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Abstract

This thesis work describes a detailed study of the Stark interaction in the ground state
of cesium atoms trapped in a solid helium matrix. The motivation for the investigation
of electric �eld e�ects on alkali species implanted in solid helium is related to the original
main goal of our experimental activities, i.e., the measurement of a permanent atomic
electric dipole moment (EDM). The existence of an atomic EDM simultaneously violates
the discrete symmetries of time reversal (T) and parity (P). The search for an atomic EDM
is thus of great scienti�c interest since it would prove the existence of new physics beyond
the Standard Model and it would open the doors towards a better understanding of the
fundamental interactions of elementary particles. At the beginning of the 1990s, the helium
matrix doped with paramagnetic atoms was thought to be a specially well-suited system
for an EDM experiment. The matrix-isolated cesium atoms, in the body centered cubic
(bcc) phase of solid helium, reside in bubble-like cavities, which have a spherical shape
when the atoms are in the radially symmetric 6S1/2 ground state. The helium crystal
thus plays the role of a diamagnetic and perfectly isotropic trap where the atoms can be
stored and studied for long times. A high degree of ground state spin polarization can
be created by optical pumping and, owing to the absence of interaction with the crystal
�elds, the state of polarization can be maintained for an exceptionally long time (≈ 1 s).
This slow spin relaxation rate allows high-resolution magnetic resonance spectroscopy to
be performed on doped helium crystals. Moreover, the large electric breakdown voltage
of super�uid and solid helium (in excess of 100 kV/cm) make the helium matrix an ideal
environment for electric �eld experiments.

The experimental signature of a permanent EDM becomes visible when the atomic
sample is exposed to an external electric �eld and provides a shift of the atomic energy
levels linear in the applied �eld. The interaction of an atom with an external electric �eld,
i.e., the Stark interaction, leads also to P� and T�conserving e�ects which are quadratic in
the �eld strength. Although these quadratic e�ects are extremely small, they overwhelm
any linear e�ect due to the EDM by several orders of magnitude and they thus appear
in an EDM experiment as a systematic background which has to be characterized. The
study of the quadratic e�ect has revealed several unexpected aspects that have renewed
our motivations to pursue a detailed investigation of this research �eld.

The quadratic Stark e�ect in the ground state of alkali atoms, treated in the frame of
a perturbation theory approach, can be parameterized in terms of a strongly suppressed
tensor polarizability α2, which arises only as a third order e�ect when the hyper�ne in-
teraction is included in the perturbation. The forbidden third-order tensor e�ect is seven
orders of magnitude smaller than the allowed second-order Stark interaction. The �rst
theoretical model describing the Stark e�ect in the nS1/2 ground state of alkali atoms was
published in 1968 by Sandars. Since then, Sandars' work has been considered the main
reference for the theory of the quadratic Stark e�ect in alkali ground states. The tensor
polarizability of cesium was measured in a few experiments in the 1960s and about 40 years
later in Fribourg by our group, by measuring the shift of the magnetic transitions between
Zeeman sub-levels induced by an external electric �eld. Although all these experiments
yielded compatible results, they showed a large discrepancy with respect to the theoretical
value of the tensor polarizability derived from Sandars' model. It was shown that a similar
discrepancy exists for all the alkalis.

The third order Stark interaction also leads to a shift of the hyper�ne clock transition
frequency (| 6S1/2F = 4,M = 0 > ↔ | 6S1/2F = 3,M = 0 >). This e�ect (static Stark
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e�ect) is of special interest for the scienti�c community because of its close connection with
the blackbody shift (dynamic Stark e�ect) of the clock transition frequency. A precise
knowledge of this e�ect is of great importance for the de�nition of the second. At present,
the atomic-clock community is involved in an important open debate due to the existence
of contradicting values of the Stark shift of the hyper�ne transition frequency. The �rst of
these values is well represented by the experimental result of a group in Paris, while the
second value is represented by the results (both theoretical and experimental) obtained by
a group in Turin.

Therefore, the actual knowledge of the quadratic Stark e�ect is characterized by two
major open questions. The �rst one concerns a long-standing discrepancy between ex-
perimental values and theoretical predictions of the tensor polarizability, while the second
open question concerns the knowledge of the Stark shift of the clock transition, which is
essential for the calibration of atomic clocks. This thesis work gives a relevant contribution
to both the points mentioned above.

This work has been divided into two main parts:

• In Chapter 1 we give an introduction to this work. We present the main motivations
for the experiment, we outline the main features of the doped helium matrix and
we give a general overview of the role of the EDM in the framework of the search
for new physics beyond the Standard Model. In Chapters 2 and 3 we present a
novel theoretical investigation of the quadratic Stark e�ect. We apply perturbation
theory up to third order, including the hyper�ne interaction, and we show that we
can reproduce the results of the �old� Sandars' theory. In a second step, we extend
this theory in order to bridge the historical gap with experimental results. We show
that the inclusion in the third order perturbation expansion of o�-diagonal hyper�ne
matrix elements radically changes the value of the tensor polarizability thus leading
to a full reconciliation of theory and experiment. Moreover, we highlight the existence
of a sign error in Sandars' model. According to our theory the tensor polarizabilities
of the hyper�ne levels F = 4 and F = 3 have opposite signs, whereas in Sandars'
theory α2 does not depend on F . It seems that this sign error has remained unnoticed
in the literature for almost 40 years.

• Chapters 4, 5 and 6 are then dedicated to the experiment. We outline the main
features of our apparatus used for high-resolution magnetic resonance experiments.
The relevant technical improvements of the apparatus over the last two years led
us to reach a sensitivity to resonance frequency shifts on the order of 1 Hz. We
can apply �elds up to about 50 kV/cm. We present the �rst measurement of the
quadratic Stark e�ect in cesium atoms implanted in a solid helium matrix and we
show that we obtain a result in very good agreement with previous measurements
performed in more conventional environments. We also show results which prove
unambiguously that the signs of the tensor polarizabilities predicted by our model
are correct. In Chapter 7 we present our conclusions concerning the feasibility of an
EDM experiment on paramagnetic atoms embedded in solid helium matrices, and
we brie�y sum up the main results of this work.
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Abstract

Questa tesi descrive lo studio dell'interazione Stark nello stato fondamentale di atomi di
cesio intrappolati in una matrice di elio solido. La motivazione alla base del nostro interesse
per gli e�etti di un campo elettrico negli atomi alcalini impiantati in elio solido è connessa
all'obiettivo originale delle nostre attività sperimentali, ovvero la misura di un momento
di dipolo elettrico atomico permanente (EDM). L'esistenza di un EDM viola simultanea-
mente le simmetrie discrete di inversione temporale (T) e di parità (P). La ricerca di un
EDM atomico é pertanto di notevole interesse scienti�co in quanto proverebbe l'esistenza
di un nuovo tipo di �sica oltre il Modello Standard ed aprirebbe le porte ad una migliore
conoscenza delle interazioni fondamentali tra particelle elementari. All'inizio degli anni
'90, venne suggerita l'idea che una matrice di elio drogata con atomi paramagnetici fosse
un ambiente ideale per la misura di un EDM. Gli atomi di cesio isolati in una matrice di
elio, nella fase isotropica detta body centered cubic (bcc), risiedono in cavità simili a bolle,
che presentano una forma sferica quando gli atomi stessi si trovano in uno stato a simme-
tria sferica, quale lo stato fondamentale 6S1/2. Il cristallo di elio riveste quindi il ruolo di
una struttura diamagnetica e perfettamente isotropica nella quale gli atomi possono essere
intrappolati ed osservati per tempi molto lunghi. La tecnica nota come optical pumping
permette di ottenere un elevato grado di polarizzazione degli spin atomici nello stato fon-
damentale. A causa dell'assenza di interazione con i campi elettrici e magnetici del cristallo
di He, tale stato di polarizzazione puo' essere mantenuto per un tempo eccezionalmente
lungo (≈ 1 s), garantendo un'alta risoluzione negli esperimenti di risonanza magnetica.
Inoltre, il voltaggio di breakdown elettrico nell'elio super�uido e solido (maggiore di 100
kV/cm) rende la matrice di elio un ambiente ideale per esperimenti con campi elettrici.

Quando il campione atomico è esposto ad un campo elettrico esterno, l'esistenza di
un EDM si manifesta come uno shift dei livelli energetici lineare nell'intensità del campo
applicato. L'interazione di un atomo con un campo elettrico esterno, ovvero l'interazione
Stark, produce anche e�etti che non violano le simmetrie P e T, e che dipendono quadrati-
camente dall'intensità del campo. Sebbene questi e�etti quadratici siano estremamente
deboli, essi superano di diversi ordini di grandezza qualsiasi e�etto lineare dovuto ad un
EDM ed appaiono quindi come un background sistematico che necessita di una precisa
caratterizzazione. Lo studio dell'e�etto Stark quadratico ha pero' rivelato degli aspetti
inattesi che ci hanno fornito un'ulteriore forte motivazione ad approfondire l'investigazione
di questo campo di ricerca.

L'e�etto Stark quadratico nello stato fondamentale degli atomi alcalini, trattato nel
contesto della teoria delle perturbazioni, puo' essere caratterizzato tramite la polarizz-
abilità tensoriale α2, che appare solo come un debolissimo e�etto di terzo ordine quando
l'interazione iper�ne viene inclusa nella perturbazione. Questo e�etto tensoriale proibito
è sette ordini di grandezza piu' debole dell'interazione Stark di secondo ordine. Il primo
modello teorico dell'e�etto Stark nello stato nS1/2 degli atomi alcalini venne pubblicato
nel 1968 da Sandars. Successivamente, il lavoro di Sandars è stato considerato il prin-
cipale riferimento per la teoria dell'e�etto Stark nello stato fondamentale degli alcalini.
La polarizzabilità tensoriale del cesio è stata misurata negli anni '60 e, circa 40 anni piu'
tardi, in un esperimento condotto dal nostro gruppo a Fribourg. Tutti questi esperimenti
si basano sulla misura dello shift delle transizioni magnetiche tra livelli Zeeman, indotto
da un campo elettrico esterno. Sebbene i risultati sperimentali siano in ottimo accordo tra
loro, essi mostrano una notevole discrepanza rispetto al valore teorico dedotto dal modello
di Sandars. E' stato inoltre dimostrato che tale disaccordo sussiste nel caso di tutti gli
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atomi alcalini.
L'interazione Stark di terzo ordine produce anche uno shift della frequenza di tran-

sizione iper�ne | 6S1/2F = 4,M = 0 > ↔ | 6S1/2F = 3,M = 0 > (la frequenza di
riferimento negli orologi atomici). Questo e�etto (e�etto Stark statico) è di particolare
interesse per la comunità scienti�ca a causa della sua stretta connessione con il blackbody
shift (e�etto Stark dinamico) della cosiddetta clock transition frequency. Una precisa
conoscenza di questo e�etto è di grande importanza per la de�nizione dell'unità di tempo.
Al momento, la comunità degli orologi atomici è impegnata in un vivissimo dibattito dovuto
all'esistenza di valori contraddittori dello Stark shift della frequenza di transizione iper�ne.
Il primo di questi valori è rappresentato dal risultato sperimentale di un gruppo a Parigi,
mentre il secondo valore è rappresentato dai risultati, teorico e sperimentale, ottenuti da
un gruppo di Torino.

La conoscenza attuale dell'e�etto Stark è quindi caratterizzata da due principali ques-
tioni aperte. La prima riguarda la discrepanza storica tra valori sperimentali e teorici della
polarizzabilità tensoriale, mentre la seconda riguarda la conoscenza dello Stark shift della
transizione iper�ne, essenziale per una corretta calibrazione degli orologi atomici. Questa
tesi fornisce un contributo rilevante ad entrambi i punti appena descritti.

Possiamo dividere questo lavoro in due parti principali:
• Il capitolo 1 è un'introduzione generale volta essenzialmente a chiarire le principali

motivazioni alla base delle nostre attività sperimentali e teoriche. L'introduzione
fornisce inoltre una descrizione delle piu' importanti caratteristiche della matrice di
elio solido drogata con atomi alcalini, e una visione generale del ruolo dell'EDM nel
contesto della ricerca di una nuova frontiera della �sica oltre il Modello Standard. Nei
capitoli 2 e 3 presentiamo un nuovo modello teorico dell'e�etto Stark quadratico. Ap-
plicando la teoria delle perturbazioni �no al terzo ordine ed includendo l'interazione
iper�ne, otteniamo i risultati della "vecchia" teoria di Sandars. In un secondo tempo
estendiamo il nostro modello e dimostriamo che, includendo gli elementi di matrice
non-diagonali dell'interazione iper�ne nello sviluppo della perturbazione al terzo or-
dine, il valore della polarizzabilità tensoriale cambia radicalmente. Questo risultato
comporta una completa riconciliazione tra teoria ed esperimenti. Inoltre, eviden-
ziamo l'esistenza di un errore di segno nel modello di Sandars. Secondo il nostro
modello le polarizzabilità tensoriali dei livelli iper�ni F=4 e F=3 hanno segni op-
posti, mentre nel modello di Sandars α2 non dipende da F. Sembra che questo errore
non sia mai stato rilevato in quasi 40 anni.

• I capitoli 4, 5 e 6 sono dedicati alle nostre attività sperimentali. Descriviamo innanz-
itutto le principali caratteristiche del nostro apparato per risonanza magnetica ad
alta risoluzione. I progressi tecnici degli utlimi due anni ci hanno portato a raggiun-
gere una sensitivity allo shift della frequenza di risonanza di circa 1 Hz, e ci hanno
permesso di applicare campi elettrici �no a 50 kV/cm. Presentiamo quindi i nostri
piu' importanti risultati: la prima misura dell'e�etto Stark quadratico in atomi di
cesio in una matrice di elio solido, in ottimo accordo con i risultati ottenuti in altri
esperimenti condotti in ambienti piu' convenzionali, e una prova sperimentale che i
segni delle polarizzabilità tensoriali predetti dal nostro modello sono corretti. Nel
capitolo 7 concludiamo con alcune importanti osservazioni concernenti la realizzabil-
ità di un esperimento per misurare un EDM in atomi paramagnetici intrappolati in
matrici di elio solido, e riassumiamo brevemente i principali risultati conseguiti nel
corso di questo lavoro di tesi.
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Chapter 1

Introduction

1.1 Historical overview and original motivation of the experi-
ment
The CPT theorem is one of the most basic laws of modern physics. In simple words, it states
that the "laws of physics", or more precisely a broad class of Lorentz invariant quantum
�eld theories, are invariant with respect to the combined discrete symmetry operations
C (charge conjugation), P (parity, i.e., mirror symmetry) and T (time reversal). On the
other hand, there is no reason for these symmetries to be conserved individually and a
violation of any one of them must be compensated by the violation of at least one of the
others. This guarantees the validity of the CPT theorem.

Violations of parity were observed in 1957 in three independent experiments [1�3] in
weak decays of 60Co nuclei, pions and muons. Today the violation of the discrete symmetry
P is a very well understood phenomenon in the frame of the so-called Standard Model.
Several atomic physics experiments in the 1980's have further provided experimental evi-
dence for parity violation in atoms and have yielded quantitative results which are all fully
compatible with the predictions of the Standard Model.

The question of the violation of T, or equivalently the violation of the combined sym-
metry CP, is much less well understood. In 1964 the violation of the combined symmetry
CP was observed in the decay of the K0-meson [4] and more recently also in the decay of
the B0-meson [5]. The only direct observation of a T-violating process was observed in the
decay of neutral kaons in 1998 [6]. At present no other evidence for CP/T violation has
been reported in literature despite an enormous experimental e�ort to unveil such e�ects
in di�erent systems ranging from elementary particles over atoms to molecules. Thus, the
invariance of physical systems with respect to the reversal of the arrow of time remains a
mysterious �eld which presents still nowadays a great challenge to experimentalists as well
as theoreticians.

An extremely interesting way to search for T-violating phenomena consists in searching for
coexisting permanent magnetic and permanent electric dipole moments in elementary parti-
cles. If electrons had a permanent electric dipole moment (EDM) this would be transferred
to atoms through an internal enhancement mechanism which turns out to be particularly
strong in heavy paramagnetic species [7] 1. The existence of a permanent electronic EDM

1Heavy polar molecules o�er an even greater sensitivity to the electron EDM than heavy atoms and
are thus very good candidates for EDM experiments. At present, Hudson et al. [8] are performing EDM
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2 Chapter 1 Introduction

violates simultaneously the symmetry operations of parity and time reversal.
However the size of the electron EDM predicted by the Standard Model is extremely

small and de�nitely beyond the sensitivity of feasible experiments. On the other hand
it is generally admitted that, despite its enormous success in explaining many physical
phenomena, the Standard Model is incomplete in some parts. Several alternative models
(Multi-Higgs models, SUSY, Left-right symmetric models) predict a much larger electron
EDM which does not seem to be so desperately far from present experimental sensitivities.
The predictions of these novel models thus open new exciting doors towards a completely
new and unexplored world. Today the search for a permanent EDM of the electron (in
atoms or molecules) or a permanent EDM of the neutron is recognized as one of the most
promising searches for new physics beyond the Standard Model.

In 1991 S.Kanorski and A.Weis proposed the use of matrix-isolated paramagnetic atoms in
super�uid helium to perform a highly sensitive EDM experiment in which the He matrix
plays the role of a trap in which atoms can be stored and studied for long time intervals.
The main idea was that the diamagnetic character and the isotropy of the host matrix
would guarantee long spin relaxation times of the implanted atoms and thus very narrow
magnetic resonance lines. These properties together with a very large electric break-down
voltage (> 100 kV/cm) were the main reasons why condensed helium was thought to be
an ideal environment for a sensitive atomic EDM experiment [9�11].

In the following years the �rst optical spectroscopy experiments with Ba, Au and Cu
atoms implanted in HeII were carried out by the group of A.Weis in collaboration with
T.W.Hänsch at the Max Planck Institute for Quantum Optics (MPQ) in Garching, Ger-
many [9] . The implantation of atoms was achieved by means of laser ablation and the
detection by their laser-induced �uorescence. One of the main achievements of these �rst
activities is related to the optical properties of Ba in super�uid helium which were quan-
titatively explained in the frame of the so-called bubble model [12]. Magnetic resonance
experiments on alkali atoms in super�uid He were successfully performed by the Japanese
group of T.Yabuzaki [13] but very broad resonance lines (linewidth on the order of 105

Hz) were observed. In 1993 experiments were thus extended to solid 4He by A.Weis and
S.Kanorski. Solid He occupies a special position within the noble gas matrices since it is
the only element in nature which does not solidify even at T = 0K unless a pressure in
excess of 25 bar is applied. The reason for this unique behavior is twofold: the de Broglie
wavelength of He is very large due to its low mass and the interatomic He-He interactions
are very weak due to the small polarizability. The zero-point vibrations of He atoms are
comparable to the interatomic separation and the atomic wavefunctions strongly overlap.
Therefore pressurized He solidi�es as a so-called quantum crystal.

Ba and Cs atoms were the �rst atomic species implanted in a solid He matrix by means of
the same ablation technique [14, 15] applied in the liquid phase. In the following years the
study of the optical properties of the implanted atoms allowed the extension of the bubble
model to the solid matrix [16], optical pumping of Cs atoms in the bcc phase of solid 4He
was observed with very long longitudinal electronic spin relaxation times of ≈ 1 sec [17�19]
and magnetic resonance lines of less than 20 Hz were obtained [20] in optical-r.f. magnetic
resonance experiments. All those results were extremely encouraging steps on the way
towards an EDM experiment. In view of that �nal goal the last 10 years were devoted

experiments on YbF molecules.
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mainly to the study of the e�ects of the He crystal on the embedded atoms [19, 21�24] and
to the optimization of the set-up for high resolution magnetic resonance experiments with
large electric �elds [24�26].

However, it was soon realized that beside the far-reaching goal of a possible EDM ex-
periment, the helium matrix doped with foreign atoms is such a complex and unique
system that it constitutes a research �eld for its own 2. Among the most recent relevant
results obtained during the investigation of the physical properties of He-matrix-isolated
Cs atoms we mention the observation and theoretical study of multi-photon processes in
the ground state of Cs [28, 29] and the investigation of the optical properties of the system,
which recently led to the observation of exciplex molecules Cs∗He2 and Cs∗He7 [30, 31].
The importance of these latter results lies in the fact that while the former molecule had
already been observed in other environments it was commonly believed that exciplexes
Cs∗Hen with n > 2 might not exist.

The present work is focused on the study of the interaction of solid He isolated alkali
atoms with a static electric �eld. If atoms had a measurable permanent EDM it would
appear in a double optical magnetic resonance experiment performed in a uniform external
electric �eld as a very tiny shift of the magnetic resonance line linear in the applied �eld
strength. On the other hand, the interaction of atoms with an external electric �eld, i.e.,
the Stark interaction, produces other e�ects beside the linear one due to the EDM (if there
is a linear one). Although parity conservation implies that neither S nor P states can have
a permanent electric dipole moment, the Stark interaction can mix their wavefunctions and
the atom can acquire an induced electric dipole moment < dind >∝ E. In this case the
energy of the atom in the external �eld is quadratic in the �eld strength. This contribution
to the interaction atom-�eld, given by H = −dind ·E, conserves both P and T.

As we shall see in a later chapter, the quadratic Stark e�ect can be decomposed into an
allowed scalar e�ect (proportional to the scalar polarizability) and a strongly suppressed
tensor e�ect (proportional to the tensor polarizability) which is about seven orders of
magnitude smaller than the former.

According to the present state of the art, the experimental upper limit on a permanent
EDM in 133Cs is dCs < 10−24e · cm [32]. This value leads to a linear P- and T-violating
e�ect which is about 6 orders of magnitude smaller than the P- and T-conserving quadratic
one. The situation is summarized in Fig. 1.1.

In conclusion, the quadratic Stark e�ect would appear as a systematic background in
a permanent atomic EDM measurement. As we shall see in more detail later, the basic
idea of an EDM magnetic resonance experiment consists in measuring the shifts of the res-
onance line under the reversal of the orientation of the electric �eld (∆ν(±E)). The linear
e�ect would then appear as a tiny shift superposed to a large quadratic background. The
characterization of this background is thus essential for an EDM experiment. This is the
original basic motivation that has triggered the experimental and theoretical investigation
reported here.

During the studies related to the EDM experiment, we realized important features of the
quadratic Stark e�ect that go beyond its interest for a possible future EDM measurement:

2This �eld is closely related to experiments performed on doped He clusters, pursued in several labora-
tories worldwide. For more details one can read the review paper by Toennies et al. [27].
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Figure 1.1: The energy associated with the interaction of an alkali atom with an external
static electric �eld has three distinct contributions. The interaction mixes a small quantity
of anti-symmetric P states into the symmetric S states thus inducing an electric dipole
moment, responsible for an allowed scalar and a forbidden tensor e�ect (�rst two terms
from the left). The parameters α0 and α2 are the so called scalar and tensor polarizabilities
respectively and will be discussed in detail in a following chapter. We notice that both
the e�ects of the induced dipole moment are quadratic in the applied �eld. On the other
hand, if the atom has a permanent EDM then its interaction with the electric �eld will
lead to an e�ect linear in the �eld itself (third term). In the bottom line of this sketch we
report the relative orders of magnitude of the three contributions for a �eld of 10 kV/cm.

• the incompleteness of the theoretical models developed in the 1960's,

• a large gap between experimental measurements of the forbidden tensor polarizability
and the theoretical predictions,

• the existence of an open debate concerning the quadratic Stark shift of the hyper�ne
clock transition in Cs with contradicting experimental results and an unsatisfactory
theory.

In the present work we have produced signi�cant novel contributions to the three points
mentioned above.

In parallel to the theoretical e�orts over the past 4 years we also deeply modi�ed our
experimental set-up with the main goal of measuring for the �rst time the quadratic Stark
e�ect in the ground state of Cs atoms embedded in solid 4He. A few years ago at the
University of Bonn and later in Fribourg some experiments aiming at measuring the Stark
e�ect in solid He were carried out by our group without success [25]. Several technical
improvements with respect to the original electric-�eld set-up were made. The pressure
cell in which the He crystal is grown was modi�ed to enable the application of much higher
electric �elds (≈ 50 kV/cm) and the general sensitivity of the apparatus was appreciably
improved with respect to the �rst unsuccessful measurements. These e�orts led to the
�rst quantitative measurement of the quadratic Stark e�ect in the ground state of cesium
atoms implanted in solid He.

This experimental result is of crucial importance in the frame of a comparison between
the theoretical model that we present in this work and the historical model developed in
the 1960's by Sandars [33]. According to this latter model the tensor polarizability of
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the ground state does not depend on the quantum number F, whereas our novel model
predicts a sign di�erence between the tensor polarizabilities of the levels F=4 and F=3.
This disagreement can now be ruled out on the basis of our experimental results.

1.2 Cesium atoms in solid helium
In the most general sense, matrix isolation spectroscopy comprises a range of experimental
techniques in which guest atoms, molecules or radicals are trapped in rigid host materials.
The basic idea is that the embedded atomic species under investigation are spatially con-
�ned in the host matrix and thus prevented from di�using and interacting/recombining
with other particles. Of course this enables very long interaction times with applied static
and/or dynamic �elds, which is an essential prerequisite for high resolution spectroscopy
experiments.

The idea of performing spectroscopy of atoms embedded in heavy rare gas matrices (Ne, Ar,
Kr, Xe) goes back to Pimentel in 1954 [34]. Although the experimental advances described
in this �rst paper were rather poor due to the relatively high temperature limit achievable
in laboratories at that time 3, the idea was born and its power beyond some preliminary
technical di�culties was immediately appreciated. Today rare-gas-matrix isolation is a
well established technique which provides the advantage of trapping guest species in an
inert environment [35, 36]. These features together with the transparency of noble gas
matrices throughout the IR-visible-UV spectrum are the main reasons for the large success
of rare-gas-matrix isolation in the framework of optical spectroscopy.

The use of matrix isolated atoms to search for EDMs was proposed only at the end of
the eighties [37]. Unfortunately in heavy noble gas matrices the powerful optical methods
of preparation (i.e., spin polarization of the atomic sample by optical pumping) and detec-
tion of magnetic resonance cannot be applied since the spin polarization of the implanted
atoms is quickly destroyed by the strong interaction with crystal �elds. For this reason
in 1991 S.Kanorski, from the Lebedev Physical Institute of Moscow, and A.Weis from the
Max Planck Institute for Quantum Optics in Garching, Germany, suggested the use of
atoms immersed in super�uid 4He and in 1993 the use of atoms embedded in a solid He
matrix. Although helium has the disadvantages of being solid only if pressurized even at
very low temperatures (our typical experimental conditions are T=1.5 K and P> 27 bars)
and of having a very low heat of vaporization, condensed helium also has some unique
properties that make the helium matrix an ideal environment to isolate foreign atomic
species and perform high resolution magnetic resonance experiments. Helium is the only
rare gas matrix in which spin polarization can be e�ciently created by optical pumping
and whose diamagnetic character enables very long spin relaxation times.

In the next sections we give a short overview of the main properties of condensed helium
and we present our motivations for the use of such an exotic and unusual environment
for our experiments. Although super�uid helium has been widely studied and is nowa-
days used in a number of di�erent �elds, our team at the University of Fribourg is, to
our knowledge, the only one in the world involved in the investigation of doped solid 4He
crystals.

3In Pimentel's laboratory the lowest temperature was 66 K, which is cold enough to create Xe matrices,
but too warm for solidifying Ne, Ar and Kr.
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1.2.1 Solid 4He
The phase diagram of condensed 4He shown in Fig 1.2 can be divided into three distinct
regions. At atmospheric pressure 4He becomes liquid at a temperature of T = 4.21 K
and forms the so-called normal liquid (HeI-phase). If the temperature is further decreased
4He becomes super�uid (HeII-phase) at the critical temperature Tc. At saturated vapor
pressure (svp) the �uid-super�uid phase transition takes place at Tc = 2.177K. The two
�uid phases are separated by the so-called λ−line which shifts to lower temperatures with
increasing pressures as shown in the phase-diagram.

Helium has the unique property to be the only natural substance which stays liquid down
to the absolute zero under its vapor pressure. The solid region can be reached only by
applying a pressure P > 25 bar. Under this condition, 4He crystallizes in three di�er-
ent structures depending on T and P [38]. The (uniaxial) hexagonal close-packed (hcp)
structure is shown in Fig. 1.3.b while the (isotropic) body-centered cubic (bcc) structure is
shown in Fig. 1.3.a. Above 1000 bar and 15 K 4He solidi�es giving rise to a face-centered
cubic (fcc) structure. It is well known that all other rare gas matrices condense only in
close-packed structures (i.e., fcc) since those con�gurations enable the maximum number
of atoms to be con�ned in a given volume. The bcc 4 structure that characterizes the he-
lium phase diagram at low pressures is thus another extremely special property of helium
among all solid rare matrices.

The exceptional behavior of helium in its super�uid and solid phases can be understood
as a manifestation of macroscopic quantum properties. It is well known that the physical
properties of liquid helium below the critical temperature Tc can be understood only in
the frame of a fully quantum mechanical model. It was predicted by Einstein in 1925
that an ideal gas of bosons, i.e., particles with integer spin (He has neither an electronic
nor a nuclear angular momentum), would undergo a phase transition when the thermal de
Broglie wavelength

λdB =

√
h2

2πmkT
(1.1)

associated with the momentum distribution at the temperature T becomes larger than
the mean distance between the particles. In this case the wavefunctions overlap and the
particles condensate in the same lowest energy state. This process is well-known under the
name of Bose-Einstein condensation (BEC) and it is the phenomenon that explains the
super�uidity of helium.

The particular properties of solid helium can be understood on the basis of similar ar-
guments. The interaction between neighboring He atoms is of the van der Waals type and
can be described in �rst approximation by the combination of an attractive induced dipole-
dipole part and a Pauli-type repulsive term. Due to the closed s-shell and the very small
polarizability 5 characteristic of He atoms, the repulsive Pauli interaction dominates and
the weak dipole-dipole interaction leads to an attractive potential well depth of only ≈ 7 K
at an internuclear separation of ≈ 2.96 Å as shown in Fig. 1.4. We use the semi-empirical

4The bcc phase was only discovered in 1961 by observing a discontinuity in the velocity of sound at the
phase boundary to the hcp region [41].

5The polarizability αHe = 1.34a3
0, where a0 is the Bohr radius, is the smallest known in nature.
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a c

a

a b

Figure 1.3: a) Primitive cell of the bcc structure. The lattice constant is a=4.12 Å at
T=1.7 K and p=28.4 bar [39]. b) Primitive cell of the hcp structure. The lattice constants
are a=3.67 Å and c=6.01 Å at T=1 K and p=26 bar [39, 40].

He-He pair potential given by Aziz [42] and Kilic [43].
The Heisenberg uncertainty principle ∆x∆p ∼ ~ leads to the following estimation of

the zero-point kinetic energy

∆Ekin =
∆p2

2Mr
≈ ~2

2Mr∆x2
, (1.2)

where Mr is a reduced mass that we assume equal to two nucleon masses. The existence of
a He-He bound state and thus of a solid phase requires the atoms to be localized in �xed
positions in the lattice structure. It is not trivial to de�ne to which extent this localization
is required but for the sake of this discussion we can assume that the position of a given
atom must be de�ned within 10% of the lattice spacing [44]. Now, from Fig. 1.4 we can
infer an equilibrium interatomic distance of ≈ 3 Å which means that the position of each
atom must be de�ned to within 0.3 Å. Thus if we set ∆x = 0.3 Å in Eq. 1.2 we obtain a
zero-point kinetic energy ∆Ekin of 34 K. This energy is much larger than the attractive
potential well. As a consequence helium stays liquid even at T=0 K at atmospheric pres-
sure and the solid phase can be produced only under high pressure 6.

