level image. The colours in the figure have been selected

so that the lighter the colour or lower of the colour value between two neurons, the

smaller the relative distance between them.

som show(sm, ‘umat’, ‘all’);

86 Chapter 6 Virus Visualization & Recognition

In this function, ‘umat’ implies show Umatrix with all variables, e.g., the whole variables

in the codebook.

6.5 Result of Virus Visualization

6.5.1 Example Case: Win95 CIH Virus

The Win95.CIH/Chernobyl [Samamura(1998)] is a Windows95/98/NT specific parasitic

virus infecting Windows PE (Portable Executable) files, and has about 1 Kbytes of

length. As this virus was one of the most famous viruses, which appeared periodically

from 1998 to 2004 in slightly different variants, it is chosen to discuss here. Figure 6.8

shows the SOM projection of two Windows executable files before Win95.CIH infection.

The SOM projections of the tested Windows executables are different to one other,

because they are different executable files. However, after Win95.CIH infection, the

SOM projections of the files develop a similar pattern as presented in Figure 6.9: a dark

area (navy coloured in the coloured map, representing an area of SOM cells where each

cell has a short distance to its neighbouring cells). The easily identifiable dark spot is

so-called the virus mask. It is the pattern that signals the presence of a virus in the file

under test.

Figure 6.8: SOM projections of two different Windows EXE files before infection

Figure 6.9 shows two SOM projections after training the SOM with two Win95.CIH (ver-

sions 1.2 and 1.3) infected Windows executable files respectively. Each Win95.CIH/Chernobyl

virus mask has an obvious location: top of the centre. Although the tested Windows ex-

ecutable files were different, the SOM projections of CIH virus-infected files look similar

and have the same sort of projection map.

To prove that the virus mask represents indeed the CIH virus code, the SOM was

trained in another experiment with data to which labels DS (DOS stub), PE (NewEXE

header), PR (program code), and VS (virus code) were attached. The labels reflect

the structure of an infected file as was presented in Figure 6.2. In order to attach the

Chapter 6 Virus Visualization & Recognition 87

Figure 6.9: SOM projections of Windows EXE files infected by Win95.CIH viruses

labels, the structure of the infected file was examined “by hand”. When the data set was

produced, to each row a label was added as shown in Figure 6.7 (1). The result of the

SOM distribution with labelled data is presented in Figure 6.10. This SOM distribution

has grouped the same labels together. Therefore the figures of the SOM distribution

with labels are quite different from the normal SOM projection (Figure 6.9).

Figure 6.10: Virus SOM Distribution of CIH 1.2 and 1.3 viruses.

The circles in Figure 6.10 identify the different data areas except for the program code

area (PR). PR is simply represented by the remaining area. As Figure 6.10 shows,

there are two parts where cells have a smaller distance to their neighbouring cells: PE

(NewEXE header) and VS (Virus Code). Even though PE shows an area of smaller

distances between two SOM cells, VS dominates the area of small cell distances (black

area in grey-scale, navy-coloured area in colour print), proving that the virus mask

identified in Figure 6.9 represents indeed virus code.

88 Chapter 6 Virus Visualization & Recognition

6.5.2 Example Case: Win95 Boza Virus

Boza virus [Service(1996)] is the first known virus infecting Windows Portable Exe-

cutable (PE) files, such files are used by Windows 95/NT. However, Boza does not

infect machines running the Microsoft Windows NT operating system. It searches for

EXE files, checks the files for PE signature, and then creates in the EXE file a new

section named “.vlad”, and writes its code into that section.

Figure 6.11: SOMs of Win95 Boza.A and Boza.C viruses.

Figure 6.12: SOM Distribution of Boza.A and Boza.C viruses.

Two different variants of Boza virus were selected and trained. Figure 6.11 shows the

Boza virus projection: the majority of lower valued colour in the upper centre repre-

sented the Boza virus code. To prove this, SOM distribution was made with labels as

shown in Figure 6.12. As it was expected, the majority of smaller distance area was the

Boza virus code. Although the NewEXE header code also had small distances, it did

not represent the majority.

Chapter 6 Virus Visualization & Recognition 89

6.5.3 Example Case: Win32.Apparition

Win32.apparition virus [KASPERSKY(2003)] has a very unusual structure. The main

part (about 60K) is the virus code (virus routines and C runtime library), text strings,

icon and other data used by the virus while installing and spreading. The next block

(3.5K) contains a packed (with LZ method) MS Word template - a Word macro virus.

The third block (21K) contains packed (by LZ) virus source code. And the last block

(3K) contains a resources file that is used when the virus runs the Borland C compiler.

Figure 6.13: SOM projection and distribution of WinNT apparition virus.

Like other virus SOM projections, this virus SOM also had the virus mask. Figure 6.13

shows the projection of Win32.apparition virus and the projection with labels for the

distribution respectively. In addition, this virus code had an unusual structure: the

distribution of the virus code was quite similar to the program code and the data parts.

Nevertheless, the majority of the smaller distance area represented the virus code.

6.5.4 Example Case: Win32.HLLP.Semisoft

Win32.HLLP.Semisoft virus [McAfee(2001)] is an unusual file infector which infects files

under Windows 95/NT. Figure 6.14 shows the SOM projection of Win32.HLLP.Semisoft

virus and the SOM distribution with labels for the data distribution respectively. Like

the previous virus SOMs, this SOM also has the virus mask and the majority of the

smaller distance area represented the virus code.

90 Chapter 6 Virus Visualization & Recognition

Figure 6.14: SOM projection and distribution of Win32.HLLP.Semisoft virus.

6.5.5 Example Case: MacroWord97.Mbug Virus

When SOM was trained with macro viruses, the result was as in Figure.6.15. The

Macro.Word97.Mbug virus is a class macro virus for Word97 documents and templates.

The infected file is an MS Word document file. Variants of the Macro.Word97.Mbug

virus are also presented in Figure.6.15 after training by the SOM.

Figure 6.15: SOMs of Word97 file infected by Macro viruses.

Although the figures of the SOM projections look very similar to the virus mask in the

CIH example, the result of analysing the SOM data distribution (Figure 6.16) showed

that the majority of the top-centre located data was not virus code (VS) part but were

labelled OD and SD (these reflect the particular structure of Word documents and will

Chapter 6 Virus Visualization & Recognition 91

Figure 6.16: SOM distribution of Word97 file infected by Macro viruses

not be discussed any further in this paper). Thus, the result indicates that we cannot

deal with macro viruses in the same way we deal with parasitic viruses. Thus, the

current SOM-based approach is insensitive to macro viruses.

Chapter 7

Application Cases

Security used to be an inconvenience sometimes,

but now it is a necessity all the time.

- Martina Navratilova.

Until now, this project has addressed packet evaluation methods and their application

of technology. In this chapter, those methods were applied to Janus, the firewall system.

The details of the project were mentioned in previous chapters, whilst this chapter

focuses on how Janus works based on the computational methods employed.

7.1 Janus Firewall System

7.1.1 Background of Packet Filtering & Packet Classification

The primary aspect of packet filtering is the issue of packet classification. It oper-

ates by identifying a policy by comparing the protocol header fields of a packet with

a filter specification. Packet classification has been the subject of much study in re-

cent time, for instance, [Lakshman and Stiliadis(1998), Gupta and McKeown(1999a),

Feldmann and Muthukrishnan(2000)]. The reason being that the ability to classify

packets plays a central role in routing and in the Differentiated Services (diffserv) 1

architecture [F. Baker and Smith(2002)]. However, the requirements to the packet clas-

sification scheme may be quite different from one application to another. One example

is routing on the Internet, where the classifier is used for choosing an interface based

1Differentiated services enhancements to the Internet protocol are intended to enable scalable service
discrimination in the Internet without the need for per-flow state and signalling at every hop. A variety
of services may be built from a small, well-defined set of building blocks, which are deployed in network
nodes. The services may be either end-to-end or intra-domain; they include both those that can satisfy
quantitative performance requirements (e.g., peak bandwidth) and those based on relative performance
(e.g., “class” differentiation).

93

94 Chapter 7 Application Cases

on a routing table. Here the classification only uses one or two of the address fields in

the packet header to determine route, where a firewall may classify packets based on

any number of packet header fields in TCP and/or IP. A related example is whether

the classification algorithms should support dynamic updates of the specification or not.

This is, for instance, the case with dynamic routing. Firewalls, on the other hand, use

specifications that are more static. A final difference may be the option to use dedicated

hardware or not. Given these differences, common performance measures of packet clas-

sification algorithms still remain. This includes classification time, space complexity,

and performance of the optimisation phase. Often worst case complexities are given in

along with empirical measurements.

Packet processing has something in common, they have a set of rules and they match

incoming packets to the rules to find which rules match the packet. This common

function is usually called packet classification. Figure 7.1 illustrates the conceptual

model of a packet classification. Packet classification function has three components;

a packet, a filter database, and an algorithm to classify packets. A packet is the IP

datagram to be matched with filters in the filter database. The packet has several

properties that are relevant to classification; source and destination addresses, type of

service, length, and so on. Filter database is a collection of filters also called rules, and

each filter consists of several fields and an action. Each field of a filter is associated to a

certain property of IP packet, usually to a packet header field. Each field can be in the

form of single value e.g., 23, range e.g., 0-1023, prefix e.g., 203.178.143/24, or wildcard

i.e., matches all values. A packet property matches to its corresponding filter field if the

value of that property is contained within the value range of the filter field. A packet

matches to a filter if all properties of the packet match to the corresponding fields of the

filter. When this happens, packet is classified into the flow defined by the filter, and will

be treated according to the action of the filter. Packet classification algorithm performs

the matching between IP packet and the filters to find which filter matches the packet.

Figure 7.1: Conceptual model of packet classification

Chapter 7 Application Cases 95

Packet classification can be categorized as layer-3 or layer-4 classification, depending on

the fields of filters. Filters of layer 3 classification uses IP address fields or other packet

header fields that are relevant for processing at the Internet layer of TCP/IP protocol

stack. If classification includes other fields that are only relevant to UDP and TCP, and

then it is called layer-4 classification.

Firewalls in general do layer-4 classification since they tend to use port fields for their fil-

ter databases. Firewalls are used not only to prevent or allow traffic from and to certain

hosts, but also from and to certain hosts using certain applications, indicated from the

protocol type and port fields. Firewall database obtained in packet classification field are

less than 2000 filters [Gupta and McKeown(1999b), V. Srinivasan and Varghese(1999),

Venkatachary Srinivasan and Waldvogel(1998)]. Further details of related work in packet

filtering & classification is in Appendix B.

7.1.1.1 Packet Filters

Packet filters work by dropping packets based on their source or destination addresses

and/or ports. In general, no context is kept; decisions are made only from the contents

of the current packet. Depending on the type of router, filtering may be done at input

time, at output time, or both. The administrator makes a list of the acceptable machines

and services and a stop-list of unacceptable machines or services. It is easy to permit or

deny access at the host or network level with a packet-filter.

Table 7.1: An example of a CISCO router access list.

Note. The fourth rule is never matched because of the second rule.

order rules

1 permit udp any host 10.0.0.1 eq 53
2 deny udp any host 10.0.0.2
3 permit udp any 10.0.0.0 0.0.0.255 eq 123
4 permit udp any host 10.0.0.2 eq 177
5 deny ip any any

Simple packet-filters usually use simple ordered lists of rules. An example of a CISCO

router access list is shown in Table 7.1. When a packet is received, the list is scanned

from the start to the end, and the action, either “permit” or “deny”, associated with

the first match is taken. If a packet does not match any of the rules, the default action

is “deny”. Often a “deny all” rule is included at the end of the list to make it easier to

verify that a list has not been truncated. Separate lists can be specified for each network

interface.

The rules can use the following fields from the IP protocol header: next level protocol,

e.g., TCP or UDP, source and destination IP addresses, type-of-service, and precedence.

96 Chapter 7 Application Cases

In addition, some fields for upper level protocols, such as TCP and UDP port numbers

can be used. A more complete discussion of the syntax of the rules used by CISCO

routers is in [CISCO(2002), Hundley and Held(2000)]. Since the first matching rule is

always used, it is very easy to make mistakes when writing access lists, especially when

the lists are long; several hundred rules are not uncommon. For instance, the fourth

rule in Table 7.1 is never matched because the packets are stopped at the second rule.

7.1.2 Process of Janus System

It is a well-known fact that all protocol stacks have security holes; these can cause

vulnerabilities in firewall systems as well. However, Janus does not require a TCP/IP

stack. In order to achieve this on a normal Unix computer, it was necessary to recompile

the kernel with support for network cards but without any TCP/IP networking support.

Figure 7.2: Work flow to make a decision in the adaptive detection model.

Figure 7.2 represents the process flow of the Janus system. Decoded packets are in-

spected in order to validate protocols, and are checked for protocol sanity, e.g. check

header, check sender, check recipient, and check attachment. Meanwhile, TCP packets

are verified using the TCP verification model. Then among TCP packets, the UBE/Virus

Chapter 7 Application Cases 97

mail checker classifies mail packets. If mail packets’ attachments contain virus possibly,

virus detection alerts it. All processing parts here are predefined in previous chapters

(details are found in all previous chapters); they are now applied to the real implemen-

tation. In the last step, the policy relative part needs to be updateable or modifiable.

According to a site policy, the interpreter will decide whether to drop a packet or let it

pass. Therefore, most policy parts are editable through rules in Janus. Through these,

malicious logic, which causes the site policy to be violated, can be detected. The process

flow was implemented as in Algorithm 1.

Algorithm 1 process of Janus system

let allPackets = {pkt | pkt ∈ ipPackets where decodedPackets(pkt) }
let receivedPackets = {rvp | rvp ∈ allPackets where decodedPackets(pkt) }
let mailPackets = {m | m ∈ TCPPackets where decodedPackets(pkt) }
let policy = {p | p ∈ accessRules & p ∈ messageRules where messagePattern(p) }

for all pkt ∈ allPackets do
do in parallel

for all rvp ∈ receivedPackets do
SanityCheck(rvp)

end for
choose pkt ∈ allPackets where TCPSanityCheck(pkt) do

TCPTransactionVerification(pkt)
choose mail ∈ mailPackets where EmailClassifier(mail) do

VirusDetect(mail.attachment)
end choose

end choose
PacketFilter(pkt, policy)

enddo
end for

7.1.3 Placement of the Janus system

The Janus firewall has been designed to protect any server system from any internal or

outside network area. Like in Figure 7.3, the Janus system is placed inside the university

firewalls with a separated subnetwork routing setup on an Internet connection. This

causes the Janus system to act as a firewall/router on the subnetwork since all traffic

travels through that system.

There are three types of placement possible: in a single server, in a multi-server, or in

a grouped server environment. Current IP settings and working environment with the

Janus box are in a single server environment as in Figure 7.4. The Janus packet-filter

drops, and lets pass packets according to the rules defined in a config file (janus.config)

and a rule file (janus.rules). For each packet inspected by the filter, the set of rules

is evaluated from top to bottom, and the last matching rule decides what action is

performed.

98 Chapter 7 Application Cases

Figure 7.3: Janus Network Configuration

• In a single server environment with the use of a crossover cable. In this

setup, the Janus system is attached to the network where the server used to be

and the server is connected to the second network card in the Janus system via a

crossover cable. This is the current Janus system configuration (Figure 7.4).

Figure 7.4: In a single server environment with the use of a crossover cable

• In a multi-server environment. In this setup, the Janus system is attached to

the network where the servers used to be and the servers are either connected via

a hub to the second Janus network card or multiple network cards can be used in

the Janus system as in Figure 7.5.

Chapter 7 Application Cases 99

Figure 7.5: In a multi-server environment

• In a grouped server environment. Where servers are grouped together by type

of services provided, separate Janus boxes can be used for each group as in Figure

7.6. In this configuration, rules are optimised by separating them into multiple

Janus systems to increase performance and by grouping servers according to the

services they offer to match the rules.

Figure 7.6: In a grouped server environment

7.1.4 Packet-filter & Classifier

A packet-filter is a multi-interfaced device that applies a set of rules to filter IP packets

passing through its interfaces. Each interface on the device represents a connection to

a network. For instance, a company protecting their internal LAN from the Internet

100 Chapter 7 Application Cases

would need a packet-filter with two interfaces, one to the local network and another to the

external network to which the local network connects such as the company’s Internet

service provider. Filtering on a packet-filter may occur in several places. In theory,

packets can be filtered in both inbound and outbound directions on all the interfaces

of a packet-filter, although this flexibility may differ between various implementations

of packet-filters [Cheswick and Bellovin(1994)]. Thus, the rules of a packet-filter are

organised into a set of access lists and each list is then applied to a particular interface,

in a specified direction.

The main idea of packet-filter rule searching is to combine all the rules into a single data

structure that can be searched once to find the first matching rule. The aim of Janus’

packet-filter rule-format is to find an internal representation for access lists capable

of providing fast lookup with reasonable memory requirements. Since access lists are

consulted frequently for each arriving packet, the ability to perform fast lookups is the

most important factor. This justifies using a potentially large amount of effort initially

to create an efficient internal representation. Janus rule set consists of packet header field

and message field. Since a firewall has to prevent secure systems from network attacks,

Janus must cover the known network attacks by attack signatures. So, the message field

can be used in this way, as well as for declaring mail attached file extensions. However,

message field information needs to be chosen carefully.

7.1.4.1 Access Lists

An access list describes the security policy of the packet-filter at the point at which it

is applied. Although the syntax of access lists may differ from one implementation of

a packet-filter to another, their flexibility and semantics remain fairly constant. Each

rule in an access list consists of a selection criterion and an action field. The action

field specifies what should happen if the packet meets the selection criterion. Packet

filters usually offer the two actions accept and drop. Accept means the packet should

be allowed to continue towards its destination IP address whereas drop means that the

packet should be discarded.

The selection criterion of a rule is a Boolean expression involving values of fields avail-

able in the packet headers. The number of fields that may be specified for filtering is

known as the dimension of a filter. In theory, any information available in the packet

headers can be used as filtering criteria. In practice, the common filtering fields include

[Vos and Konijnenberg(1996)]:

• Source and destination IP addresses. These addresses can be found in the IP header

of every packet. Traffic restriction is facilitated by allowing the administrator to

specify the set of well-known hosts or networks that may use the system.

Chapter 7 Application Cases 101

Table 7.2: Example of Janus Rule

<rule>

ip proto(UDP, ICMP, IGMP, 13-15)
action=block
</rule>

<rule>
ip dst(134.21.0.0/16, 134.21.14.50-134.21.14.59)
tcp port(21-25)
action=block
</rule>
incoming packet towards MailServer includes executable file,
then check for virus detection.
<rule>
ip dst(MailServers)
tcp dst(25)
tcp nocase(.exe, .pif, .com)
action=check
</rule>

incoming packet towards Webserver includes executable file, then drop
<rule>
ip dst(WebServers)
tcp dst(80)
tcp nocase(.exe, .vbs, .com)
action=test
</rule>

• Transport protocol, like TCP, UDP, or ICMP, which is also found in the IP header.

• IP options, like the source route option, which is often considered dangerous for

network security.

• Source and destination port numbers, associated with TCP and UDP. These can

be found in the TCP and UDP headers respectively. Filters using port numbers

can restrict the network traffic to a limited set of services that are associated with

well-known ports.

• TCP flags, such as the ACK and SYN flags. These flags indicate whether a packet

is initiating a new connection and can be used to restrict TCP connections from

being initiated in certain directions.

• ICMP message types. These are found in the ICMP header. Filtering on ICMP

types allows the administrator to restrict ICMP traffic to a limited set of message

types.
The classification for each packet, i.e., whether it should be accepted or discarded, is

given by the action field of the first rule whose selection criterion matches the packet.

102 Chapter 7 Application Cases

Each rule of an access list describes the condition, based on the values of fields within

the packet header, that a packet must meet in order to have the corresponding action

effected. Thus, the condition of a rule is simply a logical expression involving certain

fields of the packet header to be accepted, a packet must satisfy this expression if the

rule’s action is accept, and not satisfy the expression if the rule’s action is reject. Current

Janus rules look like Table 7.2. If no rules match, the default rule is applied. The default

rule is determined by the security policy and is usually set to reject all packets, since

this is the preferred security stance [R.L.Ziegler(2000)]. In the Janus rule file, “action”

defines the action to perform when the rule matches. Actions are defined in the Janus

config file.

7.1.4.2 Address Notation

Although the syntax of access lists differs from system to system, in terms of network

addresses and masks, two conventions are used.

• base address/bit count notation: The expression 134.21.54.0/24 represents the

block of IP addresses in the range 134.21.54.0 to 134.21.54.255. In other words,

the number after the slash indicates the number of bits in the address, starting at

the most significant, that are significant for comparison.

• address, mask tuple: The address block 134.21.54.0/24 can be alternatively ex-

pressed with a base address of 134.21.54.0 and a mask of 0.0.0.255. Both the

address and the mask consist of 32 bits, with each bit in the mask specifying

whether the corresponding bit in the address is significant for comparison.

7.1.4.3 Structures For Filtering Ruleset

Figure 7.7: The linked list structure for filtering ruleset in Janus.

Janus uses a two-dimensional linked-list structure for filtering rule-set. This linked

list consists of rule tree nodes and message tree nodes. A rule tree node holds many

common properties that must be included in each rule, such as the source and destination

addresses, source and destination ports, and protocol type such as TCP, UDP, ICMP

Chapter 7 Application Cases 103

and so on. The message tree node holds the information for the various messages that

can be added to each rule, e.g., packet content. These structures are organized into

chains which can be conceptualised with the rule tree node’s string from left to right as

chain headers and the message tree node’s hanging down from the individual rule tree

nodes to which each is associated as illustrated in Figure 7.7.

When packets are being examined against a given rule set, the packet is first compared

along the rule tree node list from left to right until the packet matches a particular rule

tree node. Only if such a match occurs is the packet then compared down the message

tree node list of the matching rule tree node. If any of the message checks fails, the

packet is then checked against the next message tree node in the list. If a content check

is required, Janus uses a Boyer-Moore pattern matching algorithm to check the content

string held in the message tree node against the entire packet payload. If no match

exists, Janus will proceed to the next message tree node in the list, which could have all

options identical to the previous message tree node except for a slightly different content

string.

7.1.4.4 Message Pattern Matching Algorithm

Algorithm 2 Boyer-Moore message pattern matching

if Output = undef or Index 6= undef then
if Index > Length(packetPayload) - Length(msgPattern) then

Index := undef
else if CharAt(msgPattern, Offset) = CharAt(packetPayload, Index + Offset)
then

if Offset = 0 then
Output := Index

else
Offset := Offset - 1

end if
else

Index := Index + Skip(Offset, CharAt(packetPayload, Index + Offset))
Offset := Length(msgPattern) - 1

end if
end if

This message pattern matching has two purposes: matching file extensions for mail

attachment file, and possible attack message patterns. For message pattern matching,

the Boyer-Moore algorithm was applied. Boyer-Moore [Boyer and Moore(1977)] is a

quite fast pattern matching algorithm in practice. It uses heuristics to reduce the number

of comparisons needed to determine if a given text string matches a particular pattern,

i.e., it uses knowledge of the keyword to search for to skip over unnecessary comparisons

against the text being searched. The algorithm typically aligns the text and the keyword

to search for so that the keyword can be checked from left to right along the text string

beginning with the last character of the keyword and ending with the first.

104 Chapter 7 Application Cases

We will define a nullary function Index that holds the current index that we are testing.

We will assert that its initial value is 0. If we determine that the current value of Index

is not the start of a match, we simply increment Index. If we find no matches anywhere

in the string, we update Index to undef. The algorithm is finished if a match is found,

in which case Output is updated to some value, or if not match is found anywhere, in

which case Index is updated to undef. We will define another nullary function Offset,

which will be used in the character-by-character comparison. The message pattern at

index Offset will be compared with the packet payload. A new function CharAt takes

a string and an integer and returns the character at that position in the string. In the

Boyer-Moore algorithm, the message pattern is compared against the packet payload

from right to left. The message pattern still advances along the packet payload in a left

to right fashion. Boyer-Moore uses the rule ‘skip’ over certain characters as well. If the

character currently being scanned in the packet payload does not appear at all in the

message pattern, we know that nothing to the left of this current character can be part

of a match. So, we can move the message pattern all the way to the right of the current

character. It is not the offset value that counts; rather it is the current character in the

packet payload. The Boyer-Moore algorithm is presented in Algorithm 2.

7.1.5 Packet Verifier

Packet Verifier consists of Sanity Checker and a TCP verification model. To cover

other protocol aspects apart from TCP state specification, there is Sanity Checker. This

performs layer 3 and layer 4 sanity checks. These include verifying packet size, checking

UDP and TCP header lengths, dropping IP options and verifying the TCP flags to

ensure that packets have not been manually crafted by a malicious user, and that all

packet parameters are correct. This validation is based on the protocol requirements

in Section 4.1. For instance, an IP header length should always be greater than or

equal to the minimal Internet header length (20 octets) and a packet’s total length

should always be greater than its header length. IP address checks are also important

since land attacks [Fyodor(1997)] use the same IP address for source and destination.

According to the TCP standard [Postel(1981c)], neither the source nor the destination

TCP port number can be zero, and TCP flags, e.g. URG and PSH flags, can be used

only when a packet carries data. Thus, for instance, combinations of SYN and URG or

SYN and PSH become invalid. In addition, any combination of more than one of the

SYN, RST, and FIN flags is also invalid. Through the requirement in Section 4.1, the

implementation part of Sanity Checker procedure (function SanityCheck in Algorithm

1) is presented in Algorithm 3.

