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Summary 
 

 

 

Nanotechnology, a research area that covers many scientific disciplines such as 

Medicine, Biology, Physics and Chemistry has found a great interest in research 

institutions and wide applications in industries. This is due to many reasons; from these 

we note the control down to the molecular level providing thereby a greatest efficiency 

and an important added value as a reason of the low cost of the fabricated molecules and 

devices. Molecular self-assembly, a phenomenon which employs weak, non-covalent 

molecular interactions to form well-defined supramolecular architectures is a promising 

trend that could be applied in nanotechnology to render the constituent molecules 

‘smarter’ offering them the feature of self-organizing into functional nano-devices without 

having the necessity to be bound chemically to each other and allowing, therefore, for a 

self-healing property permitting the correction of any error that could arise during the 

assembly.   

 

This work is interested in synthesizing specially designed disc-shaped polycyclic 

aromatic molecules that self-assemble by π-stacking into columnar architectures 

forming, therefore, nanometer-sized conductors. These latter can be applied in the 

domain of materials for the fabrication of many functional devices such as low cost field 

emission flat panel displays that excel over existing ones due to the ease of their 

manufacturing process, in addition to better properties expected, for instance, a free 

defect architectures, a lower power consumption, a higher brightness and a larger 

viewing angle.  

 

In the first part of this work, large polycyclic aromatic disc shaped molecules; known as 

hexabenzocoronene derivatives (HBCs), which self assemble to one-dimensional 

conducting structures, have been synthesized and characterized. These compounds were 

decorated laterally with perfluoroalkylated alkyl chains offering them a teflon-like clad to 

avoid any lateral interaction between neighboring stacks. Different scanning electron 

microscopy techniques as well as calorimetric measurements have revealed a 

tremendous possibility of obtaining singular columnar stacks. Additionally, calorimetric 

measurement showed a high thermal and chemical stability of these compounds.  
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However, in order to immobilize these nano-sized columnar stacks on the electrode 

surface, specially designed primer molecules of HBC, bearing at their ends atoms like 

oxygen and sulfur atoms, were synthesized. Upon deposition of a monolayer of these 

molecules, the heteroatoms are expected to act as anchoring groups by chemically 

binding to the electrode surface assuring, therefore, a good adhesion between the 

substrate and the molecule on one hand and serving as a pattern or a template molecule 

for the remaining HBCs bearing long perfluorinated tails, on the other hand.  

 

As a prospective extension to this work, another project that consisted of synthesizing a 

nitrogen-containing polyaromatic hydrocarbon (PAH) was also initiated. The advantage of 

such type of molecules is the low oxidation potential of the nitrogen atom with respect to 

carbon which will facilitate the electron emission and eventually the hole transport in the 

column leading to less power consumption.  

 

Several synthetic strategies for this hitherto unknown target have been employed during 

this work but none of them led to the desired product so far due to the high steric 

hindrance in an intermediate product. Nevertheless, two perfluoroalkylated triaryl amine 

derivatives were synthesized, both products showing potential for an application as hole 

transport molecules in organic light emitting diodes (OLED).      



 

Résumé 
 

 

 

La nanotechnologie, domaine de recherche qui couvre plusieurs branches scientifiques 

en Médecine, Biologie, Physique et Chimie, est en pleine expansion dans les institutions 

de recherche et suscite un vif intérêt dans l’industrie vu ses prometteuses applications. 

Ceci est dû à plusieurs raisons, parmi lesquelles, on note le control à une échelle 

moléculaire ce qui augmente l’efficacité du procédé et diminue le coût en matière 

première. L’auto-assemblage moléculaire, phénomène qui implique les faibles 

interactions moléculaires non-covalentes, permet de former des architectures 

supramoléculaires bien définies. Cette propriété peut servir la nanotechnologie en 

rendant les molécules plus  ‘intelligentes’ en leur offrant cette propriété d’auto-

organisation en nanostructures fonctionnelles sans avoir besoin de former des liaisons 

chimiques entre elles, permettant donc une autocorrection de tout défaut qui pourrait 

avoir lieu durant l’assemblage.  

 

Le but principal de ce travail est de synthétiser des molécules aromatiques polycycliques 

en forme de disques qui s’auto-assemblent par des interactions secondaires de leurs 

orbitaux π, formant alors des structures colonnaires qui pourraient être utilisées comme 

des nano-émetteurs d’électrons. Ces dernières peuvent avoir des applications potentielles 

dans le domaine des matériaux pour la fabrication de plusieurs outils fonctionnels 

comme, par exemple, des écrans plats à émission de champs. Ceux-ci surpassent les 

écrans plats qui s’appuient sur d’autres principes, comme par exemple, les cristaux 

liquides, grâce à leur facilité de fabrication, et de propriétés additionnelles telles que 

leurs structures sans défaut, une consommation d’énergie plus faible ou un angle de 

vision plus large.  

 

Dans la première partie de cette étude, nous décrivons la synthèse et la caractérisation 

de dérivés d’une molécule aromatique en forme de disque, connue sous le nom de 

hexabenzocornène (HBC), qui s’auto-assemblent en structures colonnaires permettant 

une conductivité unidimensionnelle des électrons. Ces dérivés ont été décorés 

latéralement avec des chaînes perfluoroalkylées servant  “d’enveloppe” au centre 

aromatique grâce à leurs propriétés anti-adhésives (Téflon) empêchant toute interaction 

intercolonnaire. Diverses mesures de microscopie électronique à balayage (MEB) ont 

révélé la possibilité d’obtenir des nanofilaments. De plus, des mesures calorimétriques 
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(calorimétrie différentielle à balayage) ont montré la grande stabilité thermique et 

chimique de ces dérivés HBC. 

 

Pourtant, afin d’assurer une fixation optimale de ces colonnes sur la surface de 

l’électrode, des dérivés HBC, portant des atomes d’oxygène et de soufre sur leurs 

extrémités, ont  été synthétisés pour servir de molécules ‘premières’. Une fois la couche 

monomoléculaire déposée sur la surface du substrat, les hétéroatomes vont agir comme 

des agents d’ancrages en se liant chimiquement au substrat, ce qui offrira alors une 

bonne adhésion entre l’électrode et la molécule. D’autre part, le centre polycyclique de 

ces HBC d’interface servira de base sur laquelle s’empileront les dérivés perfluoroalkylés 

qui seront déposés ultérieurement.    

 

Un autre projet, considéré comme une extension prospective, a été exploré. Il consiste à 

synthétiser une molécule aromatique, en forme de disque, mais qui contient un atome 

d’azote. L’avantage principal apporté par une telle modification est le faible potentiel 

d’oxydation de l’azote par rapport au carbone, ce qui faciliterait l’émission électronique 

et, éventuellement, le transport cationique dans les colonnes et donc diminuerait 

l’énergie nécessaire au fonctionnement. 

 

Plusieurs stratégies de synthèse de cette molécule, inconnue jusqu’à présent, ont été 

employées pendant ce travail, mais aucune d’entre elles n’a fourni le produit désiré, à 

cause de l’encombrement stérique d’un des produits intermédiaires. Néanmoins deux 

dérivés de triaryl amines contenant des chaînes perfluoroalkylés ont été synthétisés. Ces 

derniers montrent un grand potentiel comme molécules de transport cationique dans le 

domaine de diodes organiques émetteur de lumière (DOEL). 
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1. Introduction 
 

 

Supramolecular chemistry[1] or ‘chemistry beyond the molecule’ is a wide term that 

covers an immense new field of chemistry based on synthesizing and studying molecules 

whose cooperation affords totally new properties to the entire system. This interesting 

domain of research can also be considered as the most prominent imitation of nature 

that shows various examples emerging from cooperation between different constituents[2, 

3]. The concepts developed in supramolecular chemistry are increasingly used in fields 

like materials science, surface science, sensor technology and nanotechnology[4].  

 

However, to achieve the best efficacy, the cooperation between the different molecules 

involved must be precise in such a way that each one has a definite role and assembles 

in a ‘smart’ manner. An idea that gave rise to self-organization which employs weak, non-

covalent molecular interactions to form well-defined supramolecular architectures, 

providing, therefore, novel properties with beforehand determined functionalities. 

 

Contrarily to covalently bonded systems whose dissociation is irreversible, the 

advantages of non-covalently self-assembled molecules are reversibility and error 

correction; two properties that assure an immediate reassembly of the supramolecular 

entity after being exposed to an external influence[4, 5]. Several self-assembled chemical 

systems have been synthesized and investigated so far, from these we highlight some 

functional devices possessing promising applications in biology, mechanics, photonics, 

electronics, and catalysis[6]. 

 

The leading idea behind this work comprises a multidisciplinary research approach lying 

at the intersection between chemistry, physics and materials science. From a chemical 

point of view, we are interested in developing and synthesizing new large disc-shaped 

aromatic molecules that self-assemble into columnar like structures. Possessing good 

charge carrier mobilities, these nanometer-sized stacks can be employed as cold electron 

emitter sources and can, therefore, find many industrial applications in molecular 

electronics field such as the simple fabrication of flat panel displays. 

 

We will summarize in the following chapters some important concepts that constitute the 

bases of this project: in the first part we will have an insight on self-organization 

phenomena showing the different types of non-covalent interactions, focusing on π-



1. Introduction 8

stacking. In the second chapter we will evoke the theory of field electron emission 

revealing the advantages of it, summarizing the most important applications that can be 

based on this concept and concentrating on emerging commercially available field 

emission flat panel displays. Finally we will give emphasis to the organic devices used so 

far as promising candidates for field emission flat panel displays as well as the major 

drawbacks encountered when using them.  



9 

2. Self-organization 
 

 

2.1 An efficient tool for supramolecular control 

 

Self-assembly of organic molecules in solution and in the solid state leading to well-

defined supramolecular architectures has revealed the paramount importance of weak 

reversible non-covalent interactions in constructing and controlling materials down to 

the molecular level. These interactions comprise mainly hydrogen bonding, metal 

coordination and π-stacking; three different types of weak bonding whose lone or 

combined presence affords outstanding properties to the supramolecular system. Self-

organization relies upon complementary of size, shape, and varying the number of 

chemical functionalities capable of performing non-covalent bonding[7] giving rise to 

newly different chemical and physical properties as compared to the single building 

block, as we will see in the following sections. Furthermore, the reversibility of the non-

covalent bonding excels that of the covalent ones, since the former can be restructured 

by simple changing of the medium parameters such as the concentration or the nature of 

solvent, when they are present in solution, and the substrate or the deposition 

technique, when they are engineered in the solid state to construct a variety of synthetic 

architectures[8]. Thus, self-assembly by weak interactions offers the possibility of a ‘self-

healing’ network that can reassemble after being subjected to any external changing[5]. 

 

This class of novel materials has brought together supramolecular chemistry and 

materials science[9] opening new perspectives to chemists and physicists toward a 

nanometric control of materials and leads researchers to name it “supramolecular 

polymers’’ defining this new term as ‘polymeric arrays of monomeric units that are brought 

together by reversible and highly directional secondary interactions, resulting in polymeric 

properties in dilute and concentrated solutions, as well as in the bulk. The monomeric units 

of the supramolecular polymers themselves do not possess a repetition of chemical 

fragments. The directionality and strength of the supramolecular bonding are important 

features of systems that can be regarded as polymers and that behave according to well-

established theories of polymer physics’’[10].  

 

In spite of the extreme efforts exerted by several chemists, since two decades, that have 

led to generate a wide variety of self-assembled supramolecules[8], we are still far from 

paving a way toward a suitable function of high importance to this new class of materials 
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that surpasses the scientific curiosities. Only few applications are foreseen for some 

types of hydrogen bonded molecules as efficient polymers[11] on one hand, and for other 

promising discotic molecules in the field of molecular electronics, due to their strong π-

interactions allowing their columnar structures to bear high charge carrier mobilities[12-

14], on the other hand.  

 

It is noteworthy that the most useful functions of self-assembly are found in nature[3, 15, 

16]. Figure 2.1 illustrates one of the well-known examples on self-organization found in 

human body: microtubules. These latter have a crucial role in the organism since they 

control the movement of subcellular structures such as the separation of sister 

chromatids during mitosis, the transportation of proteins in neurons from the cell body 

down the axon to the synaptic region, etc. The most fascinating property in these 

proteins is the fact that they are dynamic: once the cell enters mitosis, the array is 

disassembled whereas the mitotic spindle is assembled as the cell prepares itself for 

chromatid separation and subsequent division. These microtubules are composed of 

individual protein subunit dimers known as tubulin that are arranged in a cylindrical 

and helical form in such a way to create a single microtubule[17].     

 

 
Figure 2.1. The assembled , β-tubulin heterodimer. The top structure is a view of the 

bove, whereas the bottom structure is a view from the side.  microtubule from a

 

We will present in the next sections a short overview on the three non-covalent 

interactions we evoked previously in addition to some examples showing few combined 

systems of these latter. It is worthwhile to note, however, that neither the biological 

systems[2, 3, 15, 16] nor the supramolecular assemblies held together by topological controls 
[18-20], as in rotaxanes or catenanes, will be discussed. 
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2.2 Hydrogen bonding 

 

2.2.1 Introduction 

 

Even though hydrogen bonds are fairly weak, they are one of the most widely used 

interaction principle in self-assembly due to their directionality, versatility, as well as its 

biological relevance[21]. Their weak force can be multiplied by increasing the number of 

interacting sites or by additional forces, such as liquid crystalline properties and phase 

separation; both properties that exclude the volume interaction[22]. Hydrogen bonding is 

ased on the formation of donor-acceptor functions (D-A); hence, the strength of this 

s on the nature and the arrangement of the donors and the 

cceptors and mostly on the solvent nature, when they are present in solution[9]. 

r 

ositions where, as figure 2.2 depicts, the complex DDD-AAA has the highest association 

constant (>105 M-1) due to the lack of any secondary interactions; that occur when 

diagonally opposed sites of the same type repel each other[10]. The most stable complexes 

synthesized so far are the quadruple hydrogen bonded systems[30, 31] whose hydrogen-

bonding sites arrangements offer the possibility of having a broad spectrum of 

association constants, ranging from 102-108 M-1[32], and hence, allowing these systems to 

exhibit interesting polymer-like properties[33]. Moreover, some of these latter have shown 

potential electronic properties[34] whereas others were found to be acting as ‘smart 

materials’ changing reversibly their degree of association when subjected to UV light[35]. 

 

b

type of interactions depend

a

Supramolecular chemists widely employ two-dimensional hydrogen bonded networks, 

which are usually composed of rigid, flat and heterocyclic molecules[7]. Various hydrogen 

bonded network have been obtained, so far, using the hitherto mentioned principle of 

donor-acceptor functions (D-A), from these we note: zeolites-like[23], stacked columns[24, 

25], interpenetrating molecular ladders[26], capsules[7, 27] as well as various molecules 

assembled in the solid state[28].     

 

2.2.2 Selected examples  

 

Very stable hydrogen-bonded complexes have been first made by the association of linear 

arrays bearing three hydrogen bonding sites[21, 22, 29]. The association constant of these 

molecules have been found to be dependent on the arrangement of the donor-accepto

p
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Figure 2.2. Influence of donor-acceptor sites positions on the association constant[10]. 

 

Nevertheless, the major drawback of the quadruple hydrogen-bonded complexes is their 

tendency to tautomerize leading to loss of complexation either due to the increase of 

secondary repulsive interactions or due to the loss of complementarity. Recently, 

Zimmerman et al. have reported the synthesis of a new quadruple system in which all 

the tautomers can dimerize[36] (figure 2.3).   
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Figure 2.3. Tautomers dimerization of quadruple hydrogen bonding system.  

 

Lehn and coworkers were the first who developed triple hydrogen bonding complexes 

that, when are separated, don’t exhibit any liquid crystalline property but whose 1:1 

mixture a  thermotropic liquid crystallinity[37]. When a rigid core replaces the 

aliphatic chains in these molecules, lyotropic liquid crystals have been o

ble hydrogen bonding sites instead of triple ones[40-44]. The wide majority of 

ese groups have obtained highly ordered liquid crystalline supramolecules either by 

bination of hydrogen bonding and liquid crystallinity 

hows extraordinary polymer-like properties such as the possibility of drawing fibers 

memory effects where the crystalline order decreases when the 

aterial is kept in the isotropic state for a long time[48]. 

ffords

btained 

instead[38, 39]. Other research groups have reduced the synthetical complexity by using 

single or dou

th

simply incorporating small molecules such as benzoic acid derivatives and pyridine 

moieties to the system[45] or by introducing chiral groups[46]. 

 

It is worthwhile to note that the com

s

from the melt[47] and 

m
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Figure 2.4. Optical microscopy micrographs of fibers pulled from melt of two different 

products[47]. 

 

Alternatively, Lillya et al. have found that upon capping poly(tetramethylene oxide) 

(PTHF) with molecules capable of forming a crystalline domain, such as benzoic acid 

derivatives, the strength of the hydrogen bond increases drastically giving rise to 

astonishing polymeric properties[49]. 

2.3 Metal complexes 

ers comprising one dimensional linear[52-55] as well as dendritic 

oieties[56]. Nevertheless, all these complexes, which have been isolated and studied 

either in the solid state or in solution, don’t exhibit any dynamic reversibility; a property 

which was first reported by van Koten and coworkers after synthesizing a Cu(I) and Ag(I) 

complexes with a peptide derivative polydentate ligand[57]. A more interesting compound 

has been synthesized by Velten et al. in which a phenanthroline-based ligand has been 

complexed by Cu(I) in a 1:1 ratio, forming the polymer coordination compound 1 

X100 X320 

 

 

Numerous supramolecular coordination compounds have been reported in the 

literature[50, 51]. These assemblies have a wide scope of structures starting from simple 

complexes to remarkable geometries comprising star-shaped, ladders, grids, boxes and 

helices. Likewise, many research groups have focused on synthesizing supramolecular 

coordination polym

m
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illustrated in Figure 2.5 below. It is important to note, however, that 1 could have been 

obtained only after using a non-complexing solvent that doesn’t promote ligand exchange 

with the phenanthroline derivative.    
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Figure 2.5. Cu(I) coordination polymer. 

Hunter et al. coordination 

lymer based on porphyrin[58]: The addition of two pendant pyridine groups to the latter 

xation of the nitrogen atom of the hitherto mentioned 

olecule to the central cobalt metal which; consequently, leads to the formation of 3 as 

 

 has also reported the synthesis of a high molecular weight 

po

compound allowed the comple

m

figure 2.6 depicts. 
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Figure 2.6. Coordination polymer from porphyrin derivative 2. 

  

ed π-stacking, is based on the secondary bonding that 

 

2.4 Arene-Arene interaction  

 

2.4.1 Introduction 

  

This type of interaction, also call

occurs between π-orbitals of neighboring molecules. The structure of these aromatic 

species is usually made up of planar disc-shaped polyaromatic hydrocarbon (PAH) core 

having three-, four-, or six-fold rotational symmetry leading to the formation of stacked 

columns. Nevertheless, the high insolubility of such systems has prompted the 

researchers to functionalize these discotic molecules with flexible aliphatic chains 

rendering them highly soluble. Consequently, the anisotropy stimulated by the ditopic 

structures of these molecules (rigid core and flexible chains), gives rise to the formation 

of thermotropic liquid crystalline mesophases, as figure 2.7 illustrates, ranging from the 

least ordered nematic phase to the highly packed columnar one[59]. 
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Figure 2.7. The mesophases of the disc-shaped molecules are characterized by their 

der and symmetry (top). The columnar mesophases are 

assified according to their degree of order and the dynamics of the molecules 

ate lin

various degrees of positional or

sub-cl

within the column (bottom)[60]. 

 

In fact, this type of molecules is the only type of liquid crystals able to gener ear 

architectures in dilute solution due to the strong π-interaction between the different 

discogens, which permits a high tendency to form columnar arrays in both polar and 

apolar solvents. Nevertheless, upon increasing the concentration, the interaction between 

the different columnar stacks increases leading, in some cases, to the formation of gels in 

medium concentration and to an aggregation when the medium is further concentrated. 

The same behavior is also formed in the solid state but to a higher extent with a 

significant occurrence since the intercolumnar interactions are much stronger which 

causes further packing and, hence, a higher degree of aggregation promoted by the high 

crystal packing of the lateral aliphatic chains[10]. 
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Figure 2.8. Self-assembly of discotic molecules into columnar stacks as a function of 

concentration. 

 

The unique linear stacking behavior of discotic molecules has encouraged many 

researchers to study their luminescence and electronic properties among others where 

some compounds show high charge carrier mobilities allowing them to be potential 

candidates in the field of organic optoelectronic devices as we will see in the next section. 

Very recently, Nakano and coworkers have synthesized π-stacked oligomers owing very 

good emission properties[61] whereas Wang and coworkers have showed that the emission 

of a perylene derivative can be tuned from green to red depending on its concentration in 

the medium[62]. 