The large kinetic energy discussed above also explains the formation of a bcc instead of a
fcc lattice structure. The zero-point vibrations of the atoms provide a source of internal
pressure which forces the crystal to expand beyond the con�guration that maximize the
number of atoms in a given volume in order to minimize its total energy.

Due to their very low mass He atoms have a very large thermal de Broglie wavelength.
From Eq. 1.1 at T=1.6 K we obtain λDB ≈ 7 Å. Helium atoms are thus strongly delo-

6One should note that H2 solidi�es at T=14 K at atmospheric pressure despite its low molecular mass.
This is a consequence of the large intermolecular potential which shows an attractive potential well of
≈ 100 K.
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Figure 1.4: He-He pair potential given by Aziz [42] and Kilic [43]. The attractive potential
well has a depth of ≈ 7 K.

calized and when the solid is created under pressure the atomic wavefunctions exhibit a
large mutual overlap giving the crystal a macroscopic quantum nature. Quantum solids are
very soft and extremely compressible. These properties distinguish helium crystals from
all other rare gas matrices and play an important role in the formation of the so-called
atomic bubbles, discussed in Section 1.2.3.

1.2.2 Optical properties of solid 4He
Helium is transparent from the UV to the IR-region of the spectrum. The transition from
the 11S0 ground state to the �rst excited state 21P1 of a free helium atom occurs in the
VUV-region at λ = 58.4nm. This is of course an essential condition for the optical and
magnetic resonance spectroscopy of embedded alkali-metal impurities.

The refraction index can be de�ned via the Clausius-Mosotti equation

n =
√

ε =

√
3 + 8πα/Vm

3− 4πα/Vm
, (1.3)

where α = 1.34a3
0 is the polarizability, a0 is the Bohr radius and Vm is the molar volume.

For solid helium with a molar volume Vm = 21 cm3 (corresponding to a density ρ = 3 ·1022

cm−3) one has n = 1.036.
The �uid-solid phase transition is characterized by a density increase of 10% which

corresponds to an increase of the index of refraction by 3%. Therefore the solidi�cation
process, as well as the hcp-bcc transition, can be easily observed by eye.

Although we performed all our measurements in the isotropic bcc phase, it is worth
remarking that the anisotropy of the hcp phase produces optical birefringence. At Vm = 21
cm3 the di�erence between the ordinary and extraordinary refractive indices is ∆n =
2.6 · 10−6. Of course this should be kept into account when performing polarization-
sensitive optical spectroscopy in the hcp phase.
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Figure 1.5: An illustration of an atomic bubble. Left: As explained in the text, the Pauli
repulsive interaction between helium atoms and the alkali valence electron repels the He
atoms from the location of the defect thus leading to the formation of a bubble shaped
cavity. Right: The large zero-point oscillations of the He atoms produce a strong overlap
of their wavefunctions and the matrix can be described as an isotropic continuous medium.

1.2.3 The bubble model

Rare gas matrix isolation has been used since the 1950's to trap atomic and molecular
species in transparent and chemically neutral environments. In the traditional technique,
using heavy rare gas matrices, guest atoms are condensed on a cold substrate simultane-
ously with the rare gas. Although this is a well-established and very e�cient technique, it
cannot be applied to helium, since the solid matrix cannot be formed via a simple cooling
process. The use of a laser ablation technique to implant foreign atoms into a solid He
matrix was �rst demonstrated with Ba and Cs in 1994 [14, 15] by Kanorski, Weis and
collaborators at the Max-Planck-Institute for Quantum Optics.

The details of the implantation into solid helium will be addressed in a later chapter
dedicated to our experimental set-up and techniques. Here we present a short overview
of the so-called atomic bubble model that was �rst successfully applied to describe free
electrons in super�uid helium [45�47] and which was later extended to atomic impurities
in solid helium matrices. Of course we will focus our interest on alkali-metal impurities. A
complete treatment of the bubble model can be found in [48].

The softness of the helium matrix, its high compressibility, the strong delocalization of
helium atoms and the large overlap of their wavefunctions make the solid helium matrix
qualitatively very similar to the environment encountered by foreign species in the super-
�uid phase. Therefore the modeling of the solid crystal as a continuous medium turns out
to be extremely suitable for the description of the formation, the size and the symmetry
of the trapping sites formed by the implanted atoms.

The impurity atom strongly perturbs the structure of the soft crystal in its near vicinity.
The interaction of the valence electron of an implanted alkali atom with the closed S-shell
electronic con�guration of the surrounding helium atoms is characterized by a strong re-



1.2 Cesium atoms in solid helium 11

HeHe

10    s
-12

10    s
-12

6S 1/2

(3) emission:    10    s
-13

-8

Cs

1/26S

6P 1/2

(1) excitation:    10    s
-13

R 0

6P 1/2

(2) bubble relaxation

(4) bubble relaxation

life time: 10  sCs

Figure 1.6: Schematic representation of the bubble evolution during the absorption-
emission cycle.

pulsive potential due to the Pauli principle and a weak van der Waals attractive potential.
The repulsion expels He atoms from the location of the atomic defect and leads to the
formation of a bubble-shaped cavity with a radius of ≈ 5 Å, as shown in Fig. 1.5.

The situation is radically di�erent from all other heavy rare gas matrices which are not
quantum solids. In this case the guest atom is mainly trapped in interstitial or substi-
tutional sites produced by removing one or a few host atoms from their locations in the
lattice structure. In the helium matrix the weak He-He binding energy is easily overcome
by the repulsive perturbation due to the atomic impurity and the geometry of the trapping
site is mainly determined by the alkali-He interaction. Therefore the shape of the bubble
re�ects the symmetry of the electronic wavefunction of the implanted atoms while the size
of the bubble is determined by the balance between the Pauli repulsion on one side and
the bubble surface tension and pressure-volume work required for the bubble creation on
the other side.

In the isotropic bcc phase the shape of the bubble is determined only by the symmetry
of the electronic wavefunction of the impurity. The 6S1/2 and 6P1/2 states of Cs atoms
have a spherically symmetric electronic wavefunction because of their electronic angular
momentum of J=1/2, and they are thus trapped in spherical bubbles. In hcp the situation
is di�erent because the anisotropy of the crystal compressibility tensor a�ects the shape
of the trapping site by producing a small quadrupolar deformation (5 %) of the bubble [23].

The main properties of the optical spectra of Cs atoms implanted in solid helium can
be qualitatively and quantitatively explained in the frame of the bubble model, at least for
the D1 (| 6S1/2 >→| 6P1/2 >) optical transition (λD1 = 894 nm for free Cs atoms). For
instance, in Fig. 1.6 one can follow the time evolution of the bubble during the absorption
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and emission of resonance radiation.

(1) The atom is initially in its ground state 6S1/2, from where it is excited to 6P1/2.
According to the Franck-Condon principle the shape of the cavity does not change during
the excitation process although the 6P1/2 wavefunction occupies a larger volume than the
ground state. This is the origin of the blue shift of the D1 excitation line (λD1 = 894 nm
for free Cs atoms) observed in solid helium (λD1=852 nm in solid helium). (2) The bubble
size relaxes on a time scale of picoseconds. (3) The spontaneous emission takes place in
a bubble that again does not change its shape during the transition process. The larger
radius of the cavity leads to a much weaker disturbance of the atomic transition and thus
the emission line turns out to be only slightly blue-shifted (λD1=888 nm). (4) Finally the
bubble relaxes to its original shape.

All absorption and emission lines are broadened by the interaction with the surround-
ing environment and their positions and shapes depends of course on the pressure of the
helium bulk.

The excitation and emission spectra of the D2 line are de�nitely more complicated since
the state 6P3/2 does not have a spherical symmetry but an apple-like shape characterized
by a nodal axis along which helium atoms can be attracted by the Cs core. This binding
force leads to the formation of Cs∗Hen exciplexes. The formation process of these com-
plexes is beyond the subject of this work and is fully described in [30, 31].

For more details about optical spectra, their interpretation in the frame of the bubble
model and their pressure dependence we refer to [24, 49].

1.2.4 Spin physics in solid helium
Although the preparation of an optical or magneto-optical spectroscopy experiment in solid
helium is not trivial because of the extreme experimental conditions of low temperature
and high pressure, the choice of this unusual environment for an EDM experiment is based
on some relevant advantages mainly related to the special quantum nature of helium crys-
tals.

We summarize the most prominent features here:

• Solid rare gas matrices are transparent and chemically inert. Implanted atoms are
isolated and trapped in a medium that strongly restricts their motion. This provides
rather long interaction times with static, optical and radio-frequency �elds.

• Solid helium is, unlike all other rare gas matrices, an extremely soft and thus highly
compressible medium. Since the He-He interaction is much weaker than the interac-
tion between helium atoms and the atomic impurity, implanted atoms create their
own trapping sites by repelling the surrounding He atoms via the Pauli principle.
The shape of the cavities where the atomic defects reside, i.e., the atomic bubbles,
is almost entirely determined by the electronic con�guration of the guest atom.

• 4He is diamagnetic, i.e., it has neither electronic nor nuclear spin. This means that
an atom with a spherical electronic charge distribution will reside in a spherical cavity
in the center of which it will not experience any crystal �eld or �eld gradient. The
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atomic spin is thus expected to be unperturbed in the bubble. As a consequence a
high degree of spin polarization of the implanted atoms can be produced by optical
pumping and the relaxation times of this spin polarization are exceptionally long.
In 1995 Arndt and collaborators [18] measured the longitudinal and transverse spin
relaxation times of Cs atoms in the bcc phase of solid helium with the results T1 ≈ 1
s and T2 ≈ 250 ms 7.

• Helium is characterized by a breakdown voltage in excess of 100 kV/cm. This prop-
erty make solid helium specially suitable for experiments requiring large electric �elds
to be applied to the sample.

Helium is thus an ideal environment for high resolution spin physics and very sensitive
magnetic resonance experiments.

1.3 An experiment searching for a permanent atomic electric
dipole moment
The search for an atomic EDM is the original far-reaching goal of the experimental activities
with helium-matrix-isolated alkali atoms that were started in the 1990's by A.Weis at
the Max-Planck-Institute for Quantum Optics. The idea of an EDM experiment is also
the basic motivation that triggered our theoretical and experimental investigation of the
quadratic Stark e�ect, which is the subject of this work. Now, after more than ten years
of e�orts in the direction of an EDM experiment we have reached the conclusion that such
an experiment will not be feasible. The search for an EDM in solid helium involves many
challenging technological di�culties. Many of these were solved over the years, but, with
increasing sensitivity, more, yet unsolved problems have emerged. Besides these technical
problems our recent experimental results have also brought up some severe limitations
of more fundamental nature. Nevertheless, since the idea of an EDM experiment has
been over the past 10 years the main motivation behind all our research activities (and
successes), we would like to dedicate this section to give a short and general review of the
main theoretical and experimental concepts related to the electron EDM. We will discuss
the reasons for which we abandon the road to the EDM experiment in a later chapter.

1.3.1 The P- and T-violating electric dipole moment
The orientation of a given quantum mechanical system such as a particle is entirely charac-
terized by its total angular momentum ~J . In the speci�c case of an isolated particle at rest,
i.e., an electron for instance, the angular momentum ~J coincides with the spin ~S. Any other
vector property ~V associated with the particle must be either parallel or antiparallel to ~S 8.

The possibility of an independent orientation of ~V and ~S can be excluded on the basis
of the Pauli principle as follows. If a particle had a vector property ~V 6= ~S then a complete
description of the quantum state of the particle would require, besides the speci�cation of
the projection Sz, an additional quantum number Vz specifying the projection of ~V along
the quantization axis. In other words, the S-independent vector property ~V would add an

7This is not the case in the anisotropic hcp phase where the spin relaxation can be three orders of
magnitude faster than in the bcc phase.

8From a quantum mechanical point of view, here it is actually more correct to say that the matrix
elements of the components Vq must be proportional to the corresponding matrix elements of Sq.
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Figure 1.7: Coexistence of ~d and ~S and their behavior under the symmetry operations of
mirror inversion P (left) and time reversal T (right).

additional degree of freedom to the particle thus allowing one to violate the Pauli principle.
Alternatively, the (anti)parallelism of ~V and ~S can be seen in a more rigorous way as a
consequence of the Wigner-Eckart theorem which implies the proportionality of the matrix
elements of all the vector quantities associated with a given system.

The proportionality of the magnetic moment operator ~µ and the angular momentum ~S

~µ =
µ

~
~S , (1.4)

where µ is the magnetic moment, is a well-known fact. If a particle has a permanent EDM
~d, this would be also (anti)parallel to the angular momentum

~d =
d

~
~S . (1.5)

Let us consider now the behavior of ~d and ~S under the symmetry operations of mirror
inversion (P) and time reversal (T), as sketched in Fig. 1.7. It is clear that the application
of either P or T reverses the relative orientation of ~d and ~S. This fact has important
consequences. If we assume that P and T are good symmetries then the particle and its
P- and T-symmetric counterpart have to occur with equal probabilities in nature, that is
the EDM has to be both parallel and antiparallel to the angular momentum ~S. Of course,
this is possible only if < ~d >= 0. If, on the other hand, ~d coexists with ~µ, or equivalently
~d with ~S, this will be a manifestation of the violation of both the parity and the time
reversal symmetry.

An alternative way to characterize the symmetry properties of the system consists in de�n-
ing a rotationally invariant quantity (a scalar) such as ξ = ~d · ~S (or equivalently ξ = ~d · ~µ).
It is easy to verify that ξ is both a P- and T-pseudoscalar, i.e., that it changes sign under
the considered symmetries: P (ξ) = −ξ and T (ξ) = −ξ. The violation of P and T is thus
equivalent to the existence of a non-vanishing pseudoscalar quantity ξ, i.e., a non-vanishing
electric dipole moment ~d, and vice-versa.
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1.3.2 The electric dipole moment of the electron
The EDM of a �nite sized particle, as the neutron, can be de�ned in a classical picture in
the simple way

~d =
∫

~rρ(~r)d3r , (1.6)

where ρ(~r) is the charge density distribution of the particle. On the other hand, the EDM
of a pointlike particle as the electron requires a de�nition which is not as straightforward
as the one given above.

We will not go into the details of this de�nition since it goes beyond the main subject
of this work. The EDM of the electron is discussed among others by Bernreuther and
Suzuki in [50]. Following their approach, we just mention here that the electron EDM can
be introduced by considering the relativistic coupling of the electron current

jµ = ē(p′)Γµ(q2)e(p) , (1.7)

where q = p′ − p and Γµ are Dirac matrices, to external electromagnetic �elds described
by the potential Aµ (Fig. 1.8).

The interaction given by

H = jµAµ , (1.8)

can be decomposed by considering the coupling of the electron 4-current to the 4-potential
of the electromagnetic �eld and it can be expanded in terms of Lorentz invariant contribu-
tions with di�erent rotational and P, T symmetries. The proportionality factors of these
terms are called form factors Fi(q2). This expansion contains a term of the type ~d· ~E which
describes the coupling of the electron to the external electric �eld. The proportionality
factor of this electric term describes the EDM of the electron, which can be expressed in
terms of the form factor F3 as

de =
F3(0)
2m

. (1.9)

The Standard Model predicts the existence of a �nite electron EDM but at the same
time it puts the stringent limit

de < 10−37 e · cm , (1.10)

on the value of the EDM. This estimation is at least 10 orders of magnitude below the
present best experimental sensitivity. Moreover, if one considers the evolution of the sen-
sitivity of the experimental EDM search over the last 25 years one reaches the conclusion
that there is little hope to measure such a small quantity in the coming decades.

On the other hand, the detection of an electron EDM in a near future will be an
unambiguous signature of the existence of some new physics beyond the Standard Model.
There are indeed some alternative models (without going into details we just mention Multi-
Higgs models, supersymmetry (SUSY), left-right symmetric models), which may explain
the baryon asymmetry of the universe [51]. These models predict an electron EDM much
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Figure 1.8: Coupling of electron to external electromagnetic �elds.

closer to the present experimental sensitivity. The most optimistic predictions lie in the
range

10−28 < de < 10−25 e · cm . (1.11)
Although these theoretical values have to be considered just as coarse estimations based
on the assumption of some reasonable parameter values, they de�nitely present a new and
extremely exciting perspective. For more details about the various alternative models and
the electron EDM one can refer to the exhaustive reviews [50, 52, 53].

At present, the best experimental upper limit on the electron EDM is due to the ex-
periment performed on 205T l in Berkeley by Regan et al [54]

de(exp) < 1.6× 10−27 e · cm . (1.12)

1.3.3 The electric dipole moment of atoms
The Schi� theorem [55] states that a neutral system of electrostatically bound particles
with electric dipole moments cannot have a permanent EDM. This obviously implies that
an eventual electronic dipole moment can not be transferred to the atom. However this
statement is true only if one assumes that the constituent particles are:

• non-relativistic,

• point-like objects,

• without magnetic interactions.

These assumptions are not ful�lled in real atoms and in particular they turn out to be
strongly violated in heavy (high Z) atoms. Therefore, as �rst pointed out by Sandars in
1965 [7], atoms can possess a permanent EDM which can be several orders of magnitude
larger than the electronic EDM.

The transfer of the dipole moment of the electron to the atom arises as a consequence
of the second order relativistic coupling of the electron spin to the electrostatic �eld of the
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nucleus.

An easy and instructive way to describe such a mechanism is the following. The cou-
pling of states with the same parity by the electronic dipole operator d̂ = er̂ is forbidden
by the selection rule ∆L 6= 0 9. Therefore atoms in a state of given parity should not have
a permanent electric dipole moment

< datom >=< ψ | d | ψ >= 0 . (1.13)
However, if states with di�erent parity, S and P for instance, are coupled by the P-, T-
violating mixing perturbation Vmix = −d · EN , where EN is the nuclear electric �eld, one
can write the perturbed S-state as

|̃ s > =| s > +
< p | Vmix | s >

∆Esp
| p > , (1.14)

where ∆Esp is the energy di�erence between the mixed states. The atom can thus acquire
an electric dipole moment

< datom >= <̃ s |d|̃ s > = 2
< s | Vmix | p >< p | d | s >

∆Esp
, (1.15)

where we have assumed that all the matrix elements are real. It is important to observe
here that the interaction of the P- and T-violating atomic EDM with an external electric
�eld

H = −datom · Eext ∝ Eext ,

leads to an e�ect linear in the �eld Eext.
The atomic EDM has to be distinguished from the atomic dipole moment induced by

the mixing perturbation Vmix = VStark = −d ·Eext due to an applied external electric �eld
Eext. In this case the interaction energy H de�ned above is obviously quadratic in the
electric �eld Eext

H = −dind · Eext ∝ E2
ext .

The transferring mechanism of the electron EDM to the atom leads to an enhancement
factor

R =
datom

de
∝ α2Z3 , (1.16)

where α is the �ne structure constant and Z is the atomic number. Such a mechanism is
particularly strong in heavy (i.e., high Z) paramagnetic (i.e., with unpaired spins) atoms 10.
This explains the choice of Cs for our experiment. The theoretical prediction for the
enhancement factor in Cs is [32]

RCs = 120± 20 . (1.17)
9This selection rule is related to the odd symmetry of the electric dipole operator. Its origin will be

cleared up in the next chapter.
10In diamagnetic atoms the enhancement factor from the second order contribution vanishes since the

electronic spins are coupled. An enhancement factor arises only as a third order e�ect and it is thus smaller
than in paramagnetic atoms.
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For the sake of completeness we have to mention that besides the coupling of the elec-
tronic EDM to the nuclear �eld there are other possible mixing interactions Vmix that can
give rise to a net atomic EDM:

• P- and T-violating contributions to electron-nucleons interactions,

• coupling of EDMs of the nucleons to external �elds,

• P- and T-violating nucleon-nucleon interactions.

However, since in heavy paramagnetic atoms these e�ects play a minor role if compared
to the electron EDM contribution, we will not enter a detailed discussion.

We will rather conclude this section dedicated to the atomic EDM by brie�y reviewing
the basic principle of an experiment searching for it.

1.3.4 The basic idea of an EDM experiment
In general, as we already explained in a previous section, a P- and T-violating particle can
be characterized by a pseudoscalar property related to the coexistence of magnetic and
electric dipole moments, ξsystem = ~µ · ~d.

An apparatus to measure such a system property must be characterized by a cor-
responding P- and T-odd property, i.e., by a pseudoscalar apparatus helicity ξapp that
changes sign both under P and T.

The pseudoscalar property of the measuring apparatus can be easily de�ned by consid-
ering the combination of magnetic and electric �elds as ξapp = ~B · ~E. It is straightforward
to verify that in fact this quantity changes sign under both the symmetry operations of
interest. The inversion of the relative orientation of ~B and ~E corresponds to a simultaneous
mirror and time reversal operation.

This is the basic principle on which most EDM experiments are based.

In our speci�c case, the interaction energy of an alkali atom in a state | F,MF > with
an external magnetic �eld ~B and an electric �eld ~E, that we assume both parallel to the
quantization axis, is given by

EF,MF

~
= −1

~
< F,MF | ~µ · ~B + ~d · ~E | F, MF >=

= ωLMF + | d | EzMF + αscalE
2
z + αtensE

2
z

[
3M2

F − F (F + 1)
]

, (1.18)

where ωL = gF µb
~ Bz is the Larmor frequency, αscal and αtens are proportional to the scalar

and tensor polarizabilities respectively and we have used the important fact that the atomic
EDM is parallel to the total angular momentum F, i.e., ~d =| d | ~F .

The �rst term in this last equation is obviously related to the interaction of the mag-
netic moment of the atom with the external magnetic �eld parameterized by the Larmor
frequency ωL. The second term, linear in the electric �eld and proportional to the ampli-
tude | d |, is due to the coupling of the permanent atomic EDM with the external �eld,
while the last two terms, quadratic in the electric �eld, are associated with the e�ect of the
induced atomic dipole moment.
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Figure 1.9: Magnetic resonance lines with and without electric �eld. When E=0 the
resonance is centered at ω = ωL. When E6=0, the resonance experiences two shifts: a
linear one due to the atomic EDM and a quadratic one due to an induced electric dipole
moment. Note that the shifts are not drawn to scale. The linear shift is expected to be 6
orders of magnitude smaller than the quadratic one in a �eld of 10 kV/cm.

Therefore in an optical-rf magnetic resonance experiment 11 in the ground state of Cs,
the resonance line, centered at the Larmor frequency ωL in absence of electric �elds, will
experience both linear and quadratic shifts when the external electric �eld is turned on,
as shown schematically in Fig. 1.9. Therefore an experiment based on the relative change
of the applied electric and magnetic �eld orientations would in principle enable these two
e�ects to be separated from each other. The detection of a linear e�ect would be then the
experimental signature of the atomic EDM.

As already mentioned in previous sections, the goal of an EDM experiment led us to
start the theoretical and experimental study of the quadratic part of this interaction.

As we shall see in the next chapters, the investigation of the quadratic Stark e�ect
turned out to be much more interesting and exciting than the simple characterization of a
background.

11As described in detail in Chapter 4, the rf �eld oscillating at frequency ωrf induces transitions between
adjacent Zeeman levels | F, MF > and | F, MF ± 1 >.
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Chapter 2

The tensor polarizability

2.1 Introduction
The shift and splitting of atomic energy levels due to the interaction of the atom with an
external electric �eld is known as the Stark e�ect. The phenomenon was discovered in
1913 by the physicist Johannes Stark who was awarded the Nobel prize in 1919 for his
discovery. Then in the following years the interest in the Zeeman e�ect greatly exceeded
the interest in the Stark e�ect for several reasons. Experimentally, the generation of large
electric �elds presents more technical di�culties than the generation of magnetic �elds.
Furthermore, many interesting atomic states have a total electronic angular momentum
J = 1/2 (the ground state of alkali atoms for instance) and will hence, as explained below,
not exhibit a conventional Stark e�ect. The splitting of alkali ground-state levels occurs
only as a strongly suppressed higher order e�ect, whose study su�ers, in comparison to the
Zeeman e�ect, of its extreme weakness. Theoretically, the study of the Stark e�ect requires
non-trivial spectroscopic methods which make its investigation much more complex than
the study of the Zeeman e�ect.

It was only 30 years after its discovery that the Stark interaction received a renewed
attention. The quadratic Stark shift of the hyper�ne transition in the ground state of 133Cs
was measured by Haun and Zacharias in 1957 [56], while the splitting of Zeeman sub-levels
was observed in 1964 by Lipworth and Sandars [57]. A few years later, in 1967 and 1968,
Angel and Sandars published two theoretical papers which gave a detailed analysis of the
quadratic Stark e�ect [33, 58] which is still considered the main reference point for the
theory of the Stark interaction. In the following years, up to today, a part of the scienti�c
community showed a deep interest in electric �eld e�ects on the ground-state hyper�ne
transition | F = 4,MF = 0 >↔| F = 3,MF = 0 > because of its important role in the
de�nition of the second by atomic-clocks [59�61]. On the other hand, the analytical and
technical di�culties associated with electric �eld phenomena discouraged further e�orts in
the direction of a deeper understanding of the Stark e�ect on the magnetic sub-structure
of the ground state of alkali atoms. After a few experimental results obtained in the 60s
[62, 63], the only attempt to measure the quadratic Stark e�ect in the ground state of Cs
was carried out in 2002 by the Fribourg Atomic Physics group in an atomic beam level
crossing experiment [64] and more recently in a magnetic resonance experiment performed
on Cs atoms embedded in a solid He matrix (addressed in this work). The lack of a
deeper theoretical study of the Stark interaction in alkali ground states has left us with the
heritage of a large discrepancy between theoretical predictions and experimental results.

In this chapter we will present a novel detailed theoretical investigation of the quadratic

21
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Stark e�ect in the ground state of alkali atoms based on a perturbative approach, and we
will show that we may now have a �nal answer to the problem of the large gap between
theory and experiments.

2.1.1 The Stark interaction
The interaction of an atom with an external electric �eld E is described by the Stark
hamiltonian

HStark = −d ·E , (2.1)

where
d = − | e | ·r , (2.2)

is the atomic electric dipole operator, | e | the elementary charge and r the electronic
position operator 1.

The basic properties of the hamiltonian (2.1) are determined by the symmetry of the
position operator r. An inversion of the spatial coordinates changes sign of the position
operator: r(x, y, z) = −r(−x,−y,−z). An operator with this symmetry property is said
to have an odd parity.

Two generic atomic states described by the wave functions Ψ1 and Ψ2 can be coupled
by the electric dipole operator d only if the matrix element taken between those two states
is non-zero ∫

V
Ψ∗

1erΨ2dv 6= 0 . (2.3)

Due to the odd parity of the operator r, the condition expressed by Eq. 2.3 can be ful�lled
only if the combined parity of the wave functions Ψ1 and Ψ2 is odd, i.e. if the two wave
functions have opposite parity. Since the parity of a wave function Ψ is de�ned by the
orbital angular momentum quantum number L according to

Ψ(x, y, z) = (−1)LΨ(−x,−y,−z) , (2.4)

it follows that electric dipole interactions are governed by the selection rules 2

∆L = ±1, (2.5)
∆L 6= 0 .

Thus the Stark interaction cannot couple states with the same parity. This means that
the interaction with an external electric �eld does not lead, in �rst order, to any change of
the energy of atomic states 3

1In this work we treat the particular case of alkali atoms. Therefore the operator r has to be understood
as the position operator associated with the valence electron of the atom, which occupies a ground state
n2S1/2.

2Actually the parity conservation condition expressed by Eq. 2.3 is satis�ed by the more general re-
quirement that ∆L is odd. The restriction ∆L = ±1 is due to the vector character of the dipole interaction
which requires ∆L = 0,±1.

3This statement is not true in the case of atomic hydrogen. The special nature of hydrogen is due to
the special nature of the Coulomb potential, which does not remove the degeneracy of states with di�erent
parity, i.e. the degeneracy with respect to L. In hydrogen, states with di�erent parity can have the same
energy En, so that a state can be written as a linear combination: | Ψ >=

P
L,ML

| nLML >. Therefore
the matrix element (2.6) is non-zero and hydrogen levels exhibit a �rst order Stark shift linear in the
electric �eld.
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∆E
(1)
Stark =< Ψ | HStark | Ψ >= 0 . (2.6)

The e�ects of the Stark interaction on the structure of atomic energy levels appear only as
higher order contributions and are quadratic in the applied �eld. The perturbation of the
energy of an atomic level | nLJ , F,MF > induced by a static electric �eld of amplitude E
can then be parameterized as

∆EStark = −1
2
α(nLJ , F,MF )E2 , (2.7)

where α is called the electric polarizability.
We will show that the second order term of the perturbation expansion leads to di�erent

e�ects depending on the value of the total electronic angular momentum J of the perturbed
state [33, 58]. In the case of alkali atoms the interaction with an external electric �eld leads
to an overall shift of the ground state (J=1/2) but does not a�ect its hyper�ne and magnetic
sub-structure. The second order e�ect can thus be parameterized in terms of the scalar
polarizability α

(2)
0 as follows 4

∆E
(2)
Stark = −1

2
α

(2)
0 E2 . (2.8)

In third order, the joint e�ect of the hyper�ne and the Stark interactions leads to a very
tiny splitting of the ground-state magnetic sub-levels together with a shift of the hyper-
�ne transition. The electric polarizability has then two contributions and the third order
perturbation can be written in the form

∆E
(3)
Stark(F, MF ) = −1

2
α

(3)
0 (F )E2 − 1

2
α

(3)
2 (F )

3M2
F − F (F + 1)
I(2I + 1)

E2 . (2.9)

In this last equation

• the �rst term is parameterized by α
(3)
0 (F ) which is an F−dependent third order

contribution to the scalar polarizability. This term gives the main contribution to
the Stark shift of the ground state hyper�ne splitting.

• The second term is parameterized by the forbidden tensor polarizability α
(3)
2 (F ). Due

to its dependence on the magnetic quantum number MF , this term is responsible for
the splitting of Zeeman sub-levels.

We will come back to this parametrization of the electric polarizability in greater detail
later in this chapter. Here we just present an estimation of the orders of magnitude of the
parameters involved in the interaction to give an idea of the smallness of the e�ect we are
dealing with:

α
(3)
0 (F )

α
(2)
0

≈ 10−5 and α
(3)
2 (F )

α
(2)
0

≈ 10−7 . (2.10)

The theoretical investigation of the quadratic Stark interaction will be developed in detail
in the next sections of this chapter.

4The superscript (2) refers to the order of the perturbation while the subscript 0 refers to the rotational
symmetry, scalar in this case.
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2.1.2 The Stark hamiltonian in terms of irreducible tensor components

For the calculations that follow it is more convenient to write the operator d in terms of
its spherical components

d± = ∓ 1√
2
(dx ± idy) ,

d0 = dz , (2.11)

where di=x,y,z are the usual cartesian components. The spherical components dq de�ned in
Eq. 2.11 are proportional to the spherical harmonics Y1,q or equivalently to the renormalized
spherical harmonics Ck

q =
√

4π
2k+1Yk,q with k = 1, q = ±1, 0, as shown in Appendix A.