Sanity Checker examines every packet within a 10 second window, and at the end of

each window, it will record any malicious activity it sees using syslog. Sanity Checker

assumes any TCP packet other than a RST may be used to scan for services. If packets

Chapter 7 Application Cases 105

Algorithm 3 SanityCheck procedure

let receivedPackets = {pkt | pkt ∈ ipPackets where decodedPackets(pkt) }
for all pkt ∈ receivedPackets do

if CheckAddress(pkt.dstaddr, pkt.srcaddr) 6= true then
BlockPkt(pkt)

else
ipProtocol := getPktIP(pkt)
if ipProtocol = TCP then

TCPSanityCheck(pkt)
else if ipProtocol = UDP then

UDPSanityCheck(pkt)
else if ipProtocol = ICMP then

ICMPSanityCheck(pkt)
else

Skip
end if

end if
end for

of any type are received by more than 7 different ports within the window, an event is

logged. The same criteria are used for UDP scans. Any SYN packets with source and

destination address and ports being the same are identified as land attacks. If more than

5 ICMP ECHO REPLIES are seen within the window, Sanity Checker assumes it may be

a Smurf attack [CERT(1998)]. Sanity Checker also assumes that any fragmented ICMP

packet is bad, so this catches attacks such as the ping of death. Sanity Checker check any

TCP fragment whether it has non-zero offset or not, so this catches fragment attack. To

make the certainty higher, Sanity Checker cooperates with the TCP verification model

to check three-way handshake and a SYN flood event.

The simplified TCP verification model is depicted in Figure 7.8 and the associated TCP

state table with action is presented in Table 7.3 to monitor and control TCP state

transitions as was presented in Chapter 4. Janus needs to trace down the behaviour

represented by the remaining TCP verification model. Janus should take all kinds of

TCP behaviour into account. With the TCP verification model, Janus can avoid blocking

packets such that a TCP session can hang, and makes the window of opportunities for

abuse as small as possible. Abuse is defined here as sending malicious data that will be

accepted as valid data or sending malicious ACK’s that will be accepted as valid ACK’s.

In addition, Janus should minimize the amount of blocked packets that belong to valid

sessions. Through the verification model (Figure 7.8), the implementation part of the

TCP state verification procedure (function TCPTransitionVerification in Algorithm 1)

is presented in Algorithm 4.

106 Chapter 7 Application Cases

Algorithm 4 TCP Transaction verification procedure

let pktHeader = {ph | ph ∈ allTCPPackets where ChooseTCPHeader(pkt) }
let tcpId = Hash (pkt.srcAddr, pkt.srcPort, pkt.dstAddr, pkt.dstPort)

do in parallel
rcvFlags := CheckRcvFlags(tcpId)
sntFlags := CheckSntFlags(tcpId)
choose tcpId ∈ pktHeader where CheckState(tcpId) do

if UnexpectedFlags(tcpId) then
UpdateState(tcpId, CLOSED)

end if
end choose
choose tcpId ∈ pktHeader where CheckStateListen(tcpId) do

if rcvFlags = SYN then
UpdateState(tcpId, SYN RCVD)

end if
end choose
choose tcpId ∈ pktHeader where CheckStateSynRcvd(tcpId) do

if rcvFlags = RST then
UpdateState(tcpId, LISTEN)

else if sntFlags = SYNACK then
UpdateState(tcpId, ACK WAIT)

end if
end choose
choose tcpId ∈ pktHeader where CheckStateAckWait(tcpId) do

if rcvFlags = ACK then
UpdateState(tcpId, ESTABLISHED)

else if rcvFlags = ACKFIN then
UpdateState(tcpId, CLOSE WAIT 2)

else if rcvFlags = FIN & sntFlags = ACK then
UpdateState(tcpId, CLOSING)

else if sentFlags = RST or timeout(tcpId) then
UpdateState(tcpId, CLOSED)

end if
end choose
choose tcpId ∈ pktHeader where CheckStateClosing(tcpId) do

if rcvFlags = ACK then
UpdateState(tcpId, CLOSE WAIT 1)

end if
end choose
choose tcpId ∈ pktHeader where CheckStateCloseWait1(tcpId) do

if sntFlags = ACK then
UpdateState(tcpId, CLOSED)

end if
end choose
choose tcpId ∈ pktHeader where CheckStateEstablished(tcpId) do

if rcvFlags = FIN & sntFlag = ACK then
UpdateState(tcpId, CLOSE WAIT 2)

else if rcvFlags = RST or rcvFlags = SYN or timeout(tcpId) then
UpdateState(tcpId, CLOSED)

end if
end choose
choose tcpId ∈ pktHeader where CheckStateCloseWait2(tcpId) do

if rcvFlags = ACK or timeout(tcpId) then
UpdateState(tcpId, CLOSED)

end if
end choose

enddo

Chapter 7 Application Cases 107

Figure 7.8: TCP Verification Model

Table 7.3: TCP states table

Current State New State Action

LISTEN SYN RCVD recv: SYN
SYN RCVD LISTEN recv: RST
SYN RCVD ACK WAIT send: SYN, ACK
ACK WAIT ESTABLISHED recv: ACK
ACK WAIT CLOSE WAIT 2 recv: ACK of SYN, FIN
ACK WAIT CLOSED timeout (60 sec) or recv: SYN
ACK WAIT CLOSING recv: FIN, send: ACK

ESTABLISHED CLOSE WAIT 2 recv: FIN, send: ACK
ESTABLISHED CLOSED recv: RST or SYN, or timeout (30 min)

CLOSING CLOSED timeout (10 sec)
CLOSING CLOSE WAIT 2 recv: ACK

CLOSE WAIT 2 CLOSED recv: ACK, or timeout (10 sec)

7.1.6 Email Classifier

In Chapter 5, email classification was described. With the result of classification, an

email classifier is implemented as presented by Algorithm 5.

Here, most parts are predefined with the result classification information of Chapter

5. For example, the abnormal mail classifier is denoted by t, UBEs by u and Email

108 Chapter 7 Application Cases

Algorithm 5 process for email classifier

let receivedMailPackets = {m | m ∈ mailPackets where decodedPackets(m)}
for all mail ∈ receivedMailPackets do

do in parallel
fr := CheckSender(mail)
to := CheckRecipient(mail)
h := CheckHeader(mail)
ef := CheckExecutable(mail)

enddo
do in parallel

UBEflag := AlertOfUBE(fr, to)
Virusflag := AlertOfVirus(fr, to, h, ef)

enddo
if UBEflag = true & Virusflag = true then

mailAlert := true
else if UBEflag = true & Virusflag = false then

ubeAlert := true
else if UBEflag = false & Virusflag = true then

virusAlert := true
else

mailAlert := false
ubeAlert := false
virusAlert := false

end if
end for

viruses by v. Therefore the abnormal mail classifier t is true if either u or v are true,

which means that this classifier can say whether or not a mail is abnormal by UBE or

email-virus data in the raw packets detected.

t = u + v.2

The UBE classifier u is true if either a sender Fr or a recipient To are false, which

means that this classifier can say whether a mail is an UBE by identifying that either

the sender part or the recipient part are malformed.

u = ¬(Fr ∧ To)

The classifier decides whether mail contains an email virus by the following facts; al-

though the sender part is correct, a recipient part and a header part are wrong and there

is an attachment in the mail, or although the recipient part is correct, a sender part and

a header part are wrong and there is an attachment in the mail, or a sender part and a

recipient part are wrong even though the header part is ok and there is an attachment,

2“+” represents here the Boolean OR operation.

Chapter 7 Application Cases 109

or a sender part, a recipient part and a header part are all wrong whether there is an

attachment or not. For email virus classification v,

v =

(Fr∧¬To∧¬H∧EF)∨(¬Fr∧To∧¬H∧EF)∨(¬Fr∧¬To∧H∧EF)∨(¬Fr∧¬To∧¬H)

UBE and email virus information is implemented in functions AlertOfUBE and AlertOfVirus.

The process of email classification is implemented by Algorithm 5.

7.2 Janus VirusDetector

Prior work presented in Chapter 6 described an approach to visualize virus patterns using

Self-Organizing Maps (SOMs) [Kohonen(1995)]. The SOM visualization of virus-infected

files proved that the virus detection approach without prior knowledge of virus signatures

using SOM made sense. In this section, a virus detection program, VirusDetector, is

presented which has been developed for determining whether a file is virus-infected or

not, based on the prior work using SOM.

A virus detection program, VirusDetector, was then developed which uses the SOM algo-

rithms initially employed in the MATLAB visualization. However, it does not visualize

the viruses anymore but solely decides whether or not the visualization had contained

the so-called virus mask which indicates the presence of a virus.

Even though a colourful visualization was produced easily using MATLAB, VirusDetec-

tor does not require colourful visualization; only the Umatrix neurons’ values are used

for detection. Thus, VirusDetector uses an internal Black/White representation of the

Umatrix’s node values using textual information.

7.2.1 Test Data Collection

In total, 790 virus-infected files (291 Win9x files and 499 Win32 files), 80 normal (i.e.

non-infected) Windows executable files, and 15 macro-virus-infected Windows Word

files were tested using the SOM-based approach, including downloadable application

programs such as SSHSecureShellClient-3.2.9.exe, dxwebsetup.exe, klcodec220b.exe, and

already installed executable programs such as Excel.exe, Winword.exe, Acrobat.exe,

servertool.exe. Those virus-infected files were detected and caught in between 1996 and

2004. Even “old” viruses are still of interest as they have several variants that appear

in present days. For example, variants of the CIH/Chernobyl [CERT(1999b)] virus have

appeared each year since 1998. All test data, file information and the test results are

listed in Appendix C.

110 Chapter 7 Application Cases

7.2.2 Process of Virus Detection

With the knowledge about the virus mask in SOM projections of virus-infected files,

VirusDetector is built which, based on SOM algorithms, detects the virus mask. Apart

from the colourful visualization result using MATLAB, VirusDetector uses a simple

Black/White colour scheme.

Figure 7.9: The process of virus detection in VirusDetector

Figure 7.9 shows the step-wise process in VirusDetector. After feeding a binary exe-

cutable file to VirusDetector, the data is converted into integer format. Then the data

is normalized using certain SOM parameters such as topology type: Hexa, neighbour-

hood: Gaussian, map size: 12 x 8, radius1: 10, radius2: 3, learning rate1: 0.05 for rough

tune, learning rate2: 0.03 for fine tune, trainlength1: 1000, and trainlength2: 10000.

Afterwards, the SOM is trained with the normalized data. Unfortunately, there is no

theoretical basis for the selection of these parameters [Kohonen(1995)]. The parameter

settings were determined experimentally from the visualization results using the SOM

toolbox in MATLAB. Note that the graphical representation of the SOM depends on

the initialisation, meaning that a virus mask might be located in a different location,

or be shown in a totally undetectable form for a different initialisation. However, us-

ing the mentioned (good) parameters, the SOM projection produces the patterns which

VirusDetector can search for and finally find the virus mask if it is present.

While the SOM is trained, it produces a codebook for storing the data. Using this

codebook, VirusDetector calculates the Umatrix in Black/White. High values (dark

SOM cells) indicate high data density, which is particularly the case for virus data. A

“factor value” is used for selecting which high values are significant. According to these

B/W Umatrix values, VirusDetector filters out the Umatrix values above the factor value

and saves them. To represent the filtered-out values on the two-dimensional projection

plane, the character “S” is used (each SOM cell with an assigned gray-scale value above

Chapter 7 Application Cases 111

the factor value is represented by an “S” all other cells are blank). This produces a

representation of the projection plane in form of ASCII strings. After producing the

map of “S”’s, VirusDetector searches for the virus pattern and marks the virus mask

if any is present. After identifying the virus mask, VirusDetector decides that the file

under test is virus-infected.

Figure 7.10: Virus Detection Example

Here is an example of the detection process as depicted in Figure 7.10.

1. Data buffer presents a virus-infected file’s short-integer-formatted data.

2. After normalization in VirusDetector, the codebook of the input data is produced.

3. VirusDetector calculates the values of the Umatrix neurons from the codebook,

assigning a grey-scale colour value to each neuron (SOM cell).

4. If the factor value is 72, which is used in VirusDetector, the neurons with a higher

value than the factor value are selected, as presented in Figure 7.11 (a).

5. The filtered values are replaced by character “S” to create strings as presented in

Figure 7.11 (b), and VirusDetector manipulates the strings to search for the virus

pattern. In the final step, VirusDetector decides on the found pattern whether or

not it represents a virus mask using Algorithm 6.

112 Chapter 7 Application Cases

Figure 7.11: In B/W Umatrix, bigger values are selected and replaced by char S’.

Algorithm 6 process of searching virus mask

for all string ∈ givenfile do
if search string S i for the first occurrence of substring ”SSS” then

if search string S i+1 for the first occurrence of substring ”SS” then
compare up to each string’s size characters of string S i to S i+1, and vice
versa.
if size string is equal to or less than the other string, then

virus mask!
end if

else if repeated search on string S i for substring ”SSSS” then
if search string S i+1 for the first occurrence of substring ”SSS” then

virus mask!
end if

end if
else

compare up to string S i’s size characters of string S i to S i+1,
if S i is equal to or less than S i+1, then

virus mask!
end if

end if
end for

7.2.3 Result of Virus Detection

Using VirusDetector, the 790 virus-infected files are tested, which are listed in Appendix

C. The test set only includes virus-infected executable Windows files. Since experiments

with labelling the input data showed that it could not detect macro viruses properly,

macro viruses are excluded from the test set.

Chapter 7 Application Cases 113

7.2.4 Unencrypted Parasitic Viruses

Figures 7.12, 7.13 and 7.14 are the SOM projection of the CIH virus v1.2, v1.3, v1.4 and

recognition result produced by VirusDetector respectively. As the result shows, the virus

mask is represented roughly by the strings of “S”’s. Figures 7.15 and 7.16 contains the

equivalent result for Win95.Anxiety virus. Tables 7.4 and 7.5 summarize the experiments

conducted on some virus-infected executables in Win9x and Win32 format respectively.

Results on the recognition of non-infected executable files are presented in Table 7.6.

The complete result list can be found in Appendix C.

Figure 7.12: SOM Umatrix and detection result of CIH 1.2 virus

Figure 7.13: SOM Umatrix and detection result of CIH 1.3 virus

Figure 7.14: SOM Umatrix and detection result of CIH 1.4 virus

114 Chapter 7 Application Cases

Figure 7.15: SOM Umatrix and detection result of W95 Anxiety.1397 virus

Table 7.4: Win9x Virus Detection Result by VirusDetector.

Win9x Virus Total Number: 291, Error number: 26.
False negative: 0.09 (approx. 9%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Altar.797 8192 6-19-99 O Altar.884 4096 10-4-02 O
Altar.910 4096 10-24-99 O Antic.695 7863 9-2-02 O
Anxiety.1358 152778 3-1-04 O Anxiety.1397 49736 3-1-04 O
Anxiety.1399 8192 3-21-98 O Anxiety.1399.b 49736 3-1-04 O
Anxiety.1422 5684 11-22-03 O Anxiety.1451 29213 2-21-01 O
Anxiety.1486 8192 1-24-98 O Anxiety.1517 8192 11-22-03 O
Anxiety.1586 42590 11-22-03 O Anxiety.1596 49736 3-11-98 O
Anxiety.1823 8192 3-1-04 O Anxiety.1823.b 6196 7-2-03 O
Anxiety.2471 8192 11-22-03 O Apop.1086 8192 7-17-02 O
Argos.310 4096 9-2-02 O Argos.328 4096 3-1-04 O
Argos.335 4096 9-24-02 O Argos.402 4096 6-30-99 O
Bodgy.3230 97438 4-15-03 X Bonk.1232 19632 11-22-03 O
Bonk.1243 9460 3-1-04 O Boza.2220 24576 11-22-03 X
Boza.a 12408 3-17-96 O Boza.b 7994 11-22-03 O
Boza.c 16384 3-1-04 O Boza.d 16384 11-22-03 O
Boza.e 16384 11-22-03 O ByteSV.Thorn.886 20480 11-22-03 O
Caw.1262 205550 11-22-03 O Caw.1335 5943 3-1-04 O
Caw.1416 55964 11-22-03 O Caw.1419 54667 11-22-03 X
Caw.1457 6065 11-22-03 O Caw.1458 8192 10-5-02 O
Caw.1525 24576 11-22-03 O Caw.1531 8192 11-2-01 O
Caw.1557 180224 12-31-00 O Chimera.1542 35846 11-22-03 O
CIH 19536 7-8-02 O CIH.1003.b 4608 3-1-04 O
CIH.1010.b 37394 11-22-03 O CIH.1016 34304 9-2-02 O
CIH.1019.c 4896 3-1-04 O CIH.1024 1553 3-1-04 O
CIH.1026 1555 3-1-04 O CIH.1031 4096 9-2-02 O
CIH.1035 1564 3-1-04 O CIH.1040 159744 3-1-04 O
CIH.1048 20480 9-2-02 O CIH.1049 65536 9-2-02 O
CIH.1103 2144 11-22-03 O CIH.1106 153088 11-27-02 O

Chapter 7 Application Cases 115

Figure 7.16: SOM Umatrix and result of of W95 Anxiety.1399b virus

Table 7.5: Win32 Virus Detection Result by VirusDetector.

Win32 Virus Total Number: 499, Error number: 103.
False negative: 0.2064 (approx. 21%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is Byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Adson.1559 8192 7-26-02 O Adson.1734 20480 11-22-03 O
Aidlot 8192 10-4-04 O Akez 32768 4-27-02 O
Aliser.7825 12288 3-6-03 O Aliser.7897 8192 6-8-03 O
Aliser.8381 8192 6-8-03 O Alma.2414 10606 3-1-04 O
Awfull.2376 3072 9-9-03 O Awfull.3571 4096 3-1-04 O
Bakaver.a 24576 10-6-03 O Banaw.2157 8192 11-22-03 O
Barum.1536 5632 8-31-02 O Bee 24576 3-1-04 O
Beef.2110 57344 3-1-04 O Belial.2537 8192 11-22-03 O
Belial.2609 254513 3-9-02 X Belial.a 4096 3-10-04 O
Belial.b 4096 2-23-02 O Belial.c 4096 11-22-03 O
Belial.d 4096 9-24-02 O Belod.a 8192 3-12-02 O
Belod.b 8192 8-21-02 O Belod.c 8192 3-14-02 O
Bender.1363 3584 12-31-01 O Bika.1906 8192 12-31-01 O
BingHe 296643 10-11-02 X Blackcat.2537 8192 9-9-03 O
Blakan.2016 8192 12-31-01 O Blateroz 8192 9-2-02 O
Blueballs.4117 16384 11-22-03 X Bobep 8192 8-25-03 O
Bogus.4096 38400 10-13-99 O Bolzano.2122 36864 2-10-03 O
Bolzano.2664 15135 2-10-03 O Bolzano.2676 15183 2-10-03 O
Bolzano.2716 13521 2-10-03 O Bolzano.3100 15277 2-10-03 O
Bolzano.3120 15331 2-10-03 O Bolzano.3148 15373 2-10-03 O
Bolzano.3164 15409 2-10-03 O Bolzano.3192 15457 3-1-04 O
Bolzano.3628 16095 3-1-04 O Bolzano.3904 16251 2-10-03 O
Bolzano.5572 28237 2-10-03 O Butter 96665 9-2-02 X
Cabanas.a 7171 5-7-04 X Cabanas.b 7171 3-1-04 O
Cabanas.Debug 95748 10-4-04 O Cabanas.e 16384 7-8-03 O
Cabanas.MsgBox 39996 10-4-04 X Cabanas.Release 49152 1-26-99 O
CabInfector 4096 3-1-04 O Cecile 28672 12-31-01 X
Cefet.3157 7253 9-2-02 O Cerebrus.1482 8192 3-1-04 O

116 Chapter 7 Application Cases

Figure 7.17: Virus Detection Result Scene 3: normal executable file cases.

Table 7.6: Normal Executable Program’s Virus Check Result by VirusDetector

Normal Executable File’s Total Number: 80, Error number: 24.
False positive: 0.3 (approx. 30%).
If the result of detection is marked X, VirusDetector says this file is a virus-infected file,
which means incorrect detection.

Filename Detection Filename Detection

dxwebsetup.exe divx311.exe
awsepersonal.exe DVD2DIVXVCD trial.exe
paulp en1.exe adrenalin2.0.1.exe
GOMPLAYER14.exe sdvd190.exe
csdl13.exe HwpViewer.exe
SSHSecureShellClient-3.2.9.exe DivX505Bundle.exe
klcodec220b.exe SwansMP24a-WCP.exe
DivXPro511GAINBundle.exe NATEON.exe X
WinPcap 3 1 beta 3.exe ducp708 type3 free.exe
wmpcdcs8.exe Acrobat.exe
iTunes.exe pccmain.exe
sicstusc.exe Tra.exe
acrodist.exe java.exe X
PCcpfw.exe sicstus.exe
Trialmsg.exe X Ad-Aware.exe
javaw.exe X PCctool.exe
splfr.exe X tsc.exe
AdobeUpdateManage.exe jpicp132.exe X
Photoshp.exe spmkds.exe
conf.exe policytool.exe X
spmkrs.exe X unregaaw.exe
CSDL.exe kinit.exe X
Sshclient.exe ssh2.exe

Chapter 7 Application Cases 117

7.2.5 Polymorphic and Encrypted Parasitic Viruses

Among the 790 virus-infected test files, there were 30 Win9x encrypted and 15 polymor-

phic parasitic viruses. These are about 15% of the tested Win9x virus-infected files. In

case of Win32 executables, 30 were encrypted and 50 were polymorphic. This represents

again approximately 16% of all tested Win32 virus-infected files. The way VirusDetector

checks these files is identical to testing for unencrypted, non-polymorphic viruses. The

results in the encrypted or polymorphic case are quite noticeable. In case of Win9x

executables, either encrypted or polymorphic viruses were detected easily by VirusDe-

tector with 3% and 13% false negative rate respectively. In case of Win32 executables

containing an encrypted virus, the false negative rate was lower (13%) than VirusDe-

tector ’s average false negative rate on the entire data set (presented in Tables 7.7 and

7.9). However, the false negative rate for Win32 executables infected with a polymorphic

virus was much higher (42%) than average (16%) (see Tables 7.8 and 7.10).

Table 7.7: Win9x Encrypted Parasitic Virus Detection Result by VirusDetector.

Encrypted Win9x Virus Total Number: 30, Error number: 1, False negative: 0.03 (3%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Bumble.1736 8192 3-1-04 O Bumble.1738 8192 11-22-03 O
Iced.1344 44032 9-6-01 O Iced.1376 8192 11-22-03 O
Iced.1412 8192 11-22-03 O Iced.1617 8192 3-1-04 O
Iced.2112 8192 3-1-04 O Mad.2736.a 32768 10-4-04 O
Mad.2736.b 32768 10-4-04 O Mad.2736.c 32768 1-7-02 O
Mad.2736.d 32768 1-7-02 O Mad.2806 32768 1-19-98 O
Nathan.3276 7372 9-2-02 O Nathan.3520.a 12288 3-10-04 O
Nathan.3520.b 16384 9-9-01 O Nathan.3792 185552 10-23-99 O
Obsolete.1419 5003 3-1-04 O PoshKill.1398 8192 4-21-01 O
PoshKill.1406 8192 3-17-03 O PoshKill.1426 8192 8-20-01 O
PoshKill.1445.a 8192 3-10-04 O PoshKill.1445.b 8192 11-22-03 O
Priest.1419 4096 8-9-99 O Priest.1454 4096 3-1-04 O
Priest.1478 9728 6-10-00 X Priest.1486 9728 10-4-01 O
Priest.1495 9728 8-18-01 O Priest.1521 9728 3-1-04 O
Shoerec 321536 8-12-01 O Tip.2475 10752 11-22-03 O
Voodoo.1537 61441 11-22-03 O Werther.1224 6344 12-31-01 O

All encrypted Win9x viruses used in the tests are listed in Table 7.7, all polymorphic

Win9x viruses are in Table 7.8, all encrypted Win32 viruses are in Table 7.9, and all

polymorphic Win32 viruses are in Table 7.10, each attached with their size, the date

when they were caught and the test result of VirusDetector. For information about

these polymorphic and encrypted parasitic viruses, please refer to the site about Win-

dows viruses at KASPERSKY (Metropolitan Network BBS Inc., Bern, Switzerland)

118 Chapter 7 Application Cases

Table 7.8: Win9x Polymorphic Virus Detection Result by VirusDetector.

Win9x Polymorphic Virus Total Number: 15, Error number: 2, False negative: 0.13
(13%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Begemot 8192 3-1-04 O Darkmil.5086 12288 3-1-04 X
Darkmil.5090 74210 7-2-03 O Fiasko.2500.a 8192 11-22-03 O
Fiasko.2500.b 12935 3-1-04 O Fiasko.2508 8192 3-1-04 O
Invir.7051 9728 3-1-04 O Luna.2636 8192 4-24-02 O
Luna.2757.a 62213 3-10-04 O Luna.2757.b 12288 1-1-80 O
Marburg.a 493789 3-10-04 O Marburg.b 28381 11-22-03 X
Matrix.3597 35916 2-14-03 O Merinos.1763 9216 3-1-04 O
Merinos.1849 8192 11-22-03 O

[KASPERSKY(1994-2005)].

Table 7.9: Win32 Encrypted Parasitic Virus Detection Result by VirusDetector.

Encrypted Win32 Virus Total Number: 30, Error number: 4, False negative: 0.13 (13%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Ditto.1488 6096 3-1-04 O Ditto.1492 12288 11-22-03 O
Ditto.1539 8192 10-1-00 O Gloria.2820 16384 11-22-03 X
Gloria.2928 16384 3-1-04 O Gloria.2963 12288 10-1-00 O
Idele.2104 8192 7-8-03 O Idele.2108 8192 3-1-04 O
Idele.2160 8192 11-12-03 O IhSix.3048 8192 11-22-03 O
Infinite.1661 8192 3-1-04 O Levi.2961 12288 5-16-01 O
Levi.3040 7188 11-22-03 O Levi.3090 12288 11-22-03 O
Levi.3137 35941 11-22-03 O Levi.3205 12288 3-1-04 X
Levi.3240 16384 8-17-02 O Levi.3244 16384 11-22-03 X
Levi.3432 16384 11-22-03 O Mix.1852 4096 5-30-00 O
Niko.5178 65611 11-22-03 X Santana.1104 81920 12-4-01 O
Savior.1680 8192 1-8-01 O Savior.1696 12288 5-18-01 O
Savior.1740 12288 3-28-02 O Savior.1828 20480 8-6-01 O
Savior.1832 12288 3-1-04 O Savior.1904 12288 12-4-01 O
Undertaker.4887 12288 11-22-03 O Undertaker.5036.a 12288 11-22-03 O

Chapter 7 Application Cases 119

Table 7.10: Win32 Polymorphic Virus Detection Result by VirusDetector.