 

2.4.2 Disc-shaped molecules 

 

Triphenylene 4 and phthalocyanine 5 derivatives were among the first disc-shaped 

molecules which have been synthesized and whose stacking has been deeply investigated 

because the majority of them exhibit thermotropic liquid crystalline properties[63, 64]. Even 

though it has ains 4a form 

olumns but with loose stacking and with an interdisc distance of 6 Å instead of 3.5 Å 

a small core size, triphenylenes bearing alkoxy side ch

c

allowing, therefore, the molecules to undergo rotational and lateral translation within the 

column[10]. The replacement of the alkoxy groups by amphiphilic aliphatic chains yields 

the water soluble product 4b that forms columnar micelles. Upon increasing the 

concentration of the latter product in water, it forms lyotropic liquid crystals[65]. The 

same behavior has been recorded when employing the ionic species 4c[10]. Due to the low 

packing, we have mentioned previously, the introduction of a chiral aliphatic chain to the 

molecule didn’t show any supramolecular chirality[10]. Helical triphenylene stacks have 

only been obtained after intercalating the discs with a bulky chiral electron acceptor[66]. 

Closely packed triphenylene columns have been detected only when preparing an 
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equimolar amount of the donor-acceptor derivatives 4a and 4d in apolar solvents[67, 68]. 

The resulting alternating stacks show unidirectional charge transport through the 

column upon excitation[69]. Alternatively, fluorescence studies show that upon increasing 

the concentration of a triphenylene derivative, its radiative lifetime also increases 

upposing that this is due to the formation of longer columns, which requires more time s

for the mobile exciton to move through them[10]. Furthermore, the increase of the column 

length has been proved by means of small angle neutron scattering (SANS) as well as the 

broadening and the increase of the absorbance in the UV-Vis spectrum when a higher 

concentration of 4 is present in solution[66]. Last but not least, the charge carrier mobility 

for various triphenylene moieties was found to be relatively high[70, 71]. 
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chains to prevent their rotation[76]. The replacement of the chiral chains 

y crown ethers[77, 78] has opened the possibility to turn off the helicity after the addition 

 

Figure 2.9. Triphenylene and phthalocyanine derivatives. 

 

On the other hand, phthalocyanines 5 have prompted researchers to study their stacking 

behavior due to their large core and because the incorporation of a metal tunes the 

optical and electronic properties. Conversely, phthalocyanines rather prefer to dimerize 

in solution and don’t form aggregates unless much higher concentrated[72-74]. 

Nevertheless, long supramolecular architectures of species of type 5 were only detected 

after the use of phase separation systems or in the solid state[75]. Helical supramolecules 

of 5 derivatives have also been reported after locking the positions of these latter with 

chiral aliphatic 

b
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of a potassium salt[79]. It is noteworthy that these helical structures form fibrous 

materials at very high concentration. Similar to phthalocyanines, porphyrins also 

dimerize in solution[80, 81] and form aggregates in the solid state that in some cases lead to 

the formation of fibers[82].  

 

The interest in large disc-shaped molecules led to the syntheses of various m-phenylenes 

ethynylene macrocycles as figure 2.10 depicts. All these derivatives have a strong π-

interaction and, consequently, they form thermotropic mesophases[83, 84]. New generation 

of these rigid molecules bearing butadiyne bridged with benzene 7 or with pyridine 8 has 

also been studied showing the formation of columnar structures as well[85, 86].  
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Figure 2.10. Various m-phenylenes ethynylene macrocycles. 

 

The relatively good columnar arrangement of triphenylene moieties and the interesting 

properties they show, among others their good charge carrier mobility, have encouraged 

many researchers to investigate the more extended polyaromatic hydrocarbons (PAH). 

Müllen and coworkers have improved a synthetical method in which large PAHs can be 

d in a few steps and in very good yields[87-92]. The most prominent of these 

extended benzene structures is hexa-peri-hexabenzocoronene 9 (HBC, R = H) illustrated 

in figure 2.11 on the next page. The decoration of the latter molecule with aliphatic side 

chains makes the otherwise highly insoluble product soluble in common organic solvents 

and bestows it with thermotropic liquid crystalline properties over a wide range of 

temperatures depending on the length and on the nature of the lateral groups 

attached[93-97].  

 

produce
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Figure 2.11. Structure of hexa-peri-hexabenzocoronene. 

 

Extensiv ied out 

o far. In solution, the molecules form columnar aggregates even at low concentration 

columnar arrays greatly depends on the 

eposition conditions: they usually align in a planar fashion (discs edge-on the surface or 

 be deposited homeotropically (discs flat-on to the surface or 

orizontal) in a herringbone structure resembling to that of graphite[100]. Nevertheless, 

e studies on the stacking behavior of various HBC species have been carr

s

and the length of the stacks can be increased by increasing the concentration of HBC 

moieties in the medium[98]. On the other hand, the aggregation of these molecules in the 

solid state affords closely packed columnar arrays due to the high intercolumnar 

interaction besides the high degree of crystallization and packing order of the aliphatic 

side chains[99]. However, the alignment of these 

d

vertical) as they can

h

electron microscopy characterization of ultrathin layers of 9 (5-8 molecules in thickness) 

on Cu(111) or Au(111) surfaces revealed that the columns are perfectly aligned showing 

little translation[101]. Very recently, helical columnar mesophases have been produced by 

adding acetylene between the phenyl moiety and the side group[102, 103].  
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Figure 2.12. Planar (left) an

     
d homeotropic (right) alignment of columns. 

It is noteworthy that HBC derivatives exhibit the highest charge carrier mobility recorded 

so far for any disc-shaped molecules in both liquid crystalline mesophase and in the 

solid state[13, 14, 104], which opens the way for their employment for many electronic 

devices[105, 106]. Additionally, new room temperature liquid crystalline HBC derivatives 

exhibit promising optoelectronic properties[107].  

 

2.4.3 Twisted PAHs  

 

The investigation of the rigid, twisted, nonracemic helicene[108, 109] 10a has shown that it 

self-assembles in solution into helical structures and it forms fibers over long ranges in 

the solid state[110]. The study of these fibrous structures has revealed interesting optical 

roperties[111]. Furthermore, the derivatization of 10a into the room temperature liquid 

[112].   

 

p

crystalline, nonracemic compound 10b resulted in the formation of corkscrew-shaped 

columns at high concentrations
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Figure 2.13. Structure of helicene 10a and its RT liquid crystalline derivative 10b. 

 

ased on the same conceptual structure of helicenes, pyridine-pyridazine oligomers 11 B

have also been synthesized and the study of its self-organization has showed that they 

arrange into helices as well[113, 114].  
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Figure 2.14. Pyridine-pyridazine oligomer and its proposed mode of aggregation into 

elical columns and fibers[113]. 

 

elical structures can also be obtained from flexible molecules like m-phenylene 

thynylene oligomers 12a-d, illustrated in figure 2.15, whereupon employing a poor 

olvent, they self-organize into helices leading to the formation of corkscrew-shaped 

olumns whereas the use of a good solvent leads to the formation of stacked lamellae[115-

h

H

e

s

c
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118]. However, 12b self-assembles into columnar helices in the liquid crystalline state due 

 the methyl group it bears (X= Me)[119].  to
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Figure 2.15. Various m-phenylenes ethynylene oligomers. 

 

 

Likewise, the same architecture can be generated from linear oligo-isophthalamide 

strand upon binding with a cyanuric acid derivative. This latter causes a template effect 

folding the molecule into a helical configuration and into fibers at higher 

concentrations[120] (figure 2.16). 
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Figure 2.16. Folding effect of the cyanuric acid derivative on the oligo-isophthalamide. 
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2.5 Combined systems 

 

2.5.1 Introduction 

 

The mutual combination of two or more types of secondary interactions was found to be 

a versatile tool to circumvent the problems encountered upon building a supramolecular 

architecture based on one type of weak bonding only. The cooperation between the 

different interacting systems usually results in the formation of closely packed 

rrangements with special conformational features.  

 

2.5.2 π- and H- Bonding  

 

Contrarily to π-stacked assemblies that arrange in solution regardless of the solvent 

employed, the formation of hydrogen bonded molecular arrays occurs in apolar solvents 

only. On the other hand, we have showed previously that a good arene-arene stacking 

necessitates the use of a relatively large core to form closely packed structures. To 

circumvent these limitations, many molecules bearing both types of bonding have been 

synthesized. This synthetical strategy has allowed the formation of highly ordered 

supramolecular arrays even with small molecules like 1,3,5-benzene triamide 

derivatives[121] 13, for example, that self-organize into helical columns whose order can 

be biased by adding a small amount of 13b that bears chiral aliphatic chains[122]. 

 

a

O
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R=

13a

13b                                   
  

Figure 2.17. 1,3,5-benzene triamide derivatives and the graphical representation of the 

helical columns they form in the solid state[121] .   
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The replacement of terminal alkyl chains of 13 by bulky aryl groups results in the 

formation of the propeller-like[123] 14 that self-assembles into a helical columnar order. 

Interestingly, the presence of only one chiral molecule 14a per 80 achiral ones 14b, 

induces the columns to have a well-defined helicity[124]. The substitution of the apolar 

side chains with polar ones affords the water soluble, lyotropic products 14c and 14d 

that form helical assemblies in various polar solvents and whose helicity can also be 

tuned by adding a small amount of the chiral discs 14d with respect to the achiral 

derivative 14c[125, 126].  
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Figure 2.18. Structure of the propeller-like 14 and the graphical representation of the 

elical columns they form in the solid state[127].   

Meijer and coworkers have synthesized the ureiditriazine species 15 that dimerize via the 

quadruple hydrogen bonds into a discotic core first, followed by their self-organization 

into columnar molecules by π-interaction. Product 16, formed upon interconnection of a 

dimer with an aliphatic spacer, gives rise to helical columns because the free rotation of 

the discogens is locked[128]. 

 

h
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Figure 2.19. Structures of ureiditriazine monomer 15 and its interconnected dimer 

homologue 16. The graphical representations reveal the columnar packing of the former 

nd the columnar helical for the latter[128].   

 

a

 

Very recently, the growth of helical columnar structures of p-phenylenevinylenes 

oligomers 17 in apolar solvents has been reported showing that monolayers of this latter 

form cyclic twisted structures via hydrogen bonding first and suggesting that the 

formation of helical stacks is due to a subsequent π –interaction. Fibers and lamellae can 

also be grown in the solid state from solution depending on the substrate employed[129, 

130].  
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Figure 2.20. p-phenylenevinylenes oligomers. 

o

ces possessing many properties especially catalytical and optical ones.  

 

The complexation of the nickel macrocycle bearing pyridine pendants 18 with different 

ligands has afforded two- and three-dimensional structures depending on the nature of 

the ligand used: the reaction of 18 and isonicotinate affords the complex 19 where the 

ligand coordinates to Ni atom, and perform a face-to-face π-stacking with the neighboring 

isonicotinate forming, therefore, a linear one-dimensional array. The linear chains are 

linked to each other via arene-arene interaction between the pendant pyridine units 

leading, therefore, to the formation of a two-dimensional sheet[131].  

 

 

2.5.3 π-stacking and metal complexes 

 

Based on the same principle we mentioned in the previous section i.e. combining the 

secondary interactions to strengthen the supramolecular packing, the interest in this 

type of combination has been growing in the aim of finding new functional rganic 

devi
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Figure 2.21. Nickel macrocycle, isonicotinate, and BQDC structures (left). Extended 2D 

structure of 19 showing the face-to-face π-interaction between pyridine units (right). 

 

he replacement of isonicotinate by the bulkier 2,2’-biquinoline-4,4’-dicarboxylate 

go π-stacking with its homologue as well as with the pendant pyridine[131].          

 

T

(BQDC2-) yields compound 20 that forms a three-dimensional network because, BQDC2- 

can under

    
 

Figure 2.22. Extended 2D structure of 20 showing the face-to-face π-interaction between 

aryl units (left). Side view of the packed structure of 20 showing herringbone π-

interaction between the 2D layers (right). 

 

Tsuda and coworkers have reported recently a π-extended zinc porphyrin complex with a 

metal legating 3-pyridyl group 21 that exhibits interesting thermochromic properties 
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changing from green to yellow to red on heating from 0 to 50 to 100°C respectively. The 

tructural study of this compound reveals that it adopts a cyclic tetramer configuration 

ia the axial coordination of 3-pyridyl groups to the zinc species where the inner pyridyl 

 one another via arene-arene interaction[132] (Figure 2.23).  

s

v

are in contact with
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Figure 2.23. Structure of the thermochromic compounds and the X-ray crystal structure 

of 21b.
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3. Field electron emission (FEE) 
 

 

3.1

 

Field e

tunnel EE is known to have a very high 

cur n

solid-s icroelectronics that necessitates scattering-dominated electron transport in 

semico

motion ns in vacuum. All these properties allowed field emission to find wide 

app

as Au eas of 

uperfine characterization of atomic surfaces. FEE is also a process capable of generating 

e will develop in this section the advantages of FEE, the theory behind as well as we 

 most prominent application based on this property i.e. field emission 

isplays. Nevertheless, it is important to note that this work presents FEE from a 

ive, they do possess many drawbacks: they are power-controlled electron 

ources and therefore, direct variation of the electron emission is slow. Also, the high 

temperatures used cause a relatively high energy consumption and, the impossibility of 

miniaturization to micro- or nano-emitters because of insufficient heat dissipation[135]. 

 Introduction 

lectron emission (FEE) is an exceptional quantum-mechanical effect of electrons 

ing from a condensed matter into vacuum. F

re t density and that no energy is consumed by the emission process. Contrarily to 

tate m

nducting solids, vacuum microelectronics relies on the scattering-free, ballistic 

 of electro

lications as ‘cold cathodes’ in the area of high resolution electron spectroscopy such 

ger spectroscopy, atomic-resolution electron holography and other ar

s

high-power electron beams (thousands and millions of amperes) through a phenomenon 

called explosion electron emission[133].  

 

W

will introduce the

d

chemist point a view interested in this particular phenomenon for designing and 

synthesizing organic devices that could find application in FED.     

 

3.2 Advantages and future perspectives 

 

Many research works have tried since the 1960s[134] to introduce the FEE concept as 

electron sources in some devices which are used in everyday life like the cathode ray 

tubes (CRT) in television sets, X-ray generators and microwave amplifiers. Generally, 

these devices use thermionic emitters as electron sources operating at very high 

temperatures (between 950-2000°C). Even though thermionic emitters represent many 

advantages, such as, their high current densities and the fact that they are relatively 

inexpens

s
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On the other hand, vacuum microelectronics is seen as the new technological generation 

to replace thermionic sources and this is due to many reasons[133]: 

 

• Each field emitter is used as an active element in such a device and consequently 

this opens the possibility of reducing the size of these active elements to the 

nanometer scale. Once reached, the small dimensions of these emitters permit 

achieving a very high density of 106-109 cm-2.  

• Lower voltages are required for electronic devices based on FEE than thermionic 

ones. 

• No dissipation of energy occurs during electron transport since i is carried out in 

vacuum. 

• The lack of inertia in the field emission process enables such devices to act in a 

use of cold cathodes in many 

chnological applications such as flat panel displays, high-power radio frequency 

amplifiers, electron guns for traveling wave tubes and data storage devices[136].  

 

3.3 FEE Theory 

EE is a phenomenon described by quantum mechanics revealing the physical effect of 

on tip, is usually used (figure 3.1). The conical shape of the Spindt emitter will 

nhance the applied electric field by a factor β called the field enhancement factor. 

Therefore; for an emitter having a cylindrical  r, the 

field enhancement factor β equals, at first approximation, to h/r[138]. This means that for 

 Spindt emitter with a height of 6µm and an apex radius of 30 nm exhibits a field 

t 

high speed which permits designing of fast-acting high-frequency devices.   

 

All these advantages are expected to promote the 

te

 

F

electrons tunneling from the surface of the solid into vacuum when very high electric 

field  (~3000 Vµm-1) are present at the surface[137]. In order to produce such high electric 

fields using reasonable potentials, a needle-like emitter also known as the ‘Spindt’ 

emissi

e

shape of height h and an apex radius

a

enhancement of 200 (figure 3.1). Consequently an applied electrical field of 15 Vµm-1 will 

be amplified 200 times at the apex of the emitter to produce 3000 Vµm-1 for FEE to 

occur.   
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Figure 3.1. The Spindt type field emission tip[139]. 

 

The Fowler-Nordheim theory[140, 141] is the best quantitative description of the FEE 

process. According to this theory the FEE current j is a function of the electric field E and 

the emitter work function φ  according to the equation: 
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In equation 1 the Fowler-Nordheim elliptical function, correcting for the image charge 

contribution to the tunneling barrier, has been taken to be unity. The total energy 

distribution P(ε) of the field-emitted electrons near the Fermi energy level can be written 

as:  

 

( ) ( ) ( ) ( )⎥
⎦

⎤⎡ θ 5.0

P ⎢ −= FF E
CEBTf εεφεεε νexp,,,      (2) 
⎣

 

Where ε denotes the electron energy, εF the Fermi energy of the emitter, φ  the emitter 

work function, E the electric field, f(ε, εF, T) the Fermi-Dirac distribution at temperature T 

and B(E, φ ) is an energy independent intensity factor.  

 

Figure 3.2 illustrates schematically the situation at a metal surface under FEE 

conditions[142]. On the left, the metal-vacuum interface is depicted where the vertical axis 

stands for the energy relative to the Fermi energy. The electron density of the metal is 
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supposed to be the Fermi-Dirac distribution at T = 300K. As shown in the middle section, 

under the presence of a strong electric field, 2700 Vµm-1 in this case, the surface 

potential step confining the electrons to the solid becomes a triangular shaped barrier. 

Close to the surface the shape of the barrier is influenced by the image charge potential. 

Under these conditions, the probability that electrons near the Fermi energy can tunnel 

quantum mechanically through the barrier is sufficiently high to let them escape into 

vacuum. The sketch on the right hand side depicts the resulting energy distribution of 

e emitted electrons.  

 

th

Epot = Evac – eFxEpot = Evac – eFx

 
Figure 3.2. Schematic of the FEE from a metal surface with a work function of 5.3 eV 

and an electric field E = 2.7 Vnm-1. Diagram on the right shows the resulting emitted 

total energy electron distribution according to equation 2[138]. 

 

3.4 Field Emission displays (FED) 

The field emission display is a device based on vacuum electronics and it has many 

common features with cathode ray tube (CRT) since the image is created by impinging 

electrons from a cathode onto a phosphor coated screen. Nevertheless, CRT uses 

thermionic power operating at high temperatures (950 -2000°C) whereas FED’s electron 

source consists of a matrix-addressed array of millions of cold emitters (figure 3.3). It is 

noteworthy that both diode and triode types FEDs have been realized so far; the 

difference between these two is that the latter bears an additional gate electrode. 
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Therefore; in a diode type FED, the brightness of a pixel is controlled by varying the 

potential between emitter and phosphor screen, which is in the order of several kilovolts. 

Alternatively, a triode configuration uses the control electrode situated just above the tip 

emitter that monitors the electron emission by modulating the potential between cathode 

and control electrode[143] (figure 3.3). Although it requires additional steps and more 

complex fabrication process than the diode type FED, the triode type offers a higher gray 

scale and a better modulation of electron emission[144]. 

 

  
Figure 3.3. CRT Vs. FED. Both include a glass vacuum envelope, a cathode electron 

source and a phosphor coating anode.   

 

The idea of a field emission array (FEA) was first proposed by Shoulders[145] at the 

Stanford research institute (SRI). The first operating FEAs were developed by Spindt[146] 

also from the SRI. Spindt applied the semiconductor manufacturing concept to fabricate 

micron-sized, conical-shaped, tungsten or molybdenum arrays where each emitter is 

surrounded by a metal gate[147] (Figure 3.4) The first commercialized prototype of FED 

was however fabricated by Meyer[148] from the Laboratoire d’Electronique de Technologie 

t d’Instrumentation (LETI).  Two companies, Motorola and Candescent, have developed e

Mo-based FEA for using them as cold cathodes in FEDs. 
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Figure 3.4. SEM of Spindt type field emitters manufactured at Motorola showing a top 

view of an array of nine tips (left) and a cross-section of one emitter (right).  

 

Currently, two companies, Pixtech and Futuba, are producing FEDs for commercial 

use[149] but still many requirements associated with producing FEDs with competitive 

prices, and large scalability  are not attained[150-152] and this is due to the use of the 

expensive semiconductor manufacturing processes to produce the emitters. In addition, 

FEAs technology based on metallic tips suffers from many other severe drawbacks such 

as the high operating voltages and the short lifetime due to the emission degradation 

caused by the sputter erosion and the chemical contamination of the Mo tips[139, 153]. On 

top of that, the relatively large surface occupied by the base of the cones prevents 

reaching a higher density of the emitting tips (106-108 cm-2) capable of increasing the 

emission current density and, consequently of improving the image quality[138]. Therefore; 

the key for reaching planar field emitter of high current density (~1 Acm-2) resides in the 

integration of a large number of field-enhancing tips on a surface and this necessitates 

the scaling down to submicron dimensions.  