Therefore the operator d can be written in the form of an irreducible spherical tensor
operator of rank 1 as

d1 =| d | ·C1 , (2.12)

where the quantity | d | does not depend on the angular variables of the system.
The advantage of the irreducible tensor formalism is that we can easily bene�t from the

intrinsic rotational symmetries of the problem. By applying the Wigner-Eckart theorem
to the tensor operator d1 we can expand the matrix elements of its spherical components
dq as follows

< n1L1J1F1M1 | dq | n2L2J2F2M2 >= (−1)F1−M1

(
F1 1 F2

−M1 q M2

)
< F1 ‖ d ‖ F2 > .

(2.13)
The reduced matrix element < F1 ‖ d ‖ F2 > describes the purely dynamical part of the
interaction and does not depend on the orientation dependent quantum numbers M1, M2

and q, while the geometrical properties of the system are fully described by the 3j-symbol.
This property of the Wigner-Eckart theorem, i.e., the factorization of matrix elements into
geometrical and dynamical factors, will be widely exploited in the present chapter.

More details about the irreducible tensor algebra are given in Appendix A. Here we
just recall that reduced matrix elements can be simpli�ed by decoupling the total angular
momentum F into the electron and nuclear angular momenta, J and I respectively. Since
the operator d acts only in the space of the electron variables, we can re-write Eq. 2.13 in
terms of reduced matrix elements in the electron sub - space as follows

< J1IF1M1 | dq | J2IF2M2 >= (−1)F1+F2+J1+I+1−M1
√

(2F1 + 1)(2F2 + 1)

×
(

F1 1 F2

−M1 q M2

){
J1 I F1

F2 1 J2

}
< J1 ‖ d ‖ J2 > . (2.14)

The reduced matrix element in Eq. 2.14 can be further simpli�ed by decoupling the total
electronic angular momentum J into the orbital angular momentum and spin, L and S
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respectively. Eq. 2.13 can thus be written in its �nal form 5

< n1L1J1F1M1 | dq | n2L2J2F2M2 >= (−1)F1+F2+J1+J2+Lmax−M1

×
√

(2F1 + 1)(2F2 + 1)
√

(2J1 + 1)(2J2 + 1)
√

Lmax

(
F1 1 F2

−M1 q M2

)

{
J1 F1 I
F2 J2 1

}{
L1 J1 S
J2 L2 1

}
Rn1L1,n2L2 , (2.15)

where Rn1L1,n2L2 is the radial integral between the states | n1L1 > and | n2L2 >. More
details are given in Appendices A and B.

A crucial point in our calculations is the detailed knowledge of the reduced dipole
matrix elements < J1 ‖ er ‖ J2 >, or equivalently of the radial integrals Rn1L1,n2L2 . In
the literature there are both experimental and theoretical results [65�75] concerning the
determination of these matrix elements. However, in our search for reliable values we found
several inconsistencies concerning their signs. In our calculations we have to deal with
matrix elements that are not squared and thus the knowledge of the phase of each element
has a crucial importance. In order to overcome this problem we use a statistical Thomas-
Fermi potential with corrections to include the spin-orbit interaction and core dipole and
quadrupolar polarization to solve the Schrödinger equation and calculate analytical wave
functions for the states nS1/2, nP1/2,3/2 and nD3/2,5/2 of cesium with n = 6�18. These
wave functions are then used to calculate all the relevant radial integrals. The signs of
the matrix elements are then easily determined by evaluating numerically the 3j- and 6j-
symbols that appear in Eq. 2.15. Our wave functions have been tested by reproducing
a number of well-known atomic parameters (hyper�ne and spin-orbit coupling constants,
lifetimes) with very satisfactory results. At present we can make estimations of reduced
dipole matrix elements which are in good agreement with the absolute values of the matrix
elements reported in the literature and, more importantly, we can determine their signs.
We will come back to this point later in this chapter.

The calculations of the Cs wave functions were mainly carried out by another Phd
student of our group, A.Hofer, who will discuss his thesis in 2007. His work will contain
all the details concerning our calculations of cesium wave functions. Here we just give an
introduction in Appendix C.

The other important part of the Stark interaction is of course the applied electric �eld. A
uniform �eld can be written in terms of cartesian coordinates in the laboratory frame as

E =




Ex

Ey

Ez


 = E




sin θ cosφ
sin θ sinφ

cos θ


 , (2.16)

where E is the amplitude of the �eld and where we have introduced the polar and azimuthal
angles, θ and φ respectively (see Fig. 2.1).

Throughout all this work we will assume that the amplitude E of the electric �eld is
uniform over the small volume of the experiment and we will therefore consider E as a
parameter that does not depend on spatial coordinates.

5The most general case requires and additional phase factor (−1)I+S . For Cs, we have (−1)I+S =
(−1)7/2+1/2 = 1.
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Figure 2.1: The polar and azimuthal angles θ and φ

It is straightforward to introduce the spherical components of the �eld

E± = ∓ 1√
2
(Ex ± iEy) ,

E0 = Ez , (2.17)

and to show that

E± = ∓ E√
2

sin(θ)e±iφ ,

E0 = E cos(θ) . (2.18)

The components of the electric �eld E written in the form (2.18) are again proportional to
the three spherical harmonics Y1,q (or equivalently to the renormalized spherical harmonics
C1

q ) and the vector E is thus written in the form of an irreducible spherical tensor of rank 1.

The Stark hamiltonian given by Eq. 2.1 can be written in terms of spherical components
as

HStark = −d ·E = −
1∑

q=−1

(−1)qdqE−q = e
1∑

q=−1

(−1)qrqE−q . (2.19)

With the hamiltonian expressed in terms of irreducible tensor operators it is straightforward
to apply the Wigner-Eckart theorem and the angular momenta decoupling rules de�ned in
Appendices A and B to calculate matrix elements of the Stark interaction. This will be
done to a large extent in the frame of the perturbation theory that we will introduce in
the next section.
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2.2 The perturbation theory
In this section we give a short overview of the perturbation theory. We will consider
stationary perturbations described by a hamiltonian that does not depend on time, and
we will apply the method to the speci�c case of non-degenerate states. We recall the basic
concepts of non-degenerate perturbation theory up to third order in its general form and
brie�y describe its application to the Stark interaction.

2.2.1 The method
Let us assume that the hamiltonian H of a physical system can be put in the form

H = H0 + W , (2.20)

where the eigenvalues and eigenvectors of H0 (the unperturbed hamiltonian) are known

H0 | ϕi >= E0
i | ϕi > , (2.21)

and where W ¿ H0 (actually this inequality must hold for the matrix elements of the two
operators). This last condition enables us to write W = εW̃ where ε ¿ 1 is a dimensionless
parameter. In Eq. 2.21 we have assumed that the eigenvalues E0

i are all non-degenerate.
One then calculates the solutions to the eigenvalue equation for the total hamiltonian

H | Ψ >= E | Ψ > . (2.22)

We assume that the eigenvalues and eigenvectors of Eq. 2.22 can be expanded in power
series in the following way

E = E0 + εẼ1 + ε2Ẽ2 + ... + εqẼq + ... = E0 + E1 + E2 + ... + Eq + ... , (2.23)
| Ψ >=| Ψ0 > +ε | Ψ̃1 > +... + εq | Ψ̃q > +... =| Ψ0 > + | Ψ1 > +...+ | Ψq > +... .

(2.24)

Now, if we substitute the expansions (2.23) and (2.24) into Eq. 2.22, with the de�nition
(2.20), and we require this equation to be satis�ed for any arbitrary small ε we obtain a
system of equations, each corresponding to a given power of ε. For the generic qth−order
term we obtain

(H0 −E0) | Ψ̃q > +(W̃ − Ẽ1) | Ψ̃q−1 > −Ẽ2 | Ψ̃q−2 > ...− Ẽq | Ψ̃0 >= 0 , (2.25)

with q ≥ 1.
Let us consider now a given unperturbed eigenvalue E0

n and its corresponding eigen-
vector | ϕn >. We want to determine how they are perturbed by the interaction W.

A reasonable assumption is that the perturbed eigenvalue and eigenvector (E and | Ψ >
respectively) coincide with the unperturbed ones (E0

n and | ϕn >) when the perturbation
approaches zero (i.e., when ε → 0). Therefore in the de�nitions (2.23) and (2.24) we set
E0 = E0

n and | Ψ0 >=| ϕn > 6.
6This equality is not entirely true. Actually | Ψ0 > is proportional to | ϕn > through a phase factor

eiφ. For the sake of simplicity we assume here φ = 0.
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We will not go into more details since these calculations can be found in any text book
on quantum mechanics (see for example [76]). Here it will be enough to recall that by
projecting Eq. 2.25, with q=1, onto the unperturbed basis states {| ϕi >}i=1,..,n,.. it is
straightforward to calculate the �rst order correction to the energy

E1 =< ϕn | W | ϕn > , (2.26)

and to the eigenvector 7

| Ψ1 >=
∑

p6=n

< ϕp | W | ϕn >

E0
n −E0

p

| ϕp > . (2.27)

By applying to Eq. 2.25 the same procedure (i.e., projections onto unperturbed basis states)
with q=2,3 one can calculate the corrections to the energy to second order

E2 =
∑

p6=n

|< ϕp | W | ϕn >|2
E0

n − E0
p

, (2.28)

and to third order

E3 =
∑

p1 6=n,p2 6=n

< ϕn | W | ϕp1 >< ϕp1 | W | ϕp2 >< ϕp2 | W | ϕn >

(E0
n −E0

p1
)(E0

n − E0
p2

)
−

−
∑

p6=n

|< ϕp | W | ϕn >|2< ϕn | W | ϕn >

(E0
n − E0

p)2
. (2.29)

2.2.2 The perturbation theory approach to the Stark interaction
The crucial point for the investigation of the Stark e�ect is now the choice of the perturbing
hamiltonian.

In the spherically symmetric ground state | nS1/2 > of alkali atoms the Stark hamil-
tonian of the interaction with an external electric �eld does not a�ect the hyper�ne and
Zeeman sub-structures. Nevertheless, under the e�ect of electric �elds a tiny splitting of
the magnetic sub-levels of the ground state of 133Cs has unambiguously been measured
in several experiments [57, 62�64], as well as a shift of the hyper�ne transition frequency
[56, 59�61]. As Lipworth and Sandars already pointed out in 1964 [57], the reason for this
F and MF dependent shift is a strongly suppressed forbidden tensor polarizability that
arises in third order when one includes the hyper�ne interaction in the perturbation.

The hyper�ne interaction operator Hhf has three contributions.

• HFermi: the Fermi contact interaction for nS1/2 states.

• Hd−d: the dipole-dipole interaction for the excited states nLj with L > 0.

• HQ: the electric quadrupole interaction only for the excited states nLj with L, j ≥ 0.
7In principle, this and the following sums have also to be extended over the continuum states. However,

in the case of Cs, this contribution turns out to be negligible (see Section 2.3.3).
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Figure 2.2: Energy scheme of the ground state of 133Cs with hyper�ne structure (not
to scale) and linear Zeeman e�ect in a small magnetic �eld (not to scale). Due to the
di�erent signs of the g-factors gF=3 and gF=4 the energy shifts of the Zeeman levels in the
two hyper�ne multiplets also have opposite signs. The gyromagnetic ratio in the ground
state is approximately gF = gI±J ≈ ±3.50 kHz/µT .

The Fermi contact interaction is governed by the selection rule ∆L = 0, while the dipole-
dipole and the quadrupole parts of the hyper�ne interaction have selection rules ∆L =
0,±2. These selection rules will play a central role in the identi�cation of o�-diagonal
hyper�ne contributions to the third order Stark interaction (see Section 2.5).

In the presence of an external magnetic �eld (typically ∼ 5µT in our experiment) we
have to include in the perturbation also the Zeeman interaction HZ = −~µ · ~B, where ~µ is
the magnetic moment operator of the atom. We assume a static magnetic �eld B̂ = ẑ.

Therefore we write the perturbation in presence of static magnetic and electric �elds in
the general form

W = Hhf + HZ + HStark . (2.30)

The unperturbed hamiltonian H0 is the hamiltonian of the free atom with spin-orbit cou-
pling.

2.3 The �rst and second order e�ects
We discuss here the �rst and second order contributions to atomic energy levels due to
the perturbation de�ned by Eq. 2.30. Because of parity conservation, as explained in
Section 2.1.1, alkali atoms do not exhibit a �rst order linear Stark e�ect. In second order
the Stark interaction leads to a shift of the ground state quadratic in the electric �eld
and to the de�nition of the scalar polarizability α

(2)
0 . We will describe this e�ect in the

irreducible tensor formalism and we will make a numerical estimation of α
(2)
0 .

2.3.1 First order perturbation

The �rst order energy shift of a ground state level | 6S1/2, F, MF > is given by



30 Chapter 2 The tensor polarizability

∆E
(1)
F,MF

=< 6S1/2, F, MF | (Hhf + HZ + HStark) | 6S1/2, F,MF >=

=
1
2
A6S1/2

[F (F + 1)− J(J + 1)− I(I + 1)] + ~ωL(F )MF , (2.31)

where A6S1/2
is the ground state hyper�ne constant and ωL = gF µB

~ Bz is the Larmor
frequency. Since we are taking the matrix element between two states with the same
parity (i.e., the same orbital angular momentum L), there is no contribution from HStark

because of the selection rule de�ned in Eq. 2.5.
The energy shift given by Eq. 2.31 is the usual solution to the Breit-Rabi problem in the

low-(magnetic)-�eld limit (Zeeman regime), linear in the magnetic quantum number MF .
The ground state is split by the hyper�ne interaction into the two hyper�ne components
F = 3 and F = 4 and the degeneracy of the magnetic sub-levels is removed by the magnetic
�eld, as shown in Fig. 2.2.

2.3.2 Second order perturbation: the scalar polarizability in the irre-
ducible spherical tensor formalism
The second order correction to the energy of ground state levels is given by Eq. 2.28. In this
case the contributions to ∆E

(2)
Stark of the hyper�ne and the Zeeman hamiltonians vanish

and the second order perturbation turns out to be due entirely to the Stark interaction.
We can thus write

∆E
(2)
Stark(F, MF ) =

∑
n

3/2∑

J=1/2

I+J∑

f=|I−J |

f∑

m=−f

|< nPJ , f, mf | HStark | 6S1/2, F, MF >|2
∆E(6S1/2, nPJ)

,

(2.32)
where the sums are taken over all possible excited P-states and where ∆E(6S1/2, nPJ) is
the energy di�erence E(6S1/2)− E(nPJ) 8.

In principle Eq. 2.32 can be evaluated only by knowing the exact wave functions of
both ground and excited P states and while this is rather straightforward in the case of
the hydrogen atom it is obviously much more complicated in the case of a complex atom
such as Cs. Nevertheless, by using the irreducible spherical tensor formalism extremely
important information about the character of the interaction can be obtained without
entering analytical calculations. Therefore we follow here the approach suggested by Angel
and Sandars [58].

We de�ne an e�ective Stark operator in the following way

Heff
Stark = d ·E · λ(2) · d ·E , (2.33)

where the projection operator λ(2) is de�ned as

λ(2) =
∑

n,j,f,mf

| nPj , f, mf >< nPj , f,mf |
∆E(6S1/2, nPj)

. (2.34)

With this notation the second order e�ect on a given state can be simply seen as the
expectation value of the operator Heff

Stark in that state.
8It can be interesting to note here that the sign of this energy di�erence is always negative. This re�ects

the fact that the coupling of the ground state to excited P-states leads to a repulsive e�ect.
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The next step consists in separating the part of Heff
Stark that depends on the electric

�eld from the one which depends on the atom and the part that depends only on the
amplitude of the �eld from the one which depends on its orientation. This can be done in
the frame of the irreducible tensor formalism in two steps as follows.

• We de�ne the components {}K
Q of two tensor operators of rank K in terms of Clebsch-

Gordan coe�cients in the following way

{d1λ(2)d1}K
Q =

∑

q,q′
< 11qq′ | KQ > d1

qλ
(2)d1

q′ , (2.35)

{EE}K
Q =

∑

q,q′
< 11qq′ | KQ > E1

qE
1
q′ . (2.36)

• We introduce the rank-K multipole components of the e�ective Stark operator

H
(K)
Stark = {d1λ(2)d1}K · {EE}K , (2.37)

where the dot product between two tensors of rank K is de�ned by

TK · UK =
K∑

Q=−K

(−1)QTK
Q UK

−Q , (2.38)

and we expand the e�ective Stark interaction as the sum of a scalar and a tensor
operator

Heff
Stark =

∑

K

(−1)KH
(K)
Stark = H

(0)
Stark + H

(2)
Stark . (2.39)

The vector component H
(1)
Stark vanishes since {EE}1

Q = 0 for any Q = 0,±1.

The equivalence of Eq. 2.33 and Eq. 2.39 can be proved by expanding explicitly the cal-
culations 9. It is also straightforward to verify from Eq. 2.36 and Eq. 2.37 that the scalar
Stark operator H

(0)
Stark depends only on the modulus of the �eld because

{EE}0
0 ∝ E2 , (2.40)

while the tensor operator H
(2)
Stark depends on its orientation because

{EE}2
0 ∝ (3E2

z − E2) . (2.41)
The second order Stark e�ect de�ned in Eq. 2.32 can be rewritten in the simple form

∆E
(2)
Stark(F, MF ) =< 6S1/2, F,MF | H(0)

Stark + H
(2)
Stark | 6S1/2, F,M > . (2.42)

9Equivalently one could also consider the following instructive argument. In the simple case E ‖ ẑ, one
can write Heff

Stark ∝ d2
z = 1

3

�
d2 − �d2 − 3d2

z

��
. The �rst term, d2, has the rotational symmetry of a scalar

operator (T (0)
0 ), while the second term, d2− 3d2

z, has the rotational symmetry of a tensor of rank 2 (T (2)
0 ).
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This matrix element can be reduced by applying the Wigner-Eckart theorem and, since
the e�ective Stark operators act only in the space of the electron, one can also decouple
the nuclear and electronic angular momenta, I and J respectively. For the tensor part of
the interaction one �nds

< 6S1/2, F, MF | H(2)
Stark | 6S1/2, F, MF >∝< J = 1/2 ‖ {d1λ(2)d1}2 ‖ J = 1/2 >= 0 .

(2.43)
This is a general result: a tensor operator of rank 2 cannot couple two states with J=1/2,
therefore states characterized by total electronic angular momentum J=1/2 do not exhibit
a tensor Stark e�ect in second order.

Thus in the ground state of Cs (or equivalently of any alkali metal atom) the second
order energy correction is entirely due to the scalar part of the interaction which depends
only on the magnitude of the electric �eld and which can be parameterized as

∆E
(2)
Stark = −1

2
· α(2)

0 · E2 , (2.44)

where α
(2)
0 is the second order scalar polarizability. The energy shift given by Eq.2.44 does

not depend on the quantum numbers F and MF and therefore it turns out to be only an
overall shift of the ground state, while the hyper�ne and the Zeeman sub-structures stay
unchanged.

2.3.3 Second order perturbation: an estimation of the scalar polarizability

We can evaluate the scalar polarizability α
(2)
0 by applying the Wigner-Eckart theorem to

Eq. 2.32 and by decoupling F into J and I. We obtain

∆E
(2)
Stark =

∑

n,j,f,m

|< nPj , f,m | ∑q=0,±1 dqE−q | 6S1/2, F, MF >|2
∆E(6S1/2, nPj)

=

=
∑

n,j,f,m

∑
q

| E−q |2
(

f 1 F
−m q MF

)2 |< nPj , f ‖ er ‖ 6S1/2, F >|2
∆E(6S1/2, nPj)

=

=
∑

n,j,f,m

∑
q

| E−q |2 (2f+1)(2F+1)
(

f 1 F
−m q MF

)2 {
j I f
F 1 1/2

}2 |< nPj ‖ er ‖ 6S1/2 >|2
∆E(6S1/2, nPj)

=

=
∑

n

e2

6

(
|< nP1/2 ‖ r ‖ 6S1/2 >|2

∆E(6S1/2, nP1/2)
+
|< nP3/2 ‖ r ‖ 6S1/2 >|2

∆E(6S1/2, nP3/2)

)
E2 . (2.45)

As expected from the considerations based on the irreducible tensor analysis, the expression
in Eq. 2.45 does not depend on the orientation of the electric �eld θ originally contained
in Eq nor on the quantum numbers F and MF and represents thus only a scalar shift of
the ground state. The scalar polarizability can be estimated now by comparing Eq. 2.45
to Eq. 2.44.

As pointed out by Zhou and Norcross [77] one has to add to this polarizability of the
valence electron the dipole polarizability of the Cs+−core, which is given by these authors
as 10

10In the literature the scalar polarizability is often expressed in atomic units a3
0 as well as in cm3.
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Figure 2.3: The second order scalar polarizability α
(2)
0 in dependence of the number of

excited nP states included in the perturbation sum. The e�ect of the Cs+ core calculated in
[77] is already included. The relative contribution of the 6P1/2,3/2 states amounts to about
96%, in very good agreement with the result of Derevianko et al. [80], while the contribution
of 7P1/2,3/2 states is about 0.3%. The nP1/2,3/2 states with n = 8�15 contribute only to
0.07%.

αcore = 0.00389
Hz

(V/cm)2
= 15.6 a3

0 , (2.46)

with an uncertainty of less than 0.1%.
In Fig. 2.3 we report the contributions to the scalar polarizability of nPj states with

n=6,...,15. In this calculation we have used the experimental values of the reduced electric
dipole matrix elements between the ground state and the excited 6P and 7P states reported
in [74] and [73] respectively (see Table 2.8). All the other reduced matrix elements are
given by Fabry as oscillator-strengths in [78]. We will discuss reduced matrix elements in
details later in this chapter. The energies of atomic states are taken from Moore [79]. By
neglecting contributions 11 from states with n > 15 our numerical result for the second
order scalar polarizability is

α
(2)
0 = 0.09961

Hz

(V/cm)2
= 400.3 a3

0 . (2.47)

The relative ground state Stark shift is plotted as a function of the applied electric �eld in
Fig. 2.4. The scalar polarizability was calculated by Zhou and Norcross [77] in the frame

The conversion factors to "laboratory units" Hz
(V/cm)2

are: α0

h
Hz

(V/cm)2

i
= 2.4883 · 10−4 · α0

�
a3
0

�
=

1.6792 · 1021 · α0

�
cm3

�
.

11This approximation, which neglects the e�ect of the continuum states, can also be justi�ed by the
calculations of Derevianko et al. [80]. According to these authors the nP states with n = 7, ...,∞ and the
continuum states give a contribution to the scalar polarizability which is only 0.5%.
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Figure 2.4: Frequency shift of the ground state due to second-order Stark interaction.

of a much more sophisticated and complex model based on the solution of the relativistic
Dirac equation for a semi-empirical Thomas-Fermi potential including core perturbations
by the valence electron. Their calculation yields the result

α
(2)
0 = 400.6 a3

0 , (2.48)

which is very close to what we obtain in our simple perturbation theory approach. A more
recent theoretical result was reported by Derevianko and Porsev [80]

α
(2)
0 = 400.49(81) a3

0 , (2.49)

while the most recent experimental result is due to Amini and Gould [81]

α
(2)
0 = 401.0(6) a3

0 . (2.50)

We thus observe a very good global agreement between the result of our calculation of α
(2)
0

and the theoretical and experimental values reported in the literature. However, the scalar
second order polarizability of the alkali ground state is well understood at a level of 10−3

and therefore it is not of primary relevance for this work 12. In the next sections of this
chapter we will rather present novel calculations of third order e�ects which are 105 and
107 times smaller than the scalar Stark shift.

12The scalar polarizability α
(2)
0 is actually relevant in our work only in the sense that under some

simplifying assumptions the third order e�ect can be expressed in terms of the second order polarizability.
This point will be addressed in detail later in this chapter.
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2.4 Third order Stark e�ect
We discuss now the third order e�ect due to the perturbation Hhf + HZ + HStark. This
perturbation can be simpli�ed by observing that with typical experimental magnetic �elds
of ∼ 5µT one obtains for the energy ∆E involved in the interaction

∆EZeeman ¿ ∆Ehf . (2.51)

Since the matrix elements of HZ always appear as an additive contribution to the other
terms, the Zeeman interaction will be omitted in all the following calculations.

We will introduce the third order scalar polarizability α
(3)
0 and the tensor polarizability

α
(3)
2 , and we will give a numerical estimation for both of these parameters. We will show

the existence of a relevant gap between the theory and experimental results and we will
also remark the existence of an important sign-di�erence between our theory and the result
given by Sandars in 1967 [33].

2.4.1 General considerations based on the irreducible tensor formalism
approach
In the frame of the irreducible tensor formalism we can obtain several important infor-
mation about the main features of the third order e�ect without developing analytical
calculations.

The third order perturbation of a ground state level (F,MF ) is given by Eq. 2.29 which
we rewrite here for convenience

∆E(3) =
∑

p1 6=n,p2 6=n

< ϕn | W | ϕp1 >< ϕp1 | W | ϕp2 >< ϕp2 | W | ϕn >

(E0
n −E0

p1
)(E0

n − E0
p2

)
−

−
∑

p6=n

|< ϕp | W | ϕn >|2< ϕn | W | ϕn >

(E0
n − E0

p)2
, (2.52)

where

| ϕn >→| 6S1/2, F, MF > ,

W → (Hhf + HStark) . (2.53)

The perturbation ∆E(3) is thus given by the sum of two terms. The second one is propor-
tional to the (Fermi contact) hyper�ne interaction in the ground state while the �rst one
is proportional to the (magnetic dipole and electric quadrupole) hyper�ne interaction in
the excited P-states. In the following we will consider them separately.

2.4.1.1 Second term of Eq 2.52

If we keep into account the selection rules associated with the two perturbing interac-
tions, and we follow the same procedure described in Section 2.3.2 for the second order
polarizability, we can write
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−
∑

p

|< ϕp | HStark | ϕn >|2
(E0

n −E0
p)2

< ϕn | Hhf | ϕn >=

−Ehf (F )
∑

p

|< ϕp | HStark | ϕn >|2
(E0

n − E0
p)2

= −Ehf (F ) < ϕn | Heff
pert | ϕn > , (2.54)

where the sum is taken over all excited | nPj , f,m > states. The e�ective perturbation
operator is de�ned as

Heff
pert = d ·E · λ(3) · d ·E , (2.55)

where
λ(3) =

∑
p

| ϕp >< ϕp |
(E0

n − E0
p)2

. (2.56)

It is important to observe that for any given unperturbed state | ϕn >=| 6S1/2, F, MF >
the matrix element < ϕn | Hhf | ϕn > in Eq. 2.54 is just a (F-dependent) scalar corre-
sponding to the hyper�ne interaction energy Ehf (S1/2, F ) and therefore it can be factored
out of the sum. Moreover, the expectation value of the e�ective operator that appears at
the end of Eq. 2.54 is similar to the expression of the second order perturbation, treated in
Section 2.3.2, except for the squared energy denominator in the de�nition of λ(3). There-
fore, by referring to Eq. 2.35, Eq. 2.36 and Eq. 2.37, with λ(2) replaced by λ(3), one can
show that the e�ective perturbation operator Heff

pert can be expanded as the sum of a scalar
operator, H

(0)
pert, and a tensor operator of rank 2, H

(2)
pert, and the perturbation of the level

| 6S1/2, F,MF > can be written as

< 6S1/2, F,MF | Heff
pert | 6S1/2, F, MF >=

=< 6S1/2, F, MF | (H(0)
pert + H

(2)
pert) | 6S1/2, F, MF >=

=< 6S1/2, F, MF | H(0)
pert | 6S1/2, F, MF > . (2.57)

Because of the reasons explained in Section 2.3.2, the tensor part of the perturbation
vanishes and the only contribution to the energy of the system is the scalar term. But
unlike the second order contribution, this third order scalar term does now depend on the
quantum number F because of the factor Ehf (S1/2, F ). Thus the e�ect of the perturbation
can be parameterized in terms of an F-dependent third order scalar contribution α

(3)
0 (F )

to the polarizability as

∆E
(3)
0 (F ) = −1

2
· α(3)

0 (F ) · E2 . (2.58)

The subscript 0 in ∆E
(3)
0 re�ects the scalar nature of this e�ect. Because of its dependence

on the quantum number F, this scalar part of the third order contribution leads to a shift of
the hyper�ne transition frequency. But since it does not depend on the magnetic quantum
number MF it does not a�ect the structure of Zeeman sub-levels.

2.4.1.2 First term of Eq 2.52
In this case also very important information can be inferred from the irreducible tensor
formalism without developing explicit calculations. We just recall the main steps of the
usual procedure.
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We introduce an e�ective perturbation operator

Heff
pert = d ·E · λ(3) · d ·E , (2.59)

where the projector λ(3) must be rede�ned as

λ(3) =
∑
p1,p2

| ϕp1 >< ϕp1 | Hhf | ϕp2 >< ϕp2 |
(E0

n − E0
p1

)(E0
n − E0

p2
)

, (2.60)

and where the sum is taken over all excited | nPj > states. We note that in this case the
matrix elements < ϕp1 | Hhf | ϕp2 > does not behave as a scalar and it cannot be factored
out of the sum. The operator λ(3) thus exhibits an explicit dependence on the hyper�ne
interaction Hhf . This remark is of extreme importance for the �nal conclusions of this
discussion.

The next step consists in decomposing the e�ective perturbation operator into the sum
of a scalar operator and a tensor operator of rank-2

Heff
pert = H

(0)
pert + H

(2)
pert , (2.61)

where H
(0)
pert and H

(2)
pert are de�ned as in Eq. 2.35 and Eq. 2.36 respectively, with λ(2)

replaced by λ(3). As explained in Section 2.3.2 we have now separated the �eld from the
atom, and the part of the interaction that depends only on the amplitude of the �eld
(scalar term) from the part that depends on its orientation (tensor term).

The scalar part of the perturbation gives yet another additional small (F-dependent)
contribution to the scalar polarizability and leads to a correction of α

(3)
0 of approximately

1%, while the tensor part can be written by applying the Wigner-Eckart theorem and by
using the de�nitions of Eq. 2.35, Eq. 2.36 and Eq. 2.37 as

< 6S1/2, F,MF | H(2)
Pert | 6S1/2, F, MF >∝

∝
(

F 2 F
−MF 0 MF

)
< F ‖ {d1λ(3)d1}2 ‖ F > {EE}2

0 ∝

∝ (3M2
F − F (F + 1)) < F ‖ {d1λ(3)d1}2 ‖ F > (3E2

z − E2) . (2.62)

The 2nd−rank tensor operator {d1λ(3)d1}2 does not act in the space of the electronic
variables only, but λ(3) contains the hyper�ne interaction term J · I and thus depends
explicitly on the relative orientations of the electronic and nuclear angular momenta in the
excited P-states. Since {d1λ(3)d1}2 acts explicitly in both the space of the electron and
of the nucleus we cannot decouple F into J and I in Eq. 2.62 and since a tensor of rank 2
has non-vanishing expectation values for states with F=3 and F=4 we can state in general
that

< 6S1/2, F, MF | H(2)
Pert | 6S1/2, F, MF >∝< F ‖ {d1λ(3)d1}2 ‖ F >6= 0 . (2.63)

Equivalently, one could observe that the magnetic dipole-dipole and the electric quadrupole
parts of the hyper�ne interaction in the excited P-states have the rotational symmetries
of k = 0, 2 and k = 2 tensors, respectively. Together with the scalar Stark interaction, the
�rst term of Eq 2.52 thus has a scalar and a tensor part.
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Therefore, in third order perturbation theory the tensor part of the interaction does
not vanish and gives a contribution to the perturbed atomic energy level which depends
on

• the orientation of the electric �eld and on its modulus through the factor (3E2
z−E2) ∝

(3 cos2 θ − 1)E2.