Encrypted Win32 Virus Total Number: 50, Error number: 21, False negative: 0.42
(42%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Andras.7300 14238 7-27-02 O AOC.2044 8192 11-28-99 O
AOC.2045 8192 11-26-99 O AOC.3657 16384 3-1-04 O
AOC.3833 16384 3-1-04 O AOC.3860 20480 2-10-03 X
AOC.3864 20480 2-10-03 O Champ 12288 2-10-03 O
Champ.5430 12288 10-6-02 O Champ.5464 12288 2-10-03 O
Champ.5477 12288 10-6-02 O Champ.5495 6144 2-10-03 X
Champ.5521 12288 2-10-03 X Champ.5536 12288 2-10-03 X
Champ.5714 12288 2-10-03 O Champ.5722 16384 2-10-03 X
Chop.3808 64049 8-29-01 X Crypto 49152 3-1-04 X
Crypto.a 28672 11-22-03 X Crypto.b 32768 11-22-03 O
Crypto.c 32768 11-22-03 O Driller 94208 3-1-04 O
Harrier 108544 11-22-03 X Hatred.a 16384 3-10-04 O
Hatred.d 16384 10-29-02 O Kriz.3660 415232 7-27-02 X
Kriz.3740 764928 10-4-04 X Kriz.3863 475136 10-4-04 X
Kriz.4029 12288 3-1-04 O Kriz.4037 12288 8-19-01 O
Kriz.4050 479232 11-22-03 X Kriz.4057 12288 8-19-01 X
Kriz.4075 12288 11-22-03 O Kriz.4099 12288 11-22-03 X
Kriz.4233 8192 7-15-01 X Kriz.4271 57344 10-4-04 O
Prizm.4428 8704 9-4-02 X RainSong.3874 8192 11-22-03 O
RainSong.3891 61509 3-1-04 O RainSong.3910 8192 12-5-01 X
RainSong.3956 12288 10-4-04 X RainSong.4198 8192 3-12-02 O
RainSong.4266 12288 10-4-04 X Thorin.11932 16384 3-1-04 O
Thorin.b 16384 3-1-04 O Thorin.c 16384 10-23-99 O
Thorin.d 16384 7-14-99 O Thorin.e 16384 10-23-99 O
Vampiro.7018 18432 3-1-04 X Vampiro.a 16896 3-10-04 O

7.2.6 False positive vs. False negative in VirusDetector

A false positive occurs when a non-infected file is tested and the test result categorizes

the file as positive (i.e. infected). In the inverse case of a not-detected-infected file, the

outcome is called a false negative. The false negative rate and the false positive rate

are interdependent; to decrease one is to increase the other. Therefore, it is important

to decide which side to decrease and which to increase. A significant role is played by

the factor value, one uses in VirusDetector to decide whether the value of SOM cell is

significant or not (i.e. whether or not the cell is likely to present a fraction of the virus

mask). To determine the threshold of decision in certain patterns, the test results of all

790 virus-infected and 80 non-infected Windows executable files were taken into account.

120 Chapter 7 Application Cases

For different factor values, the false-positive and false-negative rates of the tests on the

entire data set are presented in Figure 7.18.

Figure 7.18: VirusDetector’s Error Curve based on factor values

As Figure 7.18 shows, the false positives remain more or less in the same range (0.25 -

0.3) for factor values 72 and 79. On the other hand, the false-negative rate is increased

significantly. So, without knowing any virus signature and anything else about a virus,

VirusDetector can detect a virus infection with a probability of 84% and false positive

rate of 30%. Some further fine-tuning might be necessary, possibly on the cost of reduc-

ing the detection capabilities (i.e. increasing the false-negative rate), in order to decrease

the false positives. Using the factor value (72), all the files (790 virus-infected files and 80

non-virus-infected normal executable files) were tested. The full list of information and

results on the tested files is given in the appendix. Among the 291 Win9x virus-infected

files, VirusDetector failed to detect 26 (approximately 9%; see Table 7.4). Among the

499 Win32 virus-infected files, VirusDetector did not succeed in detecting 103 (approx-

imately 21%; see Table 7.5). On the other hand, among the 80 non-infected Windows

executable files, VirusDetector failed to pass 24 (approximately 30%; see Table 7.6).

7.2.7 Discussion of VirusDetector

The virus-detection approach presented in this paper exploits the detection capabilities

of a self-organizing map (SOM). It basically uses structural information about the data

contained in an executable file: the virus code is data injected into a formerly complete

and (sort of) homogeneous structure, namely the program code. Hence the virus, even

though not easily detectable by standard techniques (assuming that the virus signature

is not known), is “somewhat different” from the program it infected. The SOM used in

the non-standard way, is capable of just doing that: reflecting the presence of data in

Chapter 7 Application Cases 121

an executable, which is somehow different from the rest. Whether the injected code was

an encrypted parasitic or a polymorphic parasitic virus does not matter; it still differs

from the rest of the program code. In SOM terminology: its data density, compared to

the original program code, is high enough to display a virus mask (i.e. an area of close

neighbourhood in the SOM projection).

Standard anti-virus software can detect variants of a virus only if different virus sig-

natures are available. However, the detection approach in this paper detects viruses

independent of any prior knowledge (such as a virus mask). Even polymorphic or en-

crypted parasitic viruses show a virus mask which can be detected by VirusDetector.

Since the question of whether or not a program contains virus code is in general unable

to answer, VirusDetector cannot be perfect. It is therefore a surprisingly good result

that in the tests (with 790 files, all infected by a different virus or different version of

a virus), VirusDetector detected almost 84% of the viruses with a false positive rate of

30%. During the experiments, based on the good detection rate of VirusDetector, the

confidence in the possibility of detecting unknown viruses increased significantly.

Until now, the classical virus-detection techniques could not deal with unknown viruses

(not all, but some). The SOM-based, non-signature-based virus detection complements

these standard techniques in that it provides a tool capable of identifying unknown

viruses. The combination of signature-based methods with the SOM-based approach

can make systems much more secure by making them less vulnerable to infections by

unknown viruses.

There is still the macro-virus-detection problem. Although the SOM visualization pat-

tern looks very similar to a virus mask in a NewEXE file, it will always be produced

when a document is checked for macro viruses using VirusDetector. An approach differ-

ent from that for parasitic viruses is therefore needed to deal with macro viruses. Even

though the macro virus is inserted into a complete document, it is first of all part of a

macro and that macro is then saved in the macro area of a document file. Because of

this, the inserted macro virus data cannot be differentiated from the macro itself and

identified by the SOM neurons. Additionally, the macro virus part is not big enough to

produce a significant neighbourhood density and is possibly “hidden behind” low density

data. The macro part is simply too small compared to the entire data structure. It will

be future work aiming to overcome this problem and be able to deal with macro viruses

as well.

Another remaining weakness is the too high false-positive rate of 30%. Even though the

experimental results are very promising, additional work must be spent in the future on

reducing the relative number of false positives. There is already some scope for that in

the approach by adapting the factor value used by VirusDetector. This will cause the

false-negatives rate to increase, which is partly acceptable. However, it will be necessary

to examine other improvements in order to reduce the relative number of false positives.

122 Chapter 7 Application Cases

Nevertheless, if VirusDetector can only prevent a single unknown virus from infecting

our system (or systems world-wide), the significant research effort spent on developing

VirusDetector was absolutely worth it.

Chapter 8

Conclusions

The serious problems of life are never fully solved.

If ever they should appear to be so,

it is a sure sign that something has been lost.

The meaning and purpose of a problem seem to lie

not in its solution but in our working at it incessantly.

- C. G. Jung.

In information security, confidentiality, integrity and availability are major pillars to

protect and ensure information. Network security problems are the familiar loss of them.

Various defence mechanisms need to be held in depth, and risk assessment of data packets

must be established in the defence mechanisms. One of the solution technologies is a

defence system to protect network-connected resources, which is called a firewall. The

more serious network threats, the more important the role of the firewall. Therefore,

intelligent firewall technology is indispensable to achieve a high level of protection. This

thesis looks for defence mechanisms against network attacks, which use vulnerabilities

in network protocols, and risk assessment of data packets, then apply them to network

security systems, in particular, the firewall systems. With the concept of an intelligent

firewall in mind, potential technologies applicable to an intelligent firewall have been

worked and researched. One of the main criticisms of firewalls is that they often create

bottlenecks [Ballew(1997)]. To enforce a security policy, firewalls must in some way

process all network packets passing through them, and this results in a loss of network

performance. This motivates the need for faster firewall technologies, keeping in mind

that there are tradeoffs between performance and security, high security requirements

must warrant any loss in performance. Therefore, firewalls need to be clever in checking

incoming packets efficiently. The goal of this research is to extend the abilities of packet-

filtering firewalls aiming to reduce possible problems and attacks by improving firewall

technologies.

123

124 Chapter 8 Conclusions

8.1 Overview

The likelihood of attacks is defined as our confidence to have certain occurrence of specific

attacks and attackers’ preference to use certain pattern of attacks. The vulnerabilities in

network protocols still exist as long as the structure of network and network protocols

are not changed completely. Hence, the likelihood of attacks using vulnerabilities in

network protocols and mechanisms are still high although new technologies to detect

or secure systems’ abilities are developed significantly. Therefore, we need intelligent

defence mechanisms.

The risk assessment of data packets is defined as that it is about understanding likely

threats to network systems and the process of determining whether proposed or existing

defence mechanisms are adequate to protect information resources from the threats.

The threats to network systems are considered either using vulnerabilities in network

protocols and mechanisms or using common network mechanisms with malicious code in

data packets. The former can be active attacks including typical denial service attacks, –

e.g., ping attacks, SYN flood attacks, land attacks and tear drop attacks – IP spoofing,

spams, and denial of service Internet worms. On the other hand, the latter can be

passive attacks using social engineering methods including viruses and Internet worms.

There are various existing secure systems; each system has specific defence mechanism

against specific attacks. In this thesis, firewall systems are the main concern for risk

assessment of data packets. Since firewall systems are not smart enough to protect infor-

mation resources from the threats, this thesis proposes defence mechanisms to improve

firewall technologies. To evaluate packets, filtering, classification, detection, verifica-

tion, and recognition techniques have been applied to Janus. Based on a packet-filtering

firewall, Janus is modelled using adaptive firewall architecture, which can deal with pro-

tocol anomaly detection and verification, and email classification. Furthermore, Janus

can conduct detecting virus as in attached files without the use of virus signatures.

Fundamental technologies which have been researched in course of this project include

software engineering techniques, e.g. the specification description language and abstract

state machines, machine learning, especially Naive Bayesian inference, symbolic and

algebraic manipulation, and pattern recognition with self-organizing maps.

8.2 Summary

The summary of this thesis is as follows;

• Protocol Anomaly Detection: Protocol anomaly refers to all exceptions related

to protocol format and protocol behaviour with respect to common practice on the

Chapter 8 Conclusions 125

Internet and standard specifications. However, network attack packets cannot be

discovered as being a protocol anomaly, because there exists some odd-looking

but legitimate traffic as well. To distinguish protocol anomalies from network

traffic, network traffic had been analysed closely using protocol specifications, and

then requirements for protocols has been addressed against misuse, based on the

protocol specifications. Through that, a packet sanity checker was implemented.

• TCP Runtime Verification Model: TCP provides reliable data transfer be-

tween different application processes over the network. TCP provides flow control

and congestion control as well. Nevertheless, during the past two decades, many

security problems of TCP/IP protocol suite have been discovered. Meanwhile,

the network hackers created a large number of intrusion methods to exploit those

vulnerabilities. Well-known TCP attacks against the current TCP model are SYN

flooding and IP spoofing attacks [CERT(2000a)]. These conduct denial-of-service

attacks by creating TCP “half open” connections. Any system connected to the

Internet and providing TCP-based network services is potentially subject to this

attack. Improved OS kernel or stateful inspection firewall/proxy systems support

TCP protocol transaction checking against this type of attack. There is one tech-

nical solution against SYN flood attack, SYN cookie method, which is generally

accepted to this problem with the current IP protocol technology. However, there

is no general accepted TCP transaction verification solution, in particular for fire-

walls, it is necessary to deal with this problem having a practical view on TCP

implementation features. Although a standard TCP protocol specification is avail-

able, TCP implementations do not fully follow the specification and practical TCP

internetworking often violates the protocol standards.

To identify anomalous transactions in TCP, it has been addressed what current

TCP problems are and investigated why practical implementations work differently

from the standard TCP specification. Then, to detect anomalous TCP transactions

and to check the three-way handshake completed correctly, a TCP verification

model has been proposed and was applied to Janus. The TCP verification model

does not replace the current TCP specification; it rather provides a verification

method of TCP transactions. The TCP verification model is useful to detect

anomalous TCP transactions, which can cause system security to be compromised.

• Email Classification with Naive Bayesian inference and OBDD: Email is

vulnerable to misuse. One such misuse is by email viruses, another is by UBEs

also known as Spam. In this project, it is dealt with the propagation of UBE,

because the propagation is the potential way for email virus propagation as well.

The difference between UBE and Email viruses is whether or not malicious content

s present. To detect misused emails, and to estimate the probability of whether

the mail is abnormal, the structure of emails has been examined and the header

field, the sender field, and the recipient field of each email transferred using the

126 Chapter 8 Conclusions

SMTP protocol, have been checked. Then a Naive Bayesian classifier has been

built representing the probability of an email attachment of being malicious. Prior

probabilities to malicious mail have been assigned and the likelihood of being ma-

licious of an executable attachment has been estimated. Then an exact algorithm

for Bayesian inference is used, and the Naive Bayesian classifier is converted into

an OBDD. Since Janus should deal with packets fast enough, the OBDD has been

designed with predefined properties. The Bayesian-OBDD based model is capable

of drawing conclusions about the potential maliciousness of incoming email pack-

ets. Based on the estimation of a packet’s potential maliciousness and using a

particular security policy of the protected network, a data packet can then either

be dropped or it passes.

• Virus Detection and Recognition with Self-Organizing Maps: To recog-

nize virus patterns in virus-infected executable files, without virus signatures, a

self-organizing map (SOM) is used to visualize data densities through the SOM pro-

jection. Without using virus signatures, this SOM projection tells us the structure

of a virus-infected executable file. Besides we can detect virus-infected executable

files independent of whether the virus is known or not. A virus is a part of the file,

which was inserted in a certain way, and this virus code shows a different struc-

ture when compared to the original program code it infected. Thus, virus code is

distinguishable from the remaining program code, whether it is encrypted or not.

Therefore, the SOM produces a particular pattern, so-called the virus mask when

a file is virus-infected. The virus mask can prove decisive in establishing the ex-

istence of virus in virus-infected files. Anti-virus software can detect variants of a

virus only by different virus signatures. This research can be applied to anti-virus

detection without any knowledge of virus signatures. It is therefore applicable to

the detection of unknown new viruses.

• Packet Filtering and Classification: Packet classification performs a matching

between IP packets and filters in order to find which filter matches the packet. It

should be fast enough to allow the classification algorithm being executed several

times and still forward packets at line speed. Packet filtering is a special case

of packet classification. Although Janus performs packet classification, the pur-

pose of this project is improving firewall technologies rather than creating a new

classification algorithm to improve the filtering speed. Therefore, a quite simple

packet-filtering mechanism has been implemented using double-linked lists and the

Booyer-Moore pattern matching algorithm.

• Janus Firewall: Janus is an adaptive firewall model. After developing technolo-

gies applicable to the recognition of anomalies in data packets, those have been

implemented in Janus. Janus does not require the presence of the TCP/IP stack.

To reduce the scope for security holes in protocol stacks, it has been necessary

to recompile the Linux kernel with support for network cards, but without any

Chapter 8 Conclusions 127

TCP/IP networking support. Janus is designed to protect of any server systems

against any internal or external network attacks. The current version of Janus is

placed inside the university’s firewalls with a separated subnetwork routing setup

on an Internet connection. This causes Janus to act as a firewall/router on the

subnetwork since all traffic travels through it. The current IP settings and working

environment of the Janus box are that of a single server environment.

• Janus VirusDetector: A non-signature-based virus detection program, Virus-

Detector is presented. Unlike classical virus detection techniques using virus sig-

natures, this SOM-based approach can detect virus-infected files without any prior

knowledge of virus signatures. Exploiting the fact that virus code is inserted into

a complete file which was built using a certain compiler, an untrained SOM can be

trained in one go with a single virus-infected file and will then present an area of

high density data, identifying the virus code through SOM projection. VirusDe-

tector has been tested on 790 different virus-infected files, including polymorphic

and encrypted viruses. It detects viruses without any prior knowledge — e.g.

without knowledge of virus signatures or similar features — and is therefore as-

sumed to be highly applicable to the detection of new, unknown viruses. This

non-signature-based virus detection approach was capable of detecting 84% of the

virus-infected files in the sample set, which included polymorphic and encrypted

viruses. The false positive rate was 30%. The combination of the classical virus

detection technique for known viruses and this SOM-based technique for unknown

viruses can help systems even more secure.

8.3 Future Work

• Analyzing Firewall Rules: For firewalls, they must also be configured properly.

Firewall configurations are often written in a low-level language, which is very hard

to understand. For instance, the order of the rules is often very important. Thus,

it is often quite difficult to find out which connections and services are actually

allowed by the configuration.

This brings up two related problems: how to express the organization’s security

policy in a language understood by the firewall and finding out what a given

firewall configuration actually does. This second problem often occurs when a new

network administrator takes over, for instance, or when a third party is performing

a technical security audit for the organization.

• Encryption: Suitable encryption can defend against some attacks. However, en-

cryption devices are expensive, often slow, hard to administer, and uncommon

in the civilian sector. There are different ways to apply encryption; each has its

strengths and weaknesses. A comprehensive treatment of encryption is beyond

128 Chapter 8 Conclusions

the scope of this thesis. Nevertheless, encrypted messages can contain malicious

information that cannot be detected by the current intelligent firewall. Message

encryption is a problem, especially for network-based intrusion systems. Encryp-

tion makes the practice of looking for particular patterns in packet bodies futile.

Useful analysis can be performed only after the message has been decrypted on

the target host, and this often occurs within a specific application. Driven by com-

mercial and defence needs, greater emphasis needs to be placed on host-based or

application-based intrusion systems that have the ability to view message content

even if the message is encrypted in transit. However, IPSec provides a mechanism,

encapsulating security payload, which can be used to hide both the contents and

addresses of network packets between firewalls. This renders the actual source,

destination, and contents of the packet opaque while they are in transit between

firewalls.

• Network Planning/Configuration/Optimisation: Janus does not have logi-

cal configuration tools to make sure the configuration does not contain any logical

errors. The logic should cover the current network environment and its configu-

ration. Therefore, the tool will have to support a planning or optimising network

configuration avoiding logical flaws.

• Denial of Service attack: To deal with denial of service attacks, network

anomaly detection and traffic classification are future add-ons to Janus. This

requires research such as the comparison of attack traffic with legitimate traf-

fic, classifying network-based application response, and identifying network traffic

patterns.

• Internet Worms: Email classification of Janus cannot fully protect against In-

ternet Worms, if a worm looks like legitimate traffic. To overcome this, Janus will

have to cooperate with network Intrusion detection systems. In addition, to pro-

tect systems from Internet worms, firewall access and filtering, attack identification

and analysis, and identification of network traffic patterns are required.

• Janus VirusDetector: SOM’s ability to gather likelihood data together gave us

benefit to visualize and to detect virus-infected files. Since virus codes could not

hide their own features through SOM projection, it was great advantage how virus

codes affected the whole file projection, and through this projection, we could see

virus masks without knowing any virus-signature knowledge. Then VirusDetector

implementation presented how to detect the virus masks, and what kind of process

was taken to build VirusDetector. In addition, several results of visualization and

detection, and the evaluation of VirusDetector were presented. Without virus-

signature knowledge, about 84 % of detection ratio with 30 % of false positive is

encouraging. Still much of experiments are necessary to improve VirusDetector,

and macro virus detection part would be a future work.

Chapter 8 Conclusions 129

’It’s a dangerous business, Frodo, going out of your door,’

he used to say.

’You step into the Road, and if you don’t keep your feet,

there is no knowing where you might be swept off to.’

- The Lord of The Rings, J.R.R. Tolkien

Appendix A

TCP Runtime Verification Model

SDL Specification

Figure A.1: Process StateTransition of the TCP Protocol State Machine in SDL

SYSTEM StateMachine ;

NEWTYPE TCPFlags

LITERALS SYN, ACK, FIN, RST,

131

132 Appendix A TCP Runtime Verification Model SDL Specification

Figure A.2: Process StateTransition of the TCP Protocol State Machine in SDL

SYNACK, /* SYNACK = SYN + ACK */

ACKFIN, /* ACKFIN = ACK + FIN*/

FFF;

ENDNEWTYPE;

SIGNAL Packet(Integer, Integer, TCPFlags); /*tcp id, tcp seq, flags*/

SIGNAL ROP(Integer, TCPFlags); /* Result of Packet, tcp id, flags */

CHANNEL channelout

NODELAY FROM tcpstate TO ENV WITH ROP ;

ENDCHANNEL;

Appendix A TCP Runtime Verification Model SDL Specification 133

Figure A.3: Process StateTransition of the TCP Protocol State Machine in SDL

CHANNEL channelin

NODELAY FROM ENV TO tcpstate WITH Packet ;

ENDCHANNEL;

BLOCK tcpstate REFERENCED;

ENDSYSTEM;

PROCESS<<SYSTEM StateMachine/BLOCK TCPState>> StateTransition ;

NEWTYPE PacketInfo

STRUCT

ip Integer;

seq Integer;

flag TCPFlags;

OPERATORS

134 Appendix A TCP Runtime Verification Model SDL Specification

Unexpected: Integer, TCPFlags -¿ PacketInfo;

SanityCheck: Integer, Integer -¿ PacketInfo;

ENDNEWTYPE;

DCL pkt PacketInfo;

DCL tcp id, tcp seq, tcp seq per id Integer := 0;

DCL tcp flag TCPFlags;

DCL cur process PId; /* current process */

Timer t;

START;

NEXTSTATE Listen ;

STATE syn rcvd ;

INPUT Packet(tcp id, tcp seq, tcp flag) ;

TASK pkt := SanityCheck(tcp id, tcp seq) ;

DECISION tcp flag ;

(RST):

NEXTSTATE Listen ;

ELSE:

OUTPUT ROP(tcp id, SYNACK) to SENDER ;

NEXTSTATE ack wait ;

ENDDECISION;

ENDSTATE;

STATE Listen ;

INPUT Packet(tcp id, tcp seq, tcp flag) ;

TASK cur process := SENDER ;

TASK pkt := SanityCheck(tcp id, tcp seq) ;

DECISION tcp flag ;

(SYN):

OUTPUT ROP(tcp id, SYNACK) to SENDER ;

NEXTSTATE syn rcvd ;

ELSE:

TASK pkt := Unexpected(tcp id, tcp flag) ;

NEXTSTATE - ;

ENDDECISION;

ENDSTATE;

STATE Listen ;

INPUT NONE;

SET(NOW + 120.0, t) ;

NEXTSTATE - ;

ENDSTATE;

STATE close wait 1 ;

INPUT NONE;

OUTPUT ROP(tcp id, ACK) to SENDER ;

NEXTSTATE closed ;

Appendix A TCP Runtime Verification Model SDL Specification 135

ENDSTATE;

STATE established ;

INPUT Packet(tcp id, tcp seq, tcp flag) ;

TASK pkt := SanityCheck(tcp id, tcp seq) ;

DECISION tcp flag ;

(RST):

NEXTSTATE closed ;

(SYN):

NEXTSTATE closed ;

(FIN):

OUTPUT ROP(tcp id, ACK) to SENDER ;

NEXTSTATE close wait 2 ;

ELSE:

TASK pkt := Unexpected(tcp id, tcp flag) ;

NEXTSTATE - ;

ENDDECISION;

ENDSTATE;

STATE ack wait ;

INPUT Packet(tcp id, tcp seq, tcp flag) ;

TASK pkt := SanityCheck(tcp id, tcp seq) ;

DECISION tcp flag ;

(FIN):

OUTPUT ROP(tcp id, ACK) to SENDER ;

NEXTSTATE closing ;

(ACKFIN):

NEXTSTATE close wait 2 ;

(ACK):

NEXTSTATE established ;

ELSE:

TASK pkt := Unexpected(tcp id, tcp flag) ;

NEXTSTATE - ;

ENDDECISION;

ENDSTATE;

STATE close wait 2 ;

INPUT Packet(tcp id, tcp seq, tcp flag) ;

TASK pkt := SanityCheck(tcp id, tcp seq) ;

DECISION tcp flag ;

(ACK):

NEXTSTATE closed ;

ELSE:

TASK pkt := Unexpected(tcp id, tcp flag) ;

NEXTSTATE - ;

ENDDECISION;

ENDSTATE;

136 Appendix A TCP Runtime Verification Model SDL Specification

STATE closed ;

INPUT NONE;

OUTPUT ROP(tcp id, FFF) to SENDER ;

STOP;

ENDSTATE;

STATE closing ;

INPUT Packet(tcp id, tcp seq, tcp flag) ;

TASK pkt := SanityCheck(tcp id, tcp seq) ;

DECISION tcp flag ;

(ACK):

NEXTSTATE close wait 1 ;

ELSE:

TASK pkt := Unexpected(tcp id, tcp flag) ;

NEXTSTATE - ;

ENDDECISION;

ENDSTATE;

ENDPROCESS;

BLOCK<<SYSTEM StateMachine>> TCPState ;

SIGNALROUTE sr2

FROM statetransition TO ENV WITH ROP ;

SIGNALROUTE sr1

FROM ENV TO statetransition WITH Packet ;

PROCESS statetransition REFERENCED;

CONNECT ChannelIn AND sr1;

CONNECT ChannelOut AND sr2;

ENDBLOCK;

Appendix B

Background of Packet

Classification and Filtering

B.1 Packet Filtering

Packet filtering is a special case of packet classification. Packet classification determines

what class a packet belongs to, based on the fields in its header and a set of classification

rules. The class of the packet determines what action should be performed on it. The

packet filter checks each incoming and outgoing packet, and makes sure that the destina-

tions and sources of the packets are trustworthy. Any packet from a source or to a des-

tination that is not trustworthy, is prevented from passing through the network. Packet

filters work by looking up a rulebase which lists sources and destinations that should be

allowed, and those that should be blocked. Packet filters uses a rulebase to determine

whether to forward or discard a packet. However, rule lookup time can increase network

latency significantly [Cheswick and Bellovin(1994)]. Rule lookup latency can especially

be a problem if the rulebase is large, since the resulting latency can reduce response time

unacceptably. Furthermore, in high-speed networks rule lookup can be a bottleneck and

reduce network throughput substantially [Ellermann and Benecke(1998)].