 

In summary, the design of the first generation FEDs based on the Spindt type metallic 

emitters constituted a major technological breakthrough but they suffer from many 

limitations that prevented their effective commercialization, such as, long, sophisticated, 

and costly production processes, high difficulty to produce large area displays, high 

operating voltages, poor color quality and low brightness. To overcome these problems, 

many researchers have been designing a second generation FEDs focusing on the 

replacement of the Spindt type field emitters with alternate ones which are mostly based 

on organic materials as we will see in the next chapter. The advantage in using such type 

of materials is that their film deposition requires less sophisticated techniques than the 
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ones used for the metallic tips on one hand as well as they will permit scaling down to 

anometric dimensions on the other hand. n
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4. g
 

 

4.1 e

 

iven our interest in FED as the basis of this work, we will only focus in this chapter on 

 

dustrialists[156] while the latter has been lately introduced to the market because it 

ightness and lower power 

onsumption but it still has a shorter lifetime[157-159]. We must point out that both latter 

• The electron source must be chemically and physically stable and its emitting area 

• The source should emit high current densities in such a way that the total current 

Or anic flat panel displays 

 G neral considerations 

G

the organic materials that are used so far for this application only, keeping in mind that 

a wide range of organic molecules have found application in other types of displays based 

on totally different concepts[154, 155] such as liquid crystal displays (LCD) and organic light 

emitting diodes (OLED). The former has been widely studied and developed by

in

surpasses LCD’s with a wider viewing angle, higher br

c

applications have been exhaustively developed for being used in this field employing 

organic-based liquid crystals (LCs) but with totally different properties and prerequisites 

for each one among others the conjugation and the viscosity extents in addition to the 

hole mobility[105]. On the other hand, FED technology excels both LCD and OLED due to 

its high performance, good environmental characteristics and scalability as well as price 

that is expected to drastically decrease once a cost-effective process is found and applied 

in industry[133, 149, 160].     

 

Nevertheless, the ongoing interest in fabricating a second generation of cold emitters that 

excel the Spindt type ones has been growing since many years due to the limitations met 

by the metallic tips; as we have pointed out in the previous chapter. Hence, the ideal new 

cold cathode has to fulfill several conditions[161]: 

 

must be precisely defined.  

emitted from a small area is sufficient for device operation. It is worthwhile to note 

that a current of 1 µA from 1 µm2 area requires a current density of 100 Acm-2. A 

current density of 10 Acm-2 is a lower limit for a source to reach wide applications 

in vacuum microelectronic devices.  

• The emission current should be voltage controllable. 

• The energy spread from the emitted electrons should be comparable to thermionic 

cathodes (< 0.5 eV). 
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• To attain an acceptable device lifetime, the emission characteristics should be 

reproducible for all the sources and must have a good stability over a long period 

of time (≥104 hours)  

• The manufacturing process must be cost-effective, simple, and adaptable for 

various applications. 

 

Once these requirements are met, cold cathodes can then find their way towards many 

electronic applications. Nowadays, researchers are focusing 

ainly on the field electron emission from carbon structures such as diamond and 

nduction band and hence, electrons in this latter band gain 

nergy when leaving the surface. To demonstrate the feasibility of carbon emitters, 

triode FED in 1997[149]. Nevertheless, little is known 

bout the mechanism of FEE from CVD diamond and DLC films where several emission 

röning et al[175] showed that when high quality diamond films containing low defect 

density and few grain boundaries are deposited on a silicon substrate, unstable emission 

starts to occur at an applied electric field of 200 Vµm-1 with a breakdown of the emission 

above 300 Vµm-1 whereas when bad quality diamond films with high defect density and 

many grain boundaries are deposited, good emission properties are detected starting 

from an applied electric field of 3.5 Vµm-1 with a work function of 6 eV; values which are 

close to that of Spindt type metallic emitters. Also, when diamond films contain 

potential and interesting 

m

diamond-like thin films on one hand, and carbon nanotubes (CNT) on the other hand.  

 

4.2 Field emission from diamond and diamond like films 

 

Field electron emission from diamond was first reported in 1991 by Djubua et al.[162] and 

since then hundreds of papers have been published studying the emission property of 

chemical vapor deposited (CVD) diamond[163-167] and diamond like (DLC) thin films[168]. 

The great interest in these two materials is because emission occurs at relatively low 

applied fields[163, 164]. Additionally, they exhibit excellent mechanical and chemical 

properties in addition to their low negative electron affinity (NEA) that is, unlike other 

materials, stable in a residual gas ambient[169-171]. NEA means that the vacuum level lies 

below the bottom of the co

e

Motorola created a carbon-based 

a

models have been proposed[172-174] but none of them was experimentally confirmed to this 

date.  

 

4.2.1 FEE from good quality diamond films 

 

G
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hydrogens at their surfaces, emission occurs while upon replacement of hydrogens by 

oxygen atoms, the film becomes insulator[176]. It is worthwhile to note that the emission 

was not homogeneous in all the cases. Additionally, when nanocrystallites of diamond 

were deposited, it was found that the FEE originates from well-separated individual spots 

where many parameters such as size, chemical and structural nature of these spots are 

still unknown.  

 

4.2.2 FEE from DLC films 

 

p3 carbon ratios: The low sp2 containing films showed no 

mission until an applied field of 145 Vµm-1 where a sudden increase in FEE occurs and 

 at 100 nA. Alternatively, DLC films with high sp2 content show strong 

n-activated emission. This supposes the formation of inclusions containing long 

paration of 

uch type of films requires the use of highly sophisticated semiconductor fabrication 

tip-like arrays first. 

An important observation was recorded upon measuring the emission of several DLC 

films having different sp2/ s

e

reaches saturation

no

conductive channels that go down to substrate and act like emitters under the Fowler-

Nordheim theory[168]. In agreement with this study, homogeneous emission was also 

observed from clusters of a nitrogen-containing DLC film on a silicon wafer showing a 

field enhancement factor β of these clusters in the range of 150-300 and revealing the 

importance of sp2 bonded carbon structures in the emission process[177]. Nevertheless, 

the emission is always recorded from inclusions and surface irregularities and not from a 

homogeneous surface[176]. 

 

4.2.3 FEE from diamond coatings 

 

Several tips coated with diamond by different deposition methods have been tested[178, 

179]. The emitters showed different emission behavior depending on the coating technique 

employed, particle size and particle size distribution. Nonetheless, the pre

s

techniques to deposit the 
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Figure 4.1. SEM of nanodiamond coated Si tips [178] (left) and a 2 x 2 array of gated 

diamond emitter[179] (right).  

 

4.2.4 Conclusion 

  

Although several interesting observations have been reported on the emission of diamond 

nd DLC films relating the good field emission properties to the high content of sp2 

omogeneous all along the 

ntire surface, which is in opposition to the Spindt type metal emitters where the 

emission site is well localized at the apex of the tip allowing its accurate calculations and 

exhaustive study. Diamond-coated tips, on the other hand, show different emission 

properties, ranging from good to bad ones, depending on several parameters such as the 

deposition technique used as well as the structural and the chemical properties of the 

diamond employed. Nonetheless, this latter method uses even more sophisticated 

deposition techniques for fabrication of the arrays than the Spindt type ones. 

 

4.3 CNTs field emitters 

 

After Utsumi[180] has concluded that the best emission tip should be whisker-like, 

industrialists and researchers have been showing an increasing interest in single and 

multiwalled CNTs as field emission electron sources for flat panel displays[181]. Unlike 

diamond and DLC films, field emission mechanism of CNTs is well-known and is 

governed by geometric field enhancement according to the Fowler-Nordheim theory 

where the field enhancement factor β = h/r with h >> r (h = height and r = radius). As a 

a

carbon centers and to the formation of inclusions containing conductive channels, the 

identification of the emission mechanism of diamond and DLC thin films is still 

ambiguous leading to fundamental difficulties in analyzing and improving their field 

emission. Consequently, the FEE of this type of materials is inh

e
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consequence, CNTs are ideally suited for field emission applications since they exhibit 

exceptional high aspect ratios with a length in the micrometer region and a diameter of a 

few tens of nanometers permitting therefore high values of β when singular CNTs are 

tested. This has led Smalley et al.[182] to assume (to date there is no follow-up) ballistic 

motion of electrons in a CNT is due to the formation of an atomic wire formed by sp 

carbons at the tip end. Recently, Samsung has produced several prototypes of FEDs 

based on CNT with a diode configuration[144] but whose costs and lifetime are still 

critical[149]. We present herein the recent advances in field emission from CNTs (SWNTs 

and MWNTs) films as well as from micro-dispersed ones. It is important to note that we 

ere grown in bundles on a micrometer sized metal pattern 

rays while we mean by “well-dispersed” CNTs those that were grown on nano 

designate by the term “CNT films” the results obtained when CNTs were deposited either 

in thin films or when they w

forming ar

sized metal patterns whose dispersion on the substrate is of high uniformity.  

 

4.3.1 FEE from CNT films 

 

Extensive studies of FEE from CNTs films have been carried out since the last decade 

using different conditions and many deposition techniques[181, 183-185]. Mentioning these 

latter will exceed the aim of this work that is only concerned in the major problems 

encountered when using CNTs for FEDs applications.  
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Figure 4.2. HRSEM images of cross-shaped patterned CNT film[142] (up) and CNTs grown 

on hole patterns[186] (down). 

 

l stability[182] but when the emission of a group of CNTs is tested, the FEE 

ehaves differently showing many sources of emission degradation. To better understand 

s believed to be caused by the presence of different 

dsorbates, like amorphous carbon remaining from deposition. On the other hand, the 

 interaction and heat dissipation during solid state 

ansport of a high current density through the CNT, at the CNT-substrate interface or at 

mposed at high currents[186]. On 

p of that, when bundles of CNTs are used as the emitting source, electric field were 

Isolated MWNT and SWNT exhibit exceptional emitting properties with a very good 

chemica

b

the mechanism of this latter, Nilsson et al.[187]  have developed a scanning anode field 

emission microscope (SAFEM) capable of analyzing the individual emission sites and 

allowing, consequently, the retrieval of many information about the damage 

phenomenon. Two main types of degradation have been detected [188, 189]: the first occurs 

at very low emission current and seems to be driven by the electric field while the second 

is current driven and occurs above 300 nA/emitter. The former is typically seen during 

the first emission scan and i

a

current driven degradation is due to

tr

the CNT apex. It should be noted that the first is caused by the high internal resistance 

in the CNT due to the defects it might contain while the second is for the reason that the 

interface contact plays an important role in heat dissipation where a poor electric contact 

provides the main obstacle in the electron transport evolving an impressive amount of 

heat, high enough to melt the substrate.  

 

Different CNTs based FEDs with diode and triode configurations have been fabricated[144, 

184], as figure 4.3 on the next page depicts, showing instable emission caused by 

fluctuations in emission current where some CNTs deco

to
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strongly enhanced at the edges causing, therefore, a non-uniformity in the illumination 

of the screen[144].   

 

     
e 4.3. SEM images of the CNTs based diode structure[144] (left) and triode one[186] 

d Ni patterns after using a suitable deposition technique[190, 191]. These 

upright CNTs arrays exhibit a high degree of uniformity, as figure 4.4 illustrates. Field 

emission examination of these latter showed that they are conductive in nature, having 

current densities of 107-108 A/cm2, and an average field enhancement factor β of 242 

with a deviation of 7.5%.  Nevertheless, the maximum emission current extracted 

(~10µA) from these structures, which is still 100 fold less than a single MWNT, causes 

irreversible degradation of the CNTs. In fact, these latter were found to be up-rooted due 

to electrostatic force at the interface substrate-CNT.      

 

Figur

(right). 

 

Another problem has been detected during the study of the CNTs arrays; low density 

CNTs films have shown superior emission than high density ones, a phenomenon caused 

by the screening effect of the neighboring CNTs which are shielding the electric field and 

consequently decreasing the field enhancement factor[143] β. To overcome this effect, 

researchers have proved that a maximum emission is achieved when the CNTs are 

separated by a distance d that is equal to twice their height[142] (d = 2 x h with d the 

distance between two CNTs).    

 

4.3.2 FEE from well-dispersed CNTs 

 

Recently, Milne et al. have succeeded in growing vertically aligned MWNTs on nano-

dispersed Fe an
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Figure 4.4. SEM of well-dispersed CNTs arrays. 

 

4.3.3 Conclusion 

 

CNTs show exceptional emission properties when they are present in isolated form due to 

eir quasi one dimensional structures, with a length of a few micrometers and a 

non-uniform emission as well as irreversible 

egradation. It could be easily noticed that all these inconveniences originate from the 

th

diameter of a few nanometers, giving rise to a high field enhancement factor. 

Nevertheless, CNTs suffer from many drawbacks when deposited on a substrate for a 

FED application, from these we note: the non-uniformity of the CNTs heights and radii, 

the defects present in CNTs during the growing process, the poor contact at the interface 

with the substrate as well as the shielding effect caused by neighboring CNTs. All these 

latter cause severe damages like 

d

growing and the deposition processes used so far and that employ ‘physical’ techniques 

without any employment of chemical engineering that could be useful in building such 

nano devices.  
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5. Design features of a new organic FED 
 

 

5.1 Toward a self-assembled field emitter 

 

We have shown previously (chapter 2) that self-assembly by weak, non-covalent 

interactions affords a ‘self-healing’ supramolecular network that, because of its 

reversibility, can reassemble after applying an external distortion whereas the rigidity of 

covalently bonded systems results in an irreparable damage. Consequently, we have 

foreseen to replace the rigid columnar CNTs field emitters by disk-shaped molecules that 

self-organize into pillars. Although these latter molecules are synthesized chemically and 

therefore, their structures and purity are well-controlled, they must fulfill many 

 adequate environmental stability, a chemical 

nctionality that prevents a lateral coagulation of the stacks, and last but not least, a 

requirements for their investigation as good emitters, from these we note, a good charge 

carrier mobility through the column, an

fu

perfect adhesion on the substrate.   

 

The candidate that best fits these requirements are the HBC derivatives: they self-

assemble into columns with an outstanding degree of order in the solid state[101, 106, 192] 

and they exhibit the highest charge carrier mobility recorded so far for a disc shaped 

molecule both in solid and in liquid crystalline states[13, 104]. Additionally, these ‘super 

benzene’ structures show very good chemical stability as well as high decomposition 

temperatures (>350°C in air)[14, 96, 193].  

 

Nevertheless, the main drawback of HBC derivatives for such an application is the lateral 

interaction between adjacent stacks brought about by the high crystalline packing of 

their aliphatic side chains, as figure 5.1 illustrates. This latter feature is expected to 

cause a severe drop of the field electronic emission due to the screening effect we evoked 

lately (section 4.3.1). Additionally, most of HBCs bearing aliphatic chains are liquid 

crystalline at room temperature, which constitutes a second disadvantage since it 

induces a drastic decrease of their charge carrier mobilities[14]. 
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Figure 5.1. STM image of HBC-C12 on HOPG[99] (left) and packing model of a two-

dimensional crystal of HBC-C12[94] (right). 

 

kyl 

omologues. The former groups are well-known for their Teflon-like properties such as, 

d low aggregation tendency due to 

eir low Van der Waals interactions as well as to the fact that they hardly ever make 

 the 

lectrode surface and acting as hosts for the other long perfluorinated chains bearing 

To prevent the intercolumnar interactions, and hence increase the one dimensional 

electronic emission, long perfluorinated side chains will have to replace their al

h

high volatility, low solubility, high thermal stability an

th

hydrogen bonds[194]. Besides inhibiting the intercolumnar interactions, the perfluorinated 

chains will constitute a ‘mantle’ around the central core, which will also facilitate their 

self-organization, in all types of solvents, into single dispersed columns.  

 

Moreover, to assure a good adhesion between the HBCs ‘towers’ and the substrate, 

syntheses of primer molecules should be used. These specially designed HBC derivatives 

will be deposited onto the substrate as the foremost monolayer, being fixed to

e

HBC’s, during their deposition process, since these latter will prefer to self-assemble onto 

the primers in a column like ordered structure rather than depositing onto the 

‘uncovered’ metallic substrate. Figure 5.2 on the next page illustrates the idea of a diode-

type FED based on perfluorinated HBCs. 
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Figure 5.2. Descriptive sketch of the perfluorinated HBCs based diode structure; with d 

e between two columns and h the column height (arbitrary dimensions).    

nvestigation of new nitrogen-containing PAH 

 

The objective of this project can be considered as a logical evolution of the one presented 

in the previous section. The idea relies on finding a synthetical strategy to construct a 

disc-shaped HBC-like molecule bearing a nitrogen atom in its center. Because of the free 

lone pair of electron it bears, the nitrogen atom has a low oxidation potential which will 

enhance the electron donating property in such a way that the columnar stacks formed 

by auto-assembly of these molecules will be not only more efficient hole conductors than 

their HBCs homologues, but also much better emitters from the top most molecule.  

 

For this purpose, synthesis of two completely unknown molecules will be initiated: the 

symmetrical naphth-annelated cyclazine 22 and the less symmetrical one, lacking six 

peripheral sp2 carbon atoms, 23. Both products will also be decorated with 

perfluorinated chains for the same reasons we have stated previously (section 5.1).  

 

 

the distanc

 

5.2 I
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Figure 5.3. Structure of the symmetrical nitrogen-containing PAH 22 and the less

symmetrical one 23.    

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

II. Results and Discussion 
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6. General strategies to produce HBC 

 

 

Hexa-peri-hexabenzocoronene (HBC) 9 moieties can be obtained by two main synthetical 

pathways: the first is favorable when the target molecule bears the same lateral 

functional groups yielding a completely symmetrical molecule[93, 195, 196] while the second 

is preferable when synthesis of an asymmetrical HBC is envisaged[87, 94, 96]. We will also 

discuss two new strategies for synthesizing symmetrical HBCs: a one-pot reaction 

published recently[197] and a new strategy explored and developed in our laboratory. It 

must be pointed out that all the multistep reactions mentioned above lead to the 

formation of a hexaphenyl benzene derivative 24 first, which will be converted to the 

desired product, in a final key step, by cyclodehydrogenation reaction using one of the 

conditions listed in figure 6.1 below[90].  

 
R

R R

R

R

R

24

R

R

R

R

R R

A. FeCl3, CH3NO2, CH2Cl2

9

B. AlCl3, Cu(CF3SO3)2, CS2

R= H, Alkyl,...

 
 

Figure 6.1. Synthesis of HBC via cyclodehydrogenation of hexaphenylbenzene. 

 

It is wort a lot of 

xidative cyclodehydrogenation conditions in literature using, for example, vanadium(V) 

well-known AlCl3/NaCl melt as reagent[206], but affording HBC in a very low yield. 

hwhile to note that besides the conditions used above[198], one finds 

o

salts[199, 200], thallium(III) salts[201, 202], as well as photochemical cyclodehydrogenation 

using elemental iodine[59, 203]. Palladium(0)-catalyzed cyclodehydrogenation at high 

temperatures up to 400°C or higher has been also reported. Never the less, the yield of 

this last process is very low[204]. The first HBC obtained by oxidative 

cyclodehydrogenation of hexaphenylbenzene was reported by Halleux et al.[205], using the 
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Recently, Müllen et al.[88] have applied Kovacic’s conditions[207, 208], which employ 

AlCl3/CuCl2 for benzene polymerization to p-polyphenyl, where AlCl3 acts as a Lewis acid 

atalyst while CuCl2 is the oxidant reagent. Reacting this latter combination of Lewis 

acid/oxidant with hexaphenylbenzene derivative 24 at room temperature, affords HBC 

derivatives 9 in a quantitative yield. Nonetheless, for alkyl substituted hexaphenyl 

benzene moieties, it was found that the AlCl3/CuCl2 mixture causes migration or even 

cleavage of the alkyl chains[90] and in some cases, it generates the chlorination of some 

partially oxidized derivatives, especially upon using bulkier oligophenylenes[64, 87]. For 

these reasons, iron(III) chloride known to be a mild Lewis acid and an oxidant at the 

same time[209], is used[210] instead of AlCl3/CuCl2 combination. The use of nitromethane 

or nitroethane in the medium, to enhance the reaction and to provide a higher yield has 

been also reported[211, 212]. In case the mild iron(III) chloride was not efficient as a Friedel-

Crafts catalyst, it can be replaced by the AlCl3/Cu(OTf)2 combination, the latter is used 

instead of CuCl2 to avoid any contamination of the final product by chlorine[93, 99, 213]. 