• the magnetic quantum number M2
F . This term of the perturbation is therefore re-

sponsible for the lifting of the Zeeman degeneracy in the hyper�ne levels of the ground
state.

Following Sandars [33], we can parameterize the tensor part of the third order e�ect in
terms of the tensor polarizability α

(3)
2 (F ) as 13:

∆E
(3)
2 (F, MF ) = −1

2
· α(3)

2 (F ) · 3M2
F − F (F + 1)
I(2I + 1)

· 3 cos2(θ)− 1
2

· E2 . (2.64)

Here we use the subscript 2 in the notation ∆E
(3)
2 to stress the tensor character of this

component of the third order e�ect.

2.4.1.3 Summary
In summary, we have shown that the third order contribution to the energy of a ground
state level | 6S1/2, F, MF > perturbed by an external static electric �eld can be written in
terms of the scalar and tensor polarizabilities as

∆E(3)(F,MF ) = −1
2
α(3)(F, MF )E2 =

= −1
2
α

(3)
0 (F )E2 − 1

2
α

(3)
2 (F )

3M2
F − F (F + 1)
I(2I + 1)

3 cos2(θ)− 1
2

E2 . (2.65)

2.4.2 Third order polarizabilities: symbolic calculations

We present a �rst estimation of the third order polarizabilities α
(3)
0 (F ) and α

(3)
2 (F ) by

considering only the diagonal matrix elements of the hyper�ne hamiltonian

< L1, J1, F1,M1 | Hhf | L2, J2, F2,M2 >∝ δL1L2δJ1J2δF1F2δM1M2 . (2.66)
Under this assumption we can write the third order e�ect given by Eq. 2.29 in the form

∆E
(3)
Stark(F, MF ) =

∑
n

3/2∑

j=1/2

I+j∑

f=|I−j|

f∑

m=−f

|< nPJ , f, m | HStark | 6S1/2, F, M >|2
∆E(6S1/2, nPj)2

×∆Ehf (nPJfm, 6S1/2FM) , (2.67)

where
13For the time being we include in α

(3)
2 (F ) the contribution of both the magnetic dipole-dipole interaction

and the electric quadrupole interaction. We will consider them separately in the next sections.
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∆Ehf (nPJfm, 6S1/2FM) =

=< nPJ , f, m | Hhf | nPJ , f, m > − < 6S1/2, F, M | Hhf | 6S1/2, F, M > . (2.68)

We write the hyper�ne hamiltonian as Hhf = HFermi+Hd−d+HQ and use the parametriza-
tion of Arimondo et al. [82]

< 6S1/2, F, M | HFermi | 6S1/2, F,M >=
1
2
KA6S1/2

,

< nPJ , F,M | Hd−d | nPJ , F, M >=
1
2
KAnPj , (2.69)

< nP3/2, F, M | HQ | nP3/2, F, M >=
(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
BnP3/2

,

where K = F (F + 1)− J(J + 1)− I(I + 1). We also introduce the notation

e2 |< 6S1/2 ‖ r ‖ nPj >|2
∆E(6S1/2, nPj)2

= CnPj . (2.70)

The sum in Eq. 2.67 can be evaluated by applying the Wigner-Eckart theorem and the
standard angular momentum decoupling rules. After some algebraic manipulation one can
show that the third order perturbation takes the form

∆E
(3)
Stark(F,MF ) = a0(F )E2 + a2(F )

[
3M2

F − F (F + 1)
]
E2 . (2.71)

By comparing Eq. 2.71 with Eq. 2.65 one obtains the scalar polarizabilities in the case of
cesium

α
(3)
0 (F = 4) =

7
36

∑
n

[
(3A6S1/2

+ AnP1/2
)CnP1/2

+ (3A6S1/2
− 5AnP3/2

)CnP3/2

]
, (2.72)

and

7α
(3)
0 (F = 3) = −9α

(3)
0 (F = 4) . (2.73)

We note en passant that the ratio 9
7 in Eq. 2.73 corresponds to the ratio of the hyper�ne

energies of the levels F=4 and F=3, given by their statistical weights 2F+1 14. The Fermi-
contact interaction, proportional to A6S1/2

, provides the dominant contribution to α
(3)
0 ,

although it also has a small contribution (≈ 1%) from the scalar part of the magnetic
dipole-dipole interaction (proportional to AnPj ).

In the same way one obtains for the tensor polarizabilities

α
(3)
2 (F = 4) =

= − 7
18

∑
n

[
2AnP1/2

CnP1/2
−AnP3/2

CnP3/2

]
+

1
12

∑
n

[
BnP3/2

CnP3/2

]
, (2.74)

14Since Hhf ∝ ~J · ~I does not produce work, the condition
P

F (2F + 1)Ehf (F ) = 0 has to be always
ful�lled. In the ground state of cesium (J=1/2, I=7/2) this condition leads to 9Ehf (4) + 7Ehf (3) = 0.
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and

α
(3)
2 (F = 3) =

=
7
18

∑
n

[
2AnP1/2

CnP1/2
−AnP3/2

CnP3/2

]
+

5
36

∑
n

[
BnP3/2

CnP3/2

]
. (2.75)

In Eqs. 2.74 and 2.75 the terms proportional to AnPj represent the contribution of the
tensor part of the magnetic dipole-dipole interaction, while the terms proportional to
BnP3/2

represent a small contribution (≈ 0.1%) due to the electric quadrupole hyper�ne
interaction.

2.4.3 Comparison with Sandars' parametrization
We want to compare now the expressions derived in the previous section with the standard
parametrization of the third order polarizabilities given by Sandars in [33] for an electric
�eld E ‖ z

∆E
(3)
Stark(F, MF ) = −1

2
α(3)E2 , (2.76)

where the third order polarizability α(3) is given by three contributions which correspond
to the hyper�ne contact interaction (α10), the hyper�ne dipole-dipole interaction (α12) and
the electric quadrupole interaction (α02). The explicit expressions given by Sandars are

α(3)(F = 4) = α10 + (α12 + α02)
3M2

F − F (F + 1)
I(2I + 1)

=

= α10 + (α12 + α02)
3M2

F − F (F + 1)
28

, (2.77)

and

α(3)(F = 3) = −I + 1
I

α10 + (α12 +
2I + 3
2I − 1

α02)
3M2

F − F (F + 1)
I(2I + 1)

=

= −9
7
α10 + (α12 +

5
3
α02)

3M2
F − F (F + 1)

28
. (2.78)

The comparison of these latter equations to our results of Section 2.4.2 leads to the following
important remarks.

• The scalar term α10 is dominated by the contribution of the Fermi-contact interac-
tion, but it also has a small contribution from the magnetic dipole-dipole interaction
(see Eq. 2.72) which seems to be neglected by Sandars.

• The relative contributions of the scalar and electric quadrupole terms, α10 and α02

respectively, for F=3 and F=4 are consistent in our and in Sandars' expressions.

• The relative contributions of the dipole-dipole term α12 for F=3 and F=4 appear
with opposite signs in our expressions, while in Sandars' treatment the sign does not
depend on F. According to our calculations, α12 in Sandars' expression 2.78 should
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read "−α12". It seems that this sign error has remained unnoticed in the literature
for almost 40 years. In Chapter 6 of this work we will present experimental evidence
that the relative signs of the α12 terms for F=4 and F=3 should indeed be opposite
as derived in our calculations. In the next Section we will discuss the consequences
of this sign di�erence in the ground state of cesium.

2.4.4 The third order shift of Zeeman transitions
The frequency shift of a generic ground state level | F, MF > exposed to a combination of
electric (Ez) and magnetic (Bz) �elds can be written in the form

∆ν(F,MF ) ≡
∆E(3)(F,MF )

h
= νL(F )MF − α

(3)
2 (F )

3M2
F − F (F + 1)

56
E2 , (2.79)

where νL = gF µb
h Bz is the Larmor frequency associated with the magnetic �eld and we

have assumed for simplicity θ = 0. The situation is represented graphically in Fig. 2.5.
The transitions

| 4, 4 >→| 4, 3 >

| 3, 3 >→| 3, 2 >

are the most relevant ones in magnetic resonance experiments on optically pumped atoms
in which the states | 4, 4 > and | 3, 3 > are the most populated. This condition is ful�lled
in the isotropic bcc phase of solid He where the dominant optical pumping mechanism
is the so-called repopulation pumping as was �rst demonstrated by Lang et al. [19] (this
point will be addressed in more details in Chapter 4). The frequency shifts of these two
relevant transitions are given by

∆ν(4,4),(4,3) =| νL(4)− 3
8
α

(3)
2 (4)E2 |=| νL(4) |

(
1− 3

8
α

(3)
2 (4)

| νL(4) |E
2

)
, (2.80)

∆ν(3,3),(3,2) =| νL(3)− 15
56

α
(3)
2 (3)E2 |=| νL(3) |

(
1 +

15
56

α
(3)
2 (3)

| νL(3) |E
2

)
, (2.81)

where in the last equality of the two equations above we have used the property of the
g-factors g3/g4 ≈ −1. The sign of the tensor polarizability α

(3)
2 (F ) plays then the crucial

role. In our model, neglecting the small contribution (≈ 10−3) of the electric quadrupole
interaction, we have

α
(3)
2 (4)

α
(3)
2 (3)

= −1 , (2.82)

and the resonance frequencies ∆ν(4,4),(4,3) and ∆ν(3,3),(3,2) are thus shifted by the interaction
with the electric �eld in the same direction. The situation is reversed in Sandars' model
where

α
(3)
2 (4)

α
(3)
2 (3)

= 1 , (2.83)

and the two resonances are shifted in opposite directions (the situation according to San-
dars' theory is sketched in Fig. 2.6). The experimental investigation of the relative shift of
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3210-1-2-3 4-4M=
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Figure 2.5: The ground state of Cs under the e�ect of electric and magnetic �elds (not
drawn to scale). The black dotted lines represent the Zeeman levels under the e�ect of a
magnetic �eld. In a magnetic resonance experiment without electric �elds one measures
the Larmor frequency ωL. The red solid lines represent the Zeeman levels under the e�ect
of static parallel magnetic and electric �elds (for the sake of simplicity we show only the
e�ect on the levels M = ±4,±3,±2). The Stark shift of the atomic levels is proportional
to E2 and in the �gure we give the proportionality constants in terms of the absolute values
of the tensor polarizabilities | α

(3)
2 (F ) |. In a magnetic resonance experiment driving the

transitions | 4, 4 >→| 4, 3 > and | 3, 3 >→| 3, 2 > the two resonance frequencies are
both shifted to higher frequencies (we have implicitly assumed that α

(3)
2 (4) < 0). One can

observe that if the atoms are pumped by σ−−polarized light into the levels | 4,−4 > and
| 3,−3 >, the corresponding resonances are both shifted by the Stark interaction towards
lower frequencies.
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3210-1-2-3 4-4M=

no shift

Sandars' model

Figure 2.6: The ground state of Cs under the e�ect of electric and magnetic �elds ac-
cording to Sandars' model (not drawn to scale). The black dotted lines represent the
Zeeman levels under the e�ect of a magnetic �eld. In a magnetic resonance experiment
without electric �elds one measures the Larmor frequency ωL. The red solid lines repre-
sent the Zeeman levels under the e�ect of static parallel magnetic and electric �elds (for
the sake of simplicity we show only the e�ect on the levels M = ±4,±3,±2). The Stark
shift of the atomic levels is proportional to E2 and in the �gure we give the proportionality
constants in terms of the absolute values of the tensor polarizabilities | α(3)

2 (F ) |. In a mag-
netic resonance experiment driving the transitions | 4, 4 >→| 4, 3 > and | 3, 3 >→| 3, 2 >,
the former resonance frequency is shifted to higher frequencies while the latter is shifted
towards lower frequencies.
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the two resonances will thus represent a de�nitive test of the two models.

We give here also a general expression for the frequency shift of the generic magnetic
transition | F, MF >→| F, MF − 1 > under the e�ect of an external electric �eld

∆ν(F,MF ),(F,MF−1) = − 3
56

α
(3)
2 (F )(2MF − 1)E2 . (2.84)

It is then straightforward to verify that the splitting of adjacent magnetic resonances
induced by the electric �eld within a given hyper�ne level does not depend on F nor on M

∆ν(F,MF ),(F,MF−1) −∆ν(F,MF−1),(F,MF−2) = − 3
28

α
(3)
2 (F )E2 . (2.85)

The interaction with the external electric �eld thus produces in a magnetic resonance
experiment a set of equally spaced peaks.

2.4.5 The third order shift of the hyper�ne clock transition

The third order scalar term α
(3)
0 is responsible for the shift of the clock transition

∆ν00 =| 6S1/2, F = 4,M = 0 >↔| 6S1/2, F = 3,M = 0 > .

Also the term proportional to α
(3)
2 gives a small contribution (≈ 1%) to that shift due

to its dependence on F. The (static) Stark shift of the clock transition frequency will be
addressed in detail in Chapter 3. Here we just observe that from Eq. 2.65 one can derive
the following important expression

∆ν00 =
1
h

[
∆E(3)(F = 4,MF = 0)−∆E(3)(F = 3,MF = 0)

]
=

= −1
2

[
16
7

α
(3)
0 (4)− 8

7
α

(3)
2 (4)

3 cos2(θ)− 1
2

]
E2 . (2.86)

The expression above is slightly di�erent in Sandars' model, which predicts α
(3)
2 (4) =

α
(3)
2 (3). In this case it is straightforward to show that the coe�cient 8/7 of the tensor

contribution is replaced by 2/7.

2.4.6 Graphical representation of the perturbation with only diagonal
contributions
In Fig. 2.7 we give a graphical representation of both the second order and the third order
e�ect when we include in the perturbation only diagonal hyper�ne matrix elements.

2.4.7 The tensor polarizability: a �rst numerical estimation

We can make a �rst numerical estimation of the tensor polarizability α
(3)
2 under the fol-

lowing assumptions:

• we retain only the �rst term (n=6) in the perturbation series given by Eq 2.74 and
Eq. 2.75,
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Figure 2.7: Second and third order perturbation with diagonal hyper�ne interaction. The
dotted red lines represent the Stark interaction while the blue solid lines represent the
diagonal hyper�ne matrix elements. (a) In second order the Stark interaction couples the
ground state to the excited P states and then the P states back to the ground state. This
contribution is proportional to the scalar polarizability α

(2)
0 (see Section 2.3.2). (b) In

third order the hyper�ne interaction in the ground state leads to an F-dependent scalar
contribution proportional to the third order scalar polarizability α

(3)
0 , while the hyper�ne

interaction in the nP states leads to a F- and M-dependent tensor contribution proportional
to the tensor polarizability α

(3)
2 .

• we neglect the contribution of the electric quadrupole interaction because B6P3/2
¿

A6Pj . According to [83, 84] the hyper�ne constants in 6P states are A6P1/2
=

291.920MHz, A6P3/2
= 50.275MHz and B6P3/2

= −0.53MHz,

• we use the experimental values of the reduced dipole matrix elements given in [74]:

< 6S1/2 ‖ er ‖ 6P1/2 >= 4.4978(61) a0e , (2.87)
< 6S1/2 ‖ er ‖ 6P3/2 >= 6.3311(72) a0e . (2.88)

The theoretical (absolute) values of these matrix elements reported in the litera-
ture [67, 69, 70, 72] are in good agreement with the experimental results given above
at a level of 1�2%. Nevertheless, we found several inconsistencies concerning their
signs. Although in the calculations involving only diagonal hyper�ne matrix elements
the reduced dipole matrix elements are all squared, we need to make the remark that
the signs of < 6S1/2 ‖ er ‖ 6Pj > will become of crucial importance later when we
include in the perturbation expansion o�-diagonal hyper�ne matrix elements.

Using the numerical values given above and the coupling scheme of Fig. 2.7.b we obtain

α
(3)
2 (F = 4) ≈ −5.46× 10−2 Hz

(kV/cm)2
, (2.89)

and

α
(3)
2 (F = 3) = −α

(3)
2 (F = 4) ≈ 5.46× 10−2 Hz

(kV/cm)2
. (2.90)
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This result is represented by point (f') in Fig. 2.8. The tensor polarizability of the ground
state of Cs atoms was measured in an atomic beam experiment using a Ramsey-resonance
technique by Carrico and collaborators in 1968 [62] with the result

α
(3)
2 (F = 4) = −3.39(53)× 10−2 Hz

(kV/cm)2
, (2.91)

and in 1969 by Gould and collaborators [63] who obtained

α
(3)
2 (F = 4) = −3.66(21)× 10−2 Hz

(kV/cm)2
. (2.92)

More recently, the tensor polarizability has been measured in another atomic beam exper-
iment using a purely optical technique by the Fribourg Atomic Physics group [64] with the
result

α
(3)
2 (F = 4) = −3.34(20)× 10−2 Hz

(kV/cm)2
. (2.93)

Although all the measurements are characterized by a good global agreement (see Fig. 2.8),
they all disagree with the simple theoretical estimation given above (Eq. 2.89). This
discrepancy between theory and experiments is con�rmed by the theoretical prediction of
Gould and collaborators [63] [point (f) in Fig. 2.8]

α
(3)
2 (F = 4) = −4.133× 10−2 Hz

(kV/cm)2
. (2.94)

This estimation is based on even more restrictive approximations than our simple estima-
tion:

1. the authors assume that the tensor polarizability is entirely due to an admixture of
the 6P states only into S states and they consider only diagonal hyper�ne matrix
elements. This is similar to our approximation.

2. They further assume that the hyper�ne coupling constants AnPj are connected by
the well de�ned relationship

AnLJ
∝ L(L + 1)

J(J + 1)
〈 1
r3
〉 , (2.95)

which yields

AnP1/2
= 5AnP3/2

. (2.96)

This relationship holds for one-electron atoms but it turns out to be a quite coarse
assumption in Cs, where the corresponding ratio of experimental values, used in our
calculations, is

AnP1/2
= 5.8AnP3/2

, (2.97)
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3. the spin-orbit splitting of 6P states is neglected by setting

∆E(6S1/2, 6P1/2) = ∆E(6S1/2, 6P3/2) ≡ ∆E6S−6P . (2.98)
This is again a very coarse approximation in Cs where the spin-orbit splitting of 6P
states is ≈ 17THz, which amounts to 5% of the average energy ∆E6S−6P .

If we also use the approximations 2 (Eq. 2.96) and 3 (Eq. 2.98) in our calculations and if
we assume that

< 6S1/2 ‖ er ‖ nP3/2 >=
√

2 < 6S1/2 ‖ er ‖ nP1/2 > , (2.99)
we can write

α
(3)
2 (F = 4) ≈ −28

9
|< 6S1/2 ‖ er ‖ 6P1/2 >|2

∆E2
6S−6P

AnP3/2
. (2.100)

Using Eq. 2.98 and Eq. 2.99 the second order scalar polarizability α
(2)
0 (see Eq. 2.45) then

takes the form

α
(2)
0 ≈ |< 6S1/2 ‖ er ‖ 6P1/2 >|2

| ∆E6S−6P | , (2.101)

and the tensor polarizability α
(3)
2 can be expressed in terms of the scalar polarizability α

(2)
0

as

α
(3)
2 (F = 4) ≈ −28

9
α

(2)
0

A6P3/2

| ∆E6S−6P | ≈ −4.48× 10−2 Hz

(kV/cm)2
. (2.102)

where we have used our calculated value for the scalar polarizability α
(2)
0 . This result is

represented by point (f�) in Fig. 2.8. We thus observe an agreement at a level of 6% with
the result of Gould et al. [63] given in Eq. 2.94 and obtained under the same assumptions.
We consider this agreement satisfactory for the sake of this discussion.

The approximate estimation given by Eq. 2.102 is de�nitely closer to experimental re-
sults than Eq. 2.89 but cannot resolve the discrepancy between experiments and theory.
To our knowledge, in the literature over the 40 years that have passed after the publica-
tion of Sandars' theoretical model, there were no other attempts to �nd a solution to this
discrepancy. The situation before this work is summarized in Fig. 2.8.

Moreover, a similar and in some cases even more pronounced disagreement between
theory and experiments was also found for the other alkalis Na, K, 85Rb and 87Rb [63].
The theoretical prediction turns out to be always larger (in modulus) then the measured
value. In Table 2.1 we report the tensor polarizabilities that were calculated and measured
by Gould and his collaborators. Note that the theoretical predictions are based on the
same approximations that we already discussed in the case of Cs.

Of course we can still consider the following contributions in Eq 2.74 and Eq. 2.75.

• The electric quadrupole interaction in states nP3/2. It is straightforward to ver-
ify that the inclusion of the electric quadrupole constant B6P3/2

changes the tensor
polarizability by only ≈ 0.05%.
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Element Theory [×10−2 Hz
(kV/cm)2

] Experiment [×10−2 Hz
(kV/cm)2

] Deviation

133Cs -4.133 -3.659 ± 0.211 2.3

87Rb -2.000 -1.392 ± 0.089 6.8

85Rb -0.780 -0.456 ± 0.024 13.5

39K -0.093 -0.064 ± 0.004 7.2

23Na -0.173 -0.149 ± 0.013 1.8

Table 2.1: Calculated and measured tensor polarizabilities α
(3)
2 for the alkalis. The devi-

ation is expressed in units of the corresponding experimental error. Data are taken from
Gould et al. [63].

• The inclusion of nP states with n > 6 in the perturbation expansion. The contri-
bution from the 7P states can be calculated by using the experimental values of the
reduced dipole matrix elements given by Vasilyev et al. [73]

< 6S1/2 ‖ er ‖ 7P1/2 >= 0.2757(20)a0e , (2.103)
< 6S1/2 ‖ er ‖ 7P3/2 >= 0.5856(50)a0e . (2.104)

The contribution of the 7P states to the tensor polarizability is only ≈ 0.03%.

Therefore we have to �nd another way to �x the problem of the large long-standing gap
between theoretical predictions and experimental values. The approach that we present in
this work is essentially based on the idea that the reconciliation of theory and experiments
can be achieved by searching for missing terms in the third order perturbation expansion.
Since the �rst term of Eq. 2.52 is actually not restricted to diagonal matrix elements of the
hyper�ne interaction, such a search for new perturbing terms has led us to investigate the
e�ects of o�-diagonal hyper�ne matrix elements. As we will show in the next section these
matrix elements give a contribution to the tensor polarizability α

(3)
2 which is large enough

to change in a radical way our �rst estimation given in Eq. 2.89. These contributions allow
us to bridge the old discrepancy between theory and experiments.
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Figure 2.8: The third order tensor polarizability of the F=4 Cs ground state before this
work. The �lled squares represent experimental values of (a) from Carrico et al.[62], (b)
from Gould et al.[63], (c) from Ospelkaus et al. [64] and (d) from this work [85] (see
Chapter 6). The empty square (e) represents a weighted average of (a), (b), (c) and (d).
The dots represent (f) the theoretical value from [63] given in Eq. 2.94 and (f',f�) our
re-evaluations (Eqs. 2.89,2.102) of the latter value as discussed in the text.
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Figure 2.9: The contributions of the Stark interaction and of the o�-diagonal hyper�ne
interaction to the third order perturbation.

2.5 O�-diagonal hyper�ne matrix elements

In this section we show that the inclusion of o�-diagonal hyper�ne matrix elements

< n1, L1, J1, F1,M1 | Hhf | n2, L2, J2, F2,M2 >

yields additional contributions which can bridge the large gap between theory and ex-
periments. The Stark and the hyper�ne interactions are combined in the third order
perturbation according to the possible schemes represented graphically in Fig. 2.9. In
each term of the third order perturbation expansion there are two matrix elements of the
Stark interaction and one o�-diagonal matrix element of the hyper�ne interaction. The
Stark interaction couples S and P states (∆L = ±1) while the hyper�ne interaction mixes
states according to the selection rules ∆L = 0 (Fermi contact interaction) and ∆L = 0,±2
(dipole-dipole and quadrupole interaction).

We investigate three di�erent coupling schemes.

1. the mixing of levels belonging to the same �ne-structure multiplet (i.e., states iden-
ti�ed by the same set of quantum numbers except for J),

2. the mixing of levels with the same set of angular momentum quantum numbers (i.e.,
same L and J) but di�erent principal quantum number n,

3. the mixing of levels with di�erent n and di�erent J.

The hyper�ne interaction is always diagonal in F and M, that is

< γ1, F1, M1 | Hhf | γ2, F2,M2 >∝ δF1,F2δM1,M2 . (2.105)

We will �rst describe the general method used to calculate all the matrix elements, then
we will treat separately the three coupling schemes mentioned above and we will show how
each of those families of o�-diagonal elements contributes to the quadratic Stark e�ect.

For a detailed investigation of the hyper�ne interaction we refer to the comprehensive
review by Arimondo et al. [82].
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2.5.1 O�-diagonal hyper�ne matrix elements: general approach

The �rst order term of Hhf , i.e., the magnetic dipole part of the hyper�ne interaction 15

can be written [82] in spherical tensor form as

Hhf = {al,j [L− (S− 3(S · n)n)] + asS} · I =

=
{

al,j

[
L−

√
10

(
C(2) × S

)(1)
]

+ asS
}
· I , (2.106)

where L, S and I are the electronic orbital angular momentum, the electronic spin and the
nuclear momentum tensor operators, respectively, al,j and as are the hyper�ne coupling
constants, C(2) is the second rank normalized spherical harmonic operator and n is a
unit vector directed along the position vector of the valence electron. The �rst and the
second term in Eq. (2.106), both proportional to al,j , describe the orbital and the spin
dipolar interactions, respectively, while the third term, proportional to as, is the Fermi
contact interaction. The latter term has non-zero matrix elements only between S-states
(L = 0) while the �rst two terms require L > 0. In the following we consider the magnetic
dipole-dipole and the Fermi-contact interactions separately.

2.5.1.1 The magnetic dipole-dipole hyper�ne interaction

The �rst term in Eq. 2.106, due to the orbital motion of the electron, can be rewritten in
the following way

< J1, I, F, M | L · I | J2, I, F,M >=

= (−1)J2+I+F < J1 ‖ L ‖ J2 >< I ‖ I ‖ I >





J1 I F

I J2 1





=

= (−1)F+2J2+I+S+L1+1
√

(2J1 + 1)(2J2 + 1)×

×





J1 I F

I J2 1









L1 J1 S

J2 L2 1





< L1 ‖ L ‖ L2 >< I ‖ I ‖ I > , (2.107)

where the matrix element < J1 ‖ L ‖ J2 > has been further reduced by decoupling J into
S and L. The interaction described by the expression above is diagonal in L and it is thus
governed by the selection rule ∆L = 0.

The second term of Eq. 2.106 depends on the intrinsic angular momentum S of the
electron and can be rewritten as follows

15In the discussion that follows we neglect the second order contribution of the electric quadrupole term
HQ.
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−
√

10 < J1, I, F, M |
∑

q

(−1)q
[
C2 × S1

]1

q
I−q | J2, I, F, M >=

= (−1)J2+I+F+1
√

10 < J1 ‖
[
C2 × S1

]1 ‖ J2 >< I ‖ I ‖ I >





J1 I F

I J2 1





, (2.108)

where < J1 ‖
[
C2 × S1

]1 ‖ J2 > can be expressed in terms of a 9j-symbol by decoupling J
into S and L as prescribed in [86]:

< J1 ‖
[
C2 × S1

]1 ‖ J2 >=

=
√

3
√

(2J1 + 1)(2J2 + 1)





L1 L2 2

S S 1

J1 J2 1





< L1 ‖ C2 ‖ L2 >< S ‖ S ‖ S > . (2.109)

Moreover, the reduced matrix element < L1 ‖ C2 ‖ L2 > can be rewritten (see Appendix B)
as

< L1 ‖ C2 ‖ L2 >= (−1)L1
√

(2L1 + 1)(2L2 + 1)




L1 2 L2

0 0 0


 . (2.110)

The selection rule that can be derived from the expression above is ∆L = 0,±2. The spin
dipolar part of the dipole-dipole interaction can therefore couple P-states of di�erent prin-
cipal quantum numbers (∆L = 0) but also the ground state (S-state) to excited D-states
(∆L = ±2).

From Eq. 2.107, Eq. 2.108 and Eq. 2.109, by setting S = 1/2 and I = 7/2, we obtain
the following general formula

< n1J1, F,M | Hd−d | n2J2, F, M >=

= (−1)F+J2+L1+1 < al,j > 3
√

7
√

(2J1 + 1)(2J2 + 1)





J1 7/2 F

7/2 J2 1





[
H

(orbital)
hf + H

(spin)
hf

]
,

(2.111)

where we have explicitly separated the contribution of the magnetic dipole orbital interac-
tion

H
(orbital)
hf = (−1)J22

√
3





L1 J1 1/2

J2 L2 1





δL1,L2 , (2.112)
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from that of the spin dipolar interaction

H
(spin)
hf = (−1)7/23

√
10

√
(2L1 + 1)(2L2 + 1)




L1 2 L2

0 0 0








L1 L2 2

1/2 1/2 1

J1 J2 1





.

(2.113)

The expectation value of the constant al,j in a state (L, J) is related to the hyper�ne
constant AnLJ

by the relation

< al,j >= AnLJ

J(J + 1)
L(L + 1)

, (2.114)

and in the one-electron atom approximation does not depend on J. It is important to
observe here that this last equation leads to the approximation AnP1/2

= 5AnP3/2
used in

Section 2.4.7. As we already remarked this does not hold in a strict sense in the case of Cs
where the ratio of the hyper�ne constants AnPJ

is about 5.8 and al,j does depend also on
the total electronic angular momentum J. Following the parametrization of Arimondo et
al. [82], the expectation value of the coupling constant < al,j > between two generic states
| n1L1, J1 > and | n2L2, J2 > is given by

< al,j >=
2gI

h
· µ0

4π
· µ2

b · < r−3 >=
2gI

h

µ0

4π
µ2

b

∫ ∞

0
Ψ∗

n1L1,j1 ·
1
r3
·Ψn2L2,j2r

2dr , (2.115)

where gI ≈ 0.39885 · 10−3 is the nuclear g-factor and µb is the Bohr magneton.
As a test for our model wave functions (described in Appendix C) we have �rst cal-

culated the well-known diagonal hyper�ne constants AnP1/2,3/2
for n=6,7,8,9 and we have

observed a satisfactory agreement, at a level of 4�8%, with the experimental values given
in the literature, as shown in Table 2.2. Numerical estimations of some of the o�-diagonal
expectation values < al,j > used in this work are shown in Tables 2.3 and 2.4 16.