Although the ability to filter and detect packet is worthy for firewalls, performance can-

not be ignored. Thus, both hardware and software-based packet filter researches exist.

Software-based packet filters are especially prone to the latency problem [Newman(1999)].

There are three reasons for this. Firstly, some filters simply search the rulebase sequen-

tially from beginning to end; this is very inefficient as it is possible to optimise the search

using specialised data structures and algorithms. Secondly, the filtering code runs on a

general-purpose CPU. Hence, no matter how effectively the data structures and algo-

rithms are optimised, there is a limit to the performance that can be achieved. Thirdly,

software solutions suffer from a high overhead. For example, several layers of hardware

and software have to be traversed during rule lookup: the packet must be transferred

137

138 Appendix B Background of Packet Classification and Filtering

from the physical cable to the network card, through the protocol stack and to the fil-

tering software, and back to the network again, traversing many buffers and buses in the

process. Other overheads result from operating system tasks such as interrupt handling.

Hardware-based packet filters using application specific integrated circuits (ASICs) 1

can decrease lookup times significantly, compared to software-based filters. The lookup

algorithms can be implemented on the ASICs making them extremely fast. Also, most of

the overhead that software suffers is eliminated, because the hardware can be integrated

directly into the network, resulting in fewer layers to traverse during lookups. This is

the case with Fore Systems’ ASIC-based gigabit Ethernet switches, which are reportedly

1000 times faster than software filters [Newman(1999)]. However, there are two problems

with hardware-based filters. Firstly, they are expensive, making the resulting solution

viable only for large corporations. A second disadvantage of filter ASICs is that the

algorithms hardwired into the ASICs cannot be modified once manufactured. Changing

an ASIC design is time consuming and has high non-recurring engineering (NRE) costs

[Salcic and Smailagic(1997)]. However, there is a possible solution for the problem of

rule lookup latency using field programmable gate arrays (FPGAs). FPGAs are a form

of programmable logic that can be used to create custom hardware. Using FPGAs, it

should be possible to develop a high-speed, hardware-based packet filter. FPGAs are also

a kind of ASIC, but are becoming much cheaper than other ASICs and are replacing them

in many areas. For example, a major FPGA manufacturer, Xilinx Inc., has introduced

the Spartan family of FPGAs specifically to replace other ASICs [Xilinux(2001)]. FPGAs

can also be cheaply and quickly reprogrammed/reconfigured, making it easy to change

an existing solution [Salcic and Smailagic(1997)].

Although software implementation are unlikely to ever match the speed of hardware

implementations, many packet filters in use are software-based, and this justifies the

efforts made in software-based improvements. Software-based efforts at improving packet

filtering include designing various alternative internal representations of access lists that

facilitate faster lookup. This research adopts a software-based approach.

B.1.1 Packet filter rules

The security policy for a packet filter is specified by a set of rules. Each rule has the

structure: if condition then action, where the condition defines a logical statement based

on fields within the packet header, and the action specifies whether a packet matching

that rule should be accepted or rejected. A set of rules is known as an access control

list, or simply, access list [Ballew(1997)]. Semantically, the rules of an access list are

considered sequentially, so the condition of the first rule that matches a packet will

1 Two ICs that might or might not be considered ASICs are a controller chip for a PC and a chip for
a modem. Both of these examples are specific to an application but are sold to many different system
vendors. ASICs such as these are sometimes called application-specific standard products (ASSPs).

Appendix B Background of Packet Classification and Filtering 139

determine the action to be taken.

This format for representing security policies has both advantages and disadvantages.

The simplicity of its structure makes individual rules easy to specify. By specifying

source or destination addresses as well as ports in the condition of a rule, it is fairly

easy to define security policies that allow access for specific services on specific hosts

[Cheswick and Bellovin(1994)]. However, the semantics of access lists results in the order

in which rules appear in the list being extremely significant, the interaction between the

rules in an access list can make the interpretation of what types of packets it accepts

difficult [Oppliger(1998)].

For this reason, packet-filtering implementations traditionally represent access lists in-

ternally as a linear list of rules that is a direct translation of the original access list. The

decision-making process that determines whether a particular packet passing through

the packet filter should be accepted or rejected is called lookup and is closely tied to

the semantics of access lists. During lookup, the rules of the access list are applied se-

quentially to the packet until a matching rule is found, at which point the corresponding

action is taken. If no rule matches, the default rule is applied, which is usually to reject

all packets. In general, no context is kept, so this lookup process must be repeated for

every packet [Cheswick and Bellovin(1994)].

Packet filter rules consist of two parts: an action and an associated condition [Oppliger(1998)].

The action specifies whether to deny or permit the packet. The condition specifies the

selection criteria that the packet should meet in order for the action to be taken on it.

The selection criteria could include, the source of the packet, its destination and/or its

protocol type.

The rule description language is specific to a particular system. For example, a typical

CISCO access rule might be like Table B.1:

Table B.1: An general form and an example of a CISCO access rule.

list# action protocol src-addr src-mask dest-addr dest-mask port-range

101 permit tcp 20.9.17.8 0.0.0.0 121.11.27.20 0.0.0.0 range 21 25

Where,

• list-number is the number of the access list to which the rule belongs. There could

be several access lists on the system.

• action specifies whether to permit or deny the packet.

140 Appendix B Background of Packet Classification and Filtering

• src-addr and dest-addr are four segment dotted-decimal IP addresses of the source

and destination of the packet, respectively.

• src-mask and dest-mask act like wild cards and specify which bits of the source

and destination addresses to ignore and which to match. They allow the admin-

istrator to specify several possible matching addresses. For example, a source ad-

dress of 134.21.54.111 with mask 0.0.0.0, indicates that the packet’s source address

should match exactly. On the other hand, a mask of 0.0.255.255 indicates that

any packet’s source address that has the prefix 134.21, for example, 134.21.53.114

will match.

• port-range gives the range of port addresses allowed.

The list of packet filter rules are searched sequentially to determine one that applies to

a given packet. Hence, the ordering of the rules matters.

B.1.2 Theoretical Bounds on Packet Classification

In general, packet classification algorithms trade off space for time, or vice versa. Tra-

ditional packet filters use a sequential algorithm to classify packets. The algorithm has

linear time complexity in the number of rules and constant space requirements 2. This

is considered very efficient in terms of space, but not extremely efficient in terms of

time. On the other hand, by pre-computing the matching rule for all 2S possible inputs,

where S is the number of bits of interest in the packet header, in a table, the lookup

time is constant. However, the memory requirements grow exponentially with S result-

ing in unreasonable memory requirement even when S is relatively small. Thus, the real

challenge lies in finding a solution that is efficient in terms of both space and time.

B.2 Related Work on Packet Classification & Filtering

Packet classification is the problem of finding the least cost rule that matches a packet.

In the case of packet filtering as a means of access control, the cost of a rule can be

thought of as its position in the access list. This section presents software- and hardware-

based classification and internal rule representations proposed by previous research work

in these areas. Especially, software-based methods address table-driven methods and

specialised data structure for packet classification and filtering.

2Space complexity measures the amount of extra storage required by the algorithm, not including
the storage required for the representation of the input, which in this case is the access list.

Appendix B Background of Packet Classification and Filtering 141

B.2.1 Table-driven Methods

Table-driven methods are characterized by algorithms that preprocess the filters into

some tabular representation. In some cases, hashing is used to improve performance.

Table-driven methods tend to be sensitive to the type of data that they receive; they rely

on the structure and redundancy found in typical access lists, so that access lists with

similar looking rules result in better performance than access lists with arbitrary rules.

Data that is not well behaved may cause either poor memory or time performance.

B.2.1.1 Tuple Space Search

Tuple Space Search (TSS) is a general packet classification, however, the research focused

on 5-dimensional filters for the experiments; IP source, IP destination, protocol type,

source port number, and destination port number. TSS defines a tuple T as a vector

of K lengths; K is the number of fields for filtering. For example, [8, 16, 8, 0, 16] is

a 5-dimensional tuple, whose IP source field is an 8-bit prefix, IP destination field is a

16-bit prefix, and so on. A filter F belongs or maps to tuple T if the ith field of F is

specified to exactly T[i] bits. For example, 2-dimensional filters F1 = (01∗, 111∗) and

F2 = (11∗, 010∗) both map to the tuple [2, 3].

Tuples require all fields of a filter to be specified as a length. While IP addresses are

always specified using prefixes, port numbers are not. Port numbers are usually specified

using ranges, e.g., [0, 1024]. TSS gets around this requirement by using nesting level

and RangeId each to simulate prefix length and prefix of IP addresses. For example, we

have three ranges; F1 = (0, 65535), F2 = (0, 1023), F3 = (1024, 65535). F1 has nesting

level of 0 and RangeId of 0. F2 and F3 are nested from F1, thus their nesting level is 1,

and they receive RangeId of 0 and 1, respectively.

With the get around explained above, each filter can now be mapped to a particular

tuple T in a hash table Hashtable(T) with the concatenated prefix-es and RangeId-es

as its hash key. Probing a tuple T involves concatenating the required number of bits

from the packet P as specified by T and then doing a hash in Hashtable(T). Searching

for a matched filter for a given packet P is performed by linearly probes all the tuple

in the tuple set. If more than one matching filters were found, TSS picks the least cost

filter. The search cost is proportional to m, the number of distinct tuples, which can be

up to N , the number of filters in database. However, the previous observation showed

that N tends to be much larger than m. Update cost (inserting and deleting a filter)

for tuple space search is also small, only one hash access. Thus, we can say that tuple

space search performs much better than linear search.

Srinivasan et al [V. Srinivasan and Varghese(1999)] shows several improvements for the

basic tuple space search ; Tuple Pruning and Rectangle Search. Tuple Pruning is mo-

tivated by the observation that in real filter databases there is no address D has more

142 Appendix B Background of Packet Classification and Filtering

than 6 matching prefixes. If a 2-dimensional filter is formed from that database, then

if we first find the longest destination match and the longest source match, there are

only at most 6 x 6 = 36 possible tuples that are compatible with the individual desti-

nation and source matches. This is very small compared to the maximum number of

possible tuples for IP source-destination pair, which is 36 x 36 = 1024. For instance,

consider a 2-dimensional filter database for source S and destination D addresses. Sup-

pose D = 1010∗, and all the filters whose destination is a prefix of D belong to tuples [1,

4], [1, 1], and [2, 3]. Then, the tuple list of D contains these 3 tuples. Similarly, suppose

S = 0010∗, and all filters whose source is a prefix of S belong to tuples [2, 4], [1, 1], and

[2, 5]. Searching for the matching filter for a packet P computes the longest matching

prefix PD and PS for destination and source addresses of P . The next step is to take

the tuple lists stored with PD and PS, find their common intersection, and probe into

that intersection. If PD = D and PS = S as above, the intersection list only includes

[1, 1], thus we only probe into one tuple.

Rectangle Search is an improvement from the basic tuple space search for 2-D filter

database. Rectangle Search works to cut the search time by using precomputation and

markers. Search time is now down from W 2 hash accesses of basic tuple space search

into 2W accesses, W is the bit width of address. Srinvasan et al also shows that this

algorithm is optimal for 2-D filter database. When a filter is added to the database, it

leaves a marker at all the tuples to its left in its row. So a filter in the tuple [i, j] leaves

a marker in tuples [i, j − 1], [i, j − 3], ...[i, 1]. Each filter or marker also precomputes

the least cost filter matching it from among the tuples above it in its column. That is,

a filter or marker in tuple [i, j] precomputes the least cost filter matching it from the

tuples [i − 1, j], [i − 2, j], ..., [1, j]. This is the marking and precomputation strategy for

rectangle search.

Figure B.1: Illustration of markers and precomputation

Figure B.1 shows an example of precomputation and markers, using two filters F and Z.

The marker F2 precomputes the best matching filter among the entries in the column

above it, which in this example is Z. The search strategy for this algorithm starts by

Appendix B Background of Packet Classification and Filtering 143

probing the lower-left tuple namely, [W, 1]. At each tuple, if the probe returns a match,

the search moves to the next tuple in the right. If there is no match, the search moves

up one row in the same column (see Figure B.2.). When a match is found, it is an

indication that there is a filter on the right of the current tuple, thus it is not necessary

to probe into the tuples above the current one. However, in case of no match, then there

is no filter in the tuples on the right, therefore the search can eliminate the tuples on

that row. The search terminates when we reach the rightmost column or the first row.

Figure B.2: Illustration of search strategy

B.2.1.2 Multi-dimensional Range Matching

Multi-dimensional range matching [Lakshman and Stiliadis(1998)] is a technique that

solves the classification problem as the intersection of a number of simpler problems.

Given n as the number of rules and k as the dimensionality of the filter, the lookup

algorithm is actually linear in n. However, it makes use of bit-parallelism - the time

taken for a single bit operation is the same as the time taken for a word operation, so

multiple bit operations can be executed in parallel at no extra cost - to reduce the actual

lookup time.

The classification algorithm is a geometric algorithm that views the rules encompassing

a rectangular area in k dimensions, the packets as points in the k-dimensional space, and

the lookup algorithm as finding the least cost rectangle that contains the point since the

rectangles may overlap. The preprocessing part of the algorithm projects the edges of

the rectangles to their corresponding axes, cutting each axis into a number of intervals.

In the worst case, there may be 2n + 1 intervals in each dimension. For each interval

144 Appendix B Background of Packet Classification and Filtering

in each dimension, a bitmap is created that has its ith bit set if and only if rectangle i

overlaps with that interval.

The lookup algorithm then works as follows. When a packet arrives, the intervals that

contain this point are located for each axis. Then the bitmaps for those intervals are

ANDed bitwise, and the first bit that is set in the resulting bitmap corresponds to the

least cost rectangle. This is due to the fact that the rectangles are numbered based

on their priorities, in the order that the rules appear in the access list. While this

algorithm is an improvement on the traditional linear algorithm, its strength lies in

hardware implementations that can perform much more of the processing in parallel.

B.2.1.3 Scalable High Speed IP Routing Lookup

Waldvogel et al [Marcel Waldvogel and Plattner(1997)] describes a new algorithm for

best matching prefix using binary search on hash tables organized by prefix lengths.

There are three significant ideas of this algorithm; using hashing to check whether an

address D matches any prefix of a particular length, binary search to reduce the number

of searches from linear to logarithmic, and precomputation to prevent backtracking in

case of failures in the binary search of range.

Hashing idea is to look for all prefixes of a certain length L using hashing and use

multiple hashes to find the best matching prefix, starting with the largest value of L

and working backward. For example, consider a routing table of four prefix entries, each

with prefix length of 4, 8, 8 and 10. Each of the entries would be stored in a hash table

that corresponds to its prefix length (Figure B.3). The hash tables are stored as a sorted

array, so for this example, the array has three entries.

Figure B.3: Hash tables for prefix lengths

Searching for address D, we walk through each hash table in that array starting from

the largest value l, i.e., 10 on the example, extracting the first l bits of D to get its prefix

of D. We then search the hash table using that prefix as the key. If we find a prefix, then

we have found the best matching prefix (BMP) and the search terminates; otherwise, if

we find nothing, we move to the next entry of the array.

To illustrate the binary search strategy, suppose we have three prefixes P1 = 0, P2 =

Appendix B Background of Packet Classification and Filtering 145

00, P3 = 111. Storing the prefixes in hash tables and sorting the array, we have Figure

B.4(b). If we search for 111, binary search (a) would start at the middle of the hash

table and search for 11 in the hash table containing P2. This search would fail and have

no pointer that it should search in the longer prefix tables to find the BMP. To correct

the search, we need to put the marker for prefix P3 in this table, thus the lookup for 11

would succeed and binary search would know that it should search for a match in the

longer prefix table.

Figure B.4: Binary search on hash tables

Figure B.5: Binary search on trie levels

The hash tables containing prefixes and markers can be thought as a trie where each hash

table is a level of a trie that corresponds to nodes of a certain prefix length (see Figure

B.5). Binary search in this trie starts on the median level of the trie and depending on

the result of hash lookup on that level, the search will continue to the level of shorter

or longer prefix length.

A naive implementation of this algorithm will take linear time. While Markers can point

to the BMP, they can also cause the search to follow false leads, which may fail. When

this happens, we would have to modify the binary search to backtrack and search the

upper half of the level of failure, and that would lead to linear time. To avoid the

backtracking problem, we need to use precomputation when inserting markers. Suppose

we insert a marker M to the hash table, M would have to record the best matching

146 Appendix B Background of Packet Classification and Filtering

prefix of the marker (M.bmp). With this variable, now the binary search remembers the

value of M.bmp whenever a lookup produces a match. If the search in the lower half

produces a failure, search procedure does not need to backtrack, since it remembers the

best matching prefix from M.bmp.

B.2.2 Specialised Data Structures

Classification algorithms that use specialised data structures to represent the access

lists internally tend to be less sensitive to the types of lists they encounter compared

to the table-driven methods. Data structures used to represent access lists are often

graph-based and tend to perform quite well in practice.

B.2.2.1 Grid of Tries

A trie is a binary branching tree whose edges are labelled either 0 or 1, and so the path

from the root to a particular node corresponds to the unique bit sequence of the node

[Cheung and McCanne(1999)]. Tries are associated with routing algorithms that match

routing table rules according to the destination address of the packet. This structure has

been extended to support matching on two fields instead of just one with a grid of tries

[Venkatachary Srinivasan and Waldvogel(1998)]. Essentially, after the trie for the first

field has been constructed, tries for the second field are constructed off relevant nodes in

the original trie. This final data structure behaves somewhat like an automaton scanning

one bit of the input at a time and never backtracking. Unfortunately, this scheme does

not extend to multi-dimensional filters, since it implicitly builds longest prefix matching

into the structure and has the constraint that the specified bits in each prefix must be

contiguous and start matching from the start of the input string. So while this structure

is useful for applications such as multicast forwarding, it is not very useful for general

packet filtering applications.

B.2.2.2 Expression Trees

The earliest work on packet classification demultiplexing used expression trees to repre-

sent the rules [J. Mogul and Accetta(1987)]. This data structure was a natural choice

due to the stack-based implementation used. An expression tree is a binary tree that

has Boolean predicates at its leaf nodes and Boolean operations, e.g., AND and OR,

at its internal nodes. The value of the expression is given by performing an in-order

traversal of the tree. One of the major problems with this approach is that it does not

maintain state, meaning that the packet may need to be parsed several times to evaluate

the expression, resulting in redundant computations. The original implementation using

Appendix B Background of Packet Classification and Filtering 147

this data structure is called CSPF (CMU / Stanford Packet Filter) and has lookup times

that grow linearly with the number of rules.

B.2.2.3 Binary Directed Acyclic Graphs

CSPF is the Berkeley packet filter (BPF) [McCanne and Jacobson(1993)] that improves

on the original design by using control flow graphs (CFGs) to represent the rules instead

of expression trees. CFGs are directed, acyclic graphs whose nodes represent Boolean

predicates such as destination = foo, and edges represent control transfers (one edge is

traversed if the corresponding predicate is true; the other edge is traversed if it is false).

Unlike expression trees, the CFG model allows state information to be implicitly built

into the data structure, which avoids recomputing identical predicates. Various optimi-

sations have been applied to the original CFGs that further attempt to reduce redundant

computations which has the effect of reducing both the lookup times and memory re-

quirements [M. L. Bailey and Sarkar(1994)] [A. Begel and Graham(1999)] [M. Yuhara and Moss(1994)].

Although these packet filters perform much better than the original CSPF, no theoretical

results have been published to describe time or memory requirements in general.

Baboescu and Varghese [Baboescu and Varghese(2001)] describe a scheme called Aggre-

gate Bit Vector (ABV). The aim of the scheme is to provide scalable packet classification,

e.g., 100,000 rules, to handle large filters while also providing efficient classification times

on generic CPUs. The scheme is an extension of the bit vector search algorithm (BV)

described in [Lakshman and Stiliadis(1998)]. The first optimisation of the BV scheme

consists of minimizing the number of unused bits in the bit vectors, by taking advantage

of the observation that the number of rules overlapping in a filter is likely to be small.

This is technique referred to as aggregation. Secondly, to take full advantage of using

aggregation the order of the rules is rearranged. However, again due to the issues of

overlapping rules, it is not possible. Modifying the BV scheme to first find all matches

and then computing the lowest cost match make this possible. Both the BV scheme and

the ABV scheme solve a more general packet classification problem.

B.2.2.4 Decision Graphs

Decision graphs used to classify packets consist of nodes that represent a test of a vari-

able’s value. The branches of the node represent the path taken depending on the current

value of the variable. They may represent one value or a range of values. They differ

from the types of graphs discussed previously in that a node may have more than two

children and can thus have complex expressions at the nodes, rather than just Boolean

predicates. In one implementation of such a graph, the graph is constructed in a number

of layers corresponding to the dimensionality of the filter, so each layer corresponds to

the test of one field in the packet header [D. Decasper and Plattner(1998)]. Because

148 Appendix B Background of Packet Classification and Filtering

of this, the depth of the graph is same as the number of fields filtered on and thus the

lookup time is roughly linear in number of fields and independent of the number of rules.

However, no results are given regarding the memory requirements of this scheme.

B.2.2.5 Hierarchical Intelligent Cuttings

Another technique called HiCuts [Gupta and McKeown(1999b)] builds a decision graph

in a similar way, except that each leaf stores a number of filter rules rather than just

the single matching rule or rule number. The lookup algorithm traverses the decision

graph, which is typically quite shallow, to a leaf node and then performs a linear search

through the list of rules stored at the leaf node. The depth, shape and decisions to be

made at each node greatly affect the performance of the resulting decision graph and so

the algorithm is heavily guided by heuristics. During the construction of the graph, the

partition that leads to the uniform distribution of the rules across the nodes is chosen.

When the number of rules at a node drops below a certain threshold, the node is not

partitioned any further. Experimental work on access lists ranging from 100 to 1700

rules in size with 4 fields and the above threshold set to 8, measured a worst case lookup

requiring 12 memory accesses and a linear search on 8 rules. No analytical results are

given.

Gupta and McKeown [Gupta and McKeown(1999b)] uses heuristics to solve k-dimensional

packet classification problem. Their approach focuses on the practical implementation

of classification with real-life filter database. The approach, called HiCuts (hierarchical

intelligent cuttings), attempts to partition the search space in each dimension, guided

by simple heuristics that exploit the structure of filter database.

The HiCuts algorithm builds a decision-tree data structure by carefully preprocessing

the filter database. Each time a packet arrives, the classification algorithm traverses the

decision tree to find a leaf node, which stores a small number of rules. A linear search

of these rules produces the matching filter.

Figure B.6 illustrates the geometrical representation of a two-dimensional filter database.

Figure B.7 shows a possible tree for the database.

All these heuristics are combined to create the best decision tree for the filter database

and tuning parameters for these heuristics would possibly create different trees.

B.2.2.6 Binary Decision Diagram

Hazelhurst [Hazelhurst(1999)] presents the idea of transforming firewall packet filters into

Boolean expressions that are represented as BDDs. The paper describes an algorithm

for transforming a CISCO firewall filter into a BDD, including the handling of issues

Appendix B Background of Packet Classification and Filtering 149

Figure B.6: Geometrical representation of seven filters

Figure B.7: A possible tree for filters in Figure B.6

with overlapping rules. The main use of BDDs in this paper is for a tool that can be used

analysing and test filters. A later paper by Hazelhurst et al.[S. Hazelhurst and Sinnappan(2000)]

focus on using the BDD structures for performing packet classification. The conclusion

is that BDDs can improve the lookup latency on systems using dedicated hardware such

as FPGAs, while they do not perform well on generic CPUs.

Attar and Hayelhurst [Attar and Hazelhurst(2002)] use N-ary decision diagrams for im-

proving the lookup performance. The experimental results show that the lookup time

can be significantly improved by using this method, however at the price of increased

memory usage. Furthermore, the idea of using MTBDDs to handle the more general

packet classification is suggested.

Most software approaches involve improving the data representations for rule storage and

the rule search algorithms. Software approaches suffer from two inherent limitations.

Firstly, the filter runs sequentially on a general-purpose processor. Hence, there is a limit

to performance no matter how well the data structures and algorithms are optimised.

Secondly, software solutions suffer from high overheads. For instance, several layers

150 Appendix B Background of Packet Classification and Filtering

of hardware and software have to be traversed during filtering: the packet must be

transferred from the physical cable to the network card, through the protocol stack

and to the filtering software, and back to the network again, traversing many buffers

and buses in the process. Other overheads result from operating system tasks such as

interrupt handling. Hardware approaches, attempt to overcome these limitations.

B.2.3 Hardware-based Classification

A simple hardware approach is to use multiple general purpose processors to filter several

packets at a time [Benecke(1999)]. However, this only increases filtering throughput, and

does not decrease the lookup time itself. Furthermore, using multiple processors would

increase the cost of the filter.