 

It was proven that the cyclodehydrogenation reaction evolves HCl and reduces iron(III) 

species to iron(II)[210]. Therefore, the reaction balance of the cyclodehydrogenation

reaction can be written as shown in scheme elow. 
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Scheme I. Equilibrium reaction of the cyclodehydrogenation reaction.  

 

The mechanism of the dehydrogenation reaction using the Lewis acid-oxidant 

combination, in general, was the subject of many propositions since it is not fully 

understood yet. Nevertheless, two principal pathways have been proposed[214]: the radical 

cation route, presented in scheme II and the σ complex pathway shown in scheme III. It 

has also been reported[215] that one of these mechanisms takes place depending on the 
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type of the substrate and on the reaction conditions applied, as well as both can even be 

valid in some cases. 
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Scheme II. Proposed mechanism of the cyclodehydrogenation reaction by the formation 

of a radical cation in a first step. 
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Scheme III. Proposed mechanism of the cyclodehydrogenation reaction by the formation 

 

st be pointed out that there is considerable support for the formation of monocation 

 on reintro

of a Friedel-Crafts complex in a first step.  

It mu

radical 24.2 presented in scheme II due to many demonstrations on a variety of 

systems[216]. However, the latter scheme represents an oversimplification of the 

mechanism that can take place. Scheme IV shows an extrapolation of this mechanism; 

instead of the formation of the radical species 24.3, the radical cation 24.2 undergoes 

subsequent oxidation forming, therefore, the dication moiety 24.8. Though, this process 

is associated with the more stable species and was found in many highly delocalized 

systems, such as perylene and thianthrene derivatives[216]. On the other hand, the 

evidence for scheme III occurrence is the fact that the presence of HCl was found to be 

crucial in many cases, where upon the elimination of that latter by a stream of an inert 

gas, the reaction ceases but resumed duction of the protonic acid[217].  
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Scheme IV. Proposed mechanism of the cyclodehydrogenation reaction by the formation 

of a dication followed by extrusion of two protons.  

 

From all this discussion above, we can conclude that the cyclodehydrogenation 

sm of hexaphenyl benzene species, are more favorable to the mechanisms 

described in schemes II and IV than to the one shown in scheme III for several reasons: 

first, the reaction is done in absence of any trace of water, which is crucial to produce 

the protonic acid needed to initiate the reaction and, second upon doing the reaction, 

HCl that forms in the medium is immediately extruded by a stream of argon without 

preventing the reaction from proceeding further. As a result to this assumption, we might 

assign to nitromethane the role of radical intermediates stabilizer rather than the role of 

a Brönsted acid needed to initiate the reaction, in the case of a radical initiation process  

as it has been proposed by Kovacic[211, 212] (scheme III). Following the same analogy, we 

suppose that the reaction conditions employing AlCl3/Cu(OTf)2 combination is more 

favorable towards schemes II and IV since the reaction is done after heating the latter the 

mixture at a high temperature to remove any trace of water from the med m, bubbling 

the reaction medium with a stream of argon would be interesting to see whether the 

reactio

 

mechani

iu

n stops or not in this case.  
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6.1 Symmetrical synthesis pathway 

 

As a reason of its symmetrical structure, the synthetical approach herein is based on 

building the para-substituted tolane derivative in a first step 25 followed by trimerization 

of the alkyne moiety to yield the hexaphenylbenzene species 24 which will be oxidized in 

a later step to the desired HBC derivative 9 as mentioned previously. Synthesis of the 

tolane species 25 can be achieved via three different pathways: the first is made by the 

dehydrohalogenation of a 1,2-diphenyl dihaloethane derivative, the second is done in a 

step-by-step Sonogashira cross-coupling and the third uses the same coupling type but 

in a one-pot synthesis.  

6.1.1 Tolane synthesis from stilbene[218] 

 

The tolane derivative 25 is obtained in a two step reaction as shown in figure 6.2 below: 

after the bromination (or the iodination) of the stilbene derivative 26, the resulting 

product 27 is transformed by dehydrohalogenation, with a solution of sodium hydroxide 

in ethanol, to the desired tolane derivative in a moderate to good yield (depending on the 

type of the para-substituted products).  

 

 

R

R
R

R

R

R

X
X

X2, CCl4, RT NaOH, EtOH, reflux

25
X = I, Br

 
 

Figure 6.2. Tolane synthesis by dehydrohalogenation of stilbene derivative. 

 

 

 

90% 60-80%

26 27

R = Alkyl, Halogen
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6.1.2 Tolane synthesis in a step-by-step Sonogashira cross-coupling[219] 

 

This method uses the standard Sonogashira coupling reaction conditions that will be 

further discussed in the following chapters. As it can be noticed from figure 6.3 below, 

the benzene derivative 28 is reacted with trimethylsilyl acetylene (TMSA) in a first step to 

afford the trimethylsilylated alkynylbenzene moiety 29 that is then deprotected under 

c conditions to its alkyne homologue 30. This latter is reacted, in a third step, with 

product 28 sired tolane 

ivative 25. The overall yield varies drastically depending on the nature of the terminal 

basi

in presence of a suitable palladium catalyst to yield the de

der

groups.    

 

X

R R

TMSA, Pd(PPh3)2Cl2

60-90%

28 29

R = Alkyl
X = OTf, I, Br

TMS

CuI ,Et3N, RT-80°C

MeOH, KOH, RT

70-90%

R

R

25

R

30

H

28, Pd(PPh3)2Cl2, Ph3P

60-90%

CuI, Et3N, RT-80°C

 
 

Figure 6.3. Tolane synthesis via a step-by-step Sonog tion. 

It is notewo n: on one 

and triflate and iodine are better leaving groups than bromine thus a higher yield is 

ashira reac

 

rthy that the nature of the leaving group highly affects the reactio

h

obtained and milder reaction conditions are employed; the reaction is run at room 

temperature instead of heating it to 80°C upon using bromine. But on the other hand, 

triflate and iodine are reactive to such extent that homocoupling byproducts of 28 and 

30 could form during the reaction (figure 6.4). 
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RR

R R

 
  

Figure 6.4. Homocoupling products of 28 (up) and 30 (down). 

 

6.1.3 Tolane synthesis from a one-pot Sonogashira cross-coupling[220, 221]  

 

R

R

I

R

28

25

R = Alkyl, Br

Acetylene, Pd(PPh3)2Cl2,PPh3

CuI, Et2NH, 60-90%

 

Figure 6.5. Tolane synthesis via a one-pot Sonogashira reaction.  

ers succeeded to obtain a 

e of tolane derivatives by changing the reaction conditions after replacing 

acetylene gas, palladium catalyst and diethyl amine by TMSA, Pd(0) and amidine base 

respectively[222]. Nevertheless, traces of monosubstituted and homocoupling products 

were still detected.  

 

 

 

It is probably the easiest way to obtain symmetrical tolane derivatives. Nonetheless, it is 

not a reaction whose conditions could be applied to all the benzene derivatives 28 as it 

will be shown in the in the next sections and this is due to the fact that the functional 

group in the para position has great influence on both the formation of byproducts and 

on the yield of the desired tolane species. Recently research

wide rang
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6.1.4 Trimerization of tolane derivative 25 

 

Once synthesized and isolated, the tolane derivative 25 could be trimerized using one of 

both cobalt catalysts well known for this type of reaction. Therefore, the alkyne moiety is 

refluxed in a suitable solvent in presence of either octacarbonyldicobalt, Co2(CO)8, or 

dicarbonyl(cyclopentadienyl)cobalt(I)[223-228], CoCp(CO)2  to yield the hexaphenylbenzene 

24 (figure 6.6). Lately, other catalysts that could also be used for trimerizing such type of 

molecules were found from these we note tetrakis(triphenylphosphine)-nickel(0)[229], 

Ni(PPh3)4 and hexachlorodisilane[230], Si2Cl6. 
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24

Reflux, 50-90%
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Figure 6.6. Synthesis of hexaphenylbenzene by trimerization of tolane.  

6.2 Asymmetrical synthesis pathway  

 

This synthetical route is used when an HBC bearing different terminal groups is needed. 

In this case the asymmetrical hexaphenylbenzene 24 derivative is produced, in a fairly 

good yield, after a [4+2]-cycloaddition reaction of tetraarylcyclopentadienone 31 and 

tolane 25 derivative in refluxing diphenylether. It is noteworthy that each of those 

starting materials could bear two different functional groups at their ends yielding, 

thereby, an HBC having a maximum of four different groups.  
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Figure 6.7. Synthesis of hexaphenylbenzene by a [4+2] cycloaddition reaction. 

 

Nonetheless, product 31 is obtained after a series of different multistep reactions as it 

can be noticed from figure 6.8 on the next page: tolane species is oxidized with iodine in 

DMSO to yield 32[231] whereas condensation of the benzyl halide precursor 33 with 

Fe(CO)5 in presence of a phase transfer catalyst affords the 1,3-diarylacetone derivative 

34[232]. A two-fold Knoevenagel condensatio  between this latter and the 1,2-diketone 

derivative 3 inted out 

at the overall yield can vary from moderate to good depending on the nature of the 

n

2 yields the desired tetraarylcyclopentadienone 31[94]. It must be po

th

terminal functional groups. 
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Figure 6.8. Synthesis of the tetraarylcyclopentadienone precursor. 

 
The advantage of this synthetical strategy is that it allows a decoration of the HBC 

moieties 9 with different functional groups, which consequently widens the prospect of 

obtaining new HBC groups. Nevertheless, this approach requires additional steps and 

more starting materials to be done.    

 

6.3 One-pot synthesis of HBC derivative 

 

Recently Rathore et al.[197] have developed a synthetical method in which hexa-tert-butyl 

HBC derivative 35 is produced in a high yield by reacting the commercially available 

hexaphenylbenzene with an excess of tert-butylchloride in presence of excess iron(III) 

chloride. This latter has a double role; it acts as a Lewis acid for the Friedel-Crafts 

alkylation first, followed by acting as a Lewis acid/oxidant providing, therefore, the 

desired HBC derivative 35 as it was proven in the reference mentioned previously; 

whereupon using a catalytic amount of FeCl3, a high amount of partially alkylated 
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hexaphenylbenzene derivatives were isolated in addition to the hexa- substituted 

hexaphenyl benzene product (30%) and traces of HBCs. 
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 FeCl3, CH3NO2, CH2Cl2
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+
85-92%

t-BuCl

 
 

Figure 6.9. One-pot synthesis of HBC bearing t-butyl group. 

 

This reaction would be of great interest if produce a wide range of 

hexa-alky ut to be 

negative as we will see in the following chapters. The reason of this failure is due to the 

to the disability to form stacks[233] 

hereas upon using an n-alkyl chain, the aggregation leads then to the formation of a 

sign of a new precursor that could be used as a basic 

ubstrate to produce, in two or less steps, the desired HBC candidates instead of going 

hexaphenylbenzene with good leaving groups able to react via the standard C-C coupling 

it is generalized to 

lated HBCs. However, preliminary attempts in our laboratory turned o

fact that the alkyl group used by Rathore et al. is a tertiary one which is much more 

active in Friedel-Crafts reactions than a primary alkyl chain. Moreover, the high 

bulkiness of tert-butyl group prevents any aggregate formation during the reaction 

leading to product 35 known for its high solubility due 

w

mixture of substituted alkylated HBCs, as a reason of the insolubility of the aggregates.    

 

6.4 Development of a new precursor 

 

As it could be noticed from the strategies shown above, even when the HBC derivative is 

a symmetrical one, its synthesis requires a multistep reaction whose yield increases or 

decreases drastically depending on the type of the terminal functional group it bears. 

This has led us to work on the de

s

many steps back at each time we want to synthesize a new derivative. Consequently, we 

have tried to functionalize the material we always need to get any HBC moiety i.e. 
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reactions to afford the desired hexaphenylbenzene derivatives which will be oxidized in a 

next step to the desired HBC derivatives. Therefore, trimerization reaction of 4,4’-

dibromodiphenyl acetylene 36 using a catalytic amount of cobalt carbonyl in refluxing 

dioxane was done affording hexakis(4-bromophenyl)benzene 37 in a moderate yield.  
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Figure 6.10. Synthesis of the hexabrominated hexaphenylbenzene 37. 

 

This synthesis has an advantage over the one we found in literature[234] and in which 

hexaphenylbenzene is reacted with excess bromine in chilled EtOH to afford the desired 

product after a six fold bromination reaction which causes contamination by 

incompletely brominated hexaphenylbenzene species.  

 

Despite the fact that all the HBC derivatives we have produced are symmetrical, we will 

see in the next sections that the main reason for not using 37 as a general precursor in 

this work is the high insolubility of the intermediate products, which will certainly 

prevent the six fold coupling reaction to be accomplished and will consequently afford 

many incomplete substituted species. Unfortunately, this assumption has been proved 

and published by Wu et al.[102] since he employed 37 for synthesizing many soluble 

alkylated HBCs but, on the other hand, he has reported the high difficulty to synthesize 

derivatives having low solubility. 

 

In conclusion, the synthetical strategies we have used to produce HBC derivatives were 

strongly dependent of the nature of the perfluorinated chain we wanted to insert since 
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the reactivity of that latter changed drastically from one group to another. Consequently, 

any synthetical pathways were used, mainly the step-by-step Sonogashira cross-

oupling and the one-pot synthesis of tolane 25. The synthetical route using 

dienone 31 was not attempted since no asymmetrical synthesis of 

BC derivatives was envisaged.   

m

c

tetraarylcyclopenta

H
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7. Primers syntheses 
 

 

7.1 Introduction 

 

As we have mentioned previously, the idea behind the synthesis of primers was firstly in 

the aim of designing an HBC moiety bearing small perfluorinated functional groups at 

their ends which, after choosing a suitable substrate, will be deposited onto it as the 

foremost monolayer. The primers are expected to act as hosts for the HBC derivatives, 

bearing long perfluorinated chains, during their deposition process since these latter will 

prefer to self-assem ctures rather than 

epositing onto the ‘’uncovered’’ metallic substrate. Syntheses of many potential 

of 

ic

proved 

f the target molecule 39 has been envisaged via a step-by-step Sonogashira 

oupling starting from the commercially available 1-bromo-4-(trifluoromethyl)benzene 

ble onto the primers in column like ordered stru

d

candidates of the first generation primers have been attempted via different synthetic 

routes as described later on. Nonetheless, a major problem was neglected during the 

synthetical trials those first generation primers: they are mostly constituted of carbon 

and fluorine only which will cause a poor adhesion between these structures and 

metallic surfaces after deposition process. This problem is frequently encountered 

especially during characterization with electron  microscopy tools like scanning 

tunneling microscopy (STM) and atomic force microscopy[92, 99, 235, 236] (AFM). 

Consequently, a second generation primers has been envisaged to overcome this 

problem. These im HBCs will have an additional feature over their predecessors 

since they will bear atoms, such as oxygen and sulfur, known for their good adhesion to 

metallic surfaces[237]. As a result, good adsorption on the substrate on one hand and good 

stacking on the other hand are expected from them. 

 

Some of the first generation primers were successfully isolated while the others weren’t 

due to different reasons developed in the next section. Yields of the desired products 

varied drastically depending on the synthetic pathway chosen to obtain them.  

 

7.2 HBC with R = CF3  

 

Synthesis o

c

38.  
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Figure 7.1. HBC bearing trifluoromethyl groups. 

 

The Sonogashira conditions generally employ a suitable palladium catalyst which could 

be a Pd(II) or a Pd(0) with a wide choice of ligands. The most frequently used ligands are 

either phosphine[219] or imidazole[238, 239]. Copper(I) iodides or bromides are used as a co-

catalyst[219, 240], they can be replaced by zinc species[241] or even omitted[242]. The 

commonly used base in this type of coupling is a secondary or a tertiary amine, inorganic 

bases like carbonates were also employed recently[243]. The solvent could vary depending 

on the solubility of the substrates the most commonly used are THF and toluene, 

recently a new method has been developed in which Sonogashira couplings are done in 

aqueous systems[220, 244-247]. As we have mentioned earlier (6.1.2), the leaving group could 

be triflate, iodide or bromide. The first two afford a high yield and are run at room 

temperature whereas the last one requires harsher conditions i.e. heating at 80°C. 

Nevertheless, the high reactivity of good leaving groups represents, in some cases, a 

major drawback since it increases the possibility of obtaining homocoupled by-products, 

a problem that we have faced as we will see in the next section. In our case, we have 

used either Pd(II) or Pd(0), depending on the degree of difficulty we have estimated for the 

reaction to take place, but generally the former was used for coupling with TMSA while 

the latter was employed upon tolane formation reaction. Piperidine acts as a base and 

was used as the solvent too; it is well known that this type of cyclic secondary amine 

base excels the primary, secondary and tertiary alkyl amines[248] for this type  coupling 

actions.  

 

he conventional mechanism[249] of Sonogashira cross-coupling reaction is shown in 

duce the 

of

re

T

scheme V on the next page, it proposes that upon using a Pd(II) source as catalyst, a two 

fold catalytical amount of the homocoupling diyne product forms in order to re
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palladium catalyst, into the active Pd(0) species. This was observed in our case when 

coupling the halogenated derivatives with TMSA using bis(triphenylphosphine)- 

palladium(II) dichloride (Pd(PPh3)2Cl2) as catalyst, whereupon work-up isolation of a 

byproduct and its analysis by GC/MS revealed it to be the homocoupled TMSA. Once 

activated, the Pd(0) catalyst undergoes an oxidative addition with the halogenated 

species. The intermediate product formed will then react with the transmetallated alkyne 

product and the resulting intermediate species will then afford the desired alkyne 

regenerating the Pd(0) catalyst by a reductive elimination process.  
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Scheme V. Mecha m of the Sonogashira cross-coupling reaction.  

 

Product 38 was pled with ethyls etyl TMSA), using Sonogashira coupling 

reactions

nis

 cou  trim ilylac ene (

 (Figure 7.2) to afford the trimethyl protected acetylene in a 96% yield. 
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Figure 7.2. Synthesis of the tolane bearing trifluoromethyl groups 42. 

 

Deprotection of the trimethylsilyl group (TMS) has been achieved by dissolving 40 in the 

minimum amount of CH2Cl2 then stirring it with a saturated aqueous solution of sodium 

hydroxide in presence of benzyltriethylammonium chloride (BTACl) as a phase transfer 

catalyst to afford 41 in a good yield. The hydrolysis conditions used herein are a result of 

several optimization attempts we have tried on another perfluorinated substrate as we 

will s  the 

onogashira cross-coupling reaction conditions listed in table 1 below giving the desired 

e

 

ee in section 9. The isolated product 41 was then reacted with 38 under

S

trifluoromethyl tolane species 42 (To-CF3) as an off-white product in a low yield (35%) 

and which is soluble in common organic solvents. Even though the relatively high 

catalytical amount of Pd(II) speci s used and the long reaction time required (entry 2), 

the low yield of the To-CF3 can only be explained by a lower activity of Pd(II) than Pd(0) 

for this type of synthesis and this was confirmed by the recovery of the starting 

materials.  

 

Table 1. Synthesis of tolane 42 via step-by-step Sonogashira couplingsa,b. 

Entry 
Substrate 

(eq.) 
Catalyst 
(Mol%) 

Co-cat. 
(Mol%) 

Ligand 
(Mol%) 

Basec
T 

(°C) 
T 
(h) 

Product 
(%Yld) 

1 
TMSA 

(1.3) 

Pd(PPh3)2Cl2 

(3) 

CuI

(6) 

PPh3 

(6) 
Piperidine 80 24 40 (96) 

2 
(1) (6) (12) (12) 

Piperidine 80 48 42 (35) 
41 Pd(PPh3)2Cl2 CuI PPh3 

 

a: reactions were done under argon atmosphere. b: equivalents are w.r.t 38. c: as solvent. 
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The tolane species To-CF3 was reacted, in a later step, with a catalytical amount of 

Co2(CO)8 in refluxing dioxane as shown in figure 7.3 below. The trimerization reaction 

has yielded 67% of an off-white precipitate whose solubility was weak in common organic 

solvents except in CHCl3 which dissolves the trimer 43 (HPB-CF3) very well.  
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CF3 CF3
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CF3
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Figure 7.3. Synthesis of hexaphenyl benzene bearing trifluoromethyl groups. 

 6.1.4. Nevertheless, the 

roposed mechanism for Co2(CO)8 cyclotrimerization is not fully understood yet[250] and it 

is believed to be a complex process involving several organometallic species[251-254]. 

However, it is proven that upon reacting a stoichiometric amount Co2(CO)8 and alkyne 

species 25 under mild conditions the readily isolated stable intermediate complex 25.1 is 

formed[255] which upon heating, reacts with an additional alkyne to form the intermediate 

25.2 that contains a cobalt-cyclopentadiene unit π-bonded to the other cobalt atom[256]. 