We �nally note that if we set J1 = J2 in Eq. 2.111 and al,j = AnPJ

J(J+1)
2 we obtain

the well-known hyper�ne splitting of the PJ multiplets. For J1 = J2 = 1/2,

< Hhf >F=4=
7
4
A6P1/2

< Hhf >F=3= −9
4
A6P1/2

, (2.116)

and for J1 = J2 = 3/2,

< Hhf >F=5=
21
4

A6P3/2

< Hhf >F=4=
1
4
A6P3/2

< Hhf >F=3= −15
4

A6P3/2

< Hhf >F=2= −27
4

A6P3/2
. (2.117)

16In the calculations presented in this work we use for the hyper�ne coupling constants the more precise
experimental values rather than our calculated values whenever they are available in the literature.
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Diagonal hf constants Our calculated value From the literature Deviation

A6P1/2
317.9 291.920(19)(a) 8%

A6P3/2
48.3 50.275(3)(b) 4%

A7P1/2
99.9 94.35(4)(c) 6%

A7P3/2
15.4 16.605(6)(c) 7%

A8P1/2
45.0 42.97(10)(c) 5%

A8P3/2
7.0 7.58(1)(c) 7%

Table 2.2: Hyper�ne coupling constants for P-states calculated by using our wave functions
based on a semiempirical Thomas-Fermi potential model, compared to the experimental
values given by (a) Rafac et al. [83], (b) Tanner et al. [84], (c) Arimondo et al. [82]. The
values are given in MHz.

O�-diagonal hyper�ne (d-d interaction) coupling constants Value [MHz]

〈6P1/2 | al,j | 6P3/2〉 187.8

〈6P1/2 | al,j | 7P1/2〉 785.3

〈6P1/2 | al,j | 7P3/2〉 106.1

〈6P1/2 | al,j | 8P1/2〉 527.1

〈6P1/2 | al,j | 8P3/2〉 71.5

〈6P3/2 | al,j | 7P1/2〉 105.2

〈6P3/2 | al,j | 7P3/2〉 143.1

〈6P3/2 | al,j | 8P1/2〉 70.63

〈6P3/2 | al,j | 8P3/2〉 9.64

〈7P1/2 | al,j | 7P3/2〉 85.0

〈7P1/2 | al,j | 8P1/2〉 422.2

〈7P1/2 | al,j | 8P3/2〉 57.3

〈7P3/2 | al,j | 8P1/2〉 57.1

〈7P3/2 | al,j | 8P3/2〉 7.8

Table 2.3: Expectation values of the hyper�ne coupling constant al,j between states n1Pj1

and n2Pj2 . These values were obtained by evaluating Eq. 2.115 with the wave functions
that we calculate by means of the Schrödinger/Thomas-Fermi potential approach.



2.5 O�-diagonal hyper�ne matrix elements 55

O�-diagonal hyper�ne (d-d interaction) coupling constants Value [MHz]

〈6S1/2 | al,j | 5D3/2〉 74.3

〈6S1/2 | al,j | 6D3/2〉 42.9

〈6S1/2 | al,j | 7D3/2〉 28.4

〈6S1/2 | al,j | 8D3/2〉 21.2

Table 2.4: Expectation values of the hyper�ne coupling constant al,j between the ground
state 6S1/2 and states nD3/2. The coupling to states nD5/2 is forbidden by the selection rule
∆J = 0,±1. These values were obtained by evaluating Eq. 2.115 with the wave functions
that we calculate by means of the Schrödinger/Thomas-Fermi potential approach.

2.5.1.2 The Fermi-contact interaction

In the alkali ground state (L=0) the hyper�ne interaction is given by the Fermi-contact
term HFermi. In this special case the interaction is

HFermi = asS · I . (2.118)

By applying the usual angular momentum decoupling rules and by setting S = 1/2 and
I = 7/2 we can write

< n1S1/2, F, M | HFermi | n2S1/2, F, M >=

= (−1)F < as > 6
√

21





1/2 7/2 F

7/2 1/2 1









1/2 1/2 0

1/2 1/2 1



 =

= (−1)F < as > 3
√

21





1/2 7/2 F

7/2 1/2 1



 , (2.119)

where

< as >=
gI

h

16π
3

µ0

4π
µ2

bΨ
∗
n1S1/2

(0)Ψn2S1/2
(0) . (2.120)

In the equation above ΨnS1/2
(0) is the value of the electronic wave function at the nucleus

position. We notice that by setting n1 = n2 ≡ n the de�nition above leads to the tradi-
tional expression of the hyper�ne constant AnS1/2

∝| ΨnS1/2
(0) |2.

The diagonal hyper�ne constants calculated with our wave functions are compared to
the experimental ones given in the literature in Table 2.5.

The expectation values of the coupling constants as, involving the ground state and S
states with n=7,8,9, calculated with our model wave functions are listed in Table 2.6.
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Diagonal hf constants Our calculated value From the literature Deviation

A6S1/2
2412.9 2298.158(a) 5%

A7S1/2
576.4 545.90(9)(b) 5%

A8S1/2
230.9 219.3(2)(c) 5%

A9S1/2
115.5 110.1(5)(a) 5%

Table 2.5: Hyper�ne coupling constants for S-states calculated by using our wave functions
based on a semiempirical potential model, compared to the experimental values given by
(a) Arimondo et al. [82], (b) Gilbert et al. [87], (c) Herrmann et al. [88]. The values are
given in MHz.

O�-diagonal hyper�ne (Fermi interaction) coupling constants Value [MHz]

〈6S1/2 | as | 7S1/2〉 1186.6

〈6S1/2 | as | 8S1/2〉 751.1

〈6S1/2 | as | 9S1/2〉 531.1

Table 2.6: Expectation values of the hyper�ne coupling constant as between states 6S1/2

and nS1/2. These values are obtained by evaluating Eq. 2.120 with the wave functions that
we calculate by means of a Thomas-Fermi potential approach.
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Figure 2.10: The hyper�ne interaction (blue solid line) can mix the wave functions of nPJ

states that belong to the same �ne-structure multiplet but with di�erent electronic angular
momenta J. The Stark interaction (dotted red lines) then connects the ground state to the
excited P states as shown in the �gure.

2.5.2 O�-diagonal hyper�ne matrix elements < nPj1 | Hhf | nPj2 >

We consider the mixing of levels belonging to the same �ne-structure multiplet, that is we
calculate matrix elements of the form

< nPj1 , F,M | Hd−d | nPj2 , F, M > ,

with j1 6= j2. We observe that in Eq. 2.111

• the electronic angular momenta Ji can assume only the values 1/2 and 3/2,

• the 6j-symbols do not change under the exchange of J1 and J2,

• the 9j-symbol changes sign under an exchange of J1 and J2,

and we obtain after some calculations the compact result

< nJ1, F,M | Hd−d | nJ2, F,M >=

= −
√

(5− F )(F − 2)(F + 3)(F + 6)
12

· < al,j >nP1/2,nP3/2
. (2.121)

In Fig. 2.10 we represent schematically the contribution of these matrix elements and the
role that they play in the third order Stark interaction.
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Figure 2.11: The hyper�ne interaction (blue solid line) can mix the wave functions of nPJ

states with di�erent principal quantum number n. The interaction is in this case diagonal
in all the other quantum numbers: L, J , F and MF . The Stark interaction (dotted red
lines) connects �rst the ground state to the state nPj , then the state mPj back to the
ground state, or viceversa.

2.5.3 O�-diagonal hyper�ne matrix elements < n1PJ | Hhf | n2PJ >

We next consider the mixing of levels de�ned by the same set of quantum numbers except
for the principal quantum number n, that is we calculate matrix elements of the form

< n1, L, J, F, M | Hd−d | n2, L, J, F, M > ,

with n1 6= n2. This coupling scheme and its contribution to the third order Stark in-
teraction is represented graphically in Fig. 2.11. From Eq. 2.111 we obtain the compact
expressions

< n1, J = 1/2, F, M | Hd−d | n2, J = 1/2, F, M >

= (−1)F 336
(F + 4)(F + 5)

< al,j >n1P1/2,n2P1/2
, (2.122)

and

< n1, J = 3/2, F, M | Hd−d | n2, J = 3/2, F, M >

=
2
15

[2F (F + 1)− 39] < al,j >n1P3/2,n2P3/2
. (2.123)
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Figure 2.12: The hyper�ne interaction (blue solid line) mixes the wave functions of states
with di�erent principal quantum number n and di�erent total electronic angular momen-
tum J. The Stark interaction (dotted red lines) then mixes the excited P states into the
ground state.

2.5.4 O�-diagonal hyper�ne matrix elements: < n1PJ1 | Hhf | n2PJ2 >

The most general case concerns the coupling of levels with di�erent n and di�erent J

< n1, L, J1, F,M | Hd−d | n2, L, J2, F,M > ,

with n1 6= n2 and J1 6= J2. This mixing scheme is sketched in Fig. 2.12. The compact form
of Eq. 2.121 can be easily generalized to this case just by replacing the hyper�ne constants
as follows

< al,j >nP1/2,nP3/2
−→< al,j >n1P1/2,n2P3/2

.

2.5.5 O�-diagonal hyper�ne matrix elements < 6S1/2 | Hhf | nD3/2 >

We consider now the mixing of the ground state to excited D-states, i.e., we calculate
matrix elements of the form

< 6S1/2, F, M | Hd−d | nD3/2, F, M > .

These matrix elements are allowed because of the term H
(spin)
hf in Eq. 2.111. The inspection

of this term also shows that the ground state cannot be coupled to states nD5/2 because
of the selection rule ∆J = 0,±1. After some calculations we obtain the compact form

< 6S1/2, F,M | Hd−d | nD3/2, F,M >

=

√
(5− F )(F − 2)(F + 3)(F + 6)

4
< al,j >6S1/2,nD3/2

. (2.124)

In Fig. 2.13 we represent schematically the contribution of these matrix elements.
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Figure 2.13: The hyper�ne interaction (blue solid line) can mix the wave functions of
mD3/2 states into the ground state. The Stark interaction (dotted red lines) then connects
S, P and D-states as shown in the �gure. We observe essentially two equivalent paths to
come back to the ground state via excited P and S states: 6S → nP P → nDD → 6S and
6S → nDD → nP P → 6S. In both cases one has to apply twice the Stark operator and
once the hyper�ne operator. Note that these two paths are equivalent. This explains the
factor 2 in front of the sum.
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Figure 2.14: The hyper�ne interaction (blue solid line) mixes the wave functions of excited
S states into the ground state and the Stark interaction (dotted red lines) couples S and P
states. We observe essentially two equivalent paths to come back to the ground state via
excited P and S states: 6S → nP P → nSS → 6S and 6S → nSS → nP P → 6S. In both
cases one has to apply twice the Stark operator and once the hyper�ne operator. Note
that these two paths are equivalent. This explains the factor 2 in front of the sum.
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2.5.6 O�-diagonal hyper�ne matrix elements < n1S1/2 | Hhf | n2S1/2 >

The ground state 6S1/2 can be coupled to an excited nS state by the Fermi-contact hy-
per�ne interaction as shown by Eq. 2.119. This coupling scheme contributes to the third
order quadratic Stark e�ect in the way sketched in Fig. 2.14. From Eq. 2.119 one obtains

< n1S1/2, F, M | HFermi | n2S1/2, F, M >

= (−1)F 126
(F + 4)(F + 5)

< as >n1S1/2,n2S1/2
. (2.125)

2.5.7 Comparison to o�-diagonal matrix elements calculated by other au-
thors
O� diagonal hyper�ne matrix elements of the form

< n1, L, J, F,M | Hhf | n2, L, J, F,M > ,

were calculated by Feichtner et al. [65] using hydrogenic wave functions. These authors
de�ne the following coupling coe�cients

< 6S1/2, F | Hhf | nS1/2, F >

∆E(6S1/2, nS1/2)
= An 1

2
F n=7,8,9 , (2.126)

< 6PJ , F | Hhf | nPJ , F >

∆E(6PJ , nPJ)
= BnJF n=7,8,9 , (2.127)

and

< 7PJ , F | Hhf | nPJ , F >

∆E(7PJ , nPJ)
= CnJF n=8,9 . (2.128)

Numerical values for all the coe�cients An 1
2
F , BnJF and CnJF de�ned above are given

in [65]. We can thus compare the hyper�ne matrix elements calculated with our wave
functions to the ones obtained by Feichtner et al. with hydrogenic wave functions. This
comparison is shown in Table 2.7. Our calculated matrix elements show a disagreement
with the ones from [65] in the range of 5%−1000%. The origin of these large discrepancies is
not yet clear. Nevertheless we stress again the fact that at present, with our wave functions,
we are able to calculate well-known diagonal hyper�ne constants with an error that is never
larger than a few percent. These results make us feel con�dent in the reliability of our
wave functions. On the other hand, the hydrogenic approximations used by Feichtner and
collaborators are not completely clear in some steps of their calculations. Basically these
authors parameterize the o�-diagonal hyper�ne matrix elements in terms of the S-state
hydrogenic wave functions at r=0 according to the so-called Fermi-Segré (FS) formula

| ΨFS
nS (0) |2= 1

π

Z2
aZ

n3∗a3
0

(1 +
∂∆
∂n

) , (2.129)

where the correction factors Za, n3∗ and 1 + ∂∆
∂n are given for instance in [86]. The o�-

diagonal matrix elements involving P-states are then expressed as

< nPJ | Hhf | n′PJ >∝ ΨnS(0)Ψn′S(0)
| Ψ6S(0) |2 . (2.130)
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This approximation and the choice of the correction parameters given above could be pos-
sible sources for the observed discrepancies. Another very important di�erence between
our model and Feichtner's model is that in the latter the spin-orbit interaction is neglected
whereas it is explicitly included in the calculation of our model wave functions (see Ap-
pendix C). This feature of Feichtner's model seems to be a very coarse approximation.

The matrix elements involving S-states can also be estimated by applying the factor-
ization rule 17

< n1S | Hhf | n2S >=
√

< n1S | Hhf | n1S >< n2S | Hhf | n2S > . (2.131)

The calculated and experimental diagonal hyper�ne constants are given in Table 2.5. By
using our calculated values the factorization rule yields

〈6S1/2F = 3 | Hhf | 7S1/2F = 3〉 = 2653.5 MHz ,

〈6S1/2F = 4 | Hhf | 7S1/2F = 4〉 = 2063.8 MHz ,

〈6S1/2F = 3 | Hhf | 8S1/2F = 3〉 = 1679.4 MHz ,

〈6S1/2F = 4 | Hhf | 8S1/2F = 4〉 = 1306.2 MHz , (2.132)

and by using the experimental values of Table 2.5

〈6S1/2F = 3 | Hhf | 7S1/2F = 3〉 = 2520.2 MHz ,

〈6S1/2F = 4 | Hhf | 7S1/2F = 4〉 = 1960.1 MHz ,

〈6S1/2F = 3 | Hhf | 8S1/2F = 3〉 = 1597.3 MHz ,

〈6S1/2F = 4 | Hhf | 8S1/2F = 4〉 = 1242.4 MHz , (2.133)

We observe a global satisfactory agreement, at the level of 5%, between the results reported
above. Moreover, if we compare the o�-diagonal matrix elements given in Eqs. 2.132,
obtained by applying the "geometrical average rule" (Eq. 2.131), to the calculated ones
given in Table 2.7, we notice that the factorization rule is very well ful�lled (to better than
1%) in the frame of our model. This is of course another point in favor of the reliability of
our model wave functions.

Furthermore, the following matrix elements

〈6P1/2F = 4 | Hhf | 6P3/2F = 4〉 ≈ 91.2 MHz ,

〈6P1/2F = 3 | Hhf | 6P3/2F = 3〉 ≈ 80.1 MHz ,

were derived in [91] from a lowest-order Dirac-Hartree-Fock calculation. These values have
to be compared to our results: 185.1 MHz and 162.6 MHz respectively. In this case the
discrepancy amounts to about a factor two.

17The validity of this rule for s-states was recently demonstrated to hold at a level of 10−3 by Dzuba
and Flambaum [89] in the frame of a relativistic many-body calculation. On the other hand this formula
is not believed to be applicable to P-states [90].
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Hyper�ne matrix elements Our value From [65] Deviation[%]

〈6S1/2F = 3 | Hhf | 7S1/2F = 3〉 -2669.8 -2407.5 10

〈6S1/2F = 4 | Hhf | 7S1/2F = 4〉 2076.5 1873.7 10

〈6S1/2F = 3 | Hhf | 8S1/2F = 3〉 -1690.0 -1517.4 10

〈6S1/2F = 4 | Hhf | 8S1/2F = 4〉 1314.5 1189.1 10

〈6P1/2F = 3 | Hhf | 7P1/2F = 3〉 -4711.8 -804.2 486

〈6P1/2F = 4 | Hhf | 7P1/2F = 4〉 3664.7 625.2 486

〈6P3/2F = 2 | Hhf | 7P3/2F = 2〉 -515.2 -484.5 6

〈6P3/2F = 3 | Hhf | 7P3/2F = 3〉 -286.2 -269.2 6

〈6P3/2F = 4 | Hhf | 7P3/2F = 4〉 19.1 17.9 7

〈6P3/2F = 5 | Hhf | 7P3/2F = 5〉 400.7 376.7 6

〈6P1/2F = 3 | Hhf | 8P1/2F = 3〉 -3162.6 -505.8 525

〈6P1/2F = 4 | Hhf | 8P1/2F = 4〉 2459.8 394.1 524

〈6P3/2F = 2 | Hhf | 8P3/2F = 2〉 -34.6 -304.6 89

〈6P3/2F = 3 | Hhf | 8P3/2F = 3〉 -19.2 -169.0 89

〈6P3/2F = 4 | Hhf | 8P3/2F = 4〉 1.28 11.0 88

〈6P3/2F = 5 | Hhf | 8P3/2F = 5〉 26.9 236.6 89

〈7P1/2F = 3 | Hhf | 8P1/2F = 3〉 -2533.2 -233.6 984

〈7P1/2F = 4 | Hhf | 8P1/2F = 4〉 1970.3 181.6 985

〈7P3/2F = 2 | Hhf | 8P3/2F = 2〉 -28.1 -14.1 99

〈7P3/2F = 3 | Hhf | 8P3/2F = 3〉 -15.6 -78.3 80

〈7P3/2F = 4 | Hhf | 8P3/2F = 4〉 1.04 5.2 80

〈7P3/2F = 5 | Hhf | 8P3/2F = 5〉 21.9 109.6 80

Table 2.7: Hyper�ne matrix elements calculated by following the procedure described in
the text with our wave functions obtained from the Schrödinger equation for a Thomas-
Fermi potential, compared to the same matrix elements calculated by Feichtner et al. [65]
with hydrogenic wave functions. The values are given in MHz.
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To our knowledge, in the literature there are no theoretical nor experimental results
concerning o�-diagonal hyper�ne matrix elements between S and D-states and between
P-states with di�erent principal quantum number n and di�erent angular momentum J.

2.6 Reduced electric dipole matrix elements

Beside the hyper�ne matrix elements, a precise knowledge of reduced electric dipole matrix
elements is essential for evaluating the Stark matrix elements. Some of the numerical values
of the reduced matrix elements used in this work are listed in Table 2.8.

We recall here that in the literature there are several experimental and theoretical
papers [65�75] which give numerical values for reduced electric dipole matrix elements.
Unfortunately these works show severe disagreements concerning the signs of the matrix
elements. This is of course a problem for our calculations, in which the phases of the
matrix elements appear explicitly. With our atomic wave functions, we can reproduce the
absolute theoretical and experimental values of all the matrix elements involving states
with n = 6�8 reported in the literature, with a discrepancy that varies from a few per-
cent to about 10% in the worst case, as shown in Table 2.8. Our phases comply with
the conventions described in Appendices A and B and in Section 2.1.2. We attribute the
sign di�erences between our calculated reduced matrix elements and the ones given in the
literature to the conventions discussed in the appendices.

The situation is well summed up in Table 2.8 where we show a comparison between
some of our numerical values and the corresponding reduced matrix elements reported
in [65, 69, 72�74].

Very precise experimental values (with uncertainties on the order of 10−3) for the dipole
matrix elements involving nS and mP states with n,m=6,7 can be found in the litera-
ture [72�74]. The discrepancies with respect to our calculated values are in these cases in
the range 2�8% as shown in Table 2.8.

In the numerical calculations that follow, in this and in the next Chapter, we will use
experimental values for hyper�ne coupling constants and reduced dipole matrix elements
whenever they are available in the literature. We will therefore use the experimental values
for the matrix elements < nS1/2 ‖ d ‖ mP1/2,3/2 > with n,m=6,7 from [72�74] and the
experimental values given in Table 2.5 for the diagonal hyper�ne constants AnS1/2

. The
o�-diagonal hyper�ne matrix elements < 6S1/2 | Hhf | nS1/2 > are then evaluated by
applying the factorization rule given in Eq. 2.131. All the other parameters used in the
calculations presented in this work are derived from our Cs wave functions.

2.7 Third order Stark e�ect with hyper�ne o�-diagonal terms

We have calculated the electronic wave functions for nSJ , nPJ , and nDJ states up to
n = 18 and we have included in the third order perturbation expansion all the o�-diagonal
matrix elements treated in Section 2.5.
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Reduced matrix elements Our value [a0e] from the literature Deviation[%]

〈6S1/2‖er‖6P1/2〉 4.43 -4.4978(61) (a) 2

〈6S1/2‖er‖6P3/2〉 6.13 -6.3311(72) (a) 3

〈6S1/2‖er‖7P1/2〉 0.26 0.2757(20) (b) 6

〈6S1/2‖er‖7P3/2〉 0.54 0.5856(50) (b) 8

〈6S1/2‖er‖8P1/2〉 0.073 0.079 (c) 8

〈6S1/2‖er‖8P3/2〉 0.19 0.214 (c) 11

〈7S1/2‖er‖6P1/2〉 -4.28 -4.233(22) (d) 1

〈7S1/2‖er‖6P3/2〉 -6.58 -6.479(31) (d) 2

〈7S1/2‖er‖7P1/2〉 10.76 10.308(15) (d) 4

〈7S1/2‖er‖7P3/2〉 14.71 14.320(20) (d) 3

〈7S1/2‖er‖8P1/2〉 1.02 -0.917 (c) 11

〈7S1/2‖er‖8P3/2〉 1.80 -1.624 (c) 10

〈8S1/2‖er‖6P1/2〉 0.99 1.004 (e) 1

〈8S1/2‖er‖6P3/2〉 1.46 -1.46 (e) < 1

〈8S1/2‖er‖7P1/2〉 9.09 -8.75 (e) 4

〈8S1/2‖er‖7P3/2〉 13.78 13.59 (e) 1

〈8S1/2‖er‖8P1/2〉 -17.7 - -

〈8S1/2‖er‖8P3/2〉 -24.5 - -

Table 2.8: Numerical values of the reduced matrix elements of the electric dipole operator.
In the third column we report the matrix elements given in the literature. (a) experimental
values from Rafac et al. [74]; (b) experimental values from Vasilyev et al. [73]; (c) theoretical
values from Blundell et al. [69]; (d) experimental values from Safronova et al. [72] and (e)
theoretical values from Feichtner et al. [65].
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2.7.1 General considerations on the perturbation expansion
The hyper�ne o�-diagonal terms can be grouped in three distinct families.

• The hyper�ne mixing of P-states leads to:

∑
n1,n2

∑

j1,j2

∑

f,m

< n2Pj2 , f,m | Hhf | n1Pj1 , f, m >

∆E(6S1/2, n1Pj1)∆E(6S1/2, n2Pj2)
×

× < 6S1/2, F, MF | HStark | n2Pj2 , f, m >< n1Pj1 , f, m | HStark | 6S1/2, F,MF > .

(2.134)

• The hyper�ne mixing of S- and D-states leads to:

2
∑
n1,n2

∑

j

∑

f,m

< 6S1/2, F, MF | Hhf | n2D3/2, F, MF >

∆E(6S1/2, n2D3/2)∆E(6S1/2, n1Pj)
×

× < n2D3/2, F, MF | HStark | n1Pj , f, m >< n1Pj , f, m | HStark | 6S1/2, F,MF > .

(2.135)

• The mixing of S states leads to:

2
∑
n1

∑

n2 6=6

∑

j

∑

f,m

< 6S1/2, F, MF | Hhf | n2S1/2, F, MF >

∆E(6S1/2, n2S1/2)∆E(6S1/2, n1Pj)
×

× < n2S1/2, F, MF | HStark | n1Pj , f, m >< n1Pj , f, m | HStark | 6S1/2, F,MF > .

(2.136)

The term in Eq. 2.136 is proportional to the hyper�ne mixing of S-states only and yields
a contribution which does not depend on the magnetic quantum number MF . This term
produces only a scalar e�ect which a�ects the shift of the clock transition frequency but
not the tensor polarizability α

(3)
2 . On the other hand, Eqs. 2.134 and 2.135 depend on the

hyper�ne mixing of P-states and on the hyper�ne mixing of S- and D-states, respectively,
and thus lead to an MF−dependent contribution which a�ects the value of α

(3)
2 . We

thus conclude that all the terms represented by Eqs. 2.134, 2.135 and 2.136 contribute to
the Stark shift of the clock transition frequency ∆ν00, while only Eqs. 2.134 and 2.135
contribute to the tensor polarizability.

As we already did in the part dedicated to the diagonal terms, we apply the Wigner-
Eckart theorem and the usual decoupling rules for angular momenta to Eqs. 2.134, 2.135
and 2.136. Then we isolate the terms proportional to 3M2

F − F (F + 1) and we write the
perturbation in the form given by Eq. 2.71, from which it is straightforward to calculate
the corrections to the parameters α

(3)
2 and α

(3)
0 , which are responsible for the splitting of

magnetic sub-levels and for the hyper�ne-transition shift, respectively.
We observed that the relative importance with which the diagonal and o�-diagonal

matrix elements contribute to the two e�ects of interest, i.e., α
(3)
2 and ∆ν00, is quite

di�erent, as clearly shown in table 2.9. These di�erent weights will play a central role in
the estimation of the uncertainty of the clock frequency shift. This very important point
will be addressed in Chapter 3.
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Matrix elements Contributions [%] to

α
(3)
2 ∆ν00

< 6S1/2 | Hhf | 6S1/2 > � 58.1

< nPj | Hhf | nPj > 146.9 −1.2

< 6S1/2 | Hhf | nS1/2 > � 40.9

< n1Pj | Hhf | n2Pj > 90.9 < 0.01

< nPj1 | Hhf | nPj2 > −35.0 1.6

< n1Pj1 | Hhf | n2Pj2 > −1.7 0.1

< 6S1/2 | Hhf | nD3/2 > −101.1 0.5

Table 2.9: Relative contributions of diagonal and o�-diagonal matrix elements to the tensor
polarizability α

(3)
2 and to the hyper�ne clock transition Stark shift ∆ν00. The �rst two

lines refer to the diagonal hyper�ne matrix elements, while the other 5 lines describe the
contributions of the di�erent types of o�-diagonal matrix elements.

2.7.2 The tensor polarizability
The numerical evaluation of Eq. 2.67 together with Eqs. 2.134, 2.135 and 2.136 yields

α
(3)
2 (F = I ± J) = ∓3.72(25)× 10−2 Hz

(kV/cm)2
. (2.137)

In Fig. 2.8 we have shown the existence of a large discrepancy between theory and ex-
periments. In Fig. 2.15 we include the result given above and we claim that the present
calculation of α

(3)
2 �nally yields, after 40 years, a good agreement with all the experimental

data.

The precision of our result strongly depends on the uncertainty of the hyper�ne and elec-
tric dipole matrix elements calculated by using our Schrödinger wave functions. In order
to make an estimation of this uncertainty we have used the wave functions to evaluate
well-known atomic parameters, such as diagonal hyper�ne constants and reduced electric
dipole matrix elements of low-lying states and we have compared them to the correspond-
ing experimental values 18. We have thus found discrepancies in the range 2�8%, as shown
in Tables 2.2, 2.5 and 2.8. We have then assumed an average error of 5% for the reduced
matrix elements and for the o�-diagonal hyper�ne constants used in the calculations and
we have estimated a �nal uncertainty for α

(3)
2 of about 7%.

18For the estimation of the uncertainty we have considered only reduced dipole matrix elements involving
states with n=6,7 and hyper�ne constants for nS- and nP-states with n=6,7,8, because precise experimental
values for these parameters are available in the literature, as one can see in Tables 2.2, 2.5 and 2.8.
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Figure 2.15: The third order tensor polarizability of the F=4 Cs ground state. The �lled
squares represent experimental values of (a) from Carrico et al.[62], (b) from Gould et
al.[63], (c) from Ospelkaus et al. [64] and (d) from this work [85]. The empty square (e)
represents a weighted average of (a), (b), (c) and (d). The dots represent (f) the theoretical
value from [63] given in Eq. 2.94 and (f',f�) our re-evaluations (Eqs. 2.89,2.102) of the latter
value as discussed in Section 2.4.7. The dotted horizontal line is the result of the present
work with its uncertainty (shaded band).



Chapter 3

The quadratic Stark e�ect in the
ground state of cesium

We recall that the Stark shift of a generic level | F,MF > of the ground state of cesium
can be parameterized in terms of the third order scalar polarizability α

(3)
0 and of the tensor

polarizability α
(3)
2 as

∆E(3)(F, MF ) = −1
2
·α(3)

0 (F ) ·E2− 1
2
·α(3)

2 (F ) · 3M2
F − F (F + 1)

28
· 3 cos2(θ)− 1

2
·E2 , (3.1)

where θ de�nes the orientation of the electric �eld with respect to a given quantization
axis 1.

The expression 3.1 has been introduced in the previous chapter in the frame of a
detailed third order perturbation analysis of the interaction between an atom and an
external electric �eld. Here we show the e�ect of this interaction on the Zeeman and
hyper�ne structures of the ground state of cesium.

3.1 The quadratic Stark shift of the Zeeman levels
In Fig. 3.1 and Fig 3.2 we plot the shift of the magnetic sub-levels of the hyper�ne com-
ponents F=4 and F=3 in the ground state of Cs as a function of the electric �eld for
two orthogonal orientations of the �eld, θ = 0 and θ = π/2, and for the forbidden tensor
polarizability given by Eq. 2.137. One can notice that the e�ect of the Stark interaction
in the con�guration θ = π/2 is reduced by a factor of 2 with respect to the con�guration
θ = 0 due to the factor (3 cos2(θ)− 1)/2. One can also note that the level (F=3,M=2) is
not shifted by the electric �eld because of the factor 3M2 − F (F + 1).

The dependence of the splitting of the magnetic sub-levels on the orientation of the electric
�eld can be appreciated in Fig. 3.3 where their shift is plotted as a function of the angle
θ for an electric �eld of 50 kV/cm. The principal feature appearing from this �gure is the
existence of a magic angle θm at which the Stark e�ect vanishes and the magnetic levels
are not shifted by the electric �eld. The origin of the angle θm can be easily understood
by looking at Eq. 3.1: the e�ect of the applied electric �eld vanishes when

1In our magnetic resonance experiments the direction of the static magnetic �eld ~B0, which de�nes the
z-axis of our laboratory reference system, is often the most convenient choice for the quantization axis.

69
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Figure 3.1: Quadratic Stark shift of the magnetic sub-levels of the ground state of Cs as a
function of the applied electric �eld oriented along the quantization axis (θ = 0).
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Figure 3.2: Quadratic Stark shift of the magnetic sub-levels of the ground state of Cs as a
function of the applied electric �eld perpendicular to the quantization axis (θ = π/2).
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cos θm =
1√
3

, (3.2)

which is satis�ed when θm ≈ 54.7◦. In other words, the existence of the magic angle is just
a consequence of the tensor character of the interaction.

In Fig. 3.4 we plot the shift of the frequencies corresponding to the magnetic transitions

∆ν(4,4)→(4,3) = −3
8
α

(3)
2 (4)

3 cos2 θ − 1
2

E2 , (3.3)

and

∆ν(3,3)→(3,2) = −15
56

α
(3)
2 (3)

3 cos2 θ − 1
2

E2 , (3.4)

as a function of the electric �eld in the two relevant con�gurations θ = 0 (i.e., the con�g-
uration where the Stark e�ect is maximized) and θ = π/2.