Many manufacturers have used custom hardware to reduce lookup latency. Their ap-

proaches essentially consist of embedding the lookup algorithms in application specific

integrated circuits (ASICs). For example, Fore Systems Inc. produces Ethernet switches

that execute a microcode version of CheckPoint’s Firewall-1 software on ASICs 3. This

allows aggregate data rates of up to 20 Gbits per second, as opposed to the 50- to

100 Mbits per second speeds of other filters [Newman(1999)]. Juniper Networks also

produces the Internet Processor II ASIC that reportedly has filtering rates of 20 mil-

lion packets per second, whereas software filters reportedly approach a limit of 200,000

packets per second [Lear(2000)]. Unfortunately, these high speeds are matched by the

high cost of the filters, making ASIC-based packet filters a viable option only for large

corporations.

Another approach that has been tried, is the use of content addressable memory (CAM)

[Neale(1999)]. CAM allows the contents of memory locations to be searched in parallel

given an input key value. Hence, if the rulebase is stored in CAM, a rule whose condition

matches the fields in a given packet can quickly be found. However, CAMs are too

small, too expensive, and consume too much power for classification on many fields

[Gupta and McKeown(1999a)].

FPGAs have also been used in packet filtering applications. McHenry et al.[John T. McHenry and Cocks(1997)]

used an FPGA for packet filtering in ATM networks. Their approach involves using a

combination of a dedicated personal computer (the firewall control processor, FCP) and

an FPGA-based firewall inline processor (FIP). The FCP performs the usual rule lookup

and authentication associated with a firewall, and the FIP acts as ATM cell forwarder

between the transmitter and the sender. When an ATM transmission begins, the FCP

authenticates the connection and if it is authorised, it instructs the FIP to forward the

ATM cells that make up the transmission. If the transmission is not authorised, the FCP

3Hardware developers do not release details of the internal operation of the ASICs, possibly for
commercial reasons. Hence, it is not clear how the ASICs execute the microcode, for instance, whether
in parallel or sequentially.

Appendix B Background of Packet Classification and Filtering 151

instruct the FIP to discard the cells and hence the transmission does not take place.

Due to the way ATM works, only the first cell needs to authenticated by the FCP, after

that, the other cells can pass through the FIP without intervention from the FCP.

Lakshman and Stiliadis [Lakshman and Stiliadis(1998)], and Bailey et al.[M. L. Bailey and Sarkar(1994)]

also describe FPGA implementations. In these approaches, some representation of the

rulebase is stored in RAM, either within the FPGA [M. L. Bailey and Sarkar(1994)] or

on RAM chips [Lakshman and Stiliadis(1998)] and an FPGA is used to implement an

algorithm to perform rule lookup on the RAM.

Appendix C

Virus Detection Result by Janus

VirusDetector

All the test results of VirusDetector are listed here. Tested files were either Win9x or

Win32 executable files. The tables are listed as encrypted parasitic viruses, polymorphic

viruses and parasitic viruses.

Table C.1: Win9x Encrypted Parasitic Virus Detection Result by VirusDetector

Encrypted Win9x Virus Total Number: 30, Error number: 1, False negative: 0.03 (3%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Bumble.1736 8192 3-1-04 O Bumble.1738 8192 11-22-03 O
Iced.1344 44032 9-6-01 O Iced.1376 8192 11-22-03 O
Iced.1412 8192 11-22-03 O Iced.1617 8192 3-1-04 O
Iced.2112 8192 3-1-04 O Mad.2736.a 32768 10-4-04 O
Mad.2736.b 32768 10-4-04 O Mad.2736.c 32768 1-7-02 O
Mad.2736.d 32768 1-7-02 O Mad.2806 32768 1-19-98 O
Nathan.3276 7372 9-2-02 O Nathan.3520.a 12288 3-10-04 O
Nathan.3520.b 16384 9-9-01 O Nathan.3792 185552 10-23-99 O
Obsolete.1419 5003 3-1-04 O PoshKill.1398 8192 4-21-01 O
PoshKill.1406 8192 3-17-03 O PoshKill.1426 8192 8-20-01 O
PoshKill.1445.a 8192 3-10-04 O PoshKill.1445.b 8192 11-22-03 O
Priest.1419 4096 8-9-99 O Priest.1454 4096 3-1-04 O
Priest.1478 9728 6-10-00 X Priest.1486 9728 10-4-01 O
Priest.1495 9728 8-18-01 O Priest.1521 9728 3-1-04 O
Shoerec 321536 8-12-01 O Tip.2475 10752 11-22-03 O
Voodoo.1537 61441 11-22-03 O Werther.1224 6344 12-31-01 O

153

154 Appendix C Virus Detection Result by Janus VirusDetector

Table C.2: Win32 Encrypted Parasitic Virus Detection Result by VirusDetector

Encrypted Win32 Virus Total Number: 30, Error number: 4, False negative: 0.13 (13%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Ditto.1488 6096 3-1-04 O Ditto.1492 12288 11-22-03 O
Ditto.1539 8192 10-1-00 O Gloria.2820 16384 11-22-03 X
Gloria.2928 16384 3-1-04 O Gloria.2963 12288 10-1-00 O
Idele.2104 8192 7-8-03 O Idele.2108 8192 3-1-04 O
Idele.2160 8192 11-12-03 O IhSix.3048 8192 11-22-03 O
Infinite.1661 8192 3-1-04 O Levi.2961 12288 5-16-01 O
Levi.3040 7188 11-22-03 O Levi.3090 12288 11-22-03 O
Levi.3137 35941 11-22-03 O Levi.3205 12288 3-1-04 X
Levi.3240 16384 8-17-02 O Levi.3244 16384 11-22-03 X
Levi.3432 16384 11-22-03 O Mix.1852 4096 5-30-00 O
Niko.5178 65611 11-22-03 X Santana.1104 81920 12-4-01 O
Savior.1680 8192 1-8-01 O Savior.1696 12288 5-18-01 O
Savior.1740 12288 3-28-02 O Savior.1828 20480 8-6-01 O
Savior.1832 12288 3-1-04 O Savior.1904 12288 12-4-01 O
Undertaker.4887 12288 11-22-03 O Undertaker.5036.a 12288 11-22-03 O

Table C.3: Win9x Polymorphic Virus Detection Result by VirusDetector

Win9x Polymorphic Virus Total Number: 15, Error number: 2, False negative: 0.13
(13%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Begemot 8192 3-1-04 O Darkmil.5086 12288 3-1-04 X
Darkmil.5090 74210 7-2-03 O Fiasko.2500.a 8192 11-22-03 O
Fiasko.2500.b 12935 3-1-04 O Fiasko.2508 8192 3-1-04 O
Invir.7051 9728 3-1-04 O Luna.2636 8192 4-24-02 O
Luna.2757.a 62213 3-10-04 O Luna.2757.b 12288 1-1-80 O
Marburg.a 493789 3-10-04 O Marburg.b 28381 11-22-03 X
Matrix.3597 35916 2-14-03 O Merinos.1763 9216 3-1-04 O
Merinos.1849 8192 11-22-03 O

Appendix C Virus Detection Result by Janus VirusDetector 155

Table C.4: Win32 Polymorphic Virus Detection Result by VirusDetector

Encrypted Win32 Virus Total Number: 50, Error number: 21, False negative: 0.42
(42%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Andras.7300 14238 7-27-02 O AOC.2044 8192 11-28-99 O
AOC.2045 8192 11-26-99 O AOC.3657 16384 3-1-04 O
AOC.3833 16384 3-1-04 O AOC.3860 20480 2-10-03 X
AOC.3864 20480 2-10-03 O Champ 12288 2-10-03 O
Champ.5430 12288 10-6-02 O Champ.5464 12288 2-10-03 O
Champ.5477 12288 10-6-02 O Champ.5495 6144 2-10-03 X
Champ.5521 12288 2-10-03 X Champ.5536 12288 2-10-03 X
Champ.5714 12288 2-10-03 O Champ.5722 16384 2-10-03 X
Chop.3808 64049 8-29-01 X Crypto 49152 3-1-04 X
Crypto.a 28672 11-22-03 X Crypto.b 32768 11-22-03 O
Crypto.c 32768 11-22-03 O Driller 94208 3-1-04 O
Harrier 108544 11-22-03 X Hatred.a 16384 3-10-04 O
Hatred.d 16384 10-29-02 O Kriz.3660 415232 7-27-02 X
Kriz.3740 764928 10-4-04 X Kriz.3863 475136 10-4-04 X
Kriz.4029 12288 3-1-04 O Kriz.4037 12288 8-19-01 O
Kriz.4050 479232 11-22-03 X Kriz.4057 12288 8-19-01 X
Kriz.4075 12288 11-22-03 O Kriz.4099 12288 11-22-03 X
Kriz.4233 8192 7-15-01 X Kriz.4271 57344 10-4-04 O
Prizm.4428 8704 9-4-02 X RainSong.3874 8192 11-22-03 O
RainSong.3891 61509 3-1-04 O RainSong.3910 8192 12-5-01 X
RainSong.3956 12288 10-4-04 X RainSong.4198 8192 3-12-02 O
RainSong.4266 12288 10-4-04 X Thorin.11932 16384 3-1-04 O
Thorin.b 16384 3-1-04 O Thorin.c 16384 10-23-99 O
Thorin.d 16384 7-14-99 O Thorin.e 16384 10-23-99 O
Vampiro.7018 18432 3-1-04 X Vampiro.a 16896 3-10-04 O

156 Appendix C Virus Detection Result by Janus VirusDetector

Table C.5: Win9x Virus Detection Result by VirusDetector

Win9x Virus Total Number: 291, Error number: 26, False negative: 0.09 (approx. 9%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Altar.797 8192 6-19-99 O Altar.884 4096 10-4-02 O
Altar.910 4096 10-24-99 O Antic.695 7863 9-2-02 O
Anxiety.1358 152778 3-1-04 O Anxiety.1397 49736 3-1-04 O
Anxiety.1399 8192 3-21-98 O Anxiety.1399.b 49736 3-1-04 O
Anxiety.1422 5684 11-22-03 O Anxiety.1451 29213 2-21-01 O
Anxiety.1486 8192 1-24-98 O Anxiety.1517 8192 11-22-03 O
Anxiety.1586 42590 11-22-03 O Anxiety.1596 49736 3-11-98 O
Anxiety.1823 8192 3-1-04 O Anxiety.1823.b 6196 7-2-03 O
Anxiety.2471 8192 11-22-03 O Apop.1086 8192 7-17-02 O
Argos.310 4096 9-2-02 O Argos.328 4096 3-1-04 O
Argos.335 4096 9-24-02 O Argos.402 4096 6-30-99 O
Arianne.1022.a 4606 3-10-04 O Arianne.1022.b 94112 11-22-03 O
Arianne.1052 8192 5-16-02 O Atom.4790 64182 5-8-02 X
Babylonia.11036 33734 3-1-04 X Babylonia.attach 5984 5-16-02 O
Babylonia.Plugin.Dropper 12606 11-22-03 X Babylonia.Plugin.Greetz 621 11-22-03 X
Babylonia.Plugin.IrcWorm 1707 11-22-03 O Babylonia.Plugin.Poll 1041 11-22-03 O
Begemot 8192 3-1-04 O BlackBat.2615 8192 5-31-01 O
BlackBat.2787 8192 11-22-03 O BlackBat.2795 8192 11-22-03 O
BlackBat.2840 8192 5-27-01 X BlackBat.2841.a 8192 3-10-04 O
BlackBat.2841.b 8192 5-31-01 X BlackBat.2988 8192 11-22-03 O
Bodgy.3230 97438 4-15-03 X Bonk.1232 19632 11-22-03 O
Bonk.1243 9460 3-1-04 O Boza.2220 24576 11-22-03 X
Boza.A 12408 9-2-99 O Boza.C 16384 9-10-99 O
Boza.a 12408 3-17-96 O Boza.b 7994 11-22-03 O
Boza.c 16384 3-1-04 O Boza.d 16384 11-22-03 O
Boza.e 16384 11-22-03 O Bumble.1736 8192 3-1-04 O
Bumble.1738 8192 11-22-03 O Butool.910 14222 9-2-02 O
Buzum.1828 6310 3-1-04 O ByteSV.Thorn.886 20480 11-22-03 O
Caw.1262 205550 11-22-03 O Caw.1335 5943 3-1-04 O
Caw.1416 55964 11-22-03 O Caw.1419 54667 11-22-03 X
Caw.1457 6065 11-22-03 O Caw.1458 8192 10-5-02 O
Caw.1525 24576 11-22-03 O Caw.1531 8192 11-2-01 O
Caw.1557 180224 12-31-00 O Chimera.1542 35846 11-22-03 O
CIH 19536 7-8-02 O CIH.v1.2 19536 9-12-99 O
CIH.v1.3 36864 9-3-99 O CIH.v1.4 4608 9-22-99 O
CIH.1003.b 4608 3-1-04 O CIH.1010.b 37394 11-22-03 O
CIH.1016 34304 9-2-02 O CIH.1019.c 4896 3-1-04 O
CIH.1024 1553 3-1-04 O CIH.1026 1555 3-1-04 O
CIH.1031 4096 9-2-02 O CIH.1035 1564 3-1-04 O
CIH.1040 159744 3-1-04 O CIH.1042 53248 3-1-04 O
CIH.1048 20480 9-2-02 O CIH.1049 65536 9-2-02 O
CIH.1103 2144 11-22-03 O CIH.1106 153088 11-27-02 O
CIH.1122 1651 9-2-02 O CIH.1129 1658 3-1-04 X
CIH.1142 16384 6-19-98 O CIH.1230 1759 3-1-04 O
CIH.1262 1778 3-1-04 O CIH.1297 1826 11-22-03 O
CIH.1363 59392 3-1-04 X CIH.2563 24576 9-2-02 X
CIH.2690 94208 9-2-02 X CIH.816.a 59392 9-2-02 X

Appendix C Virus Detection Result by Janus VirusDetector 157

Table C.6: Win9x Virus Detection Result by VirusDetector (Cont.)

Win9x Virus Total Number: 291, Error number: 26, False negative: 0.09 (approx. 9%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

CIH.816.b 5120 9-2-02 O CIH.862 1903 5-10-02 O
CIH.876 20480 9-2-02 X CIH.913 20480 9-2-02 O
CIH.937 20480 9-2-02 O CIH.973 1502 3-1-04 O
CIH.corrupted 188478 1-10-02 O CIH.dam 1090318 1-1-03 X
CIH-II.776 53248 9-2-02 O CIH-II.882 20480 9-29-02 O
CIH.intended 2426 8-31-99 O CIH-Killer.1373 9053 3-1-04 O
CIH.src 301056 3-1-04 X Companion.4096 4096 3-1-04 O
Croman 16384 9-2-02 X Dado 332817 3-1-04 X
Darkmil.5086 12288 3-1-04 X Darkmil.5090 74210 7-2-03 O
DarkSide.1105 8192 4-6-02 O DarkSide.1371 8192 3-1-04 O
DarkSide.1491 9728 10-4-04 O Dead.1086 8192 9-29-02 O
Dead.4172 11392 9-2-02 O Dead.4316 16796 5-16-02 O
Dead.4388 11608 9-2-02 O Demo.8192 8192 11-22-03 O
Dodo.1022 8192 9-2-02 O Dupator.1503 110592 1-29-04 O
Eak 103424 12-19-02 X Esmeralda.807 4955 7-15-01 O
Etymo.1308 7168 3-1-04 O Evil.953.a 60345 11-22-03 X
Evil.953.b 4096 9-24-02 O Evil.962 8192 3-1-04 O
Evil.962.b 35266 11-22-03 O Evil.962.c 4096 8-26-01 O
Federal 8192 9-2-02 O Fiasko.2500.a 8192 11-22-03 O
Fiasko.2500.b 12935 3-1-04 O Fiasko.2508 8192 3-1-04 O
Filth.1030 4096 3-1-04 O Flee.835 8192 11-22-03 O
Fono.15327 24064 3-1-04 X Fono.Trojan 263 5-16-02 O
Frone.864 69632 5-16-02 X Frone.951 8192 9-2-02 O
FYS.1728 8192 7-15-01 O Gara.640 8192 11-22-03 O
Gara.842.a 8192 3-10-04 O Gara.842.b 8192 11-22-03 O
Gara.917 8192 12-4-01 O Harry.a 8192 3-10-04 O
Harry.b 8192 6-2-97 O Hooy.8192 32768 3-28-00 O
Horn.1851 6322 3-1-04 O Horn.1862 6334 11-22-03 O
Horn.2223 6695 11-22-03 O Horn.2245 6719 3-1-04 O
HPS.5124 26563 3-1-04 X I13.a 8192 11-22-03 O
I13.b 12288 3-1-04 O I13.c 8192 3-1-04 O
I13.d 12288 11-22-03 X I13.e 8192 11-22-03 O
I13.f 8192 10-4-02 O Iced.1344 44032 9-6-01 O
Iced.1376 8192 11-22-03 O Iced.1412 8192 11-22-03 O
Iced.1617 8192 3-1-04 O Iced.2112 8192 3-1-04 O
Icer.541 4096 11-22-03 O Icer.619 192512 1-13-04 O
ILMX.1291 53248 3-1-04 O Invir.7051 9728 3-1-04 O
Jacky.1440 4646 3-1-04 O Jacky.1443 8192 11-22-03 O
Javel.512 1529 3-1-04 O Julus.1904.a 8192 11-22-03 O
Julus.1904.b 8192 10-4-04 O Julus.1929.a 8192 11-22-03 O
Julus.1929.b 8192 1-23-03 O Julus.2702.a 12288 11-22-03 O
Julus.2702.b 8192 8-29-01 O Julus.2777 12288 11-22-03 O
K32.1012 5108 11-22-03 O K32.2929 8192 10-4-02 O
K32.3030 9174 3-1-04 O K32.Roma.2929 9643 12-9-00 O
Kaze 20480 8-8-02 O Kurgan.10240 14336 9-2-02 O
Lizard.1967 7099 3-1-04 O Lizard.2381 2957 3-1-04 O
Lizard.2869 3715 3-1-04 O Lizard.5150 5150 10-4-04 O

158 Appendix C Virus Detection Result by Janus VirusDetector

Table C.7: Win9x Virus Detection Result by VirusDetector (Cont.)

Win9x Virus Total Number: 291, Error number: 26, False negative: 0.09 (approx. 9%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Lorez.1766.a 8192 3-10-04 O Lorez.1766.b 8192 6-28-01 O
LoveSong.998 61440 12-4-01 O Lud.Hill.401 8192 3-1-04 O
Lud.Jadis.3567 9216 3-1-04 O Lud.Jadis.3579 9216 11-22-03 O
Lud.Jez.676 8192 3-1-04 O Lud.Jez.682 8192 11-22-03 O
Lud.Yel.1886 22141 10-4-04 O Luna.2636 8192 4-24-02 O
Luna.2757.a 62213 3-10-04 O Luna.2757.b 12288 1-1-80 O
Mad.2736.a 32768 10-4-04 O Mad.2736.b 32768 10-4-04 O
Mad.2736.c 32768 1-7-02 O Mad.2736.d 32768 1-7-02 O
Mad.2806 32768 1-19-98 O Marburg.a 493789 3-10-04 O
Marburg.b 28381 11-22-03 X MarkJ.826 8192 3-1-04 O
Matrix.3597 35916 2-14-03 O Memorial 35515 2-7-98 O
Merinos.1763 9216 3-1-04 O Merinos.1849 8192 11-22-03 O
MMort.1335 8192 11-22-03 O MMort.1340 8192 11-22-03 O
MMort.1348 8192 3-1-04 O MMort.1366 8192 10-23-99 O
Molly.680 8192 5-16-02 O Molly.722 8192 3-1-04 O
MrKlunky.a 6943 3-10-04 O MrKlunky.b 6779 7-2-03 X
MSpawn.4608 8897 11-22-03 O Murkry.383 4096 5-15-02 O
Murkry.398.a 59392 11-22-03 O Murkry.398.b 4096 9-24-02 O
Murkry.399 4096 3-1-04 O Murkry.441 26624 9-24-02 O
Nathan.3276 7372 9-2-02 O Nathan.3520.a 12288 3-10-04 O
Nathan.3520.b 16384 9-9-01 O Nathan.3792 185552 10-23-99 O
Noise.414 57344 3-1-04 O Obsolete.1419 5003 3-1-04 O
Onerin.371 4096 1-9-02 O Onerin.383 4096 1-9-02 O
Opa.1103 45056 5-8-01 O Opa.1149 45056 7-15-01 O
Padania.1335 8192 3-1-04 O Paik.1908 8192 5-14-01 O
PoshKill.1398 8192 4-21-01 O PoshKill.1406 8192 3-17-03 O
PoshKill.1426 8192 8-20-01 O PoshKill.1445.a 8192 3-10-04 O
PoshKill.1445.b 8192 11-22-03 O Powerful.1592 6144 3-1-04 X
Powerful.1773 6144 3-1-04 O Powerful.1901 12288 7-12-01 O
Priest.1419 4096 8-9-99 O Priest.1454 4096 3-1-04 O
Priest.1478 9728 6-10-00 X Priest.1486 9728 10-4-01 O
Priest.1495 9728 8-18-01 O Priest.1521 9728 3-1-04 O
Prizm.4428 8704 9-4-02 X Puma.1024 4096 3-1-04 O
Regix.4096.a 8192 3-10-04 O Sanat.3151 16384 3-1-04 X
Shoerec 321536 8-12-01 O Sign.2028 8192 1-8-01 O
Smash.10262 16384 8-16-01 X SST.952 4096 3-1-04 O
Tecata.1761 66029 10-4-04 O Tenrobot.b 49152 5-14-03 X
Tip.2475 10752 11-22-03 O Titanic.3214 7822 8-16-01 O
Uwaga.3237 8192 11-22-03 O Vivic 8192 8-17-02 O
Voodoo.1537 61441 11-22-03 O Werther.1224 6344 12-31-01 O
Whal.a 8192 1-24-01 O Whyg.1193 8192 6-24-01 O
Yabran.3132 4608 3-1-04 O Yobe 20480 3-1-04 O
Youd.1388 8192 11-22-03 O Yoyo.653 4096 3-1-04 O
Zerg.3849 8192 3-1-04 O Zofo.848 20480 3-1-04 O
Zoual 147456 10-18-02 X

Appendix C Virus Detection Result by Janus VirusDetector 159

Table C.8: Win32 Virus Detection Result by VirusDetector.