Additional reaction with 25 gives the intermediate 25.3 which has been isolated and 

characterized by X-ray crystallography showing a bridging unit linking the three alkynes 

units in a so-called ‘flyover’ arrangement[257]. Heating the latter product 25.3 affords the 

desired benzene product 24 and regenerates the active cobalt species. The conventional 

mechanism[258] of the cyclotrimerization reaction is presented in Scheme VI. 

 

 

The trimerization reaction of alkynes in presence of cobalt species like CoCp(CO)2 and 

Co2(CO)8 is well-known as we have mentioned in section

p



II. Results and Discussion 72

R

R

R

- 2CO

R

R

R

Co Co

CC

OC
CO

COOC

OC
CO

OO

RC CR RC CR

- CO
Co Co

CC

OC
CO

COOC

OC
CO

RR

Co Co
CO

COOC

OC
CO

R

R
R

R

CRRC- CO

Co Co
CO

COOC

OC

R

25.1

25.3

25.2

R

R

R R

R

2CO

RC CR

24

With R = p-substituted-phenyl

 
 

Scheme VI. Trimerization mechanism using dicobalt carbonyl. 

 

The isolated hexaphenyl benzene derivative 43 was subjected to many 

cyclodehydrogenation attempts that didn’t yield the hexa-substituted trifluoromethyl 

HBC 39 (HBC-CF3) as shown in figure 7.4 on the next page.   
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Figure 7.4. Cyclodehydrogenation trials of HPB-CF

3NO2

tandard cyclodehydrogenation reaction 

onditions employing FeCl3 and CH3NO2 in CH2Cl2, affords the starting material HPB-CF3 

ven after 24 hours of reaction. This led us to think first, that the low solubility of the 

exaphenyl benzene derivative 43 might be the major reason for this failure. Therefore 

THF, which was revealed to be a better solvent for HPB-CF3 than CH2Cl2 (entry 2), was 

sed instead while keeping the other conditions without any change. Even though the 

good solu e desired 

roduct HBC-CF3 was observed and most of the starting material 43 was recovered. This 

is the mild Lewis acid property of FeCl3, 

robably insufficient to oxidize a molecule bearing an electronegative group such as 

e difficulty to 

eparate and characterize them. Therefore, MALDI-TOF mass spectrometry was the only 

3. 

 

The data listed in table 2 on the next page reveal many important indications regarding 

this type of reaction. Entry 1, which uses the s

c

e

h

u

bility observed in the medium during the reaction, no trace of th

p

result brings to light another parameter, which 

p

trifluoromethyl one. Consequently, FeCl3 was replaced by the stronger and more efficient 

1:1 mixture of AlCl3/Cu(OTf)2 Lewis acid-oxidant combination, as shown in entry 3. 

Nonetheless, this latter has afforded a mixture of partially cyclodehydrogenated species 

mostly lacking 6 protons in ~10% yield. Since many isomers of the partially oxidized 

moieties lacking 4, 6 and 8 protons are possible, we were interested in knowing their 

structures to better understand the cyclodehydrogenation mechanism but this was very 

difficult as a reason of their very weak solubility and consequently to th

s
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technique available to reveal the presence of this mixture of partially oxidized products 

(figure 7.5). 

 

Table 2. Cyclodehydrogenation conditions applied to HPB-CF3. 

 

Entry 
Reagent 

(Nb of eq/H) 

 

Additive 
 

Solvent 
Temp. 

(°C) 
Time 
(h) 

 

Product 

1 FeCl3(7.5) CH3NO2 CH2Cl2 RT 24a 43 

2 FeCl3(6.5) CH3NO2 THF RT 5b 43 

3 AlCl3(3) Cu(OTf)2 CS2 30°C 24 43,… 
 

a: argon was bubbled for 8 hrs. b: argon was bubbled throughout the reactio . 

 

It is important to note that i , the failure of many 

drogenation reactions of aryl es bearing electron-withdrawing 

nown that trifluoromethyl 

 Consequently, this latter prevents the 

n

t has been reported in the literature[214]

cyclodehy derivativ

substituents. This corroborates with our result since it is well-k

is an electron withdrawing group.

cyclodehydrogenation reaction to occur upon using FeCl3 on one hand, and yields only 

partially dehydrogenated products upon using a stronger Lewis acid (AlCl3) even after a 

relatively long reaction time, on the other hand.  
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Figure 7.5. MALDI-TOF spectra of partially oxidized products of 43. 

 

7.3 HBC with R = 4-PhCF3 and 3,5-Ph(CF3)2   

 

To circumvent the problem with the electron withdrawing groups we have faced during 

the attempted synthesis of the hexakis-trifluoromet

C  f 18F
Exact Mass: 936.112 
Mol. Wt.: 936.628 
m/e ) 
        937.115 (53.4%) 
        938.119 (14.0%) 
        939.122 (2.4%) 

alculated or C48H 18 

: 936.112 (100.0%

hyl HBC 39, we have thought about 

serting a phenyl spacer between the hexaphenyl benzene and the trifluoromethyl 

henyl spacer to 

lt preventing the tolane from forming a rigid rod-like insoluble structure.  

 

in

moiety to form species 44 (HBC-PhCF3) depicted in figure 7.6 on the next page. Moreover, 

we have tried the synthesis of hexakis-(3,5-bis-trifluoromethyl-phenyl)-HBC 45 (HBC-

3,5PhCF3) because the position of the trifluoromethyl groups forces the p

ti
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Ar
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CF3
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Ar =

Ar =

CF3 44
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Figure 7.6. HBC primers with phenyl spacers. 

 

7.3.1 Syntheses of the brominated precursors 

The synthet brominated 

iphenyl derivatives 50 and 51 (figure 7.7). These latter are used as the major precursors 

 

ical strategy focuses in a first place on the synthesis of the 

b

needed for the formation of HBC-PhCF3 and HBC-3,5PhCF3 via the step-by-step 

Sonogashira cross-coupling pathway. For this reason, the carbon-carbon Suzuki 

coupling of 38[259] and 46[260] with the phenylboronic acid 47 was performed affording the 

corresponding biphenyl derivatives 48 and 49 in a quantitative yield upon using the 

reaction conditions listed in table 3.  

 
R5

Br

R2

B(OH)2

R1=R3=H, R2=CF3 38
R2=H, R1=R3=CF3 46

47

R1 R3

+

R2

R1 R3

R2

R1 R3

R4

R1=R3=H, R2=CF3 48 R1=R3=R4=H
R2=H, R1=R3=CF3 49

, R2=CF3, R5=Br 50
R2=R4=H, R1=R3=CF3, R5=Br 51
R =R =H, R =R =CF , R =Br 52

Pd/C, base Br2, FeCl3
CCl4, RTsolvent, 80°C

2 5 1 3 3 4  
 

Figure 7.7. Synthesis of the brominated precursor 50 and 51. 
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Table 3. Suzuki cross-coupling conditionsa of 38 and 46 with 47. 

 

Entry 
Substrate 

(eq.) 

Catalyst 

(Mol%) 

Base 

(eq.) 

 

Solvent 
Temp. 

(°C) 

Time 

(h) 

Product 

(%Yld) 

1 38 (0.83) Pd/C (5) K2CO3 (1.6) DMA/H2O b 80 24 48 (100) 

2 46 (0.83) Pd/C (5) Na2CO3 (3) EtOH 80 24 49 (97) 
 

a: react me 

 catalyst, a suitable ligand, and a base all in a 

uitable organic solvent. However many developments in the latest years have been 

genated groups(iodo- and bromo- compounds) have 

been replaced with chlorides[266, 267], triflates[268], tosylates[269]  and diazonium salts[270, 271]. 

T w ve ed t ky u ouplin ntly, 

different palladi  sourc ave sh  very high activity[273-277] in additio  some 

prom ing nickel catalys 79]. e former and th tter most fr  used 

under ligandless conditi 0-282]. Concern he na e of base nd 

hydroxides are the most frequently used. Recent devel ent  als the 

Suzuki reaction occurs in aqueous medium[2 3, 284].  

 

anism of Suzuki coupling[285] is similar to Sonogashira one in the major steps 

ions were done under argon atmosphere. b: DMA/H2O ratio is 20:1 by volu

 

It is worthwhile to note that the Suzuki coupling is one of the most recent C-C cross-

coupling reactions and it uses boron as the organometallic species. This latter is known 

to be easily accessible[261-264], stable and having a low toxicity contrarily to other 

organometallic species such as tin[265]. Basically, Suzuki reaction conditions necessitate 

the presence of a halogenated aryl group, a boron-containing aryl species (boronic acid, 

boronate or trifluoroborate), a palladium

s

brought to this type of coupling: halo

hese ne  groups ha  permitt  a new ype of al l-aryl S zuki c g[272]. Rece

um es h own a n to

is ts[278, 2 Th e la are equently

ons[28 ing t tur the , carbonates a

opm s have o shown that 
8

The mech

as it can be noticed from scheme VII: 1) generation of an active palladium species, 2) 

oxidative addition, 3) transmetallation, and 4) reductive elimination.       
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Catalyst activation

Pd(0)L2

Transmetallation

Reductive
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R' R Oxidative
addition

RX

R'-BY2X-BY2  
 

Scheme VII. Mechanism of the Suzuki cross-coupling reaction. 

 

However, it has been proven[285] that the rate determining step depends on the nature of 

the halogen: if X = I, the r.d.s is the transmetallation and if X = Br, then the oxidative 

addition is the r.d.s. The base has a major role in this coupling reaction; two different 

mechanisms are proposed to explain its function[286]: The first one is based on the fact 

that the electronegativity difference between carbon and boron is very small and, 

therefore, the R’ group is not very reactive. But in the presence of a base, the b ron 

species will react with it yielding the more ac ve borate derivative (Scheme VIII).  

 

o

ti

B

Z

Z

R' YO-+ B

Z

Z

R'

OY
Pd XR

Pd R'R

Z = OH, OR, alkyl 
 

Scheme VIII. Activation of the boronic acid by the base. 

 

The second mechanism involves the formation of an alkoxy-palladium derivative; it is 

formed when using weak bases unable to react with boron to afford an organoborate 

species (Scheme IX).  
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B
Z

Z
R'

YO-+Pd XR Pd R'RPd OYR

Z = OH, OR, alkyl 
 

Scheme IX. Formation of an alkoxy palladium species. 

 

Table 4 summarizes the reaction conditions employed for the bromination of 48 and 49. 

The former has yielded the desired bromo- erivative 50 in a good yield, whereas the 

latter has yield ) in a ratio 

f ~95:5 respectively. Despite the low amount of the by-product present, all usual 

Temp

(°C

 d

ed a mixture of α- and β- bromo-substituted products (51 & 52

o

purification methods such as column chromatography, distillation, or recrystallization, 

have failed to isolate 51 in a pure form.  

 

Table 4. Bromination of 48 and 49. 

 

Entry 
Substrate 

(eq.) 

Eq. of  

FeCl3

Eq. of  

Br2

 

Solvent 
. 

) 
Time 

Product  

(%Yld) 

1 40 (1) 0.25 1 CCl4 RT 2d 50 (78) 

2 41 (1) 0.25 1 CCl4 RT 1d 51 (90)a 52 (5)a

3 41 (1) 0.25 1 CCl4 RT 4hrs 51 (73)a 52 (4)a

 

a: yields determined from 1H-NMR spectra. 

sults shown in entries 2 and 3 above prompted us to explore another synthetical 

ch. This latter, described in section 6.1.3, is based on the synthesis of a 

nctionalized tolane derivative bearing good leaving groups, allowing it to react with the 

bis(trifluoromethyl)benzene derivative, via a suitable C-C cross-coupling reaction, to 

ecies. Before developing this, we will first describe the 

ivative obtained from 50. 

3.2 Synthesis of 4,4’-bis-(trifluoromethyl)diphenylacetylene (To-PhCF3) 

50, the corresponding tolane derivative was obtained in a good yield via the 

by-step Sonogashira coupling (figure 7.8). The first step affords the 

 

The re

approa

fu

3,5-

afford the desired tolane sp

synthesis of tolane der

 

7.

 

Starting from 

step-
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trimethylsilylated acetylene species 53 in a good yield. Deprotection of this latter, 

provides highly pure 54 in 83% yield. Coupling of 50 and 54, using the conditions shown 

e low To-  a white pre e w obtained after a series 

of washin  rem ello od  c organic so  x

the rigid rod-like structure of 55 renders it insoluble in nearly all the common organic 

so , p HC H2 F, di ane an en iflu  

(BTF). Thi igh insolubility of To-PhCF3 has led us to explore the pathway, ment  

previously, that involves the formation of a functionalized tolane derivative which will be 

subjected an itional reaction to af ,3 trak riflu methyl)- 

diphenyla lene ( PhCF3

 

in figur  7.8 be , yields PhCF3 as cipitat hi  is ch

gs to ove a y w by-pr uct with ommon lvents. As e pected, 

lvents, such as, hexane entane, C l3, C Cl2, TH ox d b zyltr oride

s h ioned

 to add ford 3 ’,5,5’-te is(t oro

cety To-3,5 ). 

SiMe

CF3 CF3

CH2Cl2, 83%

CF3

TMSA, Pd(PPh3)2Cl2, PPh3

CuI, Piperidine, 80°C

NaOHaq, BTACl

Ar

Ar

50 5453

55

Br

3

75%

42, Pd(PPh3)4, PPh3, CuI

Piperidine, 80°C

65%

CF3Ar =
 

 

Figure 7.8. Synthesis of To-PhCF3 via step by step Sonogashira coupling. 

 

7.3.3 Synthesis of 3,3’,5,5’-tetrakis-(trifluoromethyl)diphenylacetylene (To-3,5PhCF3) 

 

Since all the attempts, mentioned in section 7.3.1, have failed to get the bromo- species 

51 in a sufficient pure form to carry on the step-by-step Sonogashira coupling, a new 

synthetical route has been tried; it consists of synthesizing 4,4’-dibromotolane 36, first, 

by reacting the commercially available 1-bromo-4-iodobenzene 56 with acetylene at room 

temperature in presence of a palladium/copper catalyst (Figure 7.9).  
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Figure 7.9. Synthesis of tolane building block To-3,5PhCF3. 

 

able 5 lists the different conditions used for both the Sonogashira and the Suzuki T

coupling reactions types. As it can be noticed from entry 1, 36 is obtained under suitable 

Sonogashira coupling conditions in 67% yield. The reaction between 36 and 57 under 

Suzuki cross-coupling conditions that employs a Pd/C catalyst, potassium carbonate as 

base, and a DMA/H2O solvent mixture[259] doesn’t afford To-3,5PhCF3 (entry 2). Applying 

harsher Suzuki coupling reaction conditions[261, 264, 287]  that use a Pd(PPh3)4 catalyst, 

potassium carbonate as a base, in a refluxing mixture of toluene/water/ethanol, 

provides the desired tolane derivative 58 in a 60% yield (entry 3). 
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Table 5. Synthesesa of 36 and 58. 

Entry 
(eq.) (Mol%) 

Co-

(Mol%) 

ase

(eq.) 

 

lve
T 

(°C

Pdt 

(%Yld) 

Sub. 1 Sub. 2 

(eq.) 

Catalyst Cat. B  
So nt ) 

t 

(h) 

1 
 

acetyleneb
P Cu

Et2NHc - RT 24 
36  

(67) 

56 

(1) 

d(PPh3)4 

(1.4) 

I  

(1) 

2 
56  57  

- 
K2CO3 

(4) 

A/ 

H2Od
80 24 - 

3 
(1) (2) (10) 

- 
(16) 

H2O/ reflux 48 
58  

(60) 

(1) (2.4) 

Pd/C  

(5) 

DM

56  57  Pd(PPh3)4 K2CO3 
toluene/ 

EtOHe

 

a: all the reactions were done under argon atmosphere. b: acetylene was bubbled for 7.5 hrs. c: as solvent.  

d: DMA/H2O ratio is 20:1 by volume. e: toluene/H2O/EtOH ratio is 4:2:1 by volume. 

 

Contrarily to 4,4’-bis-(trifluoromethyl)diphenylacetylene 55, product 58 shows a very 

good solubility ranging from the non-polar solvents, such as hexane and pentane, to the 

polar ones like chloroform and CH2Cl2.  

 

7.3.4 HBC with R=3,5-Ph(CF3)2   

 

Trimerization of the tolane species To-3,5PhCF3 to its hexaphenyl derivative 59 (HBC-

3,5PhCF3) was successful yielding 83% of this latter when employing the conditions 

listed in table 6 on the next page. Nevertheless, HPB-3,5PhCF3 was found to be insoluble 

in common organic solvents but very scarcely soluble in chloroform and THF. Therefore 

the latter solvent was used for the cyclodehydrogenation reaction using FeCl3 as shown 

in table 6.  
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R

R
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R

R

R

R

R

R

A. FeCl3, MeNO2, CH2Cl2/THF
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Figure 7.10. Synthesis of HBC primer 45. 

 

Cyclodehydrogenation reaction of HPB-3,5PhCF3 has been carried out using different 

conditions as it can be noticed from table 6 on the next page: the first reaction (entry 2) 

done, using FeCl3/MeNO2 in THF at room temperature, gave only the starting material 

9. Thus, we have applied the same reaction conditions but with adding CH2Cl2 as a co-

solvent in a 1:2.5 r the reaction at 

om temperature (entry 3) nor at reflux (entry 4) has afforded any trace of the desired 

nly 59 has been recovered instead. Entry 5, shows that upon 

sing AlCl3/Cu(OTf)2 mixture, the reaction occurs affording  the HBC derivative 45 as a 

5

 mixture with respect to THF. Unfortunately, neithe

ro

product HBC-3,5PhCF3, o

u

yellow-green insoluble product in 90% yield. From these results we can think about two 

factors responsible of the failure upon using the FeCl3/CH3NO2 combination: on one 

hand, the electron-withdrawing effect induced by the trifluoromethyl groups are still 

high, even through a phenyl spacer and, consequently are preventing the oxidation 

reaction to occur. On the other hand, THF could have formed a complex with iron(III) 

chloride, which has prevented the oxidation reaction to take place. Both assumptions 

stand for true and could be involved at the same time; however the second one is more 

favorable in this case particularly because even at reflux (entry 4), no traces of partially 

oxidized products has been detected. The use of the Al(III)/Cu(II) reagent (entry 5) seems 

to be more efficient than Fe(III) ones, especially that there is no risk of displacing the 

perfluorinated chains since they are inert towards Friedel-Crafts reactions.  
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Table 6. Trimerization and cyclodehydrogenation reactions conditionsa. 

Entry 
Reagent  

(nb. eq/ H) 
Additive Solvent 

Temp. 

(°C) 

Time 

(h) 

Product 

(%Yld) 

1 Co2(CO)8b - Dioxane reflux 24 59 (83) 

2 FeCl3(6.5) CH3NO2 THF RT 9c 59 

3 FeCl3(6.5) CH3NO2 THF/CH2Cl2d RT 16 59 

4 FeCl3(6.5) CH3NO2 THF/CH2Cl2d reflux 1 59 

5 AlCl3(3)e Cu(OTf)2 CS2 35 39 45 (90) 
 

a: all the reactions were done under argon. b: cobalt used catalytically (10 mol%). c: argon was bubbled 

throughout  the reaction. d: THF/CH2Cl2 ratio is 2.5:1 by volume. e: equimolar amount of Al/Cu. 

 

The desired olvents to 

remove any trace of metallic species first, by many sequences of refluxing-

product was isolated after a series of washings with several s

 followed 

filtrating-washing of the crude product with several solvents such as THF, CH2Cl2, and 

CHCl3 to remove the starting materials and the partially dehydrogenated species. Figure 

7.11 on the next page shows the MALDI-TOF spectrum of HBC-3,5PhCF3, it can be 

noticed that the peak corresponds to the exact mass within the margin error of the 

spectrometer (1-3 ppm) of the desired product and shows the absence of any trace of 

HPB-3,5PhCF3 and the partially cyclodehydrogenated products. 
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e because during the 

yclodehydrogenation step quinonoid derivatives form instead[288]. Therefore, we have 

ch as the 

trifluoromethoxy gr  latter is expected to pre e t inonoids 

leading to  6 C  7. s place. nally, the 

main reason which has prevented the synthesis of HBC bearing trifluoromethyl groups 

39 i.e. the electron-withdrawing effect, is expected not to occur or to be less effective 

herein due t he pr f th t wever, to have a better understanding 

of these typ of re nd le to c riso etw  chemical 

behavior of  

same synthet tep coupling 

igure 7.12).  

Calculated for C90H30F36

Exact Mass: 1794.177 
Mol. Wt.: 1795.144 
m/e: 1795.181 (100.0%) 
         1794.177 (99.9%) 
         1796.184 (49.5%) 
         1797.187 (16.1%) 
         1798.191 (3.9%) 

 

Figure 7.11. MALDI-TOF spectra of HBC-3,5PhCF3. 