Although the tensor polarizabilities α
(3)
2 (4) and α

(3)
2 (3) have opposite signs, in presence

of an external magnetic �eld, i.e., in a magnetic resonance experiment, the resonances
corresponding to F=4 and F=3 are shifted in the same direction as discussed in 2.4.4.
The situation is reversed in Sandars' model [33] where the shifts of the two resonances,
i.e. F=4 and F=3, have opposite signs. From 3.3, 3.4 and by taking into account that
ν(4,4)→(4,3) < ν(3,3)→(3,2), one can infer the di�erential shift of the magnetic resonances
corresponding to F=4 and F=3. According to our calculations we expect

∆ν(3,3)→(3,2) −∆ν(4,4)→(4,3) = − 3
28
| α(3)

2 (4) | 3 cos2 θ − 1
2

E2 , (3.5)

while Sandars' calculations predict a di�erential shift which is 6 times larger

∆ν(3,3)→(3,2) −∆ν(4,4)→(4,3) = − 9
14
| α(3)

2 (4) | 3 cos2 θ − 1
2

E2 . (3.6)

A comparison between the two models is plotted in Fig. 3.5. Thus the di�erential shift of
the two hyper�ne components F=4 and F=3 turns out to be the crucial test for the two
models. This will be discussed in the chapter dedicated to experimental results.

Another interesting consequence of the quadratic Stark e�ect is the splitting

∆ν(F,M)→(F,M−1) −∆ν(F,M−1)→(F,M−2) =
3
28
| α(3)

2 | 3 cos2 θ − 1
2

E2

of single magnetic resonances within a given hyper�ne level (see Section 2.4.4). This is
plotted in Fig. 3.6 for θ = 0 and θ = π/2. One has to note here that since the absolute value
of the tensor polarizability does not depend on F, the splitting has the same magnitude
in the two hyper�ne levels F=4 and F=3. The Stark e�ect thus produces a set of equally
spaced peaks in both the levels F=4 and F=3.
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q

Figure 3.3: Quadratic Stark shift of the magnetic sub-levels of the ground state of Cs as a
function of the orientation of the electric �eld with respect to the quantization axis z. The
�eld is 50 kV/cm.
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Figure 3.4: Quadratic Stark shift of the magnetic resonances | F = 4,M = 4 >→| F =
4,M = 3 > (in blue) and | F = 3,M = 3 >→| F = 3,M = 2 > (in red) as a function of
the applied electric �eld. The solid lines refer to the con�guration θ = 0 while the dotted
lines refer to θ = π/2.
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Figure 3.5: Di�erential shift ∆ν(3,3)→(3,2)−∆ν(4,4)→(4,3) according to our model (blue) and
to Sandars' model (red).
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Figure 3.6: Quadratic Stark splitting of single magnetic resonances within a given hyper�ne
level. The splitting is the same for F=4 and F=3.
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3.2 The quadratic Stark shift of the hyper�ne clock transition
We recall from Section 2.4.5 that the Stark shift of the hyper�ne clock transition frequency

∆ν00 =| 6S1/2, F = 4,M = 0 >↔| 6S1/2, F = 3, M = 0 >

can be expressed in the form 2

∆ν00 = −1
2

[
16
7

α
(3)
0 (4)− 8

7
α

(3)
2 (4)

3 cos2(θ)− 1
2

]
E2 . (3.7)

The equation above is dominated by the third order scalar polarizability α
(3)
0 , which rep-

resents the contributions of the Fermi-contact interaction and of the scalar part of the
magnetic dipole-dipole interaction, but it also has a small contribution, on the order of
1%, from the tensor part of the third order interaction 3.

The inclusion in the third order perturbation expansion of the o�-diagonal contributions
due to states nS1/2, nP1/2,3/2 and nD3/2 with n = 6�18, as discussed in the previous chapter
for the tensor polarizability, leads to the following result

α
(3)
0 (F = 4) = 1.81(1)

Hz

(kV/cm)2
, (3.8)

and

α
(3)
0 (F = 3) = −9

7
α

(3)
0 (F = 4) = −2.33(1)

Hz

(kV/cm)2
. (3.9)

From Eq. 3.7 we obtain for the clock transition frequency

∆ν00 =
(
−2.071− 0.021

3 cos2(θ)− 1
2

)
E2

[
Hz

(kV/cm)2

]
, (3.10)

where we have used our calculated value of the tensor polarizability (Eq. 2.137). This
result yields

∆ν00 = −2.09(1)E2 Hz

(kV/cm)2
for θ = 0 , (3.11)

and

∆ν00 = −2.06(1)E2 Hz

(kV/cm)2
for θ =

π

2
. (3.12)

This last value is in very good agreement with the very recent experimental result of
Godone and collaborators [61] [point (g) in Fig. 3.7]

∆ν00 = (−2.05± 0.04)E2 Hz

(kV/cm)2
,

2We have already observed in Section 2.4.5 that the coe�cient of the tensor part of the e�ect, which is
8/7 in our case, has to be replaced by 2/7 if one assumes α2(4) = α2(3) as prescribed by Sandars' model.
This di�erence a�ects ∆ν00 at a level which is only slightly below the present precision of primary atomic
clocks. The next generation of Cs clocks will probably be sensitive to this correction.

3In other words, the contribution of the term 3M2 − F (F + 1) evaluated for M=0.
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obtained in the con�guration θ = π/2 and with the calculation of Micalizio et al. [92] [point
(f) in Fig. 3.7].

As we discussed already in the previous chapter concerning the tensor polarizability α
(3)
2 ,

our theoretical estimations are a�ected by an uncertainty which is mainly due to the uncer-
tainty of the calculated hyper�ne and reduced dipole matrix elements. In Section 2.7.2 we
have discussed the precision of our result and we have estimated an uncertainty of about
7% for the �nal value of the tensor polarizability. The situation is rather di�erent and par-
ticularly interesting in the case of the clock frequency shift. As shown in Table 2.9, 99%
of this e�ect is produced by 2 di�erent types of hyper�ne matrix elements only, i.e., the
diagonal hyper�ne interaction in the 6S1/2 ground state and the o�-diagonal hyper�ne in-
teraction between the ground state and higher nS-states. Moreover, we found that 91% of
the total e�ect (calculated for n = 6�18) is due only to these 2 families of matrix elements
evaluated for n = 6, 7. In this case all the contributing hyper�ne and electric dipole matrix
elements can be traced back, directly or indirectly, to experimental quantities. The diago-
nal hyper�ne matrix elements are proportional to the measured hyper�ne splittings, while
the o�-diagonal hyper�ne matrix elements between S states of di�erent principal quantum
numbers n can be expressed in terms of the geometrical averages of the hyper�ne splittings
of the coupled states. Dzuba et al. have shown [89] that this relation holds at a level of
10−3. Experimental values of the electric dipole matrix elements < nS1/2 ‖ d ‖ mPj >
(n,m = 6, 7) can be found in the literature [72�74] with relative errors on the order of
10−3. This gives us a high level of con�dence in our value of the clock shift rate, for which
we estimate an uncertainty in the sub-% range, represented in Fig. 3.7 by a horizontal band.

The e�ect of a static external electric �eld (static Stark e�ect) on the ground state hyper-
�ne transition is of special interest for the atomic clock community, as it is strictly related
to the so-called black body radiation (BBR) shift of the clock transition (dynamic Stark
e�ect). The interaction of the atoms with the BBR �eld is one of the leading systematic
shifts of the cesium clock frequency and it was shown [93] that the dynamic BBR shift can
be parametrized in terms of the static Stark shift which is investigated here.

At present, there are two con�icting experimental groups of results concerning the static
Stark shift of the hyper�ne transition in Cs. The most precise value of the �rst group was
obtained by A.Clairon and collaborators at the Observatoire de Paris (France) in 1998 [60]
[point (e) in Fig. 3.7] while the second group is represented by the recent result of Godone
and collaborators at the Istituto Elettrotecnico Nazionale Galileo Ferraris (Torino, Italy)
[61] (point (g) in Fig. 3.7). The di�erence between the results obtained by those two groups
is 53 times the experimental uncertainty of the French result. At present the correction
factor for the BBR shift commonly used by the atomic clock community is based on the
precise experimental value of the Paris group [60] [point (e)], while our theoretical result
seems to support the Italian measurement [61] [point (g)] in this open debate.

We have to observe that the clock transition shift was calculated also by Feichtner et
al. [65] [point (b)] in an approximation using hydrogenic wave functions and neglecting
spin-orbit interactions, as already discussed in Section 2.5.7. Under these assumptions the
scalar polarizability α

(2)
0 can be factored out of their �nal result. Using a recent precision

measurement of α
(2)
0 [81] we have rescaled [point (b') in Fig. 3.7] the value of [65], which

then becomes consistent with the present result.
We believe that the problem of the large gap between the two families of experimental

and theoretical results sketched in Fig. 3.7 deserves more attention due to its relevance in
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Figure 3.7: The static Stark shift of the clock transition frequency. The squares repre-
sent experimental values of Haun et al. [56](a), Mowat [59](c), Simon et al. [60](e), and
Godone et al. [61](g). The dots represent theoretical values of Feichtner et al. [65](b), Lee
et al. [94](d), and Micalizio et al. [92](f). The circle (b') represents the rescaled value of
(b) as explained in the text. The error bar of point (e) is smaller than the symbol size.
The dotted horizontal line is the result of the present work including uncertainty (shaded
band).
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the control of systematics e�ects in atomic clocks. Following this consideration, at present
we are planning a novel re�ned measurement of the clock transition shift in an atomic
beam experiment which will hopefully be started in the near future. We believe that
new experimental data will help to shine more light onto this still unresolved important
problem.

3.3 Summary
The quadratic Stark e�ect in the ground state 6S1/2 of cesium is represented graphically
in Fig. 3.8 for a �eld of 20 kV/cm. We discuss brie�y the �gure.

In �rst order, the hyper�ne interaction leads to the hyper�ne splitting ν00 =9.192 GHz
between the levels F = I ± J . The contribution of the Stark interaction vanishes since the
Stark operator cannot couple states with the same parity and in absence of magnetic �elds
the Zeeman sub-levels are degenerate.

In second order, the Stark interaction leads to a global scalar shift of the ground state.
The second order e�ect does not depend on the quantum numbers F and MF and there-
fore the hyper�ne and Zeeman sub-structures of the ground state are not a�ected by the
interaction. The second order e�ect is parameterized in terms of the second order scalar
polarizability α

(2)
0 . The estimation given in Eq. 2.47 yields a shift of the ground state of

20 MHZ.

In third order, the combination of the Stark interaction and of the hyper�ne interaction
leads to a scalar e�ect and a tensor e�ect. The scalar e�ect consists in an F-dependent con-
tribution to the scalar polarizability which is responsible for the shift of the hyper�ne clock
transition frequency ∆ν00. The scalar part of the third order perturbation is parameterized
in terms of the third order scalar polarizability α

(3)
0 . The tensor e�ect depends on both

the quantum numbers F and MF . It gives a small additional contribution to the shift of
the clock transition frequency ∆ν00 and removes the degeneracy of the Zeeman sub-levels.
The tensor part of the third order interaction is proportional to 3M2 − F (F + 1) and to
the tensor polarizability α

(3)
2 . With our estimations of α

(3)
0 and α

(3)
2 , given in Eqs. 3.8 and

2.137 respectively, and in a �eld of 20 kV/cm, the hyper�ne transition frequency is reduced
by 836 Hz while the splitting of the magnetic sub-levels can vary from 0.8 Hz to 5.6 Hz
depending on the magnetic quantum number MF .
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Figure 3.8: Résumé of the calculated Stark shifts of the Zeeman levels in the hyper�ne
structure of the cesium ground state. We assume an electric �eld of 20 kV/cm. Note that
the details of this �gure are not drawn to scale.



Chapter 4

The Optically Detected Magnetic
Resonance

4.1 Introduction
In this chapter we describe the basic principles of the technique used in our experiments on
Cs atoms embedded in solid 4He, i.e., the optically detected magnetic resonance (ODMR).

Magnetic resonance consists essentially in changing the orientation of the macroscopic
magnetization associated with the spin polarization of the atomic sample by exposing it to
a combination of static and oscillating magnetic �elds. A high degree of spin polarization
is thus the essential prerequisite for the occurrence and sensitive detection of magnetic
resonance experiments.

In 1949 Kastler and Brossel [95] demonstrated that relevant population di�erences
between the Zeeman sub-levels of the ground state can be created by irradiating a vapor
of paramagnetic atoms with circularly polarized resonance light 1. This process, known as
optical pumping, is a very e�cient method to create an orientation of the atomic spins and
thus to produce a macroscopic magnetization. This technique cannot be applied to atoms
isolated in conventional (Ne, Ar, Kr, Xe) rare gas solids because the spin polarization
of the atoms is rapidly destroyed by the interaction with the crystal �elds. In solid He,
however, owing to its softness and compressibility, both a consequence of the quantum
nature of this solid, the atoms reside in spherical bubbles in a diamagnetic and perfectly
isotropic environment 2 and a very high degree of spin polarization can be achieved by
optical pumping of embedded alkali atoms as �rst demonstrated by Weis et al. [17].

The optical pumping process changes the optical properties of the sample. The atoms
irradiated with circularly polarized resonant light are transferred to a so-called dark state
(the | F = 4,MF = 4 > state in the case of cesium) and the sample becomes transparent
for the incoming laser beam. The decrease of �uorescence is then a direct measure of the
e�ciency of the optical pumping process. The contrast of the �uorescence

K =
F(t = 0)−F(∞)

F(t = 0)
, (4.1)

de�nes the relative change of the �uorescence rate F due to optical pumping. Typical
1A.Kastler was honored by the 1966 Nobel Prize in Physics for this discovery.
2As we explained in Chapter 1 this is only true in the bcc phase of solid 4He; the atoms are strongly

perturbed in the anisotropic hcp phase as was �rst demonstrated by Kanorski et al. [23].

81
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contrasts of 50% were observed in experiments on cesium atoms in solid helium [17].
When the atomic sample is exposed to a static magnetic �eld ~B0 the degeneracy of the

Zeeman sub-levels is removed (Zeeman e�ect). In a classical picture the spin polarization
precesses about the axis de�ned by the static magnetic �eld at the Larmor frequency
ωL = gµB

~ B0.
The simultaneous interaction with an oscillating radio-frequency �eld ~B1, with fre-

quency ωRF , induces magnetic dipole transitions between Zeeman sub-levels thus changing
the orientation and/or the magnitude of the spin polarization of the atomic sample.

This change of polarization is most e�ective when the radio-frequency ωRF matches the
Larmor frequency ωL associated with the static �eld B0. The transitions induced by B1

depopulate the dark state thus changing again the optical properties of the sample which is
no longer transparent for the resonant radiation. The consequent increase of �uorescence
can then be detected optically by scanning the radio-frequency ωRF in the vicinity of the
Larmor frequency ωL.

In conventional electron spin resonance (ESR) the polarization of the sample is obtained
thermally and the detection of the magnetic resonance is performed by using pick-up coils.
This traditional method can be successfully applied to typical samples characterized by
atomic densities of ≈ 1020−1022 atoms/cm3 but cannot be used in our experiment in which
the density of atoms in the helium matrix is ≈ 108− 109 atoms/cm3. On the contrary, the
optical-rf double resonance technique with optical detection brie�y described above guar-
antees both a very e�cient preparation of the sample and an extremely sensitive detection
thus enabling the investigation of low density samples.

4.2 Optical pumping
4.2.1 Creation of spin polarization
The basic idea of optical pumping is to transfer angular momentum from resonant circu-
larly polarized light to the irradiated atomic sample to generate a non-thermal population
distribution in the Zeeman sub-structure of the ground state, thus creating a spin polariza-
tion. This technique is illustrated in Fig. 4.1 for the D1 transition (| 6S1/2 >→| 6P1/2 >)
of cesium in solid helium.

Each photon of the resonant circularly polarized (σ+) laser beam carries an angular
momentum of +~. When an atom absorbs a photon its angular momentum is thus increased
by a quantum +~. In other words, the resonant σ+−polarized light induces transitions

| 6S1/2, F,M >→| 6P1/2, f,M + 1 > ,

and the magnetic quantum number of the irradiated atoms is thus increased by one unit
at each absorption of a light photon.

The hyper�ne structure of both the ground and excited states are not optically resolved
in solid helium owing to the broadened excitation line (∆λ ≈ 10 nm). For the same reason
the optical transition is not saturated by applying typical light intensities ≤ 1 mW. Under
these conditions stimulated emission can be neglected and we can assume that the excited
state relaxes back to the ground state only via spontaneous emission.

Under continuous optical excitation the ground-state levels with M < 4 are depopu-
lated and all the atoms are �nally transferred into the so-called dark state, i.e., the Zeeman
level with the highest magnetic quantum number | F = 4,M = 4 >. This state does not
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a

b

c

P
z

Figure 4.1: The optical pumping process in the solid He matrix. (a) The atomic sample is
initially unpolarized, i.e., the atomic spins are uncorrelated and randomly oriented. This
corresponds to equal populations pF,M of the Zeeman sub-levels of the ground state. We
irradiate the atoms with σ+−polarized light. (b) The resonant light induces ∆M = 1
transitions represented by the solid lines. The excited state then relaxes via spontaneous
emission back to the ground state through the allowed (∆M = 0,±1) decay channels
represented by the dashed lines. On average the populations are thus transferred to levels
with higher magnetic quantum numbers M and �nally all atoms end up in the dark state
| 4, 4 >. Note that the hyper�ne splitting in both the ground and the excited states cannot
be resolved optically in solid helium owing to the broadened excitation line (∆λ ≈ 10 nm).
(c) The sample is polarized and the orientation of the atomic spins leads to a macroscopic
spin polarization Pz =< Fz >= 1

F

∑F
M=−F MF pF,M .
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couple to the resonant σ+ light any more and the atomic sample becomes transparent
for the laser beam with a corresponding decrease of the �uorescence intensity. The �-
nal orientation of the atomic spins leads to an ensemble spin polarization as sketched in
Fig. 4.1.

The longitudinal polarization of an atomic ensemble with total angular momentum F
is de�ned as the expectation value of the component Fz

Pz(F ) ≡< Fz >=
1
F

F∑

M=−F

MF pF,M , (4.2)

where pF,M is the population of the Zeeman level | F, M >. This property of the spin
polarized sample is then related to the �uorescence rate by [19]

F = Funpol

(
1− 1

4
(Pz(4)− Pz(3))

)
= Funpol (1− 2 < Jz >) , (4.3)

where Funpol is the �uorescence rate of the unpolarized sample (< Jz >= 0) and where the
last equality can be proved by using well-known properties of the matrix elements of Jz

and Fz (see for instance [86]). The fact that F does not depend on the quantum number
F re�ects the property that the hyper�ne structure is not optically resolved in solid helium.

We can distinguish two di�erent optical pumping mechanism, i.e., repopulation pump-
ing and depopulation pumping. Basically, in repopulation pumping the spin-polarization
is preserved in the excited state while in depopulation pumping the polarization in the
excited state is destroyed by the coupling to the crystal (or by collisions in a high density
vapor) and the populations are redistributed among the hyper�ne and Zeeman sub-levels.
In solid helium, owing to the spherical symmetry of the atomic bubble and to the dia-
magnetic character of the matrix, the atomic spins are not perturbed by crystalline �elds
and the dominant pumping mechanism turns out to be of the repopulation pumping type
as �rst demonstrated by Lang et al. [19]. In this work it was also demonstrated that
repopulation pumping is a more e�cient mechanism than depopulation pumping for the
creation of ground-state spin polarization.

4.2.2 The rate equations
A σ+−polarized light beam of total intensity I0, which propagates in a generic direction
de�ned by the vector ~k, can be decomposed into a sum of σ+, σ− and π eigenmodes with
respect to the quantization axis ẑ. The intensities Iq=±1,0 associated with each polarization
state can be written as

Iq = I0χq , (4.4)
where

χ+1 = cos4
θ

2
,

χ0 =
1
2

sin2 θ ,

χ−1 = sin4 θ

2
, (4.5)
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where θ is the angle between the propagation vector ~k and the quantization axis.
The steady-state polarization Pz created by the optical pumping process depends es-

sentially on 2 parameters:

• the pumping rate γp, which depends in general on the intensity, on the polarization,
on the propagation direction and on the beam pro�le of the pumping light,

• the longitudinal relaxation rate γ1 of the ground state which tends to make the
populations pF,MF

evolve towards their thermal equilibrium characterized by pF,MF
=

1/16.

Under the assumption γp ¿ Γ, where Γ is the relaxation rate of the excited state, the
stimulated emission can be neglected. The circularly polarized light then couples only
to the populations and we do not need to include sub-level coherences in the description
of the optical pumping process, which then reduces to �nding the solutions of a system
of incoherent rate equations. Moreover, on the time scale of the ground-state evolution
(≈ 103Hz) we can neglect the very fast relaxation processes of the excited state 6P1/2

(≈ 108Hz) and proceed to the so-called adiabatic elimination of the excited state variables
[19]. In conclusion, the rate equations describing the time evolution of the atomic ensemble
under optical pumping can be simpli�ed to a system of 16 equations which involve only
the ground state populations pF,M . In the approximation of pure repopulation pumping
one can write [19]

ṗF,M = −γp

∑
q

∑

f

χqRF,M,f,M+qpF,M+

+ γp(2j + 1)
∑

q

∑

F ′,M ′

∑

f

χqRF ′,M ′,f,M ′+qRf,M ′+q,F,MpF ′,M ′ − γ1(pF,M − 1
16

) , (4.6)

where

RF,M,f,m = (2F + 1)(2f + 1)




f 1 F

−m m−M M




2 



1/2 f I

F 1/2 1





2

, (4.7)

and the optical pumping rate γp is de�ned as

γp =
1

γhom

E2

~2
|< 6P1/2 ‖ d ‖ 6S1/2 >|2 , (4.8)

where γhom is the homogeneous optical linewidth and E2 is the intensity of the light �eld.
Note that this system of equations describe the evolution of the populations, and thus

the build-up of the polarization, along the quantization axis ẑ. The orientation of the light
beam is taken into account via the components χq.

In Fig. 4.2 we show as an example the equilibroum population di�erences created by
the optical pumping process for a normalized pumping rate γp/γ1 = 100 and by assuming
that the propagation direction of the light coincides with the quantization axis. We further
assume that the light is 100% circularly polarized.
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Figure 4.2: Steady state population distribution in the ground state of cesium after optical
pumping with γp/γ1 = 100 and by assuming that the propagation direction of the light
coincides with the quantization axis.

4.3 Optical-RF double resonance
In the previous section we saw how an atomic ensemble can be spin polarized by the
absorption of circularly polarized light. We discuss now in a classical picture the e�ect of
the combination of static and oscillating magnetic �elds on the magnetic moment associated
with the spin polarization of the atomic ensemble.

4.3.1 The rotating wave approximation and the e�ective �eld
Let ~B0 be a static magnetic �eld and

~Brf (t) = ~B′
1 cosωrf t (4.9)

an oscillating magnetic �eld perpendicular to the direction de�ned by ~B0. For the sake of
simplicity we assume ~B0 ‖ êz and ~B′

1 ‖ êx. One can see the oscillating �eld as the sum of
two rotating components with opposite sense of rotation

B′
1 cos(ωrf t) êx = B1e

iωrf tê+ + B1e
iωrf tê− , (4.10)

where ê± ≡ êx±iêy
3 and where B′

1 = 2B1. The dynamic of the system is more conveniently
discussed in a reference frame ê′i=x,y,z that rotates about êz at the angular velocity ωrf .
In this rotating frame one of the components of the oscillating �eld appears to be static
(B1ê

′
x) while the other rotates at the double angular velocity −2ωrf . In the so-called

rotating wave approximation (RWA) this fast latter component is neglected owing to its
small e�ect on the atomic spins 4.

In the rotating frame an additional �ctitious �eld ~Bf = −(ωrf/ωL) ~B0 appears 5. The
equations of motion of an atomic magnetic moment in the rotating frame are then identical

3For the sake of simplicity we ignore the normalization of ê±.
4The e�ect of the fast component is a small shift of the resonance frequency known as Bloch-Siegert

shift, which is on the order of (B′
1)

2/16B2
0 [96]

5It's a consequence of a classical mechanics theorem known as Larmor's theorem.
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to the equations in the laboratory frame when the total �eld ~B0 + ~Brf (t) is replaced by
the e�ective �eld

~Beff = ~B0 + ~Bf + ~B1 = (B0 − ωrf

ωL
B0)ê′z + B1ê

′
x . (4.11)

The magnetic moment thus precesses around the total e�ective �eld at the so-called e�ec-
tive Rabi frequency

Ωeff =
√

(ωL − ωrf )2 + Ω2
R , (4.12)

where ΩR = gµB
~ B1 is the Rabi frequency of the system 6.

4.3.2 The Bloch equations
The atomic sample under investigation is characterized by a polarization vector ~P =< ~F >,
where ~F is the atomic spin, and by a macroscopic magnetization ~M =< ~µ >, where ~µ is
the magnetic moment associated with the spin ~F . The well-known relation ~µ = γ ~F , where
γ is the gyromagnetic ratio, leads to the following equalities

~M =< ~µ >= −γ < ~F >= −γ ~P . (4.13)

The dynamic of the angular momentum ~F (in the rotating frame) is governed by the
torque exerted by the e�ective �eld ~Beff on the magnetic moment ~µ. By using Ehrenfest's
theorem, which states that the expectation values of quantum mechanical operators obey
classical equations of motion, one obtains

d~F

dt
= ~µ× ~Beff , (4.14)

d < ~F >

dt
=< ~µ > × ~Beff , (4.15)

d~P

dt
= ~M × ~Beff , (4.16)

d~P

dt
= ~Ωeff × ~P , (4.17)

where we have introduced the Rabi vector

~Ωeff = γ ~Beff =




ΩR

0

ωL − ωrf




. (4.18)

After including the relaxation rates γ1 and γ2 for the longitudinal and transverse com-
ponents, Eq. 4.17 yields the Bloch equations for the components Px′ , Py′ and Pz′ of the
polarization vector in the rotating frame

6The Rabi frequency is the precession frequency around the oscillating �eld Brf (t) that was formally
brought to rest by the transformation into the rotating frame.
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Figure 4.3: Motion of the polarization vector in the resonant case, in the rotating frame.

dPx′

dt
= δωPy′ − γ2Px′ , (4.19)

dPy′

dt
= −δωPx′ − ΩRPz′ − γ2Py′ , (4.20)

dPz′

dt
= ΩRPy′ − γ1(Pz′ − P eq

z′ ) , (4.21)

where we have used δω = ωL − ωrf .
One can easily verify that in absence of relaxation processes, at resonance (δω = 0)

and with the initial condition ~P (t = 0) = (0, 0, P0), the Bloch equations yield a rotation
(nutation) of the polarization vector ~P around ~B1 at the frequency ΩR

Px′(t) = 0 , (4.22)
Py′(t) = P0 sinΩRt , (4.23)
Pz′(t) = P0 cosΩRt . (4.24)

The precession of ~P in the resonance case is represented graphically in Fig. 4.3 7.

4.3.3 The steady state solution
The combination of relaxation and precession processes leads to an equilibrium state of
the polarization vector. This steady state solution can be calculated analytically in the

7In the laboratory frame the tip of the polarization vector ~P describes a sphere with a fast precession
at frequency ωL about the z-axis and with a slow nutation at the frequency ΩR between Pz = +P0 and
Pz = −P0.
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rotating frame from the Bloch equations 4.19, 4.20 and 4.21 by setting the left-hand sides
equal to zero. One obtains

Px′ = P0
ΩRδω

δω2 + γ2
2(1 + S)

, (4.25)

Py′ = P0
ΩRγ2

δω2 + γ2
2(1 + S)

, (4.26)

Pz′ = P0
δω2 + γ2

2

δω2 + γ2
2(1 + S)

, (4.27)

where we have introduced the saturation parameter S = Ω2
R

γ1γ2
. S can also be written as

S = γabs
γ1

, where γabs = Ω2
R

γ2
is the rate at which photons are absorbed from the oscillating

�eld.
The longitudinal component Pz is directly related to the �uorescence rate and it is thus

the quantity that we measure in a magnetic resonance experiment (see Eq. 4.3). It can be
instructive to rewrite Eq. 4.27 in the form

Pz′ = P0

(
1− Sγ2

2

δω2 + γ2
2(1 + S)

)
. (4.28)

In the limit of weak rf-�eld, i.e., of Ω2
R ¿ γ1γ2, the saturation parameter S in the denom-

inator can be omitted and the steady state longitudinal polarization reads

Pz′ = P0

(
1− Sγ2

2

δω2 + γ2
2

)
. (4.29)

Thus, when the rf-frequency of the oscillating �eld is scanned across the Larmor frequency
ωL, the signal appears as an absorptive Lorentzian resonance centered at ωrf = ωL and
with a full width at half maximum (FWHM) of 2γ2. In the general case, one sees from
Eq. 4.28 that the signal maintains its Lorentzian shape and that the resonance line is
power-broadened by the rf-�eld. The FWHM turns out to be in this case 2γ2

√
1 + S.

Saturation occurs when S ≈ 1, i.e., when ΩR ≈ √
γ1γ2. In Fig. 4.4 one can see a typical

magnetic resonance line obtained by detecting the �uorescence signal from cesium atoms
implanted in a solid He matrix as a function of the tunable parameter ωrf .

In our typical experimental con�guration, called Mz geometry, the propagation direction
~k of the pumping light is parallel to the quantization axis, de�ned by the static magnetic
�eld B0êz. In this con�guration there is only a static signal and the Larmor frequency
is measured by detecting the �uorescence light during a sweep of the radio frequency ωrf

across ωL, as shown in Fig. 4.4.
Another geometry consists in orienting the light beam at 45◦ with respect to the quan-

tization axis and in this case one speaks of Mx geometry. In this con�guration, the polar-
ization rotates in the laboratory frame with ωrf thus changing periodically its projection
along ~k. This leads to a modulation of the �uorescence signal which can be detected by
means of a phase-locking technique. We will come back to this point in Chapter 6 and we
will present an alternative way to describe the ODMR as a three-step process consisting in
the preparation of a polarization state by optical pumping, the free evolution of the spins
in the magnetic �elds and the detection of the �nal spin state.
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Figure 4.4: Typical ODMR signal from Cs atoms in the bcc phase of solid 4He. The
data were recorded in a static magnetic �eld of ≈ 6µT and in a rf-�eld of ≈ 4nT . One
can observe that the width of the resonance is 3-4 times larger than the width of only 12
Hz measured in previous experiments [25]. The reason of this broadened line has to be
ascribed to magnetic e�ects due to the electric �eld set-up inside the pressure cell where
the interaction takes place. The slope of the background is due to a loss of atomic signal
due to the recombination of Cs atoms into Cs clusters.
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The experimental set-up

Magneto-optical experiments at the very low temperature (≈ 1.5 K) and at the very high
pressure (in excess of 27 bar) needed for the solidi�cation of helium, require an important
experimental e�ort. Moreover, the study of the quadratic Stark e�ect which is addressed
in this work requires the application of strong and highly uniform electric �elds inside the
doped crystal, thus increasing considerably the technical di�culties of the experiment.

The main features of the experimental set-up are described in details in the works of
preceding PhD students [24, 25]. Here we will �rst give a general overview of the apparatus
and we will then describe the main modi�cations that were made in the last two years to
improve the performance of the set-up for electric �eld experiments.