Win32 Virus Total Number: 499
Error number: 103, False negative: 0.2064 (approx. 21%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is Byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Adson.1559 8192 7-26-02 O Adson.1734 20480 11-22-03 O
Aidlot 8192 10-4-04 O Akez 32768 4-27-02 O
Aliser.7825 12288 3-6-03 O Aliser.7897 8192 6-8-03 O
Aliser.8381 8192 6-8-03 O Alma.2414 10606 3-1-04 O
Alma.37195 45387 11-22-03 X Alma.37274 40960 4-19-02 X
Alma.5319 13511 3-1-04 X Andras.7300 14238 7-27-02 O
AOC.2044 8192 11-28-99 O AOC.2045 8192 11-26-99 O
AOC.3657 16384 3-1-04 O AOC.3833 16384 3-1-04 O
AOC.3860 20480 2-10-03 X AOC.3864 20480 2-10-03 O
Apathy.5378 8192 3-1-04 O Apparition 96239 12-22-99 O
Apparition.a 542861 3-10-04 X Apparition.b 167707 6-5-98 X
Arianne.1052 6684 3-11-02 O Aris 331785 3-1-04 X
Arrow.a 2048 10-5-04 O Artelad.2173 23040 12-31-00 O
Asorl.a 32269 3-10-04 X AutoWorm.3072 3072 3-1-04 O
Awfull.2376 3072 9-9-03 O Awfull.3571 4096 3-1-04 O
Bakaver.a 24576 10-6-03 O Banaw.2157 8192 11-22-03 O
Barum.1536 5632 8-31-02 O Bee 24576 3-1-04 O
Beef.2110 57344 3-1-04 O Belial.2537 8192 11-22-03 O
Belial.2609 254513 3-9-02 X Belial.a 4096 3-10-04 O
Belial.b 4096 2-23-02 O Belial.c 4096 11-22-03 O
Belial.d 4096 9-24-02 O Belod.a 8192 3-12-02 O
Belod.b 8192 8-21-02 O Belod.c 8192 3-14-02 O
Bender.1363 3584 12-31-01 O Bika.1906 8192 12-31-01 O
BingHe 296643 10-11-02 X Blackcat.2537 8192 9-9-03 O
Blakan.2016 8192 12-31-01 O Blateroz 8192 9-2-02 O
Blueballs.4117 16384 11-22-03 X Bobep 8192 8-25-03 O
Bogus.4096 38400 10-13-99 O Bolzano.2122 36864 2-10-03 O
Bolzano.2664 15135 2-10-03 O Bolzano.2676 15183 2-10-03 O
Bolzano.2716 13521 2-10-03 O Bolzano.3100 15277 2-10-03 O
Bolzano.3120 15331 2-10-03 O Bolzano.3148 15373 2-10-03 O
Bolzano.3164 15409 2-10-03 O Bolzano.3192 15457 3-1-04 O
Bolzano.3628 16095 3-1-04 O Bolzano.3904 16251 2-10-03 O
Bolzano.5572 28237 2-10-03 O Butter 96665 9-2-02 X
Cabanas.a 7171 5-7-04 X Cabanas.b 7171 3-1-04 O
Cabanas.Debug 95748 10-4-04 O Cabanas.e 16384 7-8-03 O
Cabanas.MsgBox 39996 10-4-04 X Cabanas.Release 49152 1-26-99 O
CabInfector 4096 3-1-04 O Cecile 28672 12-31-01 X
Cefet.3157 7253 9-2-02 O Cerebrus.1482 8192 3-1-04 O
Champ 12288 2-10-03 O Champ.5430 12288 10-6-02 O
Champ.5464 12288 2-10-03 O Champ.5477 12288 10-6-02 O
Champ.5495 6144 2-10-03 X Champ.5521 12288 2-10-03 X
Champ.5536 12288 2-10-03 X Champ.5714 12288 2-10-03 O
Champ.5722 16384 2-10-03 X Chatter 22528 1-13-03 O
Chop.3808 64049 8-29-01 X Cornad 4096 6-22-03 O
Crosser 102400 12-6-03 X Crypto 49152 3-1-04 X

160 Appendix C Virus Detection Result by Janus VirusDetector

Table C.9: Win32 Virus Detection Result by VirusDetector (Cont.),

Win32 Virus Total Number: 499
Error number: 103, False negative: 0.2064 (approx. 21%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is Byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Crypto.a 28672 11-22-03 X Crypto.b 32768 11-22-03 O
Crypto.c 32768 11-22-03 O Damm.1624 24576 3-1-04 O
Damm.1628 4096 5-16-02 O Damm.1647.a 12288 11-22-03 O
Datus 105472 5-16-02 X Delikon 16384 1-6-04 O
Devir 24576 10-4-04 O Dictator.2304 10496 11-22-03 X
Dislex 135239 3-1-04 X Ditex 212992 4-17-02 O
Ditto.1488 6096 3-1-04 O Ditto.1492 12288 11-22-03 O
Ditto.1539 8192 10-1-00 O Donny.a 8192 3-10-04 O
Donut 12800 3-1-04 O Dream.4916 69632 3-1-04 O
Driller 94208 3-1-04 O Drivalon.1876 3072 7-8-03 O
Dudra.5632 12288 7-7-01 O Eclipse.a 8192 3-10-04 O
Eclipse.b 6644 3-15-01 O Eclipse.c 8192 8-18-99 O
Egolet.a 4096 3-10-04 O Egolet.b 4096 7-7-02 O
Elerad 8192 2-2-02 X Emotion.a 4608 3-10-04 O
Emotion.b 8192 11-30-00 O Emotion.c 8192 2-10-03 O
Emotion.d 8192 2-10-03 O Emotion.gen 8192 9-20-01 O
Enar 89088 3-1-04 O Enumiacs.6656 6656 11-22-03 O
Enumiacs.8192.a 274 10-4-04 O Fighter.a 6656 11-22-03 O
Fighter.b 8192 1-29-04 X Flechal 69632 3-1-04 O
Fosforo.a 8192 3-10-04 O Fosforo.b 8192 10-24-02 O
Fosforo.c 8192 12-31-01 X Fosforo.d 8192 3-5-03 X
Freebid 14066 8-27-02 O FunLove.4070 69635 3-7-04 O
Gaybar 55493 2-9-04 O gen 8192 9-3-02 O
Genu.a 8192 11-22-03 O Genu.b 8192 11-22-03 O
Genu.c 5619 8-18-02 O Genu.d 8192 7-26-02 O
Ghost.1667 8192 3-1-04 O Ginra.3334 8966 8-31-02 O
Ginra.3413 8192 9-2-02 O Ginra.3570 8192 5-18-02 O
Ginra.3657 8192 10-4-04 O Ginseng 4096 8-24-02 O
Giri.4919 185143 11-22-03 O Giri.4970 13162 3-9-02 O
Giri.5209 12288 3-28-01 X Gloria.2820 16384 11-22-03 X
Gloria.2928 16384 3-1-04 O Gloria.2963 12288 10-1-00 O
Glyn 8192 3-1-04 O Gobi.a 4096 10-23-02 O
Godog 12288 3-1-04 O Golsys.14292 55252 8-30-02 X
Grenp.2804 4608 11-22-03 O Halen.2593 8192 3-1-04 O
Halen.2618 22743 7-27-02 O Halen.2619 8192 7-12-02 O
Haless.1127 31744 10-4-04 X Harrier 108544 11-22-03 X
Hatred.a 16384 3-10-04 O Hatred.d 16384 10-29-02 O
Hawey 5595 7-12-03 O Heretic.1986 8192 3-1-04 O
Hezhi 152064 9-2-02 O Hidrag.a 36352 8-24-01 X
Highway.a 8192 11-22-03 O Highway.b 48177 3-9-02 O
HIV 175 2-10-03 X HIV.6340 12288 11-22-03 O
HIV.6382 12288 11-22-03 O HIV.6386 12288 10-4-04 X
HIV.6680 12288 3-1-04 X HLL.Fugo 55808 7-6-04 X

Appendix C Virus Detection Result by Janus VirusDetector 161

Table C.10: Win32 Virus Detection Result by VirusDetector (Cont.),

Win32 Virus Total Number: 499
Error number: 103, False negative: 0.2064 (approx. 21%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is Byte.

Virus Name Size Date Detection Virus Name Size Date Detection

HLLP.BadBy 329728 11-22-03 X HLLP.Bora.11264 11264 5-8-02 X
HLLP.Clay 60416 11-22-03 O HLLP.Delvi 46080 3-11-02 X
HLLP.Famer 22528 1-18-03 X HLLP.Freefall 36352 6-15-02 X
HLLP.Gezad 28672 7-8-03 O HLLP.Givin 34820 10-4-04 O
HLLP.Gosus 69590 8-17-02 O HLLP.Gotem 22016 11-25-02 X
HLLP.Hetis 38400 2-27-02 O HLLP.Imel 34816 8-30-02 O
HLLP.Karabah 190988 11-22-03 O HLLP.Kiro 79632 4-9-04 X
HLLP.Lassa.40960 40960 5-8-02 O HLLP.Mincer 173315 4-19-02 X
HLLP.MTV 68096 11-22-03 X HLLP.Nilob 24576 7-14-00 O
HLLP.Pres 124936 9-2-02 X HLLP.Semisoft 59904 12-4-99 O
HLLP.Shodi.c 98318 4-9-04 X HLLP.Sloc 104448 8-31-02 O
HLLP.Sneak 34816 3-1-04 O HLLP.Thembe 130322 3-1-04 X
HLLP.Unzi 24576 3-25-02 O HLLP.Winfig 33280 11-22-03 O
HLLP.Yai 341211 11-14-99 X Htrip.a 8192 12-4-01 O
Htrip.b 8192 11-22-03 O Htrip.c 8192 12-4-01 O
Idele.2104 8192 7-8-03 O Idele.2108 8192 3-1-04 O
Idele.2160 8192 11-12-03 O IhSix.3048 8192 11-22-03 O
IKX 4096 3-1-04 O Infinite.1661 8192 3-1-04 O
Infis.4608 4608 3-1-04 O Initx 210432 10-4-04 X
Insom.1972.a 5120 4-23-04 O InvictusDLL.099 4096 11-22-03 O
InvictusDLL.102 8704 9-15-01 X InvictusDLL.a 8192 3-10-04 X
InvictusDLL.b 8192 8-17-01 X InvictusDLL.c 8704 9-10-01 X
InvictusDLL.d 56466 5-5-99 X Ipamor.a 65536 3-10-04 X
Ipamor.c 38913 5-15-03 X Ipamor.d 35840 5-15-03 X
Ivaz 4096 11-22-03 O Jater 4096 3-1-04 O
Jethro.5657 17433 3-1-04 O Junkcomp 65536 12-30-02 X
Kala.7620 65536 12-30-01 X Kanban.a 3072 3-10-04 O
Keisan.a 8192 6-2-03 O Keisan.b 8192 6-2-03 O
Keisan.c 8192 6-2-03 O Keisan.d 8192 6-2-03 O
Keisan.e 8192 6-2-03 O Ketan 4096 3-1-04 O
Kiltex 155648 3-1-04 O Klinge 8192 3-1-04 O
KME 36864 3-1-04 O KMKY 24576 8-6-01 X
Knight.2350 6958 12-4-01 O Koru 65536 5-15-98 O
Kriz.3660 415232 7-27-02 X Kriz.3740 764928 10-4-04 X
Kriz.3863 475136 10-4-04 X Kriz.4029 12288 3-1-04 O
Kriz.4037 12288 8-19-01 O Kriz.4050 479232 11-22-03 X
Kriz.4057 12288 8-19-01 X Kriz.4075 12288 11-22-03 O
Kriz.4099 12288 11-22-03 X Kriz.4233 8192 7-15-01 X
Kriz.4271 57344 10-4-04 O Kuto.2058 10250 8-31-02 X
Lad.1916 61440 9-2-02 X Ladmar.2004 57344 9-1-02 O
Lamebyte 8192 4-30-03 O Lames.4096 8192 1-3-98 O
Lamewin.1751 3584 8-3-02 O Lamewin.1813 3584 4-15-02 O
Lamzan 8192 5-18-03 O Lanky.3153 12288 5-1-02 O
LazyMin.31 96768 4-9-04 X Legacy 19968 3-1-04 O

162 Appendix C Virus Detection Result by Janus VirusDetector

Table C.11: Win32 Virus Detection Result by VirusDetector (Cont.),

Win32 Virus Total Number: 499
Error number: 103, False negative: 0.2064 (approx. 21%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is Byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Levi.2961 12288 5-16-01 O Levi.3040 7188 11-22-03 O
Levi.3090 12288 11-22-03 O Levi.3137 35941 11-22-03 O
Levi.3205 12288 3-1-04 X Levi.3240 16384 8-17-02 O
Levi.3244 16384 11-22-03 X Levi.3432 16384 11-22-03 O
Lom 341504 11-22-03 O Lykov.a 9338 6-9-03 X
Magic.1590 8264 3-1-04 O Magic.1922 8192 9-2-02 O
Magic.3038 12288 11-22-03 X Magic.3078 12288 8-17-02 O
Magic.3082 8192 3-1-04 O Mark.919 2048 6-30-03 O
Matrix.750 4096 11-22-03 O Matrix.844 4096 4-18-02 O
Matrix.LS.1820 8192 8-26-01 O Matrix.LS.1885 8192 11-22-03 O
Matrix.Zelda.a 4096 3-10-04 O Matrix.Zelda.b 8192 11-22-03 O
Matrix.Zelda.c 8192 3-16-01 O Matyas.644 45700 11-22-03 X
Maya.4106 4188 12-7-99 X Maya.4108 8192 11-22-03 X
Maya.4113 12800 3-1-04 X Maya.4114 8192 11-22-03 O
Maya.4161 8192 3-1-04 O Maya.4206 8192 10-4-02 O
Maya.4254 8192 3-1-04 O Maya.4608 8192 10-4-04 X
Melder 46080 6-27-03 O Minit.b 10752 4-27-04 X
MircNew 25088 10-5-02 O Mix.1852 4096 5-30-00 O
Mockoder.1120 4192 8-31-02 O Mogul.6800 12288 3-1-04 X
Mogul.6806 12288 3-25-01 O Mogul.6845 57344 11-22-03 O
Mogul.7189 12288 3-25-01 X Mooder.a 8192 4-3-02 O
Mooder.d 8192 4-6-02 O Mooder.f 14452 8-19-03 X
Mooder.g 8192 4-7-03 O Mooder.i 8192 5-1-03 O
Mooder.j 8192 5-1-03 O Morgoth.2560 2560 11-22-03 O
Mystery.2560 130544 12-8-01 O NDie.2168 182504 11-22-03 O
NDie.2343 182725 11-22-03 O Neoval 14335 5-18-03 O
NGVCK.gen 3584 10-5-04 O Nicolam 57344 4-27-03 O
Niko.5178 65611 11-22-03 X Noise.410 57344 3-10-02 O
Opdoc.1204 123448 6-28-03 O Opdoc.1248 9440 6-24-03 X
Oporto.3076 37950 10-4-04 O Padic 8192 3-1-04 O
Paradise.2116 8192 9-29-02 O Paradise.2168 8192 9-22-02 O
Parvo 80093 3-1-04 O Peana 8192 3-1-04 O
Perrun.a 11780 3-10-04 O Perrun.b 5636 7-11-02 O
PGPME 86016 3-1-04 X Pilsen.4096 4096 3-1-04 O
Positon.4668 8192 7-15-02 X Qozah.1386 4096 1-21-99 O
Qozah.3361 8192 12-4-01 O Qozah.3365 8192 3-1-04 O
Qozah.3370 8192 8-2-99 X RainSong.3874 8192 11-22-03 O
RainSong.3891 61509 3-1-04 O RainSong.3910 8192 12-5-01 X
RainSong.3956 12288 10-4-04 X RainSong.4198 8192 3-12-02 O
RainSong.4266 12288 10-4-04 X Ramdile 18801 3-1-04 X
Razenya 8192 10-25-03 O Redart.2796 380972 8-172000 X
Redemption.a 16384 3-10-04 O Redemption.b 16384 3-1-04 O
Redemption.c 7171 6-15-98 O Refer.2939 36352 3-1-04 O
RemEx 224256 3-1-04 X Revaz 8192 3-1-04 O

Appendix C Virus Detection Result by Janus VirusDetector 163

Table C.12: Win32 Virus Detection Result by VirusDetector (Cont.),

Win32 Virus Total Number: 499
Error number: 103, False negative: 0.2064 (approx. 21%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is Byte.

Virus Name Size Date Detection Virus Name Size Date Detection

Rever 32768 3-1-04 X Rhapsody.2602 221 10-4-04 O
Rhapsody.2619 8192 3-1-04 O Riccy.a 32768 3-10-04 O
Riccy.b 172032 10-28-01 O Riccy.c 24576 11-22-03 O
Rigel.6468 106496 11-22-03 X Rikenar.1480 8192 9-9-98 O
Rivanon 3584 6-26-03 O Rufoll.1432 2560 2-11-02 O
Rutern.5244 9340 11-5-03 O Ryex 8192 3-1-04 O
Sadon.900 8192 3-1-04 O Sandman.4096 4096 7-4-02 O
Sankei.1062 8192 8-28-03 O Sankei.1409 8192 6-8-03 O
Sankei.1455 8192 8-28-03 O Sankei.1493 8192 6-8-03 O
Sankei.1766 8192 6-8-03 O Sankei.1983 8192 6-8-03 O
Sankei.3001 8192 6-8-03 O Sankei.3077 8192 6-8-03 O
Sankei.3480 8192 6-8-03 O Sankei.3514 8192 8-6-03 O
Sankei.3580 8192 6-8-03 X Sankei.3586 8192 6-8-03 O
Sankei.3621 8192 8-6-03 O Sankei.4085 8192 2-8-04 O
Santana.1104 81920 12-4-01 O Savior.1680 8192 1-8-01 O
Savior.1696 12288 5-18-01 O Savior.1740 12288 3-28-02 O
Savior.1828 20480 8-6-01 O Savior.1832 12288 3-1-04 O
Savior.1904 12288 12-4-01 O Saynob.2406 5120 5-15-03 O
Segax.1136 8192 3-1-04 O Segax.1137 8192 3-3-03 O
Segax.1160 8192 7-12-01 O Sentinel.a 16384 3-10-04 X
Senummy.1838 8192 10-2-03 O Seppuku.1606 8192 9-2-02 O
Seppuku.2763 30208 5-8-02 O Seppuku.2764 30208 3-1-04 O
Seppuku.4827 102400 9-22-02 O Seppuku.6834 12288 7-12-02 O
Seppuku.6972 12288 9-1-01 O Seppuku.6973 12288 7-12-02 O
Seppuku.9728 12288 12-4-01 O Shan.1842 4096 4-27-02 O
Shown.538 4096 4-6-02 O Shown.539.a 4096 3-10-04 O
Shown.540.b 4096 5-19-03 O Silcer 17920 3-1-04 X
Slaman.a 24576 6-28-03 O Slaman.i 24576 7-13-04 O
Small.1144 2560 1-4-01 O Small.1368 53248 5-5-02 O
Small.1388 8192 9-2-02 O Small.139 94208 7-17-02 O
Small.1393 8192 1-2-02 O Small.1416 16699 8-7-02 O
Small.1424 8192 1-2-02 O Small.1468 8192 4-6-03 O
Small.1700 4286 8-5-02 O Small.2218 96526 9-2-02 X
Small.2280 96588 12-31-00 X Small.2560 8192 4-25-03 O
Smog.b 12288 10-2-03 O Spelac.1008 4096 11-17-02 O
Spreder 595924 5-9-03 X Staro.1538 8192 3-1-04 O
Stepar.b 39936 5-2-03 X Stepar.dr 19456 1-1-04 X
Stepar.e 65536 5-5-99 X Stepar.f 150528 8-23-01 X
Stepar.g 137216 8-23-01 O Stepar.j 139264 8-23-01 O
Sugin 147456 9-19-02 O Suns.3912 20468 9-2-02 O

164 Appendix C Virus Detection Result by Janus VirusDetector

Table C.13: Win32 Virus Detection Result by VirusDetector (Cont.),

Win32 Virus Total Number: 499
Error number: 103, False negative: 0.2064 (approx. 21%)
Date indicates the virus’s detected & caught date in form MM-DD-YY.
Virus names are also the names of the test files. Size unit is Byte.

Virus Name Size Date Detection Virus Name Size Date Detection

SWOG.based 4096 6-13-02 O Taek.1275 6144 7-27-02 O
Tapan.3882 12288 12-31-01 O Team.a 4096 3-10-04 O
Team.b 4096 8-30-02 O Team.c 4096 9-22-02 O
Team.d 4096 9-14-02 O TeddyBear 2560 3-1-04 O
Tenta.2045 10240 5-9-02 O Test.1334 67072 9-2-02 O
This31.16896 51202 5-8-01 O Thorin.11932 16384 3-1-04 O
Thorin.b 16384 3-1-04 O Thorin.c 16384 10-23-99 O
Thorin.d 16384 7-14-99 O Thorin.e 16384 10-23-99 O
Tolone 12288 2-9-03 X Ultratt 332 9-19-01 X
Ultratt.8152 12288 3-1-04 X Ultratt.8167 12288 10-4-02 O
Undertaker.4887 12288 11-22-03 O Undertaker.5036.a 12288 11-22-03 O
Usem.a 16384 7-11-02 O Usem.b 16384 7-11-02 X
Vampiro.7018 18432 3-1-04 X Vampiro.a 16896 3-10-04 O
VbFrm 28672 7-26-02 O VCell.3041 8192 3-31-01 O
VCell.3468 8192 8-29-01 O VCell.3504 8192 3-1-04 O
VChain 110592 3-1-04 O Velost.1186 8192 9-19-02 O
Velost.1233 84394 4-9-04 O Velost.1241 56963 4-22-04 X
Vorcan 8192 10-4-04 O Vulcano 12288 3-1-04 O
Wabrex.a 8192 3-10-04 O Weird.10240 9216 3-1-04 O
Weird.c 83968 10-7-00 O Weird.d 20480 11-22-03 O
Wide.8225 16896 7-30-02 X Wide.b 12288 8-31-02 O
Wide.c 12288 8-8-02 X Wolf.b 4096 2-27-02 O
Wolf.c 8192 10-4-04 O Xorala 306176 3-7-04 O
Xoro.4092 6140 5-16-02 O Yasw.1000 4096 11-22-03 O
Yasw.924 4096 12-29-00 O Yerg.9412 28672 5-25-02 O
Yerg.9571 16384 11-22-03 O Younga.4434 83527 5-20-01 X
Zaka.a 2809 11-1-04 X Zawex.3196 32768 9-22-02 X
ZHymn.a 88064 4-5-01 O ZHymn.b 90112 8-23-01 O
ZHymn.Host 10752 3-1-04 O ZMist 86016 3-1-04 O
ZMist.d.dr 28672 3-1-04 X ZMist.dr 28672 10-4-04 X
Zombie 19131 3-1-04 O Zomby.17920 17920 11-22-03 O
ZPerm.a 99840 3-10-04 O ZPerm.a2 73728 11-13-00 O
ZPerm.b 70144 3-1-04 O ZPerm.b2 139264 11-22-03 X

Appendix C Virus Detection Result by Janus VirusDetector 165

Table C.14: Normal Executable Program’s Virus Check Result by VirusDetector

Normal Executable File’s Total Number: 80
Error number: 24, False positive: 0.3 (approx. 30%).
If the result of detection is marked X, VirusDetector says this file is a virus-infected file,
which means incorrect detection.

Filename Detection Filename Detection

dxwebsetup.exe divx311.exe
awsepersonal.exe DVD2DIVXVCD trial.exe
paulp en1.exe adrenalin2.0.1.exe
GOMPLAYER14.exe sdvd190.exe
csdl13.exe HwpViewer.exe
SSHSecureShellClient-3.2.9.exe DivX505Bundle.exe
klcodec220b.exe SwansMP24a-WCP.exe
DivXPro511GAINBundle.exe NATEON.exe X
WinPcap 3 1 beta 3.exe ducp708 type3 free.exe
wmpcdcs8.exe Acrobat.exe
iTunes.exe pccmain.exe
sicstusc.exe Tra.exe
acrodist.exe java.exe X
PCcpfw.exe sicstus.exe
Trialmsg.exe X Ad-Aware.exe
javaw.exe X PCctool.exe
splfr.exe X tsc.exe
AdobeUpdateManage.exe jpicp132.exe X
Photoshp.exe spmkds.exe
conf.exe policytool.exe X
spmkrs.exe X unregaaw.exe
CSDL.exe kinit.exe X
Powerpnt.exe ssh2.exe
Unwise.exe csdlvw.exe
klist.exe X Quicktimeplayer.exe
Sshclient.exe Wavtoasf.exe
dialog patch.exe X ktab.exe X
ssh-keygen2.exe Winword.exe X
Directcd.exe moviemk.exe X
rmiregistry.exe X Tmntsrv.exe
Winzip32.exe Dreamweaver.exe
msmsgs.exe X Scandisc.exe
Tmoagent.exe Excel.exe
MSohtmed.exe X tmproxy.exe X
iedw.exe orbd.exe
servertool.exe X tmupdito.exe
iexplore.exe X PCClient.exe
sftp2.exe tnameserv.exe X
uninstall.exe X keytool.exe X
rmid.exe X scp2.exe

Bibliography

[A. Begel and Graham(1999)] A. Begel, S. M., Graham, S. L., August 1999. Bpf+: Ex-

ploiting global data-flow optimization in a generalized packet filter architecture.

Proc. of ACM SIGCOMM, Cambridge, MA, USA, pp. 123–134.

[Administrators(2003)] Administrators, 2003. Email ube statistics.

URL http://www.cpsc.ucalgary.ca/Help/internet/email/ube_ststs.php

[Ahnlab(2002)] Ahnlab, August 2002. Virus information.

URL http://home.ahnlab.com

[Anderson(2001a)] Anderson, J., March 2001a. An analysis of fragmentation attacks.

URL http://www.ouah.org/fragma.html

[Anderson(2001b)] Anderson, R. J., 2001b. Security Engineering / A Guide to Building

Dependable Distributed Systems. John Wiley & Sons.

[Arnold and Tesauro(2000)] Arnold, W., Tesauro, G., 2000. Automatically generated

win32 heuristic virus detection. Proceedings of the 2000 International Virus Bul-

letin Conference.

URL http://vx.netlux.org/lib/files/awa01/awa01.pdf

[Atkinson(1995)] Atkinson, R., August 1995. Security architecture for the internet pro-

tocol.

URL http://www.ietf.org/rfc/rfc1825.txt

[Attar and Hazelhurst(2002)] Attar, A., Hazelhurst, S., 2002. Fast packet filtering using

n-ary decision diagrams.

[Authentium(2004)] Authentium, 2004. Antivirus and security threat alerts, threat

name: Dumaru/w32.dumaru@mm.

URL http://www.authentium.com/threats/analysis/VirusDetail.asp?RefNo=646

[Baboescu and Varghese(2001)] Baboescu, F., Varghese, G., August 2001. Scalable

packet classification. Proc. of ACM SIGCOMM, San Diego, CA, USA, pp. 199–

210.

167

http://www.cpsc.ucalgary.ca/Help/internet/email/ube_ststs.php
http://home.ahnlab.com
http://www.ouah.org/fragma.html
http://vx.netlux.org/lib/files/awa01/awa01.pdf
http://www.ietf.org/rfc/rfc1825.txt
http://www.authentium.com/threats/analysis/VirusDetail.asp?RefNo=646

168 BIBLIOGRAPHY

[Ballew(1997)] Ballew, S. M., 1997. Managing IP Networks with CISCO Routers.

O’Reilly & Associates.

[Bellovin(1989)] Bellovin, S. M., April 1989. Security problems in the tcp/ip protocol

suite. Computer Communication Review 19 (2), 32–48.

URL http://www.ja.net/CERT/Bellovin/TCP-IP_Security_Problems.html

[Benecke(1999)] Benecke, C., December 1999. A parallel packet screen for high speed

networks. Proc. of the 15th Annual Computer Security Applications Conference,

IEEE Computer Society, Phoenix, Arizona.

URL http://www.acsac.org/1999/papers/wed-a-1330-benecke.pdf

[Bernstein(1997)] Bernstein, D. J., 1997. Tcp/ip syn cookies.

URL http://cr.yp.to/syncookies.html

[Boyer and Moore(1977)] Boyer, R. S., Moore, J. S., October 1977. A fast string search-

ing algorithm. Communications of the ACM 20 (10), 762–772.

[Braden(1995)] Braden, R., July 1995. T/tcp – tcp extensions for transactions, func-

tional specification.

URL ftp://ftp.rfc-editor.org/in-notes/rfc1644.txt

[Bryant(1986)] Bryant, R. E., 1986. Graph-based algorithms for boolean function ma-

nipulation. IEEE Transactions on Computers C-35(8), 677–691.

URL http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf

[Bryant(1992)] Bryant, R. E., Sep 1992. Symbolic boolean manipulation with ordered

binary decision diagrams. ACM Computing Surveys 23 (3), 293–318.

URL http://www.cs.cmu.edu/~bryant/pubdir/acmcs92.pdf

[Cannady and Mahaffey(1998)] Cannady, J., Mahaffey, J., 1998. The application of ar-

tificial neural networks to misuse detection: initial results. the 1st International

Workshop on Recent Advances in Intrusion Detection (RAID 1998).