 

7.4 HBC with R = OCF3  

 

As we have discussed previously (section 7.1), in order to improve the adhesion of the 

HBC primers at the substrate’s surface, we have thought about replacing the 

trifluoromethyl group by an alkoxy one. However, Weiss and co-workers have shown that 

the synthesis of an HBC bearing alkoxy groups isn’t possibl

c

diverted the idea by using an ‘inert’ group that doesn’t contain protons, su

oup. This vent th  forma ion of qu

 Additio the HBC derivative 5 (HBC-O F3, figure 13) in it

o t esence o e oxygen a om. Ho

es actions a  to be ab  make a ompa n b een the

trifluoromethyl and its methoxy derivative, we have chosen to perform the

ical route we applied to synthesize HBC-CF3 i.e. the step-by-s

(f
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CuI, Piperidine, 80°C
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OCF3

OCF3

60, Pd(PPh3)4, PPh3, CuI
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60 6261

63

65% 41%75%

 
 

Figure 7.12. Synthesis of trifluoromethoxy tolane derivative 63.  

 

Synthesis of the tolane derivative 63 (To-OCF3) has been done using the reactions 

conditions listed in table 7 below. The starting material 60 was reacted with TMSA under 

suitable Sonogashira coupling reaction conditions to afford 61 in a fair yield (entry 1). It 

must be pointed out that ~5-10% of 60 were recovered indicating that the reaction was 

incomplete even after 24 hours, the same time required for the trifluoromethyl derivative 

46 to be completely converted. This result shows that the trifluoromethoxy substituent 

acts as an electron donating group which deactivates the bromine and hence decreases 

the rate of palladium oxidative addition to 60. Reaction of the deprotected acetylene 

species 62 with an equimolar amount of 60 (entry 2) affords To-OCF3 in 41% yield in 

addition to recovered starting material. This low yield can be explained by the same 

reason mentioned before i.e. the deactivating effect of the trifluoromethoxy group.  

 

Table 7. Synthesis of To-OCF3 via step-by-step Sonogashira couplinga. 

 

Entry 
Substra

(eq

c Product 

(%Yld) 

te 

.)b
Catalyst 

(Mol%) 

Co-catalyst 

(Mol%) 

Ligand 

(Mol%) 

Base Temp. 

(°C) 

Time 

(h) 

1 TMSA(1.3) Pd(PPh3)2Cl2 (3) CuI (6) PPh3 (6) Piperidine 80 24 61 (65) 

2 62 (1) Pd(PPh3)4 (3) CuI (6) - Piperidine 85 48 63 (41) 
 

a actions were done under argon atmosphere. b: equivalents are w.r.t 60. c: as solvent. 
 

: re
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Trimerization of the tolane derivative 63 was then done using the reaction conditions 

shown in . Th eny o HPB-OCF3) is tai d 

able ry 1) as  produc e in om rga o t. 

 

 figure 7.13 e hexaph l benzene m iety 64 (  ob ne in 71% 

yield (t 8, ent  a white t solubl  most c mon o nic s lven

OCF3

OCF3

Co2(CO)8, Dioxane

Reflux, 71%

63 64

OCOCF3 F3

F3CO OCF3

F3CO OCF3

OCF3

A. FeCl3, MeNO2, CH2Cl2

F3CO OCF3

B. AlCl3, Cu(OTf)2, CS2, 14%

F3CO OCF3

OCF3

65  
 

Figure 7.13. Synthesis of HBC-OCF3 65. 

 

The cyclodehydrogenation reaction of HPB-OCF3 has been carried out using FeCl3 (entry 

2) and Al/Cu conditions (entry 3). The former were found not to be efficient enough to 

oxidize the hexaphenylbenzene species 64 that was recovered at the end of the reaction. 

But even, the latter conditions have afforded HBC-OCF3 in 14% yield only. This low 

amount isolated is most probably due to a loss of a large fraction of the product during 

the work-up that necessitates washings with harsh reagents such as aqueous 

hydrochloric acid and 10% ammonia solution to eliminate all the metallic salts which 

lso cause the hydrolysis of a non negligible part of HBC-OCF3.  

 

Table 8. Trimerization and cyclodehydrogen ons conditionsa of 63. 

a

ation reacti

Entry 
Reagent  

(nb. eq/ H) 
Additive Solvent 

Temp. 

(°C) 

Time 

(h) 

Product 

(%Yld) 

1 Co2(CO)8b - Dioxane reflux 48 64 (71) 

2 FeCl3(6) CH3NO2 CH2Cl2c RT 8 no rxn 

3d AlCl3(3.3) Cu(OTf)2 CS2 35°C 24 65 (14) 
 

a: all the reactions were done under argon. b: cobalt used catalytically (5 mol%).  

c: argon was bubbled throughout the reaction. d: equimolar amount of Al/Cu. 
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7.5 HBC with R = SCF3  

 

7.5.1 Synt  a

 

Synthesis of the HBC BC-SC 3, figure 7 earing a su om instead of an 

oxygen, for ter  el  such as gold, been irst e d via the 

step-by SA to 

afford the trimethylsilylated a  36% yield only due to the 

unexpected volatility of the desired product. Deprotection of the TMS group, under the 

hetical pproach 

71 (H F .15) b lfur at

bet binding to ectrodes has  f nvisage

-step Sonogashira coupling reaction. Product 66 has been reacted with TM

cetylene derivative 67 in

conditions shown in figure 7.14, affords 68 in 92% yield as it has been estimated from 

the 1H NMR spectrum of the crude reaction mixture. Again, the high volatility of this 

latter product leads to its loss when distilling off CH2Cl2 and pentane from the medium.  

 

Br

SCF3

SCF3

SiMe3

CH2Cl2, RT

SCF3

H

NaOHaq, BTACl

66

6867

92%

F3CS SCF3

A: TMSA, Pd(PPh3)2Cl2, PPh3, CuI, Piperidine, 80°C, 36%
B: Acetylene, Pd(PPh3)2Cl2, PPh3, CuI, Piperidine, 80°C, 57%

A

B

69

 

Figure 7.14. Different synthetical attempts to produce 69 (To-SCF3). 

he high volatility of 68 has prompted us to change the synthetical pathway toward the 

ge.  

 

 

 

T

one-pot tolane one using an improved procedure to the one we have found in 

literature[289]: reaction of 66 and acetylene at high temperature in presence of a 

palladium catalyst affords To-SCF3 in a 57% yield as shown in entry 3 of table 9 on the 

next pa
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Table 9. Synthesis of tolane 69a-c. 

 

Entry 
Substrate 

(eq.) 

Catalyst 

(Mol%) 

Co-catalyst 

(Mol%) 

Ligand 

(Mol%) 
Base 

T 

(°C) 

t 

(h) 

Product 

(%Yld) 

1 TMSA(1.3) Pd(PPh3)2Cl2 (3) CuI (6) PPh3 (6) Piperidine 80 24 67 (36) 

2 acetylened Pd(PPh3)2Cl2 (2) CuI (3) PPh3 (3) Piperidine 80 24 69 (57) 
 

a: reactions were done under argon atmosphere. b: equivalents are w.r.t 66. c: base used as solvent too.  

d: acetylene was bubbled in the reaction medium for 6 hours.  

 

Trimerization of To-SCF3 using dicobalt carbonyl yields the hexaphenyl benzene moiety 

70 (HPB-SCF3) in 86% yield as entry 1 of table 10 depicts. Entry 2 shows that the 

cyclodehydrogenation of the latter product affords the desired HBC derivative HBC-SCF3 

in a 66% yield.  

 

SCF3

SCF3

Co2(CO)8, Dioxane

Reflux, 86%

69 70

F3CS

F3CS

SCF3

SCF3

SCF3

SCF3

 FeCl3, MeNO2, CH2Cl2

SCF3

F3CS

F3CS

SCF3

SCF3

SCF3

71

66%

 
 

Figure 7.15. Synthesis of sulfur-containing HBC moiety 71. 

 

Several sequences of reflux-filtration-washing, with different solvents known to dissolve 

70 and the partially oxidized byproduct, have been performed until no trace of these 

latter products were detected by 1H NMR in the filtrate. 
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Table 10. Trimerization and cyclodehydrogenation reactions conditionsa. 

Reagent  Temp. Time Product 
Entry 

(nb. eq/ H) 
Additive Solvent 

(°C) (h) (%Yld) 

1 Co2(CO)8b - Dioxane reflux 48 70 (86) 

2 FeCl3(6.5) CH3NO2 CH2Cl2 RT 5c 71(66) 
 

a: all the reactions were done under argon. b: cobalt used catalytically (5 mol%). c: argon was  

bubbled throughout the reaction. 

 

Nevertheless, characterization of the isolated species with MALDI-TOF technique, in solid 

state and in 1,2,4-TCB solution, hasn’t revealed either the starting material HPB-SCF3 or 

the HBC derivative 71. This is probably due to the weak S-C bond that breaks during the 

characterization process which causes the absence of the desired peak from the 

spectrum. On the other hand, UV-VIS has detected the presence of the characteristic 

peaks of the HBCs aggregates, in 1,2,4-TCB, at 351, 391, and 422 nm as shown in figure 

7.16.  

 

C~1.1 x 10-5 M39
1.

0

35
1.

0 42
2.
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Figure 7.16. UV-Vis spectrum of HBC-SCF3. 

0
0.2
0.4
0.6

340

 

7.5.2 SEM investigation  

 

Scanning electron microscopy (SEM) investigation of HBC-SCF3, under low pressure (2.9 

Torr), has been performed. The bulk yellow precipitate shows dispersed particles of 

inhomogeneous sizes, varying from few hundreds of nanometers to few microns (figure 

7.17). 
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Figure 7.17. SEM micrograph of the precipitate HBC-SCF3. 

 

These results have prompted us to investigate preliminarily the morphological changing 

of the product when it is deposited on a substrate by evaporation from solution. Thus, 

deposition has been performed by placing a droplet of a ~5 x 10-4 M solution of HBC-

SCF3 in 1,2,4-TCB on a Si(100) substrate. The wafer was put in a vacuum chamber and 

the solvent was evaporated at ~10-4 Torr. The resulting deposit was sputtered with gold 

to form a ~5 nm thick conducting film. SEM investigation (figure 7.18) has revealed the 

formation of a thin, smooth, homogenous film of the HBC-SCF3 over a relatively large 

area on Si(100). It is noteworthy that the continuous film was detected mainly at the 

center of the evaporated droplet. However, upon moving the electron beam to the edges of 

the film, long columnar dendrites whose main chain length is ~16-24 µm, were observed. 

This basic study shows that HBC-SCF3 forms homogeneous films with relatively good 

adherence on the substrate on one hand and that the film is grown in a high degree of 

order as a reason of the columnar dendritic nature of the product, on the other hand. 

From these promising observations we can draw out some future perspectives, such as, 

finding a suitable and more sophisticated deposition technique, from solution, to form 

monolayered or ultrathin films that allow the use of HBC-SCF3 as a primer. The main 

advantage of deposition from solution is the facility to monitor the parameters that 

influence this process; from these factors we note: the concentration of the solution that 

controls the thickness of the layer, the nature of the solvent which effects the deposition 

time, as well as both the type and the surface preparation of the substrate. It is worth 

noting that the use of a polished Au substrate should be used primarily since it is 
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expected to enhance a face to face deposition of the products on the support instead of 

n edge to face one due to the presence of the sulfur groups (see figure 2.12 in chapter 

). 

a

2

 

    

   
Figure 7.18. SEM micrograph of HBC-SCF3 deposited on Si(100) showing the formation 

f a homogeneous thin film at the centre of the substrate (upper left), the columnar 

endrite at the edge (upper right), the morphology of the dendrites x5000 (lower left), and 

10000 (lower right). 

.6 Conclusion 

Syntheses of three new types of HBC that could be used as primers, were done 

successfully using different approaches. The first model synthesized (45, HBC-3,5PhCF3) 

contains only bulky trifluoromethyl groups at its periphery whereas the last two of these 

latest series of molecules (HBC-OCF3 and HBC-SCF3) could be seen as promising primers 

because they bear either oxygen or sulfur groups at their ends. These two last atoms 

allow their corresponding molecules to bind chemically to the substrate on one hand, 

o

d

x

 

7
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while their HBC central cores act as a template for π-bonding of other HBC derivatives 

nto them, on the other hand.  Nonetheless, cyclodehydrogenation was found to be the 

roblem because it doesn’t take place when electron withdrawing groups are present in 

enyl moiety, which prevents the synthesis of some HBC 

erivatives. Preliminary SEM investigation of deposited sulfur containing HBC 71 

o

p

the para position of the hexaph

d

revealed the formation of a homogeneous thin film of this latter on Si(100) substrate 

grown in a well-organized columnar dendritic morphology. 



94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 

8. HBCs bearing long perfluorinated chains 
 

 

8.1 Introduction 

 

As indicated in chapter 5.1, HBCs decorated with long perfluorinated chains should excel 

the ones synthesized so far bearing aliphatic alkyl chains in the domain of organic 

materials. Alkyl substituted HBCs have shown very good properties, such as, high 

electron mobility[13, 104], high degree of order in columnar stacking[106, 192], and in addition, 

their relative ease of synthesis and purification. The main drawback in an application 

such as FED, however, remains in the lateral interaction between the stacks caused by 

the strong Van der Waals bonding between the aliphatic chains; a phenomenon that 

de  chance of isolated columnar stacks and hence the electron c 

emission to such extent that field emission  require much higher field strengths 

to id 

rystalline at room temperature, which constitutes a second drawback since this causes 

s 

ould therefore be prominent candidates to replace the commercially available FED 

many disadvantages like, for example, 

their shor n ie d for their opera

 

8.2 HBC with R = PhRf

 

Bas on th rted rde olu n Cs arin yl 

subs uents e firs  mo  synt ed was  der ve -

PhRf6). Its synthesis para 

osition of the biphenyl building block which, after many steps further, is expected to 

creases drastically the i

will then

take place[143]. Additionally, most of HBCs bearing aliphatic chains are liqu

c

a drastic decrease of their electronic conductivity[14]. On the other hand, HBCs carrying 

perfluorinated chains at their periphery are expected to be promising molecules 

overcoming these disadvantages because the existence of the perfluorinated groups will 

considerably decrease any lateral interaction between different HBCs stacks. Thus, 

formation of isolated columns by π-stacking of the HBC cores should be possible as 

dispersed nanoemitters due to this isolating perfluorinated ‘mantle’. These molecule

w

metallic tips, used nowadays, and known to have 

t life time a d the high f lds require tion[135]. 

6

ed e repo higher o r of the c mnar stacki g for HB be g phen

tit [196], th t target lecule to be hesiz HBC ivati 73 (HBC

 consists of inserting a perfluorinated hexyl chain in the 

p

afford the HBC-PhRf6 target bearing perfluorinated chains on an intercalated phenyl 

group.  
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73

Rf6

I

72

 
 

Figure 8.1. Synthetical approach of HBC-PhRf6. 

Nevert ed to 

obtain the target HBC 73 or even its hexaphenyl benzene derivative. Even the best 

 

heless, all the previous attempts[290, 291], using several strategies, have fail

approach chosen reached only the tolane step 79 (To-PhRf6) and this as an inseparable 

mixture with the homocoupling by-products of 75 and 78. The diacetylene by-product 

causes a real complication when present in the reaction medium for the trimerization 

reaction, because both of its reactive acetylene moieties can react, leading to the 

formation of numerous by-products and, in addition, reduced catalytic activity of the 

cobalt species. 
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r
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ll attempts to synthesize 75 and its corresponding acetylene derivative 77, on a larger 

able 11. Perfluorination and halogenation of 72. 

 

Entry 
Substrate 

(eq.) 
Reagent 1 

(eq.) 
Reagent2 

(eq.) 

 

Solvent 
Temp. 

(°C) 
t 

(hrs) 
Product 
(%Yld) 

MSA, Pd2(PPh l2, C iperid 7% 

Figure 8.2. Synthesis of the acetylene building block 78 by Sonogashira coupling. 

A

scale, employing the procedures described by P. Folly[290] gave much lower yields and 

many side products. For these reasons, and to avoid the formation of the homocoupling 

side product during the tolane formation, we replaced iodine with bromine[292] during the 

halogenation reaction of 74. The former halogen is known to be a better leaving group 

than the latter one but its high reactivity causes the formation of many by-products.     

 

T

1 72 (1) C6F13I (1.2) Cu (3.3) DMSOa 130 24 74 (74) 

2 74 (1)b I2 (0.6) HNO3 (9) H2SO4/AcOH RT-40°C 2 75 (82) 

3 74 (1) Br2 (1) FeCl3(0.25) CCl4 RT 72 76 (75) 
 

a: reaction was done under argon. b:  reaction was done on a 1 mmol scale. 
 

As it can be noticed from figure 8.3, the exchange of iodine with bromine suppresses the 

formation of the homocoupling product 80 without affecting the yields of the following 

reaction steps.  
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Rf6

Rf6
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78

Rf6

79 +

A

2

B

80

Rf6

 
with:
A. 71,Pd(PPh3)4, CuI,  80°C, 58%
B , Pd

 piperidine,
. 70 (PPh3)4, CuI, Et3N, Toluene, RT  

 

Figure . Different synthetical routes to produce perfluo 79. 

Table 12 on ns applied 

to get the desired 6 80 which was 

obtained from standard reaction conditions. Replacing the base with a secondary cyclic 

 8.3  rinated tolane 

 

the next page shows the different Sonogashira reactions conditio

 tolane To-PhRf : entry 3 recalls the mixture of 79 & 

one doesn’t bring any remarkable change (entry 4). All purification attempts in these two 

trials (entries 3 & 4) have failed to separate To-PhRf6 from the homocoupling product. 

Nevertheless, when the brominated derivative 76 is employed using the conditions 

mentioned in entry 5, the desired tolane 79 is obtained in 58%. We should note that the 

solubility of To-PhRf6 is very weak in common organic solvent, THF and dioxane being 

poorest. 
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Table 12. Synthesis of tolanea 79. 

Entry 
Substrate 

(eq.) 

Reagent 

(eq.) 

Catalyst 

(Mol%) 

Co-cat. 

(Mol%) 
Base 

T 

(°C) 

t 

(h) 

Pdt 

(%Yld) 

1 
(1) (1.6) 

h3)2Cl2

(7) 

CuI

(10) 
Et3Nb RT 3 

77 

(67) 

75 TMSA Pd(PP

2 
76 TMSA Pd(PPh3)2Cl2c CuI 

Piperidineb 80 24 
77 

(1) (1.3) (3) (6) (67) 

3 
78 

(1) 

70 

(1) 

Pd(PPh3)4

(6) 

CuI 

(3) 
Et3Nb RT 24 79, 80 

4d
78 

(1) 

75 

(1) 

Pd(PPh3)4

(6) 

CuI 

(3) 
Pyrolidine RT 24 79, 80 

5 
78 

(1) 

76 

(1) 

Pd(PPh3)4

(6) 

CuI 

(15) 
Piperidine 85 48 

79 

(58) 
 

a: reactions were done under argon atmosphere. b: base used as solvent too. c: 6 mol% of PPh3 were added   

d: base in a  1:5 mixture with toluene.  

 

The trimerization of To-PhRf6 was then achieved by reacting this latter with a cobalt 

catalyst shown in table 13. The moderate yield obtained (48%) can be explained by the 

low solubility of To-PhRf6 in the appropriate solvent as well as by the electron 

withdrawing effect of the perfluorinated chain. Contrarily to the starting tolane 79, the 

trimer derivative 81 (HPB-PhRf6) is soluble in common organic solvents as a reason of its 

non-planarity caused by the steric hindrance of the phenyl groups. 

 

Ar

Ar

Co2(CO)8, Dioxane

Reflux, 48%

79 81

Ar

Ar

Ar

Ar

Ar

ArAr

Ar

Ar

Ar

Ar

Ar

Ar =

73

Rf6

 
 

Figure 8.4. Synthetical attempt to produce HBC-PhRf6.  



II. Results and Discussion  100

The cyclodehydrogenation reaction has been carried out using the conditions displayed 

in table 13 below. The employment of FeCl3/CH3NO2 combination doesn’t afford the HBC 

oiety either at room temperature (entry 2) or at reflux (entry 3). The replacement of 

FeCl3/CH3NO2 with the more powerful AlCl3/Cu(OTf)2 reagent mixture doesn’t improve 

the reaction: neither HBC-PhRf6 nor the partially oxidized products have been detected 

(entry 4).  

 

Table 13. Trimerization of To-PhRf6 and cyclodehydrogenation of 81a. 

Entry 
Reagent  

(nb. eq/ H) 
Additive Solvent 

Temp. 