5.1 The cryostat
Two section views of the cryostat are shown in Fig. 5.1 and 5.2. The helium crystal is
grown in a cubic copper pressure cell (inner volume = 175 cm3) which is immersed in a
helium bath that can be �lled up with 40 liters of liquid He. The helium bath is shielded
against the thermal radiation of the surrounding environment by two layers of isolation
vacuum and by an intermediate chamber of liquid nitrogen (which is re�lled every 12 hours
during an experimental run). Thermal radiation from the top �ange is shielded by four
gold-coated copper ba�es (1 mm thickness).

When the cryostat is �lled with liquid helium, the helium bath itself acts as a cryo-pump
by freezing out residual gases in the isolation vacuum chambers, in which one achieves typ-
ical pressures of ≈ 10−7 mbar. The isolation vacuum is pumped by means of a turbo
molecular pump (Pfei�er, TMU 261) in series with a roots pump (Varian, SD-451).

The cryostat has windows in four lateral directions as well as on the top �ange to give
optical access to the inner part of the pressure cell, for the excitation and detection of the
atoms (side windows), for the implantation of atoms and for the dissociation of clusters
(top window). Five windows (4 side windows and a top window) are also �anged onto the
body of the cell by a dedicated sealing technique [25].

An experiment typically requires the purchase of 80 liters of liquid He (from SL Gas,
Lenzburg, Switzerland) at the price of 16 CHF/liter. The evaporation loss during the
transfer of liquid helium from the He dewar to the cryostat is typically 10-20 liters of
liquid helium.

The level of liquid helium in the He bath is controlled by means of a level sensor, which
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Figure 5.2: Section through the cryostat and pressure cell.
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Figure 5.3: Growth of the He crystal by slow pressurization as seen from one of the side
windows of the cryostat. The lower part is in the solid state, while the upper part is still
liquid.

consists of a superconducting Ta wire immersed in the bath. The critical temperature Tc

of the sensor exceeds only slightly the boiling point of liquid helium and therefore only the
part that is not immersed in the He bath contributes to its total resistance. A constant
current of 170 mA is sent through the wire to prevent the part above the He surface to be
cooled below its critical temperature. After the calibration of the device, the measurement
of the resistance of the wire gives then the helium level in the bath.

When the He bath is �lled with about 40 l of liquid helium we start pumping on its surface
in order to cool it down to 1.5 K at a vapour pressure of about 2-3 mbar. The pumping of
the bath is done by means of a rotary pump (TRIVAC, B-65-S) in series with a roots pump
(Edwards, EH250). During the cooling process, which takes about 2 hours, we typically
evaporate another 10-15 liters of liquid helium (about 30 % of the initial volume). The
duration of the experiment is then about 48 hours. This time limitation depends mainly
on the continuous pumping over the helium bath (which is needed to keep the tempera-
ture constant and low) and on the electrical and high-voltage cable feedthroughs, which
represent the main heat leaks.

The pressure cell is mounted on an aluminium platform which is centered on the bot-
tom of the cryostat. On top of the cell (Figs. 5.1,5.2), a height-adjustable lens (f=10 cm)
enables us to focus the pulses of a frequency-doubled Nd:YAG laser into the Cs target
(placed on the bottom of the pressure cell) during the implantation process. The cell is
also connected via a capillary to an external reservoir of pressurized helium gas. When the
�nal temperature of 1.5 K is reached, the crystal is grown by slowly increasing the pressure
inside the cell via a needle valve (Fig. 5.3).

In order to control the crystalline phase (bcc or hcp) of the He matrix one has to
control in a very precise way the pressure applied into the cell. Therefore He gas (nominal
purity > 99.999 %) from a standard gas bottle (p=200 bar) is �rst transferred to a small
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Figure 5.4: The cryostat and the µ-metal shielding.

bu�er reservoir (V = 1 liter) over a pressure-reducing valve. From here the helium can
�ow through a needle valve into a cold trap, consisting of several loops of copper tube
immersed in a liquid nitrogen �lled dewar, where condensable impurities in the He gas are
removed. The copper tube is then connected through the capillary to the pressure cell.

The temperature has to be also controlled in a precise way. The helium bath is con-
nected to the pumping line via a butter�y-valve whose position is controlled electronically.
The temperature is actively regulated by changing the pumping rate over the helium bath
using a feedback control of the valve. We use two temperature sensors (germanium resis-
tors, Scienti�c Instruments) in the apparatus. The �rst one measures the temperature in
the helium bath, while the other is placed directly inside the cell and is connected to an
electrical feedthrough which is �anged onto the copper body.

On the same aluminium platform on which the cell is �xed, we also mount the supercon-
ducting (NbTi) Helmholtz coils that are used during the magnetic resonance experiment
to produce the main static magnetic �eld. These coils are visible in Fig 5.1. A detailed
description can be found in [25]. The coils to produce the oscillating RF-�eld are mounted
inside the cell.

The cryostat is shielded from laboratory stray magnetic �elds by an external three-layer
µ-metal shielding (Fig. 5.4).
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Figure 5.5: The pressure cell.

5.2 The pressure cell
The inside and outside of the pressure cell have been considerably modi�ed over the last
two years with respect to the description given in [24, 25]. The main modi�cations are
related to the need for improving the performance of the set-up in high electric �eld ex-
periments. The exterior of the pressure cell is shown in Fig.5.5.

The cell is a cube made of oxygen-free F30 copper. Its walls have a thickness of 17
mm and the inner volume (in which the crystal is grown) is about 175 cm3. The optical
access to the doped crystal is provided by 5 quartz windows (® = 25 mm) mounted onto
the main body of the cell, 4 on the sides of the cube (excitation and detection of the
implanted atoms) and 1 on top of it (implantation and later cluster dissociation). The
windows are sealed by using aluminium rings. Before each experiment, the cell is tested
to hold a gas pressure of more than 50 bar at room temperature.

The main di�erence from the previous set-up consists in the presence of two HV feedthroughs
mounted onto the bottom plate of the cell. In previous electric �eld experiments, only one
of the electrodes inside the pressure cell was connected to the HV power supply while the
other was held at ground potential [24, 25]. With the second HV feedthrough both the
electrodes can be connected to two HV power supplies which enable the application of
electric �elds two times larger than in earlier experiments. The high voltage is brought to
the HV feedthroughs by a HV-cable (Heinzinger HVC 65) through the top �ange of the
cryostat. At present we can apply electric �elds up to 50 kV/cm. Electric breakdowns
occur inside the cryostat, between a high voltage cable and the grounded pressure cell, at
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Figure 5.6: The inner part of the pressure cell.

voltages which are typically about 17 kV (which correspond to an electric �led strength in
the cell of ≈ 50 kV/cm).

In order to accommodate the second HV-feedthrough, the temperature sensor was re-
moved from the bottom plate of the cell and mounted on the top part of the main body
(see Fig. 5.5).

The inner part of the cell is shown in Fig. 5.6. Most of the inner volume is occupied
by a polycarbonate body which holds the RF-coils for the magnetic resonance experiments
as well as two transparent glass electrodes which are connected by a C-shaped copper ring
to the HV feedthroughs (see Fig. 5.7).

The polycarbonate body is made of two independent identical parts. The absence of
contacts between these two parts guarantees the minimization of surfaces along which elec-
tric breakdowns between the glass electrodes can take place. Each of these two components
is then made of two sub-parts which are pressed together by PVC screws thus holding the
glass electrode in the middle (see Fig. 5.8). The separation between the glass electrodes is
6 mm. This distance was chosen to create su�ciently high electric �eld strengths and to
leave enough space for the implantation of atoms.

5.3 The HV supply and the HV feedthrough
The high voltage is generated by two HV power supplies (Heinzinger PNC 5 60000-1,
Heinzinger PNC 60000-1) which can each provide up to 60 kV to the two HV feedthroughs
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Figure 5.7: The polycarbonate body, the C-shaped copper rings and the rf-coils.

mounted onto the bottom plate of the pressure cell.

The HV feedthroughs were completely renewed after our �rst electric �eld experiments
and they were specially manufactured for our application by Friatec AG (Germany). The
HV feedthrough is shown in Fig. 5.9. The main change with respect to the old set-up con-
sists in the �uted surface which was introduced to increase the breakdown voltage outside
the pressure cell.

The feedthrough is made by a copper �lament (® 1.5 mm) isolated by a special ceramic
material (Frialit F99.7, Al2O3), �tted and sealed in a non-magnetic titanium �ange. The
�ange is then sealed to the copper cell by aluminium rings in the same manner as the
windows.

During the experiments we were limited by breakdowns which took place both inside and
outside the cell. The maximum voltage applicable to each glass plate can vary in di�erent
experiments depending on the characteristics of the He crystal. The presence of charges in
the solid matrix (mainly produced by the Nd:YAG laser pulses needed for the implantation
and for the dissociation of clusters) constitutes the major limitation. We measured typical
leakage currents between the electrodes of a few microampere. In general, we were never
able to apply more than 20 kV to each feedthrough.

5.4 The glass electrodes

The glass electrodes used in our electric �eld experiments are described in [24, 25]. They
consist of two quadratic high �atness glass plates (�oat glass) for standard industrial
applications (side = 40 mm, thickness = 4 mm) coated on one side with a conductive tin
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Figure 5.8: The polycarbonate body is made of two parts which are pressed together by
PVC screws. The glass electrode is then held in the middle. The contact between the
electrode and the HV feedthrough is provided by a C-shaped copper ring which is also
held between the two components of the main polycarbonate body.
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Figure 5.10: The glass electrodes.
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Figure 5.11: A section through the cell. One can see the cylinder that holds the Cs ampoule
screwed to the bottom plate of the cell.

oxide layer. The non-conducting surface is then coated with gold 1 in order to establish an
electrical contact between the front side and the rear part which is connected to the HV
feedthrough. The glass electrodes are shown in Fig. 5.10.

5.5 The implantation
The Cs target, contained in a glass ampoule, is held by a hollow polycarbonate cylinder
screwed to the bottom plate of the pressure cell (Fig. 5.11). Since alkali metals oxidize
immediately in contact with air and react strongly with water or even with the humidity
of the laboratory atmosphere, the positioning of the Cs target into the mount mentioned
above has to be carried out in a neutral and dry environment, i.e., typically in a plastic
glove-bag �lled with argon.

Cesium atoms are implanted into the solid He matrix using the laser ablation technique
[14, 15]. Pulses from a frequency-doubled Nd:YAG laser (Quanta-Ray, GCR-12 with
frequency-doubling unit HG-2B, λ=532 nm, max.repetition rate 10 Hz) are sent into the
cryostat through its top window and are then focused onto the Cs target by a height-
adjustable lens mounted above the cell (see Figs. 5.1 and 5.2). The laser pulses used in
the process have typical energies of 20 mJ/pulse with a repetition rate of 1 Hz and a pulse
width of 10 ns.

The steps of the implantation process are shown in Fig. 5.12. The heat absorbed from
the laser pulses melts the crystal above the Cs target and the material (atoms, clusters,

1The coating with gold is done in our laboratory, by using a vacuum coater (VACOTEC SA EDWARDS,
AUTO 306 vacuum coater).
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Figure 5.12: The implantation process. (a) and (b) Short pulses at λ=532 nm from a
frequency-doubled Nd:YAG laser are focused onto the Cs target. The deposited heat melts
the crystal and atoms can di�use into the molten area. (c) Helium resolidi�es leaving
a column of implanted atoms and clusters. (d) In order to keep a constant �uorescence
signal low-energy laser pulses are applied at a low repetition rate to dissociate molecules
and clusters.
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ions and charges) ablated from its surface can simultaneously di�use into the lique�ed
helium volume. By progressively lifting the lens, the implanted material can di�use up
to the central region of the crystal and, after resolidi�cation of the molten helium, the
implanted particles become trapped in the He matrix. Clusters can then be dissociated
by applying low-energy Nd:YAG pulses at a su�ciently low repetition rate (typically 0.04
Hz) thus keeping an average constant atomic density of 108-109 cm−3. The di�usion and
recombination of atoms to form dimers and clusters is the main loss mechanism of the
optical signal. These processes are investigated and described in detail in [22].
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Experimental results

6.1 Introduction
In this chapter we present results from magnetic resonance experiments in external electric
�elds. As discussed in Chapter 1 the main goal of these experiments was the measurement
of the quadratic Stark e�ect in the ground state of cesium atoms embedded in a solid He
matrix. Although a measurement of the tensor polarizability of the ground state of cesium
had been carried out recently by our group in an all-optical atomic beam experiment [64],
a new measurement of the Stark shift of the magnetic resonance transitions in the ground
state of Cs atoms implanted in solid helium appeared to be necessary in the framework of
an EDM experiment.

The �rst attempts to measure the quadratic Stark e�ect in solid helium were carried out
by our group a few years ago, �rst at the University of Bonn, and later in Fribourg [24, 25].
The only conclusion that could be reached after these �rst experiments was that an e�ect
of the electric �eld might be observed, but no quantitative results could be obtained be-
cause the quadratic e�ect was by far overridden by a strong linear contribution and the
estimation of the tensor polarizability led to a value which was one order of magnitude
smaller than expected from earlier measurements 1. The considerable technical di�cul-
ties associated with the study of electric �eld e�ects in our cryogenic conditions made the
measurement of the quadratic Stark e�ect a di�cult experimental challenge. It was only
after two years of work and test runs that we �nally managed to measure unambiguously
the tensor polarizability of the ground state of cesium atoms in the solid He matrix, with
a very good agreement with measurements performed in more conventional experimental
conditions 2.

This non-trivial experimental success then turned out to be even more exciting than what
we expected. As we discussed in the Chapters 2 and 3, in parallel to our experimental
e�orts we developed a novel perturbative model to calculate the scalar and tensor polar-
izabilities of cesium atoms (and in general of any alkali atom). Among the exceptional

1The strong linear e�ect observed in the �rst experiments could be ascribed to a drift of the magnetic
resonance line independent on the application of the electric �eld as observed for instance in [25]. The
instability of the resonance frequency was one of the main problems we had to deal with during the last
two years of activities with electric �elds.

2We remark here that in the last two years several other research activities were carried out in parallel.
Among the important scienti�c results obtained in our experiment we mention for instance the recent
discovery of Cs∗Hen exciplexes [30, 31].
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results of this theoretical study, we realized the existence of a sign di�erence between our
model and the "old" Sandars' theory [33]. We brie�y recall this point. According to the
historical model proposed in the 1960s by Sandars, the tensor polarizability in the ground
state of cesium does not depend on the quantum number F. Conversely, in our model, the
tensor polarizabilities of the two hyper�ne levels F=3 and F=4 have opposite signs. This
sign di�erence has a pronounced experimental signature when the di�erential shift of the
resonances F=3 and F=4 is investigated as a function of the applied electric �eld. The
experimental results that are shown in the following give a �nal answer to this open ques-
tion, thus demonstrating that the sign error of Sandars' paper [33] has remained unnoticed
for about 40 years.

We will �rst present the results obtained in the Mz con�guration, then the results ob-
tained by running our set-up as a self oscillating magnetometer in the Mx con�guration.
All the experimental results that follow are obtained in a geometry in which the electric
�eld is parallel to the quantization axis, i.e., parallel to the main static magnetic �eld.

6.2 The quadratic Stark e�ect in the M z con�guration
The top view of the experimental set-up is shown in Fig. 6.1. We use a diode laser at λ=852
nm, which corresponds to the D1 absorption line (| 6S1/2 >→| 6P1/2 >) of cesium in the
helium matrix 3. The light power is controlled by a combination of a half-wave plate and a
linear polarizer. The intensity of the laser beam is typically ≈1 mW. At higher intensities
we observe a loss of the atomic signal owing to local melting of the crystal and consequent
drift and recombination of the atoms. The incoming linearly polarized light is then turned
into circularly polarized light by a quarter-wave plate. An additional λ/2 Fresnel Rhombus
is needed to compensate for the stress-induced birefringence of the windows of both the
cryostat and the cell. The orientation of this λ/2-element is determined by searching for
a minimum in the �uorescence signal, which corresponds to the highest degree of spin
polarization achievable by optical pumping. The atomic �uorescence signal (λ ≈885 nm
in bcc) from the sample volume (≈3 mm3) is collimated by a lens in the cryostat and it
is �rst detected by a CCD camera (Andor, DV420-OE, sensitive from the visible to 1050
nm) which is mounted on an imaging spectrograph (Oriel, MS257). The optical atomic
�uorescence spectrum is used to optimize several parameters of the system as well as the
alignment of various components.

A pivotable mirror then enables us to switch from the CCD-camera to a cooled avalanche
photodiode (APD). An interference �lter (FWHM of 9 nm) suppresses scattered laser light
by several orders of magnitude. The signal from the APD is then read on a digital oscil-
loscope (Lecroy, 500MHz LC334A).

6.2.1 The tensor polarizability α
(3)
2 (F = 4)

The measurements were performed in the isotropic bcc phase of solid helium, at a tempera-
ture T=1.5 K and at a pressure p=26.9 bar, in a static magnetic �eld B0=6µT. The rf-coils

3We recall that the absorption lines in the helium crystal are strongly blue-shifted owing to the inter-
action with the surrounding matrix. The D1 transition is thus excited at 850 nm, while the D2 transition
is excited at 800 nm. The D1 emission line is then shifted to 878 nm when the crystal is in the hcp phase,
and to 885 nm when it is in the bcc phase. The emission following D2 excitation is more complex [30, 31]
and goes beyond the topic of this discussion.
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Figure 6.1: Top view of the set-up for magnetic resonance experiments in the Mz con�gu-
ration.

are driven by a function generator (SRS, DS345) and produce an oscillating magnetic �eld
Brf ≈4 nT. The laser beam intensity was 1 mW.

The magnetic resonances were recorded by scanning the frequency of the rf-�eld across
the Larmor frequency (≈ 20.53 kHz) which is determined by the choice of B0. A measure-
ment with electric �eld was always followed by a measurement in zero �eld, and for each
measurement with electric �eld we switched the polarity of the �eld itself. The shift of the
resonance under the e�ect of the electric �eld has to be thus understood as a shift with
respect to the nearest (in time) zero-�eld measurement. In this way we minimize e�ects
associated with the strong drift of the zero-�eld magnetic resonance (shown in Fig. 6.2),
which is one of the main limitations to the sensitivity of our apparatus. In Fig 6.2 the
zero-�eld resonance frequency exhibits a linear drift of 1.65 mHz/sec (corresponding to ≈
0.5 pT/sec) over a measuring time of 45 minutes 4.

The drift of the magnetic resonance frequency was studied in the thesis of a former
PhD student of our group [25]. In this work, the strong drift of the resonance was ascribed
to a magnetic �eld gradient that was estimated to be on the order of 10 Hz/mm. The drift
shown in Fig. 6.2 thus suggests a drifting velocity of the Cs atoms embedded in the He
matrix of 0.1-0.2 µm/sec. We exclude a linear drift of system parameters such as pressure
or temperature.

Beside this long-time scale drift, the behavior of the resonance frequency exhibits other
more problematic features on shorter time scales. The Nd:YAG laser pulses, that are

4These values can change in di�erent experiments. The behavior of the system depends strongly on
the features of the crystal which are strictly related to some uncontrollable parameters of the implantation
process.
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Figure 6.2: Drift of the magnetic resonance frequency without external electric �elds over
45 minutes. The green solid line is a linear �t to the data: y=20531.7-0.00165x. The
resultant linear shift thus corresponds to 1.65 mHz/sec. The Nd:YAG laser pulses sent
into the crystal to dissociate clusters can occasionally induce a sudden strong drift of
the atoms, which appear in our measurement as a sudden steep jump of the resonance
frequency.
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Figure 6.3: Drift of the magnetic resonance frequency without external electric �elds over
45 minutes. The green solid line is a linear �t to the data: y=20497.9-0.00230x. The
resultant linear shift thus corresponds to 2.30 mHz/sec. The instability of the resonance
frequency is evident when compared to Fig. 6.2.



6.2 The quadratic Stark e�ect in the M z con�guration 107

20.4 20.45 20.5 20.55 20.6 20.65

fl
u
o
re

s
c
e
n
c
e
 [
a
rb

.u
n
it
s
]

17 Hz

E=40 kV/cmE=0

nrf [kHz]

Figure 6.4: Frequency shift of the magnetic resonance line of Cs | 4, 4 >↔| 4, 3 > in an
electric �eld of 40 kV/cm relative to the �eld-free resonance (E=0). The curves are �tted
by Lorentzians L(ν) = a

4(ν−c)2+w2 . The �t yields a FWHM of 60 Hz.

sent into the crystal every 30 seconds to dissociate clusters and to recover the optical
�uorescence signal, can occasionally provoke a sudden strong drift of the atoms inside
the volume interested by the experiment. These drifts appear in our magnetic resonance
measurements as sudden steep jumps of the resonance frequency. This short-time scale
instability of the zero-�eld resonance can strongly a�ect our estimation of the Stark shift.
The importance of this e�ect strongly depends on the property of the crystal and it can
thus change considerably in di�erent experiments or even during the same experiment
after di�erent atomic implantations. The pressure in which the measurement takes place
plays of course a relevant role. In Fig. 6.3 we show the behavior of the zero-�eld magnetic
resonance frequency in the same experiment as Fig. 6.2 but after growing a new crystal
and thus after a new implantation procedure. In this second case, the instability of the
system strongly limited our sensitivity to the Stark shift of the resonance frequency.

Therefore we present our results by considering the set of data shown in Fig. 6.2. The
shift of the magnetic resonance line of Cs detected in an electric �eld of 40 kV/cm is shown
in Fig. 6.4. The di�erent amplitudes of the two resonances is related to the variable density
of atoms in the volume observed in the experiment. The curves are �tted by absorptive
Lorentzian functions.

In Fig. 6.5 we plot the magnetic resonance frequency shift as a function of the applied
electric �eld. Each measurement with electric �eld is compared to the averaged zero-�eld
resonance frequency obtained by considering the preceding and the subsequent zero-�eld
measurements 5. The error bar is then obtained from the scattering of the zero-�eld points.
One can note that the two large error bars in the �gure correspond to the two "jumps"

5We recall that we always alternate measurements with electric �eld to measurements without �eld.
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Figure 6.5: Shift of the magnetic resonance line as a function of the applied electric �eld.
Higher �elds in the negative direction were not reachable owing to technical problems with
one of the HV power supplies.

observed in Fig. 6.2. We �t the data with the function f(E) = αE2 (solid line in the �gure).
The quadratic coe�cient α yields our experimental value of the tensor polarizability

α
(3)
2 (F = 4) = (−3.51± 0.2)× 10−2 Hz

(kV/cm)2
. (6.1)

This result is in good agreement with the experimental result obtained by our group in a
recent atomic beam experiment [64]

α
(3)
2 (F = 4) = (−3.34± 0.20)× 10−2 Hz

(kV/cm)2
, (6.2)

and with our theoretical calculation

α
(3)
2 (F = 4) = (−3.72± 0.25)× 10−2 Hz

(kV/cm)2
. (6.3)
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Figure 6.6: Magnetic resonances corresponding to the ground state levels F=4 and F=3.
The magnetic �eld is of 14.7 µT and the separation between the two peaks is 162 Hz. The
�t represented by the solid line is discussed in the text.

We also tried to �t the data with the function g(E) = αE2 + βE4. The �tting proce-
dure yielded a coe�cient β compatible with zero. Odd terms in E are not allowed by
parity conservation.

6.2.2 The di�erential shift of the resonances F=4 and F=3
The experiment closely resembles the one described in the previous section. The measure-
ments were performed at a temperature of 1.51 K and at a pressure of 27.1 bar, with a
laser beam intensity of 1 mW and in a magnetic �eld B0 = 14.7µT . The static magnetic
�eld is larger than the one applied in the experiment described in the previous section.
The reason for this change was to increase the separation between the resonances

| F = 4,M = 4 >↔| F = 4,M = 3 > and | F = 3,M = 3 >↔| F = 3,M = 2 > .

At 14.7 µT, the frequency splitting of the peaks F=3 and F=4 is 162 Hz as given by the
Breit-Rabi formula. In Fig. 6.6 we show the magnetic resonances obtained by scanning the
frequency of the rf-�eld across the Larmor frequencies of the two hyper�ne components of
the ground state of cesium.

The resonances are �tted with the function

F (ν) = N0

(
1 +

a1

4(ν − c1)2 + w2
1

+
a2

4(ν − c2)2 + w2
2

)(
e−γ3(ν−ν0) + a4e

−γ4(ν−ν0)
)

,

(6.4)
where ν0 is the starting frequency of the sweep. The combination of two exponentials
enables us to �t the decaying background. The coe�cients γ1 and γ2 typically di�er
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Figure 6.7: Drift of the magnetic resonance frequency without external electric �elds over
1 hour.

by one order of magnitude and thus describe the superposition of a fast process (atom-
cluster recombination) and a slow process (atom-atom recombination). The dynamics of
the decaying background was studied in detail in [22].

The �tting procedure requires 2-3 minutes for each experimental curve on the comput-
ers of our laboratory. Therefore it takes about 2 hours to �t a complete set of data.

The evolution of the zero-electric-�eld resonance frequency over 1 hour is shown in Fig. 6.7.
The instability of the system is in this case much more pronounced than in the case ex-
amined in the previous section. The error bars, which are determined by the scattering of
consecutive zero-�eld points, are thus considerably larger.

We consider the di�erential shift of the resonances of the two hyper�ne levels F=3
and F=4. We recall that the "old" theory proposed by Sandars in 1968 [33] predicts a
di�erential shift

∆ν(4,4)→(4,3) −∆ν(3,3)→(3,2) =
9
14
| α(3)

2 (4) | E2 ≈ (2.18× 10−2)E2 Hz

(kV/cm)2
, (6.5)

whereas our novel theory predicts a shift

∆ν(4,4)→(4,3) −∆ν(3,3)→(3,2) =
3
28
| α(3)

2 (4) | E2 ≈ (0.36× 10−2)E2 Hz

(kV/cm)2
, (6.6)

where we have used our theoretical value (6.3) for the tensor polarizability. In Fig. 6.8 we
plot the di�erential shift of the resonance frequencies in F=4 and F=3 as a function of
the applied electric �eld. The experimental data are �tted by the function k1E

2. The �t
yields the result

k1 = (0.30± 0.07)× 10−2 Hz

(kV/cm)2
, (6.7)
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in good agreement with our theoretical prediction (Eq. 6.6). This agreement can also
be appreciated graphically in Fig. 6.8. On the other hand, the discrepancy between the
experimental results and the prediction of Sandars'model is by far larger than the exper-
imental uncertainty although the error bars in Fig. 6.8 are rather big. Therefore we feel
con�dent enough to state that the sign of α

(3)
2 (F ) predicted by our model is the correct one.

As we did in the previous section, we tried to �t the data shown in Fig. 6.8 with the
function k1E

2 + k2E
4. Also in this case the �t yielded a coe�cient k2 compatible with

zero.
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Figure 6.9: The Mx geometry.

6.3 The quadratic Stark e�ect in the M x con�guration
Our set-up can be operated as a self-oscillating phase-locked magnetometer in the so-
called Mx geometry [97]. In this con�guration the laser beam (with propagation vector ~k)
is oriented at an angle of 45◦ with respect to the static magnetic �eld ~B0, which de�nes
the quantization axis of the system (Fig. 6.9).

The spin polarization initially produced by optical pumping in the direction of ~k pre-
cesses around ~B0 thus changing periodically its projection along ~k. This precession is driven
by the rf-�eld ~Brf and produces a modulation of the absorption coe�cient of the atomic
sample at the frequency ωrf . This modulation can be e�ciently detected by measuring
the �uorescence light with a lock-in detector. The phase between the oscillating rf-�eld
and the system response exhibits a resonant dispersively-shaped enhancement when the
rf-frequency matches the Larmor frequency ωL associated with the static �eld ~B0. When
the resonance condition δω = ωL − ωrf = 0 is ful�lled, one observes a maximum in
the �uorescence modulation amplitude. This modulation is thus a direct measure of the
Larmor frequency. The detected dispersive signal is fed back via a PID-ampli�er to a
voltage-controlled oscillator (VCO) which then drives the rf-coils. The rf-frequency is thus
phase-locked to the Larmor frequency and the output of a frequency counter then provides
a real-time monitoring of ωL.

The main motivation that led us to switch to the Mx geometry is that with this real-
time monitoring of the Larmor frequency we reduce considerably the systematic e�ects
associated with the scattering of the zero-electric-�eld resonance frequency.

A top view of the experimental set-up is shown in Fig. 6.10. The polycarbonate body
which is mounted inside the copper pressure cell was specially modi�ed in order to ac-
commodate two mirrors which enables us to have the laser beam oriented at 45◦ when it
interacts with the atomic sample. Note that one can easily switch from the Mz con�gu-
ration to the Mx con�guration and viceversa by a mere translation of the laser beam (see
Fig. 6.10) 6.

6The set-up was designed by a preceding PhD student of our group [25].
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Figure 6.10: Top view of the set-up for magnetic resonance experiments in the Mx con�g-
uration.

6.3.1 The tensor polarizability α
(3)
2 (F = 4)

We performed our measurements in the bcc phase, with a temperature of 1.51 K, a pressure
of 26.8 bar and in a �eld of 5.4 µT. The laser power was 1 mW.

The time evolution of the Larmor frequency before and after the application of an
electric �eld of 43 kV/cm is shown in Fig. 6.11.

The shift of the resonance frequency measured with respect to the adjacent zero-�eld
level is plotted as a function of the applied electric �eld in Fig. 6.12.

The experimental data are �tted with the function f(E) = αE2. As discussed in
the previous section, the �tting procedure with f(E) = αE2 + βE4 yields a coe�cient β
compatible with zero and the fourth order term is thus neglected. The coe�cient α yields

α
(3)
2 (4) = −(0.95± 0.30)× 10−2Hz/(kV/cm)2 . (6.8)

This result is smaller than our theoretical calculation

α
(3)
2 (F = 4) = (−3.72± 0.25)× 10−2 Hz

(kV/cm)2
. (6.9)

and than the experimental results obtained in solid helium in the Mz con�guration

α
(3)
2 (F = 4) = (−3.51± 0.2)× 10−2 Hz

(kV/cm)2
, (6.10)

and in the atomic beam experiment
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α
(3)
2 (F = 4) = (−3.34± 0.20)× 10−2 Hz

(kV/cm)2
. (6.11)

The discrepancy amounts to a factor ≈ 3.5.
This feature of the new experimental result has to be ascribed to the speci�c geometry

of the system. The estimation of the tensor polarizability given above (Eq. 6.8) is based
on the assumption that the measured resonance is entirely due to the magnetic transition
| F = 4,M = 4 > → | F = 4,M = 3 >. We will show that this is a reasonable
approximation in the Mz-con�guration, but it turns out to be a misleading assumption
when the laser beam is tilted and the pumping light creates a polarization at an angle
θ=45◦ with respect to the quantization axis. We introduce a geometrical correction factor
by describing the phase-sensitive ODMR technique as a three-step process.

6.3.2 The ODMR as a three step process
The three steps are:

• Optical pumping. It consists in the preparation of the atomic spin polarization state.
Optical pumping is discussed in Chapter 4. Here we will use the system of rate
equations 4.6 to calculate the steady state population distribution which is created
along the direction of ~B0.