[CCITT(1992)] CCITT, I.-T., 1992. Recommendation z.100: Specification and descrip-

tion language (sdl)General Secretariat, Geneve, Switzerland.

[CERT(1996)] CERT, 1996. Cert advisory ca-1996-26 denial-of-service attack via ping.

URL http://www.cert.org/advisories/CA-1996-26.html

[CERT(1998)] CERT, 1998. Cert advisory ca-1998-01 smurf ip denial-of-service attacks.

URL http://www.cert.org/advisories/CA-1998-01.html

[CERT(1999a)] CERT, 1999a. Cert advisory/ca-1999-04 melissa macro virus.

URL http://www.cert.org/advisories/CA-1999-04.html

[CERT(1999b)] CERT, 1999b. Cert/cc incident note in-99-03, cih/chernobyl virus.

URL http://www.cert.org/incident_notes/IN-99-03.html

http://www.ja.net/CERT/Bellovin/TCP-IP_Security_Problems.html
http://www.acsac.org/1999/papers/wed-a-1330-benecke.pdf
http://cr.yp.to/syncookies.html
ftp://ftp.rfc-editor.org/in-notes/rfc1644.txt
http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
http://www.cs.cmu.edu/~bryant/pubdir/acmcs92.pdf
http://www.cert.org/advisories/CA-1996-26.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1999-04.html
http://www.cert.org/incident_notes/IN-99-03.html

BIBLIOGRAPHY 169

[CERT(2000a)] CERT, 2000a. Cert advisory ca-1996-21 tcp syn flooding and ip spoofing

attacks.

URL http://www.cert.org/advisories/CA-1996-21.html

[CERT(2000b)] CERT, May 2000b. Cert advisory ca-2000-04: Love letter worm.

URL http://www.cert.org/advisories/CA-2000-04.html

[CERT(2001a)] CERT, July 2001a. Cert advisory ca-2001-22: W32/sircam malicious

code.

URL http://www.cert.org/advisories/CA-2001-22.html

[CERT(2001b)] CERT, September 2001b. Cert advisory ca-2001-26: Nimda worm.

URL http://www.cert.org/advisories/CA-2001-26.html

[CERT(2001c)] CERT, November 2001c. Cert incident note in-2001-14: W32/badtrans

worm.

URL http://www.cert.org/incident_notes/IN-2001-14.html

[CERT(2002a)] CERT, 2002a. Cert advisory ca-2001-23: Continued threat of the code

red worm.

URL http://www.cert.org/advisories/CA-2001-23.html

[CERT(2002b)] CERT, January 2002b. Cert incident note in-2002-01: W32/myparty

malicious code.

URL http://www.cert.org/incident_notes/IN-2002-01.html

[CERT(2002c)] CERT, March 2002c. Cert incident note in-2002-02: W32/gibe malicious

code.

URL http://www.cert.org/incident_notes/IN-2002-02.html

[Chantico(1992)] Chantico, 1992. Combating Computer Crime: Prevention, Detection,

Investigation. McGraw-Hill, Inc, chantico Publishing Company, Inc.

[Cheswick and Bellovin(1994)] Cheswick, W. R., Bellovin, S. M., 1994. Firewalls and

Internet Security: Repelling the Wily Hacker. Addison Wesley.

[Cheung and McCanne(1999)] Cheung, G., McCanne, S., 1999. Dynamic memory model

based framework for optimization of ip address lookup algorithms. Proc. of the 7th

Annual International Conference on Network Protocols, Toronto, Canada, pp. 11–

20.

[Chmielarski(2001)] Chmielarski, T., 2001. Reconnaissance techniques using spoofed ip

addresses, sans intrusioin detection faq.

URL http://www.sans.org/resources/idfaq/spoofed_ip.php

[Cinderella(2003)] Cinderella, 2003. Cinderella sdl.

URL http://www.cinderella.dk

http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-2000-04.html
http://www.cert.org/advisories/CA-2001-22.html
http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/incident_notes/IN-2001-14.html
http://www.cert.org/advisories/CA-2001-23.html
http://www.cert.org/incident_notes/IN-2002-01.html
http://www.cert.org/incident_notes/IN-2002-02.html
http://www.sans.org/resources/idfaq/spoofed_ip.php
http://www.cinderella.dk

170 BIBLIOGRAPHY

[CISCO(1997)] CISCO, 1997. Security advisory: Tcp loopback dos attack (land.c) and

cisco devices.

URL http://www.cisco.com/warp/public/770/land-pub.shtml

[CISCO(2002)] CISCO, 2002. Ciscoworks access control list manager 1.4 overview.

URL http://www.cisco.com/warp/public/cc/pd/wr2k/caclm/prodlit/aclm_ov.htm

[Crocker(1982)] Crocker, D. H., 1982. Standard for the format of arpa-internet text

messages, rfc 822.

URL http://www.ietf.org/rfc/rfc0822.txt

[D. Decasper and Plattner(1998)] D. Decasper, Y. Dittia, G. P., Plattner, B., October

1998. Router plugins: A software architecture for next generation routers. Com-

puter Communication Review 28 (4), 229–240.

[D. Michie and (Eds)(1994)] D. Michie, D. J. S., (Eds), C. C. T., February 1994. Ma-

chine Learning, Neural and Statistical Classification.

URL http://www.amsta.leeds.ac.uk/~charles/statlog/

[Davis and Weyuker(1983)] Davis, M. E., Weyuker, E. J., 1983. Computability, Com-

plexity, and Languages. Academic Press.

[Dittrich(1999a)] Dittrich, D., October 1999a. The dos project’s trinoo distributed de-

nial of service attack tool.

URL http://staff.washington.edu/dittrich/misc/trinoo.analysis

[Dittrich(1999b)] Dittrich, D., December 1999b. The stacheldraht distributed denial of

service attack tool.

URL http://staff.washington.edu/dittrich/misc/stacheldraht.analysis

[Dittrich(1999c)] Dittrich, D., October 1999c. The tribe flood network distributed denial

of service attack tool.

URL http://staff.washington.edu/dittrich/misc/tfn.analysis

[eEye(2001)] eEye, 2001. .ida code red worm.

URL http://www.eeye.com/html/research/advisories/2l20010717.html

[Eichin and Rochlis(1988)] Eichin, M., Rochlis, J., 1988. With microscope and tweezers:

An analysis of the internet virus of november 1988.

[Eichin and Rochlis(1989)] Eichin, M., Rochlis, J., 1989. With microscope and tweez-

ers: An analysis of the internet virus of november 1988. IEEE Computer Society

Symposium on Security and Privacy.

[Ellermann and Benecke(1998)] Ellermann, U., Benecke, C., June 1998. Firewalls for

atm networks. Proc. of INFOSEC’COM.

URL http://www.cert.dfn.de/eng/team/ue/fw/fire-atm

http://www.cisco.com/warp/public/770/land-pub.shtml
http://www.cisco.com/warp/public/cc/pd/wr2k/caclm/prodlit/aclm_ov.htm
http://www.ietf.org/rfc/rfc0822.txt
http://www.amsta.leeds.ac.uk/~charles/statlog/
http://staff.washington.edu/dittrich/misc/trinoo.analysis
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis
http://staff.washington.edu/dittrich/misc/tfn.analysis
http://www.eeye.com/html/research/advisories/2l20010717.html
http://www.cert.dfn.de/eng/team/ue/fw/fire-atm

BIBLIOGRAPHY 171

[Esa Alhoniemi and Vesanto(2002)] Esa Alhoniemi, Johan Himberg, J. P., Vesanto, J.,

2002. Som toolbox 2.0, a software library for matlabSOM Toolbox team, Labora-

tory of Computer and Information Science, Finland.

URL http://www.cis.hut.fi/projects/somtoolbox/

[F. Baker and Smith(2002)] F. Baker, K. C., Smith, A., May 2002. Management infor-

mation base for the differentiated services architecture, darpa internet program

protocol specification, rfc3289.

URL http://www.ietf.org/rfc/rfc3289.txt

[Feldmann and Muthukrishnan(2000)] Feldmann, A., Muthukrishnan, S., March 2000.

Tradeoffs for packet classification. Proc. of IEEE INFOCOMM, Tel-Aviv, Israel,

pp. 1193–1202.

[Ferguson and Senie(2000)] Ferguson, P., Senie, D., May 2000. Network ingress filter-

ing: Defeating denial of service attacks which employ ip source address spoofing,

rfc2827.

URL ftp://ftp.rfc-editor.org/in-notes/rfc2827.txt

[Ferrie(2002)] Ferrie, P., 2002. W32/klez.

URL http://toronto.virusbtn.com/magazine/archives/200207/klez.xml

[Fisher(1925)] Fisher, R. A., 1925. What has now appearedStatistical Methods for Re-

search Workers, Edinburgh: Oliver and Boyd.

[Fyodor(1997)] Fyodor, 1997. The land attack(ip dos).

URL http://www.insecure.org/sploits/land.ip.DOS.html

[Fyodor(2003)] Fyodor, 2003. Idle scanning and related ipid games.

URL http://www.insecure.org/nmap/idlescan.html

[G. Tesauro and Sorkin(1996)] G. Tesauro, J. O. K., Sorkin, G. B., August 1996. Neural

networks for computer virus recognition. IEEE Expert 11 (4), 5–6.

[G. Ziemba and Traina(1995)] G. Ziemba, D. R., Traina, P., October 1995. Security

considerations for ip fragment filtering, rfc 1858.

URL ftp://ftp.rfc-editor.org/in-notes/rfc1858.txt

[Ginossar and Trope(1987)] Ginossar, Z., Trope, Y., 1987. Problem solving in judgment

under uncertainty. Journal of Personality and Social Psychology 52, 464–473.

[Grossman(2002)] Grossman, D., 2002. New terminology and clarifications for diffserv,

rfc3260, network working group.

URL ftp://ftp.rfc-editor.org/in-notes/rfc3260.txt

[Gryaznov(1999)] Gryaznov, D., 1999. Scanners of the year 2000: Heuristics. Proceed-

ings of the 5th International Virus Bulletin.

URL http://vx.netlux.org/texts/html/scan2000.html

http://www.cis.hut.fi/projects/somtoolbox/
http://www.ietf.org/rfc/rfc3289.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2827.txt
http://toronto.virusbtn.com/magazine/archives/200207/klez.xml
http://www.insecure.org/sploits/land.ip.DOS.html
http://www.insecure.org/nmap/idlescan.html
ftp://ftp.rfc-editor.org/in-notes/rfc1858.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3260.txt
http://vx.netlux.org/texts/html/scan2000.html

172 BIBLIOGRAPHY

[Gupta and Mukherjee(1996)] Gupta, B., Mukherjee, B., March 1996. Network security

via reverse engineering of tcp code: Vulnerability analysis and proposed solutions.

Proc. of IEEE Infocom’96, San Francisco, CA, USA, pp. 603–610.

[Gupta and McKeown(1999a)] Gupta, P., McKeown, N., August 1999a. Packet classifi-

caiton on multiple fields. Proc. of ACM SIGCOMM, Cambridge, MA, USA, pp.

147–160.

[Gupta and McKeown(1999b)] Gupta, P., McKeown, N., 1999b. Packet classificaiton

using hierarchical intelligent cuttings. Proc. of Hot Interconnects VII.

[Haykin(1999)] Haykin, S., 1999. Neural Networks: A Comprehensive Foundation, In-

ternational Edition/Second Edition. Prentice Hall.

[Hazelhurst(1999)] Hazelhurst, S., 1999. Algorithms for analysing firewall and router

access lists.

[Heffernan(1998)] Heffernan, A., 1998. Protection of bgp sessions via the tcp md5 sig-

nature option, rfc2385.

URL http://www.ietf.org/rfc/rfc2385.txt?number=2385

[Hinton and Sejnowski(1999)] Hinton, G., Sejnowski, T. J., June 1999. Unsupervised

Learning: Foundations of Neural Computation. The MIT Press.

[Hoggan(2000)] Hoggan, D., 2000. The internet book: Introduction and reerence.

URL http://www.camtp.uni-mb.si/books/Internet-Book/IP_TeardropAttack.html

[Hopcroft and Ullman(1979)] Hopcroft, J. E., Ullman, J. D., 1979. Introduction to Au-

tomata Theory, languages, and computation. Addison Wesley.

[Hundley and Held(2000)] Hundley, K., Held, G., March 2000. Cisco Access lists Field

Guide. McGraw-Hill.

[InSeon and Ultes-Nitsche(2002)] InSeon, Ultes-Nitsche, U., July 2002. An integrated

network security approach : Pairing detecting malicious patterns with anomaly

detection. Proc. Conference on Korean Science and Engineering Association in

UK (KSEAUK2002).

[J. Mogul and Accetta(1987)] J. Mogul, R. R., Accetta, M., November 1987. The packet

filter: An efficient mechanism for user-level network code. Proc. of the 11th ACM

Symposium on Operating Systems Principles, ACM Press. An updated version is

available as DEC WRL Research Report 87/2, pp. 39–51.

[Jan Ellsberger and Sarma(1997)] Jan Ellsberger, D. h., Sarma, A., 1997. SDL : Formal

Object-oriented Language for Communicating Systems. Prentice Hall.

[John T. McHenry and Cocks(1997)] John T. McHenry, Patrick W. Dowd, T. M. C. F.

A. P., Cocks, W. B., 1997. An fpga-based coprocessor for atm firewalls. Proc. of

the IEEE Symposium on FPGAs for Custom Computing Machines, pp. 30–39.

http://www.ietf.org/rfc/rfc2385.txt?number=2385
http://www.camtp.uni-mb.si/books/Internet-Book/IP_TeardropAttack.html

BIBLIOGRAPHY 173

[Julia Allen(2000)] Julia Allen, Alan Christie, W. F. J. M. J. P. E. S., 2000. State of

the practice of intrusion detection technologiesTechnical Report, CMU/SEI-99-

TR-028, Carnegie Mellon University, Software Engineering Institute.

[K. Nichols and Black(1998)] K. Nichols, S. Blake, F. B., Black, D., Dec 1998. Definition

of the differentiated services field (ds field) in the ipv4 and ipv6 headers, rfc 2474.

[KASPERSKY(1994-2005)] KASPERSKY, 1994-2005. Windows viruses.

URL http://www.avp.ch/avpve/newexe.stm

[KASPERSKY(2003)] KASPERSKY, 2003. Win32.apparition.

URL http://www.avp.ch/avpve/newexe/win32/appar32.stm

[Kaspersky(2000)] Kaspersky, E., 2000. Virus analysis texts - macro viruses.

URL http://www.avp.ch/avpve/classes/macrovir.stm

[Kephart(1994)] Kephart, J. O., 1994. A biologically inspired immune system for

computers. Artificial Life IV, pp. 130–193, proceedings of the Fourth International

Workshop on Synthesis and Simulation of Living Systems, Rodney A. Books and

Pattie Maes, eds.

URL http://www.research.ibm.com/antivirus/SciPapers/Kephart/ALIFE4/alife4.distrib.html

[Kohonen(1982)] Kohonen, T., 1982. Self-organized formation of topologically correct

feature maps. Biological Cybernetics 43, 59–69.

[Kohonen(1988)] Kohonen, T., 1988. Self-Organization and Associative Memory. New

York: Springer-Verlag, 3rd ed.

[Kohonen(1995)] Kohonen, T., 1995. Self-Organizing Maps. Springer, Berlin, Heidel-

berg.

[Kohonen(1999)] Kohonen, T., 1999. Comparison of som point densities based on dif-

ferent criteria. Neural Computation 11 (8), 2081–2095.

[Lahey(2000)] Lahey, K., 2000. Tcp problems with path mtu discovery, rfc2923.

URL ftp://ftp.rfc-editor.org/in-notes/rfc2923.txt

[Lakshman and Stiliadis(1998)] Lakshman, T. V., Stiliadis, D., September 1998. High

speed policy-based packet forwarding using efficient multidimensional range

matching. Proc. of ACM SIGCOMM, Vancouver, Canada, pp. 203–214.

[Langley and Sage(1994)] Langley, P., Sage, S., 1994. Induction of selective bayesian

classifiers. Proceedings of the 10th Conference on Uncertainty in Artificial Intelli-

gence, Morgan Kaufmann.

URL http://www.isle.org/~langley/papers/select.uai94.ps.gz

[Lanning(1987)] Lanning, K., 1987. Some reasons for distinguishing between nonnorma-

tive response and irrational decision. Journal of Psychology 12, 109–117.

http://www.avp.ch/avpve/newexe.stm
http://www.avp.ch/avpve/newexe/win32/appar32.stm
http://www.avp.ch/avpve/classes/macrovir.stm
http://www.research.ibm.com/antivirus/SciPapers/Kephart/ALIFE4/alife4.distrib.html
ftp://ftp.rfc-editor.org/in-notes/rfc2923.txt
http://www.isle.org/~langley/papers/select.uai94.ps.gz

174 BIBLIOGRAPHY

[Lear(2000)] Lear, A. C., June 2000. New chip helps with network security. IEEE Com-

puter 33 (6), 24.

[Lee and Heinbuch(2001)] Lee, S. C., Heinbuch, D. V., July 2001. Training a neural

network-based intrusion detector to recognize novel attacks. IEEE Transactions

on Systems, Man, and Cybernetics - Part A: Systems and Humans 31 (4), 294–

299.

[Leech(2003)] Leech, M., 2003. Key management considerations for the tcp md5 signa-

ture option, rfc3562.

URL ftp://ftp.rfc-editor.org/in-notes/rfc3562.txt

[Linn(1988)] Linn, J., 1988. Privacy enhancement for internet electronic mail: Part i:

Message encipherment and authentication procedures, rfc 1040.

URL http://www.ietf.org/rfc/rfc1040.txt

[M. Handley and Paxson(2001)] M. Handley, C. K., Paxson, V., 2001. Network intrusion

detection: Evasion, traffic normalization, and end-to-end protocol semantics. Proc.

of the 10th USENIX Security Symposium (Security ’01).

[M. Handley and Floyd(2000)] M. Handley, J. P., Floyd, S., 2000. Tcp congestion win-

dow validation, rfc2861.

URL http://www.ietf.org/rfc/rfc2861.txt?number=2861

[M. L. Bailey and Sarkar(1994)] M. L. Bailey, B. Gopal, M. A. P. L. L. P., Sarkar, P.,

Nov 1994. Pathfinder: A pattern-based packet classifier. Proc. of the 1st Sympo-

sium on Operating System Design and Implementation, USENIX Association, pp.

115–123.

[M. Mathis and Romanow(1996)] M. Mathis, J. Mahdavi, S. F., Romanow, A., 1996.

Tcp selective acknowledgment options, rfc 2018.

URL http://www.ietf.org/rfc/rfc2018.txt

[M. Yuhara and Moss(1994)] M. Yuhara, B. N. Bershad, C. M., Moss, J. E. B., January

1994. Efficient packet demultiplexing for multiple endpoints and large messages.

Proc. of the 1994 Winter USENIX Conference, pp. 153–165.

[Marcel Waldvogel and Plattner(1997)] Marcel Waldvogel, George Varghese, J. T.,

Plattner, B., 1997. Scalable high speed ip routing lookups. SIGCOMM, pp. 25–36.

[MATHWORKS(2003)] MATHWORKS, 2003. The mathworks, inc.MATLAB.

URL http://www.mathworks.com

[Matthew G. Schultz and Zadok(2001a)] Matthew G. Schultz, E. E., Zadok, E., May

2001a. Data mining methods for detection of new malicious executables. IEEE

Symposium on Security and Privacy (IEEE S & P 2001).

ftp://ftp.rfc-editor.org/in-notes/rfc3562.txt
http://www.ietf.org/rfc/rfc1040.txt
http://www.ietf.org/rfc/rfc2861.txt?number=2861
http://www.ietf.org/rfc/rfc2018.txt
http://www.mathworks.com

BIBLIOGRAPHY 175

[Matthew G. Schultz and Zadok(2001b)] Matthew G. Schultz, E. E., Zadok, E., June

2001b. Mef: Malicious email filter, a unix mail filter that detects malicious windows

executables. USENIX Annual Technical Conference - FREENIX Track.

URL http://www.cs.columbia.edu/ids/publications/mef-freenix01.pdf

[McAfee(2001)] McAfee, 2001. Virus name: W32/semisoft.58368d, mcafee virus charac-

teristic.

URL http://vil.nai.com/vil/content/v_99264.htm

[McAfee(2002)] McAfee, 2002. Mcafee home page.

URL http://www.mcafee.com

[McCanne and Jacobson(1993)] McCanne, S., Jacobson, V., 1993. The bsd packet fil-

ter: A new architecture for user-level packet capture. Proc. of USENIX Winter

Conference, pp. 259–269.

[MessageLabs(2002)] MessageLabs, 2002. W32/bugbear-ww, message labs.

URL http://www.messagelabs.com/viruseye/report.asp?ip=110

[Nazario(2004)] Nazario, J., 2004. Defense and Detection Strategies against Internet

Worms. ARTECH HOUSE, computer Security Series.

[Neale(1999)] Neale, R., Feb 1999. Is content addressable memory the key to network

success? Electronic Engineering 71 (865), 9–12.

[Newman(1999)] Newman, D., January 1999. Firewall on a chip: Fore’s fsa boosts

throughput to multigigabit rates. Data Communications 28 (1), 44–45.

[NSFISSI(1997)] NSFISSI, August 1997. National information systems security (infosec)

glossary, nsfissi no.4009.

[Oetiker and Rand(2003)] Oetiker, T., Rand, D., 2003. Multi router traffic grapher.

URL http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

[O.Kephart and C.Arnold(1994)] O.Kephart, J., C.Arnold, W., 1994. Automatic ex-

traction of computer virus signatures. 4th Virus Bulletin International Conference,

pp. 178–184.

URL http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94.html

[Oppliger(1998)] Oppliger, R., 1998. Internet and Intranet Security. Artech House Inc.,

Boston.

[Pearl(1988)] Pearl, J., 1988. Probabilistic Reasoning In Intelligent Systems: Networks

of Plausible Inference. Morgan Kaufmann Publishers, Inc., San Mateo, California.

[Pfleeger(1997)] Pfleeger, C. P., 1997. Security in Computing. Prentice-Hall Interna-

tional, Inc., international Edition, Second Edition.

http://www.cs.columbia.edu/ids/publications/mef-freenix01.pdf
http://vil.nai.com/vil/content/v_99264.htm
http://www.mcafee.com
http://www.messagelabs.com/viruseye/report.asp?ip=110
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94.html

176 BIBLIOGRAPHY

[Postel(1980)] Postel, J., 1980. User datagram protocol, rfc 768.

URL http://www.ietf.org/rfc/rfc0768.txt

[Postel(1981a)] Postel, J., 1981a. Internet control message protocol (icmp), rfc 792,

darpa internet program protocol specification.

URL http://www.ietf.org/rfc/rfc0792.txt

[Postel(1981b)] Postel, J., September 1981b. Internet protocol, rfc 791, darpa internet

program protocol specification, defense advanced research projects, information

sciences institute.

URL http://www.ietf.org/rfc/rfc791.txt

[Postel(1981c)] Postel, J., September 1981c. Transmission control protocol, rfc 793,

darpa internet program protocol specification, defense advanced research projects,

information sciences institute.

URL http://www.ietf.org/rfc/rfc793.txt

[Postel(1982)] Postel, J. B., August 1982. Simple mail transfer protocol, rfc0821.

URL http://www.ietf.org/rfc/rfc0821.txt

[Postini(2004)] Postini, 2004. Postini email stat track.

URL http://www.postini.com/stats

[R. Lo and Olsson(1995)] R. Lo, K. L., Olsson, R., 1995. Mcf: a malicious code filter.

Computers & Security 14 (6), 541–566.

URL http://seclab.cs.ucdavis.edu/papers/llo95.ps

[Ramakrishnan and Floyd(1999)] Ramakrishnan, K., Floyd, S., Jan 1999. A proposal to

add explicit congestion notification (ecn) to ip, rfc 2481, network wroking group.

URL http://www.ietf.org/rfc/rfc2481.txt

[R.L.Ziegler(2000)] R.L.Ziegler, 2000. Linux Firewalls. New Riders, Indianapolis, Indi-

ana.

[Rubin and Geer(1998)] Rubin, A., Geer, D., 1998. Mobile code security. IEEE Internet

Computing 2 (6), november/December.

[S. Hazelhurst and Sinnappan(2000)] S. Hazelhurst, A. A., Sinnappan, R., June 2000.

Algorithms for improving the dependability of firewall and filter rule lists. Proc. of

the International Conference on Dependable Systems and Networks, pp. 576–585.

[Salcic and Smailagic(1997)] Salcic, Z., Smailagic, A., 1997. Digital Systems Design and

Prototyping Using Field Programmable Logic. Kluwer Academic, Boston.

[Samamura(1998)] Samamura, M., 1998. W95.cih, volume expanded threat list and

virus encyclopaedia.

URL http://securityresponse.symantec.com/avcenter/venc/data/cih.html

http://www.ietf.org/rfc/rfc0768.txt
http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc0821.txt
http://www.postini.com/stats
http://seclab.cs.ucdavis.edu/papers/llo95.ps
http://www.ietf.org/rfc/rfc2481.txt
http://securityresponse.symantec.com/avcenter/venc/data/cih.html

BIBLIOGRAPHY 177

[Seeley(1988)] Seeley, D., 1988. A tour of the worm.

[Service(1996)] Service, E. N., 1996. Windows 95 virus-boza announced.

URL http://www.emergency.com/boza.htm

[Shankar and Paxson(2003)] Shankar, U., Paxson, V., 2003. Active mapping: Resisting

nids evasion without altering traffic. Proc. of the IEEE Symposium on Security

and Privacy ’03).

[Sophos(2002)] Sophos, 2002. anti-virus product.

URL http://www.sophos.co.uk

[Sophos(2005)] Sophos, September 2005. Top ten viruses and hoaxes reported to sophos

in september 2005.

URL http://www.sophos.com/pressoffice/pressrel/uk/toptensep05.html

[Spafford(1988)] Spafford, E. H., 1988. The internet worm program: An analysisPurdue

Technical report CSD-TR-823.