(°C) 

Time 

(h) 

Product 

(%Yld) 

m

1 Co2(CO)8b - Dioxane reflux 48 81 (48) 

2 FeCl3(6) CH3NO2 CH2Cl2 RT 32c no rxn 

3 FeCl3(6) CH3NO2 CH2Cl2 reflux 24 no rxn 

4 AlCl3(3.3)d Cu(OTf)2 CS2 35°C 24 no rxn 
 

a: all the reactions were done under argon. b: cobalt used catalytically (5 mol%).  

c: argon was bubbled for 22 hours. d: equimolar amount of Al/Cu. 

 

The good solubility of HPB-PhRf6 leaves only one possible explanation for this failure: the 

igh electron-withdrawing effect of the perfluorinated chain that prevents the oxidation 

reaction to take place. This strongly corroborates the results obtained during the trials to 

cyclodehydrogenate HBCs with R = CF3 and R = 3,5-Bis-(trifluoromethyl)phenyl groups 

(products 39 and 45 in sections 7.2 and 7.3 respectively). HPB-CF3 doesn’t oxidize to 

afford HBC-CF3 either upon using FeCl3 or when employing AlCl3/Cu(OTf)2 and this can 

be only explained by the high electron-withdrawing effect of the trifluoromethyl group in 

the para position, whereas HPB-3,5PhCF3 cyclodehydrogenates to give HBC-3,5PhCF3 

only when the strong AlCl3/Cu(OTf)2 conditions are used. A correlation between these 

data and the result we have obtained herein reveals that the phenyl spacer has a minor 

intercalating effect during the oxidation reaction when the group attached to it, in para 

position, has a too high electronegativity. The fact that HPB-3,5PhCF3 bears the 

trifluoromethyl groups in the meta position, which doesn’t have a strong influence on the 

reactive carbon, is the major reason why HBC-3,5PhCF3 is obtained. Therefore we can 

draw out from all these data the importance of decreasing the electron-withdrawing effect 

f the perfluorinated side chains, when they are present in the para position as a key 

step to su

h

o

cceed in obtaining their desired HBCs derivatives.  
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9. Perfluorinated HBCs with alkyl intercalators 

 

 

9.1 HBC with R = Rf2,8 and PhRf2,8

 

9.1.1 Synthetical strategy 

 

To circumvent the problem we have encountered during the initial trials to synthesize 

HBC-PhRf6, we have thought about intercalating an aliphatic spacer between HBC and 

the perfluorinated chains. The main task was therefore to find a suitable way to insert 

this chain into the aryl moiety in a good yield and in sufficiently high purity to continue 

the reactions steps further on. For this reason, we have bypassed the different Ullmann 

reaction conditions that use copper reagents due to their low reactivity with 

erfluorinated substrates[293]. Concerning coupling conditions that use lithium, the yield 

is also very low and many isomers form[294]. On the other hand, Kumada and Negishi 

conditions that use Grignard reagents of magnesium and zinc respectively, under 

suitable palladium catalysis, employ very harsh conditions affording products from low 

to moderate yields[295, 296]. Also, standard Heck reactions between halogenated aryls and 

ethylene containing molecules afford, under palladium catalysis, low yields in this 

particular case[295]. Nevertheless, Heck reaction conditions using a diazonium salt as a 

leaving group instead of halogens or triflates has been proven to be most reactive[297-301]. 

We have used the same conditions to synthesize the alkylated perfluoroalkyl starting 

materials we needed by using conditions that have been recently employed to synthesize 

a variety of alkylated perfluoroalkyl aryl compounds[302].  

 

Aniline derivatives 82 and 83 are conveniently transformed to their arenediazonium 

salts[303] and isolated in a high yield. These latter are reacted in a subsequent step with 

an appropriate commercially available perfluoroalkene, in the presence of a catalytical 

amount of palladium species and under ligandless conditions, affording the fluorinated 

alkene compound 86 and 87 in quantitative yields after few minutes o reaction. Both 

products are then hydrogenated using the mild rhodium on charcoal catalyst under 50 

bromination of 4-nitrobiphenyl[304] followed by a reduction of this latter to the amino 

roup[305]. Perfluoroalkylated decene was given preference above all from other 

p

f 

atmosphere of hydrogen. It must be pointed out that product 85 has been obtained after 

g

fluorinated alkenes because products bearing shorter chains are volatile and hence their 
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isolation is very difficult while the insertion of chains longer than decene decreases the 

solubility significantly[302].  
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R
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R= p-PhBr (92%)  85
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R= p-PhBr (96%) 87

R= Br        (100%)88
R= p-PhBr (98%)  89

CH2Cl2, RT

, Pd(OAc)2

 
 

Figure 9.1. Synthesis of bromo-perfluoroalkylated building blocks 88 and 89. 

 

The general mechanism of the Heck coupling[306, 307] reaction is analogous to both the 

Sonogashira and Suzuki ones since the sam four general steps take place: 1) generation 

of an acti n of the 

atalyst. Scheme X below shows the general mechanism omitting the internal steps that 

e 

ve Pd(0) species, 2) oxidative addition, 3) insertion, and 4) regeneratio

c

could occur depending on different parameters[286, 308]. 
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Scheme X. General mechanism of the Heck cross-coupling reaction.  
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It must be pointed out; however, in our case that a diazonium salt was used as a leaving 

group and palladium acetate as a catalyst in methanol at 40°C. Thu rent 

mech m at  our nce neither a phosphine ligand is present to 

reduce palladium(II) acetate, nor a base to regenerate the catalyst. However, we can 

assume that both s are a plishe by the so nol. atte lieved 

to act as a reductant too yielding heterogeneous Pd(0) clusters that will carry out the 

Heck reaction. As ualit oof, we must note t have always obtained a black 

precipit  durin e w  th e reactio tion, s roven 

recently that polymer-supported Pd(0) is produced mply  allowing on of 

Pd(OAc) to stand  a suitable subst er w e t cules 

of acetic acid while the latter will be oxidized to form yde[309]. At the same time, the 

solvent in question acts as a base too because, t ed during the reaction is 

more acidic than methano ther fore protona cheme XI

 

st activation

Pd(0)

Oxidative

s, a diffe

anism ust be oper ing in case si

 role ccom d lvent, metha This l r is be

 a q ative pr hat we 

ate g th ork-up of es ns. In addi it ha been p

by si a soluti

2 in methanol on rate. The form ill giv wo mole

aldeh

he HBF4 form
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I. Proposed mechanism of the Heck cross-coupling reaction when using arene 

diazonium salts.  

oducts 88 and 89 have been reacted with TMSA under Sonogashira reaction 

conditions (figure 9.2) yielding the trimethylsilylated acetylene derivatives, which after 

Scheme X

 

Pr
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deprotection, were reacted again with the brominated species 88 and 89 to yield the 

desired tola e n s rod  & 91 require ptimization ore 

reaching the best proced hose ns  ta  on e age

 

ucts 90nes. The d protectio teps of p d o  bef

ure w  conditio figure in ble 14  the n xt p .  

R
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Figure 9.2. Synthesis of perfluoroalkylated tolane species 94 and 95. 

n after a reaction time 

f one week (entry 6). Thus, as entry 7 shows, the addition of a minimum amount of 

CH2Cl2, sufficient to dissolve the starting material, decreases the reaction time drastically 

and affords now a 99% conversion even after two additional days of reaction. The use of 

BTACl, in two fold excess with respect to the starting material, affords a complete 

conversion of 93 on one hand, and decreases the reaction time to deprotect 91 even in 

the absence of DMF on the other hand (entries 8 and 9 respectively). 

NaOH, BTACl 3)4

Cl2, M

 

 

It is important to mention that, no matter what solvent used, products 90 & 91 have the 

same retention factor as compared to their respective deprotected derivatives forming 

therefore inseparable mixtures. Consequently, an optimization of the reaction conditions 

to obtain a quantitative conversion was crucial to carry on the subsequent reaction 

steps. In a first trial, the employment of potassium fluoride as base in a 1:1 

methanol/DMF mixture at room temperature has only afforded a 2:1 mixture of 93 with 

the starting material 91 even after ~1 week of reaction (entry 1). Changing the base to 

sodium hydroxide and employing methanol only as a solvent yielded only the starting 

material (entry 2). A slight change of these latter conditions by adding DMF has yielded a 

1:1 mixture of 91 and 93 (entry 3) which upon reacting for a longer time (~3 days) has 

afforded the deprotected species 93 in 82% yield (entry 5). However, employing these 

conditions to hydrolyze 90 have provided only 25% conversion eve

o
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Table 14. Deprotection of 90 and 91a. 

Entry Substrate Base 
Additive 

(eq) 
Solvent Time 

Product 

(%Yld) 

1 91 KF - 
MeOH/ DMF 

(1:1) 
6.5d 

93 (67) 

91 (33) 

2 91 NaOHaqb - MeOH 6h 91 

3 91 NaOHaqb - 
MeOH/DMF 

(1:1) 
14h 

93 (50) 

91 (50) 

4 91 NaOHaqb - 
MeOH/DMF 

(1:1) 
33h 

93 (75) 

91 (25) 

5 91 
MeOH /DMF 

3d 93 (82) 

MeOH /DMF 92 (25) 

8 91 NaOHaqb
BTACl 

(2) 

MeOH/CH2Cl2

(2.5:1) 
2d 93 (83) 

9 90 NaOHaqb
BTACl 

(2) 

MeOH/CH2Cl2

(5:1) 
2d 92 (80) 

NaOHaqb - 
(1:1) 

6 91 NaOHaqb - 
(1:1) 

7d 
90 (75) 

7 91 NaOHaqb - 
MeOH /CH2Cl2/DMF 

(5:2:1) 
1d 93 (89) c

 

a: all the reactions were done at RT. b: ~10 M NaOH. c: 1H NMR showed a 99% purity.  

 

Table 15 summarizes the different reaction conditions employed for the coupling steps to 

produce the tolane derivatives 94 (To-Rf2,8) and 95 (To-PhRf2,8). The first two entries show 

that coupling TMSA with 88 and 89 afford products 90 and 91, respectively, both in 

69% yield. Applying the same conditions to obtain the tolane derivative 95 afford this 

latter in 41% yield only (entry 3). Whereas upon using Pd(PPh3)4, the yield increases to 

61% (entry 4). Employing these conditions on substrates 88 and 92 afford, again, the 

tolane moiety To-Rf2,8 in a moderate yield (entry 5).    
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Table 15. Syntheses of tolane derivatives 94 and 95a. 

Substrate Reagent Catalyst Co-cat. T t Pdt 
Entry 

(eq.) (eq.) (Mol%) (Mol%) 
Baseb

(°C) (h) (%Yld) 

1 
88 

(1) 

TMSA 

(1.3) 

Pd(PPh3)2Cl2

(6)c
CuI

(6) 
Piperidine 80 22 

90 

(69) 

2 
89 

(1) 

TMSA 

(1.3) 

Pd(PPh3)2Cl2

(6)c
CuI 

(6) 
Piperidine 80 7 

91 

(69) 

3 
93 

(1) 

89 

(1) 

Pd(PPh3)2Cl2

(6)d
CuI 

(15) 
Piperidine 85 49 

95 

(41) 

4 
93 

(1) 

89 

(1) 

Pd(PPh3)4

(6) 

CuI 

(15) 
Piperidine 85 29 

95 

(61) 

5 
92 

(1) 

88 

(1) 

Pd(PPh3)4

(6) 

CuI 

(15) 
Piperidine 80 29 

94 

(57) 
 

a: reactions were done under argon atmosphere. b: as solvent. c: 6 mol% of PPh3 w e added.  

d: 12 mol% of PPh3 were added     

 

espite the low solubility of To-Rf2,8, it was found sufficiently soluble to perform 1H NMR 

 aromatic and aliphatic carbons are present.  

er

D

measurements. Combining this latter with EI-MS results, reveals the presence of the 

desired tolane species in good purity and confirms the absence of any trace of 

homocoupling products. On the other hand, the rigid rod-like structure of To-PhRf2,8 

renders its characterization with 1H NMR more difficult since the spectrum shows signals 

of low intensities even after very long accumulation periods; therefore EI-MS was used as 

the only technique of characterization. The low solubility of both products has prompted 

us to perform 13C solid state NMR (13C SS-NMR); three different methods have been 

employed using magic angle spinning (MAS): High-power 1H-decoupling (hpdec), cross-

polarization (CP) and, non-quaternary suppression (NQS). Figure 9.3 on the next page 

shows the hpdec spectrum of To-PhRf2,8: extreme broadening prevents the detection of 

the alkyne carbon atoms. Therefore, no conclusion can be drawn out from this spectrum 

besides the fact that
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Figure 9.3. 13C-MAS (hpdec) of To-PhRf2,8. 

 

The broa ing the 

ample with CP-MAS where a better resolution is obtained: the single alkyne peak at ~89 

dening encountered with the hpdec technique was suppressed by measur

s

ppm can easily be perceived in addition to the peaks in the aromatic region that are 

highly overlapped as a reason of their similar chemical shifts (figure 9.4).  

 

 
 

e 9 A Ph

 

One way to ‘clear’ the aromatic region from some overlapped peaks is to measure the 

sam all 

Figur .4. CP-M S of To- Rf2,8. 

ple with the CP-NQS technique that only shows quaternary carbons and exclude 
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the carbons carrying hydrogens. Figure 9.5 shows the result obtained using this method 

with which the attribution of the peaks to their corresponding carbons becomes easier. 

 

 
 

Figure 9.5. CP-NQS of To-PhRf2,8. 

 

Surprisingly, all of the SS-NMR techniques shown previously failed to provide the spectra 

f the tolane derivative To-Rf2,8 showing only very broad peaks throughout the spectral 

pts (from those we note, relaxation 

me, pulse length, power level and CP decay). The first explanation was that a 

o

region even after many parameter optimization attem

ti

paramagnetic source, resulting from an impurity like the catalytic species used during 

synthesis, might be present in the medium and is, therefore, responsible of this 

broadening. To prove this, commercially available tolane (diphenyl acetylene), whose 13C-

NMR in solution was performed, was measured with SS-NMR and the resulting spectra 

showed nearly the same broadening as in ToRf2,8. This result renders the cause of the 

spectrum broadening of such type of tolane derivatives more ambiguous especially that 

the only difference between To-PhRf2,8 and To-Rf2,8 (or tolane) is the additional phenyl 

spacer it bears.      
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R R

Co2(CO)8, dioxane

R

R

R

R

R

CS2

R= (CH2) 96 
R= p-Ph( 6%) 97

R

R

R

R

R

98 R=

99 R=

AlCl3, Cu(OTf)294/95
reflux

2Rf8        (49%) 
CH2)2Rf8 (6

C8F17

C8F17

19%

 
 

Figur s of the perfluoroalkyl pecies 98 and 99

 

Trimerization of the tolane species 94 and 95 have been done successfully affording their 

yields (ent e 

latively low solubility of the tolane species in refluxing dioxane, as well as in THF, since 

ome starting materials were always recovered.  

s of To-Rf2,8 & To-PhRf2,8 and cyclodehydrogenation of 

eir respective productsa. 

gent 

(nb. eq/ H) 
Additive Solvent 

Temp. 

(°C) 

Time 

(h) 

Product 

(%Yld) 

65%

e 9.6. Synthese ated HBC s  . 

corresponding hexaphenyl benzene derivatives HPB-Rf2,8 and HPB-PhRf2,8 in moderate 

ries 1 and 2 in table 16). This modest conversion is most probably due to th

re

s

 

Table 16. Trimerization reaction

th

Entry Substrate 
Rea

1 94 Co2(CO)8b - Dioxane reflux 48 96 (49) 

2 95 Co2(CO)8b - Dioxane reflux 72 97 (66) 

3 96 FeCl3(6) CH3NO2 CH2Cl2 RT 34c no r n  

4 96 AlCl

x

3(3.3)d Cu(OTf)2 CS2 35°C 24 98(19) 

5 97 FeCl3(6) CH3NO2 CH2Cl2 RT-reflux 18e 97,99,… 

6 97 AlCl3(3.3)d Cu(OTf)2 CS2 35°C 24 99(65) 
 

a: all the reactions were done under argon. b: cobalt used catalytically (5 mol%). c: argon was bubbled for 24 

hours. d: equimolar amount of Al/Cu. e: argon was bubbled for 17 hours followed by reflux for 1 hour. 
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Cyclodehydrogenation of HPB-Rf2,8 using FeCl3/CH3NO2 affords starting material only 

(entry 3) revealing that the electron withdrawing effect of the perfluorinated chain 

remains high even in presence of an ethylene spacer. The replacement of FeCl3/CH3NO2 

with the stronger combination of AlCl3/Cu(OTf)2 affords the desired HBC-Rf2,8 product in 

19% yield (entry 4). On the other hand, entry 5 shows that employing mild conditions on 

HPB-PhRf2,8 affords mainly the starting material along with small amount of HBC-PhRf2,8 

besides many partially cyclodehydrogenated products. This result strongly agrees with 

the results obtained during the oxidation of the hexaphenyl derivatives HBC-CF3 and 

HBC-PhRf6 and shows once and for all that phenyl group is not a very good intercalator 

that inhibit the electron-withdrawing effect. Nonetheless, the employment of the 

Al(III)/Cu(II) combination of reagents for oxidation reactions, affords HBC-PhRf2,8 in 65% 

yield (entry 7). It must be mentioned that upon using the AlCl3/Cu(OTf)2 combination, 

migration of the side chains may occur as we have cited earlier (section 6). But as a 

reason of their very low solubility, we can’t prove analytically that the structure of the 

HBC moieties has changed under the influence of the strong Friedel-Crafts reagent AlCl3 

since only MALDI-TOF technique was employed to detect the presence of the HBC 

derivatives. However we do believe that the chain is sufficiently inert towards Friedel-

rafts reactions, many published works studying the reactivity of such intercalated 

alkylated perfluoroalkyl chains support this suggestion too[293, 310, 311]. 

 

9.1.2 DSC investigation of HBC-Rf2,8 and HBC-PhRf2,8

 

Differential scanning calorimetry (DSC) of both products 98 and 99 have been done as 

table 17 depicts. However, it is worthwhile to note that the term D is used in this work as 

a simplification to describe both the unknown mesomorphic phases (that could be 

nematic or columnar) and the columnar ones as given in the literature[14] even though 

the term D, which means discotic, is not the most appropriate one to use[60]. By 

comparing entries 1 and 2, we can easily notice that HBC-Rf2,8 has four liquid crystalline 

hases whereas the fully alkylated HBC-C10 has only one mesomorphic phase whose 

transition temp n temperature 

bserved for HBC-Rf2,8 (124°C). A more interesting observation is the fact that HBC-C10 

C

p

erature has nearly the same value as the first transitio

o

shows a crystalline phase transition, while HBC-Rf2,8 doesn’t, indicating, therefore, an 

amorphous state of the hitherto unknown product; a phenomenon that is presumably 

caused by the perfluorinated chains since they reduce the interactions between the 

different neighboring molecules. Last but not least, the insertion of a phenyl group 

between the HBC core and the alkylated perfluoroalkyl chains HBC-PhRf2,8 increases the 
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liquid phase transition temperature by ~100°C as compared to HBC-Rf2,8 (entry 3) but 

still the DSC trace doesn’t show any crystalline phase transition peak.  

 

Table 17. Phase transition temperatures, enthalpy changes and structural assignments 

for different HBC derivativesa,b. 

Phase Transition 
temperature (°C) 

∆H 
(KJ mol-1) Entry Compound 

heating/cooling heating/cooling 

Phase 
width 

(°C) 

Assignment 

1 HBC-C10
69/(c) 

124/97 

9/(c) 

64/71 

- 

55 

K1→ K2 

K2 ↔ Dh

2 
HBC-Rf2,8 

(98) 
138/128 

180/173 

37.2/36 

7.7/6.5 

- 

16 

42 

D1↔ D2 

D2 ↔ D3 

D3 ↔ D4

3d
HBC-PhRf2,8 

(99) 

227/223 

236/235 

66.4/60.5 

19.8/14.2 

- 

9 

D1↔ D2 

D2 ↔ D3

122/114 1.4/1.2 

 

a: isotropic liquid wasn’t formed below 360°C, decomposition occurs above ~250°C. b: rate of heating & cooling 

is 20°C/min. c: not determined. d: two peaks were obtained upon heating. With K: crystalline, Dh: discotic 

hexagonal, D: discotic.  

 

 

 

9.2 HBC with R = Rf4,8 and Rf6,6

 

9.2.