• Evolution under static and oscillating magnetic �elds. The coherent time evolution
of the system under the e�ect of ~B0 and ~Brf is described by the Liouville equation.
Incoherent processes are taken into account by considering the relaxation towards
the steady state populations calculated in the previous step and by introducing the
longitudinal and transverse relaxation rates γ1 and γ2. We obtain a system of 25 rate
equations for diagonal and o�-diagonal elements of the density matrix ρ (we consider
only the hyper�ne component F=4). We calculate the steady state solutions of these
equations.

• Detection. We consider populations and coherences from the previous step, and we
calculate the detected signal in the geometry of interest, with and without an external
electric �eld. We will show that in the Mx geometry, the simultaneous detection of
several resonances (4 → 3, 3 → 2, 2 → 1,etc.) strongly a�ects our estimation of the
quadratic Stark shift. Thus we prove the need of a correction factor of geometrical
nature, and we make an estimation of it.

We consider these three steps separately.

6.3.2.1 The optical pumping
We refer to Eqs. 4.6, 4.7 and 4.8 and we calculate the steady state population distribution
in the ground state in a numerical way, i.e., for given values of the parameters γ1, γp and
θ 7.

We �rst estimate the pumping rate γp (see Eq. 4.8). The optical D1 transition in solid
He has a typical width of ≈10 nm, or equivalently ≈4 THz.

The total intensity carried by the laser beam (3× 3 mm) is estimated to be
7For the de�nition of these parameters one has to refer to Section 4.2
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Figure 6.13: Steady state populations after optical pumping in the ground state level F=4,
with θ = 0 (left) and θ = 45 (right). Note the di�erent scales.

I0 ≈ 1mW

9mm2
≈ 110W/m2 . (6.12)

Therefore

E2 =
2I0

ε0c
≈ 5× 104 V 2/m2 . (6.13)

We use for the reduced dipole matrix element of the D1 transition the experimental value
given by Rafac et al. [74]

< 6S1/2 ‖ er ‖ 6P1/2 >= −4.4978a0e . (6.14)

We obtain

γp ≈ 2800 s−1 (6.15)

The experimental value reported in [19] is γp ≈ 2500 s−1, in satisfactory agreement with
our estimation. Finally, the longitudinal relaxation rate is γ1 = 1s−1 [17�19].

The steady state solutions p0
n=−4,..,4 to Eq. 4.6 are shown in Fig. 6.13 for θ = 0 (cor-

responding to the traditional Mz con�guration) and θ = π/4 (corresponding to the Mx

con�guration). The di�erence between the two population distributions is evident at �rst
sight.



6.3 The quadratic Stark e�ect in the M x con�guration 117

6.3.2.2 The evolution
The coherent time evolution of the system under the combination of a static and an oscil-
lating magnetic �eld, ~B0 and ~Brf respectively, is described by the Liouville equation for
the density matrix ρ̂ = ρi,j (i,j=-4,...,4)

˙̂ρ = − i

~
[Ĥ(t), ρ̂] = − i

~
[Ĥ0 + V̂ (t), ρ̂] , (6.16)

where the Hamiltonian Ĥ(t) is de�ned as

Ĥ(t) = −µ·( ~B0+ ~Brf ) = −µ·(B0êz+Brf cos(ωrf t)êx) = ωLF̂z−2ΩRF̂x cos(ωrf t) ≡ Ĥ0+V̂ (t) ,
(6.17)

and

ωL =
gµb

~
B0 , ΩR = −gµb

~
Brf

2
, (6.18)

are the Larmor and the Rabi frequencies respectively.
After applying the rotating wave approximation (RWA), the time dependance of the

oscillating interaction disappears and we can rewrite the Liouville equation in the form

˙̂ρRWA = − i

~
[Ĥ0 + V̂RWA, ρ̂RWA] , (6.19)

where

Ĥ0 + V̂RWA = ωLF̂z − ΩRF̂x . (6.20)
Hereafter we will neglect the subscripts RWA and assume that all the following calculations
are done in the rotating frame.

If we consider only the hyper�ne component F=4, and we introduce the longitudinal
and transverse relaxation rates γ1 and γ2, we obtain 9 equations for the time evolution of
the diagonal elements of the density matrix ρ̂

ρ̇n = −iVn,n+1(ρn+1,n − ρn,n+1)− iVn,n−1(ρn−1,n − ρn,n−1)− γ1(ρn − ρ0
n) , (6.21)

where n = −4, ..., 4, Vn,m =< n | V | m > and ρ0
n=−4,..,4 are the steady state populations

produced by the optical pumping.
For the o�-diagonal matrix elements we have 8 additional equations

ρ̇j,j−1 = −iδρj,j−1 − iVj,j−1(ρj−1 − ρj)− γ2ρj,j−1 , (6.22)
where j = −3, ..., 4 and δ = ωL − ωrf is the detuning.

If we consider the 8 complex conjugates of Eq. 6.22 we obtain a total system of 25
di�erential equations. In order to calculate their steady state solutions we have to assign
numerical values to the parameters γ1, γ2 and ΩR.

The relaxation rates for populations and coherences in solid He are known [17�19]. We
assume γ1 = 1 s−1 and γ2 = 4 s−1.

The Rabi frequency can be estimated from its de�nition (Eq. 6.18)

ΩR ≈ 2π · 3.5 · Brf

2
[Hz/nT ] , (6.23)
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and with a typical rf-�eld of ≈ 4 nT we have

ΩR ∼ 44 Hz . (6.24)

For the time being we will assume for simplicity ΩR = 50 Hz, and we will discuss later
how the results depend on the value of ΩR.

The steady state populations ρn and the coherences ρj,j+1 (with their complex conjugates)
are calculated and used in the third step.

6.3.2.3 The detection
This third step consists in the detection of the �uorescence signal associated with the
coherence between adjacent magnetic sub-levels.

The problem of the detection of optical coherence signals between magnetic sub-levels in
the ground state of alkali atoms is treated from an analytical point of view by Alexandrov
et al. in [98]. According to the authors of this work, the general expression for the
coherence signal of two ground state levels M1 and M2, observed in absorption of light
with polarization e, is:

SM1M2 ∝ <[ρM1,M2

∑
m

< M2 | (d · e)+ | m > ξ(m) < m | (d · e) | M1 >] , (6.25)

where ξ(m) is the e�ective intensity of the light on the transitions M1,M2 ↔ m. In
principle ξ(m) is given by the convolution of the spectral pro�le of the absorption with the
pro�le of the laser beam. In our special case, the absorption pro�le is broadened by about
5 orders of magnitude (from ≈ 30 MHz to ≈ 4 THz) due to the interaction of the atom
with the surrounding helium matrix and the hyper�ne structure is not resolved. We can
therefore set ξ(m) equal to a constant and neglect it in the equations that follow.

After some calculations, from Eq. 6.25 one obtains the following result

SM1M2 ∝|< 1/2 ‖ d ‖ 1/2 >|2 ×

×<[ρM1,M2

∑

f,m

∑
q1,q2

(2F + 1)σ(q1, q2)C
f,m
F,M1,1,q1

Cf,m
F,M2,1,q2





f 1 F

1/2 7/2 1/2





2

] , (6.26)

where Cf,m
F,M,1,q are Clebsch-Gordan coe�cients and where σ(q1, q2), with q1, q2 = −1, 0, 1,

is the light polarization matrix, which has the form

σ =




sin4 θ
2

(1−cos θ) sin θ

2
√

2
sin2 θ

4

(1−cos θ) sin θ

2
√

2
sin2 θ

2
(1+cos θ) sin θ

2
√

2

sin2 θ
4

(1+cos θ) sin θ

2
√

2
cos4 θ

2




, (6.27)

under the assumption that the light beam is 100% circularly polarized.
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Figure 6.14: Calculated coherence signal produced by the single magnetic transition |
4 >→| 3 >, without electric �eld (�lled squares) and with E = 40 kV/cm (empty squares).
We have assumed α

(3)
2 = −3.4 × 10−2 Hz/(kV/cm)2. The other parameters are: γp =

2500 s−1, γ1 = 1 s−1, γ2 = 4 s−1 and ΩR = 50 Hz

It is straightforward to calculate with MATHEMATICA the coherence signal SM1,M2(δ)
relative to the magnetic transition | M1 >→| M2 >.

In order to include the e�ect of the electric �eld, the detuning δ is re-de�ned as

δ = ωL − ωrf +
3
56

(2M1 − 1)α(3)
2 E2 . (6.28)

If we calculate S(δ) for di�erent values of the detuning δ, without changing the other
parameters, we obtain a set of points in the plane (S, δ) which can be interpolated to
visualize the signal that is detected in an experiment where the radio frequency ωrf is
scanned over a given range. In Fig. 6.14 we plot the calculated signal and its shift when
a �eld of 40 kV/cm is applied. We �rst consider only the signal produced by the single
magnetic transition | 4 >→| 3 >. This could be a good approximation in the case θ = 0,
where more than 90% of the population is transferred by the optical pumping to the level
M = 4 (see Fig. 6.13).

The shift is estimated by considering the intersection of the interpolating function with
the x̂ axis. In the case shown in Fig.6.14, when only one magnetic transition is detected,
the shift turns out to be 19.2 Hz.

The approximation that the detected signal is produced by a single magnetic resonance
is no more valid for θ = π/4 (see Fig. 6.13). In this case, the signal is given by the super-
position of several resonances (| 4 >→| 3 >, | 3 >→| 2 >, etc.) of di�erent amplitudes, as
shown in Fig. 6.15.

Therefore, in order to calculate the total signal we use again Eq. 6.26 but we take the
sum over all the resonances
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Figure 6.16: Calculated coherence signal produced at θ = π/4 by the sum of all magnetic
transitions | M >→| M − 1 >, M=4,...-3, without electric �eld (�lled squares) and with
E = 40 kV/cm (empty squares). We have assumed α

(3)
2 = −3.4 × 10−2 Hz/(kV/cm)2.

The other parameters are the same as in Fig. 6.14. By comparing this result to the one
reported in Fig. 6.14 it is evident that the co-existence of several magnetic transitions leads
to an apparent reduction of the Stark shift.
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Stot(δ) =
∑

M

SM,M−1(δ) (6.29)

When an electric �eld is applied, these single magnetic transitions are shifted by di�erent
amounts due to the M2 dependence of the Stark interaction. As a consequence, the
splitting of the resonances leads to a distortion of the signal and to a relevant reduction
of the observed shift. This is clearly visible in Fig. 6.16. The shift is now reduced to
5.5 Hz, although we have used the same parameters that produced the result of Fig. 6.14
(especially we didn't change the value α2 = −3.4× 10−2 Hz/(kV/cm)2).

6.3.3 The geometrical correction factor
The distortion of the signal discussed above leads to under-estimate the tensor polarizabil-
ity, if its value is extrapolated from the measured shift. Thus, the need of a correction
factor is evident. In the case shown in Fig. 6.16 and in Fig. 6.14, this factor is

ε =
19.2Hz

5.5Hz
= 3.49 . (6.30)

Therefore our experimental result (Eq. 6.8) has to be corrected according to

α
(2)
2 = −(0.95±0.30) ·ε ·10−2Hz/(kV/cm)2 = −(3.31±0.30) ·10−2Hz/(kV/cm)2 , (6.31)

in excellent agreement with all previous experimental results and with our theoretical
calculation.

There are two important remarks:

• Actually the estimation of the correction factor is a�ected by an error mainly due
to the uncertainties of the numerical values of all the parameters used in the simula-
tions. Although we do not consider it in Eq. 6.31, this error should be added to the
experimental one.

• We run some simulations by changing the values of the parameters γp and ΩR and
we estimate the corresponding correction factor ε. The result is shown in Fig. 6.17.
A change of the Rabi frequency in the range from 30 Hz to 70 Hz leads to a change
of the correction factor ε of about 3%, while it seems to be only very weakly sensitive
to changes of the pumping rate γp.
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Chapter 7

Conclusions

We conclude this work by coming back to the original motivation that some years ago
triggered the investigation of electric �eld e�ects on doped solid helium matrices: the
study of the applicability of paramagnetic atoms trapped in a helium crystal for a search
for permanent atomic electric dipole moments (EDM).

Beside a number of relevant results, described in the previous chapters, we discovered
systematic e�ects as well as technical di�culties which led us to conclude that our system
is not a good candidate for a future EDM experiment. Here we give just a list of these
e�ects.

One of the main limitations on the applicable electric �eld strength has a technical
nature. An electric breakdown occurs inside the cryostat, between a high voltage cable
and the grounded pressure cell, at voltages which are typically about 17 kV (equivalent
electric �led strength in the cell ≈50 kV/cm). Moreover, at voltages above 15 kV the heat
produced by the leakage current (approximately a few µA) in the cell becomes an issue.
If the measurement takes longer than one minute, it results in the melting of the helium
crystal and destruction of the sample. In the present experimental setup one measurement
takes 20-30 seconds followed by another similar period without applied electric �eld, during
which the heat is removed and a reference measurement performed. A signi�cant increase in
the applied electric �eld strength will reduce the time available for each single measurement.

The existing signal-to-noise ratio enables us to determine the magnetic resonance fre-
quencies with an accuracy below 0.1 Hz. However the reproducibility of the measured value
from one measurement to another is much poorer and limits the precision of the Stark shift
measurements to ≈ 1 Hz. The analysis of experimental data shows that the resonance fre-
quency is a�ected by a relatively slow drift on the time scale of hours, plus some sudden
jumps that occur in between two consecutive measurements. These jumps have a magni-
tude on the order of 1 Hz and thus represent a major limitation on the accuracy of our
Stark shift measurements.

In our experiment cesium atoms are implanted in the helium crystal by means of laser
ablation. This is the most reliable technique for the doping of helium crystals with highly
reactive species. However, the sample is indiscriminately doped with all products of the
laser ablation process. Unfortunately, under these extreme conditions (low temperature
and high pressure) the most part of ablated material appears in the form of clusters, rather
than individual atoms. Accordingly to our estimations based on the transmission spectra
of the sample, the total density of cesium atoms aggregated in clusters is on the order of
1017 cm−3, whereas the density of lonely atoms is only 109 cm−3. This huge disproportion
considerably a�ects the properties of the sample (for example, the absorption and scattering
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of light), which are determined mostly by clusters rather than by the species of interest
(atoms). Moreover, the di�usion of cesium atoms in the crystal allows cesium clusters
to absorb the atoms distributed around them. The dissociation of the clusters, in order
to maintain a reasonable atomic density, is produced by laser pulses (second harmonic of
Nd:YAG laser) that are applied at time intervals of about 30 seconds. The drawbacks
of this solution are: (i) the time of one measurement is limited by the interval between
the two laser pulses; (ii) each recorded resonance lineshape is distorted because of the
exponential decay of the atomic �uorescence after the laser pulse; (iii) a shock or even a
partial melting produced by the laser pulse in the crystal redistributes the cesium atoms
and, combined with the inhomogeneity of the static magnetic �eld, results in sudden shifts
of the measured magnetic resonance frequency.

Not only neutral particles (cesium atoms, molecules and clusters) but also ions and
electrons are produced by the laser ablation and they should thus be present in our sam-
ple. The presence of charged particles and their possible inhomogeneous distribution in
the sample can signi�cantly a�ect the electric �eld seen by the cesium atoms. Even in the
absence of an external electric �eld, this e�ect may produce a Stark shift which is inho-
mogeneous across the sample and therefore it shows up as a broadening of the magnetic
resonance peak. The laser pulses applied for the dissociation of the clusters may redis-
tribute those charged particles in the crystal and further deteriorate the reproducibility of
our Stark shift measurements.

Taking into account all e�ects mentioned above, one cannot expect an experiment us-
ing cesium atoms implanted in helium crystals to be competitive with other existing EDM
experiments.

Independently on the search for the EDM, the study of the quadratic Stark e�ect has
produced highly relevant results which are described in this work.

On the experimental side, after some years of signi�cant e�orts, the quadratic Stark
e�ect in the Zeeman structure of the ground state of cesium atoms implanted in solid helium
has been measured. The results are perfectly compatible with previous measurements
performed in atomic beams.

From a theoretical point of view, the historical discrepancy between experiments and
theoretical calculations, which existed since the 1960s, is now ruled out by our third order
perturbation theory including o�-diagonal hyper�ne matrix elements. Moreover, our cal-
culations have highlighted the existence of a sign error in the old theory of the quadratic
Stark e�ect. It seems that over the last 40 years this sign problem was never remarked.
We produced experimental evidence that the signs predicted by our model are the correct
ones.

Our calculations led also to a prediction of the Stark shift of the hyper�ne transition in
the ground state of cesium. This is another extremely relevant result since it enters a very
actual and open debate concerning the Stark shift of the clock transition. This is the main
open question left by the experimental and theoretical studies described here. A possible
answer could be found by realizing a new atomic beam experiment, which is now on our
agenda for the near future.



Appendix A

The irreducible tensor formalism

The calculation of matrix elements in complex con�gurations can present considerable
analytical di�culties. Some great notational and calculational simpli�cations of particu-
lar elegance are provided by the algebra of irreducible tensor operators, known as Racah
algebra.

The methods of the Racah algebra present the big advantage of taking the rotational
symmetries of the problem into account in a natural way and enable dynamical and geo-
metrical factors in the equations of interest to be separated from each other.

An irreducible tensor operator of rank K is de�ned as a set of 2K + 1 components TK
Q ,

with Q=-K,-K+1,...,K, that transform under rotations in the same way as the spherical
harmonics YK,Q, i.e., as the eigenvalues | K,Q > of an angular momentum operator Lz of
an orbital momentum state with L = K. Thus the operator components TK

Q de�ned in a
reference system XY Z can be related to the components TK

q de�ned in a rotated system
xyz by:

TK
Q =

∑
q

TK
q DK

qQ(αβγ) , (A.1)

where α, β and γ are the Euler angles of the rotation, de�ned for instance as in [99], and
where DK is the rotation matrix de�ned as

DK
qQ(αβγ) = e−iqαdK

qQ(β)e−iQγ . (A.2)

The reduced rotation matrix dK(β) describes by convention a rotation by an angle β about
the y−axis and can be de�ned as Eq.6.9 in [99].

Equivalently, an operator TK can be de�ned as an irreducible tensor if its components
TK

Q satisfy the same commutation relations with the angular momentum operator J as the
spherical harmonics Ykq do:

[
J±, TK

Q

]
=

√
(K ∓Q)(K ±Q + 1)TK

Q±1 ,
[
Jz, T

K
Q

]
= QTK

Q , (A.3)

where J± = Jx ± iJy.
In general, any tensor operator TK that involves spatial coordinates (r, θ, φ) and that

does not act on spins can be decomposed into spherical harmonics and can thus be written
as an irreducible tensor operator of the form
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T k
q = f(r) · Ykq , (A.4)

where f(r) does not depend on θ, φ and q.
A case of special interest is the case k = 1 Any vector operator V can be written in

the form

V =




Vx

Vy

Vz




= | V |




sin θ cosφ

sin θ sinφ

cos θ




, (A.5)

where θ and φ are the polar and azimuthal angles respectively, de�ned as sketched in
Fig. 2.1. We can de�ne the spherical components Vq of the operator V as

V± = ∓ 1√
2
(Vx ± iVy) ,

V0 = Vz . (A.6)

and thus by using the relations A.5 in A.6 we can write

V± = ∓| V |√
2

sin θe±iφ =

√
4π

3
| V | Y1,±1 =| V | C1

±1 ,

V0 =| V | cos θ =

√
4π

3
| V | Y1,0 =| V | C1

0 , (A.7)

where

Ck
q (θ, φ) =

√
4π

2k + 1
Ykq(θ, φ) (A.8)

are the renormalized spherical harmonics. The important meaning of Eq. A.7 is that
the spherical components of any vector operator V form an irreducible tensor operator or
rank 1: V± = T 1

±1 and V0 = T 1
0 .

The electronic position operator r is an example of relevant interest in the frame of
this work. This vector operator can be written as an irreducible tensor in the form

r1 = rC1 . (A.9)
An angular momentum operator J is another important example of a vector operator

which satis�es the conditions A.3 and thus its spherical components Jq form an irreducible
tensor operator.

In the frame of the irreducible tensor formalism we are provided an extremely powerful
method to expand matrix elements, known as the Wigenr-Eckart theorem:

< J,M | TK
Q | J ′,M ′ >= (−1)J−M




J K J ′

−M Q M ′


 < J ‖ TK ‖ J ′ > . (A.10)
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The geometrical properties of the interaction are completely described by the 3j -
symbol, which depends explicitly on the orientation of the coordinate system through M,
M' and Q. On the other hand, the physical nature of the operator TK is contained entirely
in the reduced matrix element < J1 ‖ TK ‖ J2 >, which describes the purely dynamical
part of the interaction and does not depend on M, M' and Q. Thus, if the quantization
axis is changed by a rotation of the coordinate system, only the 3j - symbol will change
while the reduced matrix element stays unchanged.

If the angular momentum J is obtained by coupling two angular momenta J1 and J2

and the tensor TK operates only in the space of J1, the expression A.10 can be further
reduced by uncoupling the angular momenta J1 and J2 and thus by rewriting the reduced
matrix element as follows:

< γJ1J2J ‖ TK ‖ γ′J ′1J
′
2J
′ >= δJ2,J ′2(−1)J1+J2+J ′+K

√
(2J + 1)(2J ′ + 1)×

×





J1 J J2

J ′ J ′1 K





< γJ1 ‖ TK ‖ γJ ′1 > . (A.11)

Of course a similar expression holds if the operator TK acts in the space of J2:

< γJ1J2J ‖ TK ‖ γ′J ′1J
′
2J
′ >= δJ1,J ′1(−1)J1+J ′2+J+K

√
(2J + 1)(2J ′ + 1)×

×





J2 J J1

J ′ J ′2 K





< γJ2 ‖ TK ‖ γJ ′2 > . (A.12)

Another case of special interest for this work is represented by the scalar product of
two irreducible tensors:

TK · UK =
∑

Q

(−1)QTK
−QUK

Q . (A.13)

If the operators TK and UK act in two di�erent spaces associated with the angular
momenta J1 and J2 respectively, one can write (for a proof see [86, 100]):

< γJ1J2JM | TK · UK | γ′J ′1J ′2J ′M ′ >= δJM,J ′M ′(−1)J ′1+J2+J





J1 J2 J

J ′2 J ′1 K




×

× < J1 ‖ TK ‖ J ′1 >< J2 ‖ UK ‖ J ′2 > . (A.14)

The interaction described by A.14 is thus diagonal in the coupled angular momentum
quantum number J and in its projection M. This is for instance the case of the hyper�ne
interaction (∝ J ·I) which is always diagonal in F and MF , and of the spin-orbit interaction
(∝ S · L), diagonal in J and MJ .
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Appendix B

The reduced matrix elements

We give an explicit representation for the reduced matrix elements of the relevant operators
used in this work. More details can be found in [86, 100].

We shall begin by considering the normalized spherical harmonics Ck
q =

√
4π

2k+1Ykq.
One can prove that

< L1 ‖ Ck ‖ L2 >= (−1)L1
√

(2L1 + 1)(2L2 + 1)




L1 k L2

0 0 0


 . (B.1)

One can notice here that due to the presence of the parity conserving 3j-symbol, the
reduced matrix element above is di�erent from zero only if L1 + k + L2 is even.

Furthermore, from the symmetry properties of the 3-j symbol it follows that

< L1 ‖ Ck ‖ L2 >= (−1)k < L2 ‖ Ck ‖ L1 > . (B.2)
As we already remarked in Appendix A the position operator r can be written as an
irreducible tensor of rank 1 in the form: r1 = rC1. From B.1 and by using the algebraic
expression corresponding to the 3-j symbol, it follows that

< n1L1 ‖ r1 ‖ n2L2 >=< L1 ‖ C1 ‖ L2 >

∫ ∞

0
Ψ(n1L1)rΨ(n2L2)r2dr =

= (−1)L1+Lmax
√

Lmax

∫ ∞

0
Ψ(n1L1)rΨ(n2L2)r2dr =

= (−1)L1+Lmax
√

Lmax ·Rn1L1,n2L2 , (B.3)

where L2 = L1 ± 1, Lmax = Max[L1, L2] and Rn1L1,n2L2 is the so-called radial integral.
If we focus our attention on the speci�c case of Cs treated in this work, the reduced

matrix elements of the position operator r have some interesting and useful properties. By
applying the angular momenta decoupling rule A.11 and by taking B.3 into account, it is
straightforward to prove that

< 6S1/2 ‖ r ‖ nP1/2 >=< nP1/2 ‖ r ‖ 6S1/2 >= −
√

2
3
·R6S,nP (B.4)

< 6S1/2 ‖ r ‖ nP3/2 >= − < nP3/2 ‖ r ‖ 6S1/2 >= −
√

4
3
·R6S,nP , (B.5)
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and as a consequence

< 6S1/2 ‖ r ‖ nP3/2 >=
√

2 < 6S1/2 ‖ r ‖ nP1/2 > . (B.6)
Notice that here we are assuming that the radial integral Rn1L1,n2L2 does not depend
on J1 and J2. Advanced theoretical methods based on relativistic many-body all-order
perturbation calculations have been applied to Cs [69, 72] and led to a deviation from
the general rule B.6 on the order of 1%. Such a deviation has been tested, e.g., in high
precision lifetime experiments [101].

By applying the Wigner-Eckart theorem and the angular momenta decoupling rules to
the matrix element of a generic component rq of the position operator, it is straightforward
to verify another general rule

< L1, J1, F1,M1 | rq | L2, J2, F2,M2 >= (−1)q· < L2, J2, F2,M2 | r−q | L1, J1, F1,M1 > .
(B.7)

For a generic uncoupled angular momentum operator J one can prove the following

< J1 ‖ J ‖ J2 >= δJ1,J2

√
J1(J1 + 1)(2J1 + 1) , (B.8)

which yields

< L ‖ L ‖ L >=
√

L(L + 1)(2L + 1) , (B.9)

< S ‖ S ‖ S >=
√

S(S + 1)(2S + 1) =

√
3
2

. (B.10)

One has to notice here that in the case of coupled angular momenta like J = L + S, by
applying the decoupling rules of Appendix A one obtains

< J1 ‖ J ‖ J2 >=< J1 ‖ L ‖ J2 > + < J1 ‖ S ‖ J2 >=

= (−1)L+S+J2+1
√

(2J1 + 1)(2J2 + 1)×

×








L J1 S

J2 L 1





< L ‖ L ‖ L > +(−1)J1−J2





S J1 L

J2 S 1





< S ‖ S ‖ S >


 .

(B.11)

The interaction is thus diagonal in L and S but not necessarily in J.



Appendix C

Cesium wave functions

C.1 The Thomas-Fermi model
We used the Schrödinger equation with a statistical Thomas-Fermi model potential to
calculate the relevant wave functions of the free cesium atom. In this statistical method one
treats the electrostatic potential of the nucleus and the core electrons by treating the core
electrons as a degenerate Fermi gas at temperature T=0 K. This is a good approximation
when all the electrons are in their lowest possible energy state. Moreover the statistical
approach is obviously valid only for systems with a large number of core electrons (54 in
the case of cesium).
We will mention in this appendix just the main properties of this statistical approach. For
more details one can refer to Norcross et al. [102] or Gombas [103].
The model �rst starts from two basic assumptions:

• the atomic potential has a spherical symmetry,

• the potential can be decomposed in small spherical shells, with volumes dV, in which
the potential is assumed to be constant.

These assumptions are not good for regions close to the nucleus where the potential is
characterized by steep changes and for regions far away from the nucleus where one can
�nd only a few highly excited electrons and the statistical description does not apply any
more. These are the main limits of the model.
The goal is now to calculate the potential in which the electrons are moving. One starts
to �ll the small spherical shells mentioned above with N electrons. The Pauli principle is
respected by putting only two electrons, with opposite spins, in each elementary volume
h3 of the six dimensional phase space. The volume in phase space can then be written as

Nh3

2
=

4π

3
p3

F dV , (C.1)

where pF is the electronic momentum. By writing the electron density as ρe = N/dV one
can write the relation between the maximal momentum and the density as

pF = 3

√
h3

2
3
4π

ρe . (C.2)

A bound electron in a spherical shell has a total energy of p2

2m−V e which can not be higher
than a maximal potential energy V0e. In a neutral atom this energy corresponds to the
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ionization energy and hence V0 = 0. From Eq. C.2 one can infer a relation between the
electron density ρe and the potential V. Then the Poisson equation

∆(V − V0) = 4πeρe (C.3)

leads to the dimensionless Thomas-Fermi equation which can be expressed in spherical
dimensionless coordinates as

d2χ(x)
dx2

=
χ

2
3 (x)√

x
, (C.4)

where χ = r(V−V0)
Ze and x = 2rZ

1
3

a0
( 4
3π )

2
3 . Z is the atomic number and a0 is the Bohr radius.

The solution of the Thomas-Fermi di�erential equation (C.4) leads to the self-consistent
Thomas-Fermi atomic potential VTF .
This is of course just a �rst approximation to the real potential. One problem for exam-
ple is that the model predicts an in�nite atomic radius. Several corrections are therefore
included into this simple model.

C.2 The Fermi-Amaldi corrrection
The Fermi-Amaldi correction excludes the electrostatic self-interaction of the electrons
which was included in the simple Thomas-Fermi potential. Thus the valence electron in
the S-state of an alkali atom will feel the potential generated by the electrons of the inner
shells but not its own one.

C.3 Core polarization potential
We take the polarization potential of the core into account. The valence electron of the
alkali atom produces a �eld at the core and polarizes it. The dipole polarization potential
can be modeled as[102]

Vdip = − αd

2r4
(1− e

−( r
rL

)6) . (C.5)

We include also the quadrupole polarization of the core which can be written[102] as

Vquad = −αq − 3βqa0

2r6
(1− e

−( r
rL

)10) . (C.6)

The parameter rL is a cut-o� radius which depends on the angular momentum l and is
assumed to be the same for the dipole and the quadrupole polarization. Values for the
parameters αd, αq and βq as well as more details about these approximations can be found
in [102].

C.4 Spin-orbit interaction potential
As a last correction we include in the model the spin-orbit interaction potential

Vso =
α2

2
1
r

dV

dr

1
(1 + 1

4α2V )2
−→
L · −→S , (C.7)

where V = VTF + Vdip + Vquad, and α is the �ne structure constant. The term in brackets
represents a relativistic correction.



C.5 The Schrödinger equation 133

C.5 The Schrödinger equation
To calculate the wave functions of the free atom, the radial Schrödinger equation

d2u(r)
dr2

+
(

2(E − Vtot)− l(l + 1)
r2

)
u(r) = 0 (C.8)

was solved numerically with the total potential Vtot = VTF +Vdip +Vquad +Vso. The radial
part of the atomic wave function is then given by Rnlj = u(r)/r.

In Fig. C.1 we plot as an example the radial wave functions u(r) = rR6S1/2
(r) of an

electron in the ground state of cesium and the radial wave functions u(r) = rR6P1/2,3/2
(r)

of an electron in the �rst excited states 6P1/2,3/2.

A more detailed treatment of these calculations will be included in the Phd thesis of
A.Hofer [104] who carried out most part of the calculations mentioned above.
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Figure C.1: Radial wave functions u(r) = rR6S1/2
(r) (top) and u(r) = rR6P1/2,3/2

(r)
(bottom) of an electron in the ground state 6S1/2 and in the excited states 6P1/2,3/2 of
a cesium atom. Note that the two wave functions for the P-states J=1/2 and J=3/2 are
almost indistinguishable.
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