[Stevens(1994)] Stevens, W. R., 1994. TCP/IP Illustrated Vol. 1 - The Protocols.

Addison-Wesley.

[Stevens and Wright(1995)] Stevens, W. R., Wright, G. R., 1995. TCP/IP Illustrated

Vol.2 - The Implementation. Addison-Wesley.

[Swimmer(2000)] Swimmer, M., 2000. Review and outlook of the detection of viruses

using intrusion detection systems. the 3rd International Workshop on Recent Ad-

vances in Intrusion Detection (RAID 2000).

[Symantec(2002)] Symantec, 2002. Symantec worldwide homepage.

URL http://www.symantec.com/product/

[TrendMicro(2002a)] TrendMicro, 2002a. Housecall, trend micro - free online virus scan.

URL http://housecall.trendmicro.com

[TrendMicro(2002b)] TrendMicro, 2002b. Trend micro virus protection products.

URL http://www.trendmicro.com/en/products/global/enterprise.htm

[Ultes-Nitsche and Yoo(2003)] Ultes-Nitsche, U., Yoo, I., July 2003. Steps toward and

intelligent firewall - a basic model. Proc. Conference on Information Security for

South Africa (ISSA2003).

[Ultes-Nitsche and Yoo(2004)] Ultes-Nitsche, U., Yoo, I., June/July 2004. Run-time

protocol-conformance verification in firewalls. Proc. of the 4th Annual ISSA 2004

IT Security Conference.

[V. B. Hinsz and Robertson(1988)] V. B. Hinsz, R. S. Tindale, D. H. N. J. H. D.,

Robertson, B. A., 1988. The influence of the accuracy of individuating information

http://www.emergency.com/boza.htm
http://www.sophos.co.uk
http://www.sophos.com/pressoffice/pressrel/uk/toptensep05.html
http://www.symantec.com/product/
http://housecall.trendmicro.com
http://www.trendmicro.com/en/products/global/enterprise.htm

178 BIBLIOGRAPHY

on the use of base rate information in probability judgment. Journal of Experi-

mental Social Psychology 24, 127–145.

[V. Gill and Meyer(2004)] V. Gill, J. H., Meyer, D., 2004. The generalized ttl security

mechanism (gtsm), rfc 3682.

URL ftp://ftp.rfc-editor.org/in-notes/rfc3682.txt

[V. Jacobson and Borman(1992)] V. Jacobson, R. B., Borman, D., 1992. Tcp extensions

for high performance, rfc1323.

URL ftp://ftp.rfc-editor.org/in-notes/rfc1323.txt

[V. Paxson and Volz(1999)] V. Paxson, M. Allman, S. D. W. F. J. G. I. H. K. L. J. S.,

Volz, B., 1999. Known tcp implementation problems, rfc 2525.

URL http://www.ietf.org/rfc/rfc2525.txt

[V. Srinivasan and Varghese(1999)] V. Srinivasan, S. S., Varghese, G., 1999. Packet clas-

sification using tuple space search. SIGCOMM, pp. 135–146.

[Venkatachary Srinivasan and Waldvogel(1998)] Venkatachary Srinivasan,

George Varghese, S. S., Waldvogel, M., 1998. Fast and scalable layer four

switching. SIGCOMM, pp. 191–202.

[VirusBulletin(2004)] VirusBulletin, 2004. Viruses: Vbs/bubbleboyFirst active date: 8

November 1999.

URL http://www.virusbtn.com/resources/viruses/indepth/bubbleboy.xml

[Vos and Konijnenberg(1996)] Vos, J., Konijnenberg, W., Nov 1996. Linux firewall fa-

cilities for kernel-level packet screening.

URL http://www.xos.nl/linux/ipfwadm/paper

[Wang and Liu(1993)] Wang, C. J., Liu, M. T., 1993. Generating test cases for efsm

with given fault models. Proc. of IEEE INFOCOM93, Vol.2, pp.774-781.

[Wang(1998)] Wang, R., 1998. Flash in the pan?

[White(1998)] White, S. R., 1998. Open problems in computer virus researchIBM

online publication.

URL http://www.research.ibm.com/antivirus/SciPapers/White/Problems/Problems.html

[Wikipedia(2005)] Wikipedia, 2005. Phishing.

URL http://en.wikipedia.org/wiki/Phishing

[WildList(2001)] WildList, 2001. Virus descriptions of viruses in the wild.

URL http://www.f-secure.com/virus-info/wild.html

[Xilinux(2001)] Xilinux, 2001. Asic alternatives.

URL http://www.xilinx.com/

ftp://ftp.rfc-editor.org/in-notes/rfc3682.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1323.txt
http://www.ietf.org/rfc/rfc2525.txt
http://www.virusbtn.com/resources/viruses/indepth/bubbleboy.xml
http://www.xos.nl/linux/ipfwadm/paper
http://www.research.ibm.com/antivirus/SciPapers/White/Problems/Problems.html
http://en.wikipedia.org/wiki/Phishing
http://www.f-secure.com/virus-info/wild.html
http://www.xilinx.com/

BIBLIOGRAPHY 179

[Yoo(2004a)] Yoo, I., October 2004a. Adaptive firewall model to detect email viruses.

Proc. of the 38th Annual IEEE International Carnahan Conference on Security

Technology, ICCST 2004.

[Yoo(2004b)] Yoo, I., 2004b. An Intelligent Firewall Architecture Model To Detect

Internet-Scale Virus Attacks. University of Southampton, master of Philosophy

(MPhil) thesis, Declarative Systems and Software Engineering Research Group,

School of Electronic and Computer Science.

[Yoo(2004c)] Yoo, I., June 2004c. Protocol anomaly detection and verification. Proc. of

the 5th Annual IEEE Information Assurance Workshop.

[Yoo(2004d)] Yoo, I., October 2004d. Visualizing windows executable viruses using self-

organizing maps. Proc. of the 11th ACM Conference on Computer and Commu-

nications Security (CCS 2004), Workshop on Visualization and Data Mining for

Computer Security (VizSEC/DMSEC-04).

[Yoo and Ultes-Nitsche(2002a)] Yoo, I., Ultes-Nitsche, U., November 2002a. Intelligent

firewall: Packet-based recognition against internet-scale virus attacks. Conference

on Communications and Computer Networks (CCN 2002).

[Yoo and Ultes-Nitsche(2002b)] Yoo, I., Ultes-Nitsche, U., November 2002b. An intel-

ligent firewall to detect novel attacks an integrated approach based on anomaly

detection against virus attacks. Proc. SOFSEM Conference, SOFSEM 2002 Stu-

dent Research Forum, pp. 59–64.

[Yoo and Ultes-Nitsche(2003)] Yoo, I., Ultes-Nitsche, U., December 2003. Adaptive de-

tection of worms/viruses in firewalls. Proc. of International Conference on Com-

munication, Network, and Information Security (CNIS 2003).

[Yoo and Ultes-Nitsche(2004a)] Yoo, I., Ultes-Nitsche, U., April 2004a. How to predict

email viruses under uncertainty. Proc. of the 23rd IEEE International Performance,

Computing and Communications Conference, IPCCC 2004, Workshop of Informa-

tion Assurance (WIA 04).

[Yoo and Ultes-Nitsche(2004b)] Yoo, I., Ultes-Nitsche, U., August 2004b. Towards run-

time protocol anomaly detection and verification. Proc. of the 1st International

Conference on E-Business and Telecommunication Networks, ICETE 2004.

Curriculum Vitae

C.1 InSeon Yoo

C.1.1 Education

2003.2 - 2006.5 PhD candidate,

Thesis: Justifying Anomaly Packets with Computing Methodologies

& The Underlying Firewall System

Department of Computer Science,

University of Fribourg, Fribourg, Switzerland.

2001.10 - 2003.1 Master of Philosophy (MPhil), Computer Science,

University of Southampton, Southampton, UK.

MPhil Thesis: An Intelligent Firewall Architecture Model

To Detect Internet-Scale Virus Attacks.

(MPhil Award at 10th May 2004.)

1996 - 1998 Master of Science , Computer Science,

Sogang Univ, Seoul, Korea.

Thesis: A Daisy-chain scheme for delivery

of personalized push-documents on WWW

1992 - 1996 Bachelor of Science, Computer Science,

Dongduk Women’s Univ, Seoul, Korea.

C.1.2 Research Interests

1. Server side Computer Security and Network Security

2. Reasoning and Treating Uncertainty based on Bayesian Networks

3. Machine Learning based on Neural Networks

4. Pattern Recognition and Classification of network packets

5. Security Engineering

181

182 Appendix C Curriculum Vitae

6. Information Warfare & Cyberwarfare - Cybercrime, Cyberterrorism

7. Human Behaviour - Human Economic Behaviour (microeconomics)

C.1.3 Research Experience

• PhD/Research assistant, Univ of Fribourg , 2003.2 - 2005.12

1. Responsible for Janus Project.

2. Organized isolated testbed subnetwork for Janus firewall.

3. Achieved Janus & VirusDetector design/development.

4. For justifying anomaly in packets, proposed and designed to apply comput-

ing methodologies & software engineering for examining data packets in the

firewall.

5. Achieved email classification with symbolic & algebraic manipulation (Or-

dered Binary Decision Diagram), and Bayesian networks for representation

and inference.

6. Achieved protocol anomaly detection & verification with protocol sanity nor-

malization and a proposed TCP protocol verification model.

7. Achieved non-signature based virus detection with SOM (self-organizing map).

8. Achieved Janus firewall with the components. ASM (abstract state machine)

and SDL (specification and description language) were used to design and

implement the project.

• MPhil/Research assistant, Univ of Southampton, 2001.10 - 2003.1

1. Researched and planned how to design an intelligent firewall.

2. Surveyed machine learning and neural network technologies, then decided to

choose and designed Bayesian network and SOM for appropriate methods to

detect any abnormal packet contents.

3. Achieved analysis of Internet viruses and Spam.

• Staff Research/Software Engineer, ThinkFree.com, Haansoft USA &

Korea, 3003 North First St, Suite 208, San Jose, CA 95134, July 99

July 2001.

1. Responsible for sever side relative research, design, development, and imple-

mentation.

2. Server based development with C, Java, Servlet/JSP, and JDBC.

3. Contributed to server team from scratch.

4. Achieved HTTP Tunneling, security & cryptography methods inside fileserver

& server systems.

Appendix C Curriculum Vitae 183

5. Contributed server/network performance and maintenance with traffic mon-

itoring & log analysing systems.

6. Contributed asynchronous file system development, achieved DB schema de-

sign, and applied the DB schema for most side development including admin

systems using Informix, Oracle, mySql, hSql.

7. Proposed document management engine, and distributed resource versioning

systems.

8. Organized billing systems through web sites.

• Staff Research/Software Engineer, Simmany, DACOM (Data & Telecom-

munication) Corporation, LG, Korea, June 98 - June 99.

1. Responsible for Lite Search Engine.

2. Designed lite search engine, and achieved to develop Smlite (Simmany Lite

Search Engine) based on Unix for searching web document. Developed multi-

threaded serch engine with background real-time indexing/query responding,

indexing process using gdbm, controlled it with a centre monitor program,

then displayed query result with CGI.

3. Smlite was porting to several OS platforms: Sun Solarix 2.5x, NCR UNIX

SVR4 MP-RAS, IBM AIX 4.2/4.3.2, DEC-UNIX 4.0, HP-10.20, SGI IRIX

64-6.2, Linux 2.1.x.

4. Achieved to develop pthread HPUX 10.20 version.

5. Planned to apply information retrieval protocol Z39.50 gateway for advanced

classification and digital library.

• MS/Research Assistant, Sogang Univ, 1996 - 1998

1. Achieved to develop an electronic library with web CGI. 98.1 - 98.2

2. Achieved to develop a high performance multithreaded web server for e-

commerce. 97.5 - 97.11 (Supported by Electronics and Telecommunications

Research Institute, SERI 1997).

3. Achieved to develop a remote multimedia conference system using H.261.

96.11 - 97.2 (Supported by NAKIYUN Co.Ltd.)

4. Achieved to develop a multimedia KIOSK System with Java. 96.7 - 96.9

C.1.4 Awards & Certificates

o Research scholarship from Department of Electronics & Computer Sciences,

University of Southampton, 2002-2003.

o Certificate of Accomplishment, Course Title “Oracle 8i Administrator”, Oracle

Korea 2000/10/23-27.

184 Appendix C Curriculum Vitae

o Certificate of Accomplishment, Course Title “Using the I-DataBlade API to

Build DataBlade Module”, Informix Korea Ltd. 1998/08/10-08/11.

o Scholarship from Director, Dongduk Univ. 1989, 1991, 1992.

o Scholarship from Director, Sogang Univ. 1997.

C.1.5 Extracurricular Activities

• Leader of Cyber discussion group in PC HiTEL. 1992.6 - 1995.1

1. Organized Womens right discussion group

2. Proposed various women relative topic for discussion

3. Increased registered members including mens number

4. Coordinated to discuss each topic with both sides view

5. Organized regular off-line meetings for members

• HiMEM, Undergraduate student Membership in Korea Telecommunication (KT),

HiTEL. 1995.7 - 1996.7

1. Leader of Web Team.

2. Introduced to students & KT about Internet new technologies.

3. Proposed Web based cyberspace from PC database-based systems.

4. Leading regular meeting for seminar & studying about Internet new technolo-

gies.

5. Contributed to KT about conversion necessity & future direction for cyber

space.

• Leader of BIGS(Base Implementation Group Study) in Dongduk Univ.

1993 - 1995

1. Leader of initial members

2. Proposed necessity of extra curriculum learning.

3. Organized group for self-studying beyond school curriculum.

4. Contributed to several computer program exhibitions through our results.

5. Got much attention to CS department through our group from outside of the

university.

• University Student Activity Board, 1994

1. Responsible of study department

2. Proposed summer computer learning session for students & neighbours

Appendix C Curriculum Vitae 185

3. Organized teaching curriculum for summer computer lesson

4. Increased interests of CS department & the university from neighbours &

impact of advertisement through the summer computer lesson

• Teaching Computer in Univ and Computer School, 1993 - 1998.

• Speaker in Workshop WWW-KR 5th 1997.5.

• Freelance writer in Computer Magazines : Hello PC, PC Seoul, PC Line, PC Seoul,

Microsoft. 1992 - 1998.

C.1.6 Computer Technical Experiences

Computer Language

C, Java Multithreaded Programming, Concurrent Software Design,

UNIX Programming, POSIX Programming,

Network Programming.

etc Borne Shell, Korn Shell, C Shell, BASIC, PASCAL,

FORTRAN, Scheme, LISP, HTML, LaTex., Perl, Matlab. ASML, UML, SDL

Operating Systems MSX series, MS-DOS, MS WINDOWS 3.1/95/NT, UNIX System V,

IRIX64, FreeBSD, SunOS 4.X, Solaris 5.X, Linux, NCR,

HPUX 9.X/10.X, DIGITAL UNIX V4.0 alpha, AIX 4.X.

Database Informix, Oracle, mySql, hsql, pgsql, postgreSQL

CaseTools UML CaseTool (Rational Rose), SDL tool (Cinderella), Visio

C.1.7 Publications

1. InSeon Yoo and Ulrich Ultes-Nitsche, “Non-Signature Based Virus Detec-

tion: Towards Establishing Unknown Virus Detection Technique Using

SOM”, To appear, Journal in Computer Virology, Volume 2, Issue 3, Springer

Paris, 2006.

2. InSeon Yoo, “Visualizing Windows Executable Viruses Using Self-Organizing

Maps”, Proc. of the 11th ACM Conference on Computer and Communications

Security (CCS 2004), Workshop on Visualization and Data Mining for Computer

Security (VizSEC/DMSEC-04), Washington DC, USA, October 25-29, 2004.

3. InSeon Yoo, “Adaptive Firewall Model to Detect Email Viruses”, Proc. of

the 38th Annual IEEE International Carnahan Conference on Security Technology

(ICCST 2004), Albuquerque, New Mexico, USA, October 11-14, 2004.

4. InSeon Yoo and Ulrich Ultes-Nitsche, “Towards Run-time Protocol Anomaly

Detection and Verification”, Proc. of the 1st International Conference on

186 Appendix C Curriculum Vitae

E-Business and Telecommunication Networks (ICETE 2004), Setubal, Portugal,

25-28 August, 2004.

5. Ulrich Ultes-Nitsche and InSeon Yoo, “Run-time Protocol-Conformance Ver-

ification in Firewalls”, Proc. of the 4th Annual ISSA 2004 IT Security Confer-

ence, Johannesburg, South Africa, 30 June-2 July, 2004.

6. InSeon Yoo, “Protocol Anomaly Detection and Verification”, Proc. of the

5th Annual IEEE Information Assurance Workshop, West Point, New York, USA,

June 10-11, 2004.

7. InSeon and Ulrich Ultes-Nitsche, “How to Predict Email Viruses under Un-

certainty”, Prof. of IEEE Workshop on Information Assurance (WIA04) at

the IEEE International Performance Computing and Communications Conference,

Pheonix, Arizona, USA, 14-17 April, 2004.

8. InSeon and Ulrich Ultes-Nitsche, “Adaptive Detection of Worms/Viruses in

Firewalls”, Proc. of International Conference on Communication, Network, and

Information Security (CNIS 2003), New York, USA, 10-12 Dec, 2003.

9. Ulrich Ultes-Nitsche and InSeon Yoo, “Steps Toward and Intelligent Firewall

- A Basic Model”, Proc. of Conference on Information Security for South Africa

(ISSA2003), Sandton, Gauteng, South Africa, 9-11 July 2003.

10. InSeon Yoo and Ulrich Ultes-Nitsche, “An Intelligent Firewall To Detect

Novel Attacks : An Integrated Approach based on Anomaly Detec-

tion Against Virus Attacks.”, Proc. of SOFSEM Conference, SOFSEM 2002

Student Research Forum. Milovy, Czech Republic, Nov. 24-28, 2002.

11. InSeon Yoo and Ulrich Ultes-Nitsche, “Intelligent Firewall: Packet-Based

Recognition Against Internet-Scale Virus Attacks.”, Proc. of Conference

on Communications and Computer Networks (CCN 2002), Cambridge, USA. Nov.

04-06, 2002.

12. Ulrich Ultes-Nitsche and InSeon Yoo, “An Intelligent Firewall to Detect

Novel Attacks - Pairing Detecting Malicious Patterns with Anomaly

Detection. ”, Proc. of Conference on Information Security for South Africa

(ISSA2002), Gauteng, South Africa, July 2002.

13. InSeon and Ulrich Ultes-Nitsche, “An Integrated Network Security Ap-

proach : Pairing Detecting Malicious Patterns with Anomaly Detec-

tion.”, Proc. of Conference on Korean Science and Engineering Association in

UK(KSEAUK2002). Surry University,Guildford, Surrey, UK. July, 2002.

	Abstract
	Zusammenfassung
	Abbreviations and Acronyms
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Chapter 1: Introduction
	1.1 Defence Mechanism and Network Protocols
	1.2 Likelihood of Attacks
	1.3 Risk Assessment of Data Packets
	1.4 Exclusions
	1.5 Reader's Guide

	Chapter 2: Motivations
	2.1 Research Objective
	2.2 Increasingly Serious Attacks
	2.3 Classification and Recognition
	2.4 Faces vs. Packets
	2.5 Current Network Security Systems' Problems
	2.6 Requirements To Assess Data Packets In Firewalls
	2.6.1 Data Packet Detection
	2.6.2 Dynamic Packet Handling Ability

	2.7 Proposed Firewall Architecture
	2.7.1 Packet Verifier
	2.7.2 Packet-Based Classification Engine
	2.7.3 Smart Detection Engine

	2.8 Current Status of Virus Detection

	Chapter 3: Analysis of Vulnerabilities in Network Protocols & Mechanisms
	3.1 Protocol Anomaly-Based Attacks
	3.1.1 IP Spoofing & Incomplete Three-way Handshake
	3.1.2 SYN flood attack
	3.1.3 Ping of Death
	3.1.4 Land Attack
	3.1.5 Smurf attack
	3.1.6 Teardrop attack
	3.1.7 UDP Flood Attacks

	3.2 Widespread Malicious Code
	3.2.1 Activation Techniques
	3.2.2 Propagation
	3.2.3 Propagation Features of Email Worms
	3.2.3.1 W32/Dumaru@MM
	3.2.3.2 W32/Myparty
	3.2.3.3 VBS/BubbleBoy
	3.2.3.4 W32/SirCam
	3.2.3.5 Nimda Worm
	3.2.3.6 W32/BadTrans

	Chapter 4: Protocol Anomaly Detection and Verification
	4.1 Requirements of Network Protocols For Anomaly Detection
	4.1.1 IP Protocol
	4.1.1.1 IP Fragmentation

	4.1.2 ICMP Protocol
	4.1.3 UDP Protocol
	4.1.4 TCP Protocol

	4.2 TCP Runtime Verification Model
	4.2.1 Current TCP Model
	4.2.1.1 Problems with Extraneous State Transitions
	4.2.1.2 Problems with Simultaneous Open

	4.2.2 Generating TCP Verification Model
	4.2.2.1 Removing Unnecessary States In Implementation
	4.2.2.2 Reorganizing Sequences Of States
	4.2.2.3 Removing Server-side-dependent Termination
	4.2.2.4 Simplified TCP Verification Model
	4.2.2.5 Example Cases of TCP State Transition

	4.3 SDL Modeling For Prototyping Packet Verifier
	4.3.1 Dynamic Semantics Of Finite State Machines
	4.3.2 SDL's Underlying Model
	4.3.2.1 Process Model
	4.3.2.2 Communication Model

	4.3.3 Generating the Specification
	4.3.4 SDL Creation based on the TCP Verification Model

	4.4 Countermeasures Against Protocol Anomaly-Based Attacks
	4.4.1 Incomplete Three-way Handshake
	4.4.2 IP Spoofing
	4.4.3 SYN flood attack
	4.4.4 Ping of Death & Land Attack
	4.4.5 Fragment attack
	4.4.6 ICMP flood (Smurf attack) & UDP flood attack

	Chapter 5: Email Classification For Risk Assessment
	5.1 Background of Bayesian Networks
	5.1.1 Bayes' Theorem and Bayesian Inference
	5.1.2 Naive Bayesian Classifier

	5.2 Generating a Naive Bayesian Classifier
	5.2.1 Statistical Characteristics of Email
	5.2.2 Choosing Evidence Factors
	5.2.3 A Naive Bayesian Classifier Against Email Viruses

	5.3 Generating OBDDs For Email Classifier Model
	5.3.1 Ordered Binary Decision Diagrams
	5.3.2 OBDD Representation From The Naive Bayesian Classifier
	5.3.3 Email Classifier With OBDDs

	Chapter 6: Virus Visualization & Recognition
	6.1 Background of Self-Organizing Map
	6.1.1 SOM Algorithm
	6.1.2 SOM's Properties
	6.1.2.1 Quantization
	6.1.2.2 Projection

	6.2 File Format & Virus Types
	6.2.1 Parasitic Viruses
	6.2.2 Macro Viruses
	6.2.3 Polymorphic viruses

	6.3 SOM Training & Visualization
	6.3.1 Data Preparation for SOM Training
	6.3.2 Visualization Method
	6.3.3 Process of SOM training and visualization
	6.3.3.1 SOM projection
	6.3.3.2 SOM Distribution

	6.4 Virus Visualization Using MATLAB
	6.4.1 Initialisation
	6.4.2 Normalisation
	6.4.3 Creation
	6.4.4 Visualization

	6.5 Result of Virus Visualization
	6.5.1 Example Case: Win95 CIH Virus
	6.5.2 Example Case: Win95 Boza Virus
	6.5.3 Example Case: Win32.Apparition
	6.5.4 Example Case: Win32.HLLP.Semisoft
	6.5.5 Example Case: MacroWord97.Mbug Virus

	Chapter 7: Application Cases
	7.1 Janus Firewall System
	7.1.1 Background of Packet Filtering & Packet Classification
	7.1.1.1 Packet Filters

	7.1.2 Process of Janus System
	7.1.3 Placement of the Janus system
	7.1.4 Packet-filter & Classifier
	7.1.4.1 Access Lists
	7.1.4.2 Address Notation
	7.1.4.3 Structures For Filtering Ruleset
	7.1.4.4 Message Pattern Matching Algorithm

	7.1.5 Packet Verifier
	7.1.6 Email Classifier

	7.2 Janus VirusDetector
	7.2.1 Test Data Collection
	7.2.2 Process of Virus Detection
	7.2.3 Result of Virus Detection
	7.2.4 Unencrypted Parasitic Viruses
	7.2.5 Polymorphic and Encrypted Parasitic Viruses
	7.2.6 False positive vs. False negative in VirusDetector
	7.2.7 Discussion of VirusDetector

	Chapter 8: Conclusions
	8.1 Overview
	8.2 Summary
	8.3 Future Work

	Appendix A: TCP Runtime Verification Model SDL Specification
	Appendix B: Background of Packet Classification and Filtering
	B.1 Packet Filtering
	B.1.1 Packet filter rules
	B.1.2 Theoretical Bounds on Packet Classification

	B.2 Related Work on Packet Classification & Filtering
	B.2.1 Table-driven Methods
	B.2.1.1 Tuple Space Search
	B.2.1.2 Multi-dimensional Range Matching
	B.2.1.3 Scalable High Speed IP Routing Lookup

	B.2.2 Specialised Data Structures
	B.2.2.1 Grid of Tries
	B.2.2.2 Expression Trees
	B.2.2.3 Binary Directed Acyclic Graphs
	B.2.2.4 Decision Graphs
	B.2.2.5 Hierarchical Intelligent Cuttings
	B.2.2.6 Binary Decision Diagram

	B.2.3 Hardware-based Classification

	Appendix C: Virus Detection Result by Janus VirusDetector
	Bibliography
	Curriculum Vitae
	Education
	Research Interests
	Research Experience
	Awards & Certificates
	Extracurricular Activities
	Computer Technical Experiences
	Publications