 

s it could be noticed from the previous section, even the insertion of an ethylene spacer 

r

atter are expected to enhance the solubility of the 

termediate products, mainly tolane and the hexaphenyl benzene moieties which, upon 

yclodehydrogenation will yield again insoluble HBC derivatives that can be isolated by 

simple filtration from the reaction medium. Moreover, the intercalators aren’t expected to 

1 Synthetical approach 

A

didn’t remove the electron withdrawing effect of the perfluorinated which is high and is 

still influencing the oxidation step that doesn’t take place unless harshe  conditions are 

employed. In addition, the starting materials leading to HBC-Rf2,8 and HBC-PhRf2,8 show 

a relatively high insolubility and are very difficult to remove during the following steps. 

These reasons have led us to divert to the synthesis of some new HBC derivatives bearing 

longer aliphatic intercalators. These l

in

c
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alter the isolating effect of the peripheral perfluorinated chains long enough to prevent 

any lateral interaction  To achieve thi ted 

c  ng r  methyle ps en done after improving

procedures fou n th atu 2, W us on th less ig urity is 

obtained during the isolation of each of the interm oducts leading to 108 (BrR ) 

and 109 (BrRf6 the later coupling reaction steps n’t occur or many side prod  

ar isola  instead. for e ow pr emp  he  h e b  

improved by a ing additional purification tec mainly filtration of the c

products over a shor  g ug de reduc ressur th d en olv  

(hexane, pentane) in such e t e l side products first followe  

the elution of the pure product with a more polar ent at last. As it can be no  

from Figur  9. m available 3-buten 00 an 1-ol 101  

reacted with p uo odide 102 and perflu exyl iodide 103 spective  

presence of a palladium catalyst[314] to yield the coupled chain products 104 and 

These latter are then reduced in presence of LiAlH  afford the perfluoalkyl alco  

10 and 07 ich on th  h er rR  an  B 6 

respectively after refluxing with hydrobromic acid in presence of Aliquat 336® as PTC

 

 between HBCs. s, the synthesis of perfluorina

hains beari  fou and six ne grou  have be  the 

nd i e liter re[31 313]. e m t menti at un  a h h p

ediate pr f4,8

ucts,6),  wo

e ted There e, th kn n ocedures loyed rein av een

pply hniques, rude 

entst silica el pl  un r ed p e wi iffer t s

a way to remov h ess polar d by

ticedsolv

e 7, co

erfl

mercially 
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oic acid 1 d 5-hexen-

 re
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ly inoroh
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4 to hols
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.   
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 0  4 48 

LiAlH4, THF 48% HBr

-20°C, 0- h

R1= CH2CO  100
R1 2  101

+ Rf-I

2COOH, Rf= C8F17   (90%)  104
2)4O 6F1 %) 5

r.t., 3-18 h Aliquat 336
100°C, 24 h

OH  
)4OH= n-(CH

R1= CH
R1= n-(CH H, Rf= C 3 (91  10

R1= n-(CH2)2OH, Rf= C8F17  (77%)  106
R1= n-(CH2)4OH, Rf= C6F13  (85%)  107

n

n= 3, Rf= C8F17  (93%)  108
n= 5, Rf= C6F13  (84%)  109

Rf= C8F  102
 C6F 3

 Pd(PPh3)4, hexane

17
13 10Rf=

 
 

Figure 9.7. Syntheses of alkylated perfluoroalkyl chains. 

 

The alkylated perfluoroalkyl chains BrRf4,8 and BrRf6,6 were reacted with dibromotolane 

36 (figure 9.8) under Kumada[315] and Negishi[316] cross-coupling reaction conditions that 

consist of employing an organomagnesium species for the former, and an organozinc 

moiety for the latter, in presence of a halogenated aryl derivative and a suitable catalyst. 

When mild reaction conditions are needed, both cross-coupling reaction types use nickel 
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complexes[317-320], such as Ni(dppp)Cl2 and Ni(dppe)Cl2, whereas palladium complexes are 

employed when harsher conditions are required[321] and the most frequently used catalyst 

for that purpose is Pd(dppf)Cl2. Nevertheless, the Negishi coupling reaction has a wider 

pectrum of applications than Kumada because different types of substrates can be 

 Sonogashira and Suzuki ones 

at we have shown previously (schemes V and VII) employing organometallic derivatives 

and consisting of four main steps: 1) generation of an active Pd(0) species, 2) oxidative 

addition, 3) transmetallation, and 4- reductive elimination.     

 

s

used, such as, alkyls, benzyls, vinyls, allyls, and aryls[322]. Recently, many reports have 

disclosed new methods to generate alkylzinc derivatives from inactivated alkyl 

bromides[323, 324]. Nonetheless, the major drawback upon using Negishi conditions is the 

fact that organozinc derivatives must be generated in situ since they can’t be isolated. 

The mechanism of both coupling reactions is similar to

th

Br Br

(CH2)nRf12-n

(CH2)nRf12-n

2. 36, Pd- or Ni-cat., THF, 
    reflux or )))

n=4          110
n=6          111

Br
Rf

n

n= 3, Rf= C8F17    108
n= 5, Rf= C6F13    109

1. Mg or Et2Zn, THF, 
    reflux or )))

 
 

With 36:

Figure 9.8. Syntheses of alkylated perfluoroalkyl tolanes by Kumada and Negishi 

couplings. 

 

Table 18 on the next page shows the different attempts we have done to obtain the 

alkylated perfluoroalkyl tolane derivatives 110 (To-Rf4,8) and 111 (To-Rf6,6). We have first 

performed the reactions using the perfluorinated chain BrRf6,6 because it bears an alkyl 

tail long enough to prevent the deactivating influence of the perfluorinated groups. The 

less reactive chain BrRf4,8 has undergone coupling reaction only after optimizing the 

reaction conditions of BrRf6,6.  
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Table 18. Kumada and Negishi cross-coupling reactions with 36a. 

Grignard reaction C-C Coupling reaction 

Entry pdt eag

(  ) 

Pdt 

ld) Pdt 

(eq) 

R ent 
Sol. 

eq) 

T  

(°C) 

t 

(d) 

Catalyst 

(mol%)
Sol. 

T 

(°C

t 

(d) 
(%Y

1 36 
109 

Mg 80 1 
Ni(dppp)Cl2

F 0 
no 

n  (4) 
 (4) THF 

(6) 
TH 8 1 

rx

2 36 Mg 2O 45 1 
l2

F 0 
o 

n 

109 

(4) 
 (4) Et

Ni(dppp)C

(6) 
TH 8 1 

n

rx

3 36 Mg (4) F 2 
2

 
HF 75 

n 

109 

(4) 
TH 75 

Ni(dppp)Cl

(10)
T 1 

rx

no 

4 36 g   
)Cl2

HF 75 1 
no 

rxn 

109 

(4) 
M  (4) THF 75 2

Ni(dppe

(6) 
T

5 

cat.FeCl3b
rxn 

36 
109 

(4) 

Et2Zn(1), 

cat.CuCl, THF RT 1 
Pd(dppf)Cl2

(10) 
THF 

-50-

75 
1 

no 

6 36 
109 

(4) 
Mg (4) THF 75 1 

Pd(dppf)Cl2

(6) 
THF ))) 2 

111 

(24) 

7 36 
109 

(4) 
Mg (4) THF 75 1 

Pd(dppf)Cl2

(6) 

THF:FC-72 

(2:1) 
70 2 

111 

(45) 

8 36 
109 

(4) 
Mg (4) THF 75 1 

Pd(dppf)Cl2

(10) 
THF 75 3 

111 

(65) 

9 36 
109 

(4) 
Mg (4) THF 75 1 

Pd(dppf)Cl2

(10) 

THF:FC-72 

(2:1) 
75 3 

111 

(69) 

10 
108 

(4) 
Mg (4) THF 75 1 

Pd(dppf)Cl
36 

2

(10) 
THF 75 3 

110 

(46) 

11 36 
108 

(4) 
Mg (4) THF 75 1 

Pd(dppf)Cl2

(15) 
THF 75 6 

110 

(75) 
 

a: number of equivalents is calculated with respect to 36. b: 5 mol% FeCl3 and 3 mol% CuCl.  

 

As the first four entries of table 18 show, the use of common Kumada reaction conditions 

that employ mild nickel complexes as catalysts were found to be inefficient; only the 

starting material 36 has been recovered. The same result was obtained when Negishi 

coupling conditions were used. These latter require the use of diethyl zinc and catalytical 

amounts of FeCl3 and CuCl[324] to form the corresponding organozinc species of 109 first, 

llowed by the coupling with 36 under Pd(dppf)Cl2 catalysis (entry 5). Carrying the 

reaction in an ultrasonic bath for 2 days, using Kumada reaction conditions with 

Pd(dppf)Cl2 as catalyst, however, has yielded 24% of the desired tolane derivative To-Rf6,6 

(entry 6). By addition of a perfluorinated co-solvent to the reaction medium, the yield was 

increased to 45% (entry 7). Nevertheless, entries 8 and 9 show clearly that yield of the 

reaction is mainly time dependent and that a perfluorinated co-solvent doesn’t 

fo
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significantly affect the reaction. The same conditions of entry 9 were applied on 108 

which afforded 46% of its corresponding tolane derivative 110. Doubling the reaction 

time to six days, finally, yields 75% of To-Rf4,8 (entry 11). 

 

Trimerization of the tolane derivatives to their corresponding hexaphenylbenzene 

products followed by cyclodehydrogenation of these latter have been done as shown in 

figure 9.9. Reacting products To-Rf4,8 and To-Rf6,6 in presence of the dicobalt carbonyl 

catalyst, in refluxing dioxane, afford trimers 112 (HPB-Rf4,8) and 113 (HPB-Rf6,6) in 70 

and 80% yield respectively (entries 1 and 2 in table 19).  

 

(CH2)nRf12-n

(CH2)nRf12-n

n=4          110
n=6          111

R

R

R R

R

R

Co2(CO)8, Diox nea

With R = (CH2)nRf12-n
n=4 (35%)              114
n=6 (87%)              115

R

R

R

Reflux

R R

R

With R = (CH2)nRf12-n
n=4 (70%)         112
n=6 (80%)         113  

 

Figure 9.9. Syntheses of alkylated perfluoroalkyl HBC derivatives 114 and 115. 

 

Entry 3 in table 19 shows that cyclodehydrogenation reaction conditions using 

FeCl3/CH3NO2 combination affords the HBC derivative 114 (HBC-Rf4,8) in a modest yield 

(35%), both starting material HPB-Rf4,8 and partially cyclodehydrogenated products were 

also isolated during the purification step implying that a longer reaction time would 

increase the yield of HBC-Rf4,8. The relatively slow reaction is due to the low solubility of 

HPB-Rf4,8 in CH2Cl2 and not to the electron-withdrawing effect of the alkylated 

perfluoroalkyl chain because if it was the case, the reaction wouldn’t take place at all as 

we have seen in the previous sections. Applying the same oxidation reaction conditions 

on HPB-Rf6,6 (entry 4) provides the HBC derivative 115 (HBC-Rf6,6), bearing six methylene 

pacer units in 87%. This higher yield than the one of HBC-Rf4,8 can be explained by the 

relatively good solubility 

 

 FeCl3, MeNO2

CH2Cl2

s

of HPB-Rf6,6 in CH2Cl2.  
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Table 19. Trimerization of To-Rf4,8 & To-Rf6,6 and cyclodehydrogenation of their 

respective productsa. 

Entry Substrate 
Reagent 

(nb. eq/ H) 
Additive Solvent 

Temp. 

(°C) 

Time 

(h) 

Product 

(%Yld) 

1 110 Co2(CO)8b - Dioxane reflux 48 112 (70) 

2 111 Co2(CO)8b - Dioxane reflux 48 113 (80) 

3 112 FeCl3 (6) CH3NO2 CH2Cl2 RT 10c 114 (35) 

4 113 FeCl3 (6) CH3NO2 CH2Cl2 RT 5c 115 (87) 

5 HPB/108d  FeCl3 (~2 e CH) 3NO2 CH2Cl2 RT 12 - 
 

a: all the reactions were done under argon.. b: 5 mol% of cobalt. c: argon was bubbled throughout the reaction.. 

d: HBP/108 in 1:9 ratio e: FeCl3 in CH3NO2 is added dropwise onto the reaction mixture. 

Although all synthetical strategies we have used so far to produce the perfluorinated 

HBC derivatives permit the characterization of each product formed, they represent a 

major drawback because at each time a new perfluorinated group is to be introduced on 

the HBC core, the whole reaction sequence must be restarted from scratch which is time 

consuming. To circumvent this problem we have thought about reducing the number of 

linear reaction steps by attempting the one pot synthesis illustrated in figure 9.10. The 

trial has been performed by adding dropwise a solution of FeCl3 in CH3NO2 on a mixture 

of Br-Rf4,8 and the commercially available hexaphenylbenzene (HPB) in CH2Cl2. The 

reaction was carried out for 12 hours at room temperature and argon was bubbled 

through the medium during the whole reaction. Unfortunately, only the starting 

materials were recove  a mixture of partially 

ehydrogenated hexaphenylbenzenes. This result can be explained by the fact that we 

a ess reactive towards Friedel-Crafts 

lkylation than the very specific tertiary alkyl group, t-BuCl, employed by Rathore et 

 

red in addition to a small amount of

d

have used a primary brominated ch in which is l

a

al.[197]. For this purpose more powerful Friedel-Crafts reagents must be explored in the 

future in such a way to generalize this reaction on all the HBC derivatives which, once 

succeeded, can considerably reduce the reaction sequences.  
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R

R R

Hexaphenylbenzene
(HPB)

R

R

R

 FeCl3, CH3NO2

114

+ Rf8(CH2)4Br

With R =  (CH2)4Rf8

CH2Cl2

 
 

Figure 9.10. One-pot synthetical attempt of HBC-Rf4,8.  

 

Figures 9.11 and 9.12 show the MALDI-TOF mass spectrum of HBC-Rf4,8 and the UV-Vis 

spectrum of HBC-Rf6,6, respectively. The analyses done with the MALDI-TOF technique 

on 114 and 115 have shown no trace of either the starting material or the partially 

cyclodehydrogenated products indicating, therefore, a high purity. 

 

 

Figure 9.11. MALDI-TOF of HBC-Rf4,8. 

Calculated for C114H60F102

Exact Mass: 3366.307 
Mol. Wt.: 3367.533 
m/e: 3367.310 (100.0%)  
        3366.307 (78.9%)  
        3368.313 (62.8%)  
        3369.317 (26.1%)  
        3370.320 (8.1%) 
        3371.323 (2.0%) 
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The UV-Vis spectrum of HBC-Rf6,6 shows the three characteristic peaks of HBC core at 

aggregate rather than being totally dissolved in 1,2,4-TCB. 

Additionally, the low solu oduct doesn’t permit a precise analytical 

calc  of the con tr ring  prep on 

obtained is filtered over Millipore®, and  the high boiling point of the solvent used (b.p. 

214°C) doesn’t allow to w  remaining on the filter. 

Therefore, the molar absorption ient value of the maximum peak (ε ~ 1 00 M-1 

cm-1) w  take literatur  used to estimate the concentration which was 

found to be around 1.7x10-7 M (figure 9.12). The low sol 4,8 in 1, TCB, 

on the other hand, didn’t allow its investigation either by UV-Vis or by lumin e.  

 

368, 394 and 421 nm, the shape of the spectrum obtained reveals that the product is 

present in the medium as an 

bility of the pr

ulation cen ation because du the sample aration, the suspensi

eigh analytically the precipitate 

 coeffic 140

as n from e[193] and

ubility of HBC-Rf 2,4-

escenc

C~1.7x10-7 M 

0.0E+00

5.0E-03

2

460 480

nm
 

al. not

atives, owing either hexagonal columnar (Colh) or hexagonal columnar 

plastic (Colp) mesophases, with perfluorinated or alkylated perfluoroalkyl chains having 

.0E-02

2.5E-02

1.0E-02

1.5E-02
A

360 380 400 420 440

Figure 9.12. UV-Vis spectrum of HBC-Rf6,6. 

 

9.2.2 Calorimetric analyses of HBC-Rf4,8 and HBC-Rf6,6

 

Few publications describe the behavior change of some liquid crystalline materials upon 

replacing their lateral alkyl chains with perfluorinated ones: during their studies on 

small liquid crystalline molecules, that self-assemble by  hydrogen bonding interactions, 

such as, cyano- and aminobiphenyl derivatives that form nematic and smectic phases for 

the former and the latter respectively, Fialkov et ed the disappearance of the liquid 

crystalline phases after replacing the lateral alkyl chains with perfluorinated ones[325]. 

Recently, Shimizu and co-workers showed that the replacement of lateral alkyl chains of 

triphenylene deriv
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the same length of their alkylated homologues, causes a better molecular arrangement 

that leads to homeotropic alignment of the discs on a series of suitable substrates[326, 327].      

 

In order to study the behavior change brought by the perfluorinated chains to the HBC 

moiety, DSC measurements of both products HBC-Rf4,8 and HBC-Rf6,6 were compared to 

the well-known HBC derivatives bearing fully alkylated n-decyl and n-dodecyl chains[14], 

HBC-C10 and HBC-C12, respectively. The calorimetric analyses have revealed the 

presence of at least one liquid crystalline phase for each perfluorinated HBC, as it can be 

noticed from entries 3 and 4 in table 20 on the next page. By comparing entries 1 and 2, 

we can easily notice that upon increasing t of the fully alkylated chain by tw  

methylene groups, the phase transition temperature decreases by ~19°C on one hand, 

but more energy is needed for liquid crystalline phase transition to take place, on the 

other hand, as a direct result of a higher crystalline order brought about by these 

additional alkyl groups. Concerning HBC-Rf4,8 and HBC-Rf6,6 (entries 3 and 4); the phase 

transition temperature of the latter is lower by ~30°C as a reason of the presence of two 

additional methylene carbons that make the molecule more flexible. On top of that, 

another important conclusion can be deduced from data in table 20, the enthalpy 

changes for both HBC-Rf4,8 and HBC-Rf6,6 to pass to liquid-crystalline phases, are lower 

to those with alkyl chains, and this can be xplained by the fact that due to the steric 

on energy whereas the zig-zag conformation of the well packed crystallized alkyl 

hains requires more energy for liquid-crystalline phase to occur[328].    

 

 

 

 

he length o

 e

hindrance caused by the fluorine atoms, perfluorinated chains have low crystallization 

packing and they maintain a helical conformation which doesn’t necessitate a much high 

transiti

c
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Table 20. Phase transition temperatures, enthalpy changes and structural assignments 

for different HBC derivatives. 

Phase Transition 

temperature (°C) 

∆H 

(KJ mol-1) Entrya,b Compound 

heating/cooling heating/cooling 

Phase 

width 
(°C) 

Assignment 

1 HBC-C10
69/(c) 

124/97 

9/(c) 

64/71 

- 

55 

K1→ K2 

K2 ↔ Dh

2 HBC-C12
42/(c) 

105/86 

10/(c) 

78/(c) 

- 

63 

K1→ K2 

K2 ↔ Dh

3 
HBC-Rf4,8 

(114) 

82/(c) 

120/103 

190/171 

6/(c) 

58/52.6 

8.5/7.8 

- 

38 

70 

K1→ K2 

K2 ↔ D1 

D1 ↔ D2

(115) 109/98 48/46 18 K2 ↔ D1
4d

HBC-Rf6,6 50/(c) 4.6/(c) - K1→ K2 

 

urs above ~250°C. b: rate of heating & cooling 

is 20°C/min. c: not determined. d: two peaks were obtained upon heating. With K: crystalline, Dh: discotic 

s were seen (Figure 9.13). Nevertheless, we must point 

e observations have been made by Shimizu and co-workers[326] on the 

ted triphenylene derivatives where only after the employment of suitable 

 they observed a homeotropic alignment. Thus, we can assume that HBC-Rf4,8 

and HBC-Rf6,6 would act in the same way when deposited on suitable substrates 

especially since their alkylated homologue HBC-C12 has the same mesophase as the 

alkylated triphenylene i.e. hexagonal columnar[93]. To prove this, more characterization 

techniques should be carried out, such as, X-ray powder diffraction at the mesophase 

temperatures, as well as, a more in depth POM investigation of HBC-Rf4,8 and HBC-Rf6,6 

derivatives.  

 

a: isotropic liquid wasn’t formed below 360°C, decomposition occ

hexagonal, D: discotic.  

 

9.2.3 Optical microscopy study of HBC-Rf4,8 and HBC-Rf6,6

 

Polarized optical microscopy (POM) investigation of HBC-Rf4,8 and HBC-Rf6,6 revealed 

their high viscosities that prevent the formation of definite textures. After a long time of 

heating, only ‘schlieren’ texture

out that the sam

perfluorina

substrates,
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Figure 9.13. POM schlieren textures at different transition temperatures: HBC-Rf4,8 at 

193°C (upper left), HBC-Rf6,6 at 242°C (upper right), 152°C (lower left) and 294°C (lower 

right). 

 

An interesting phenomenon was observed during POM investigation of HBC-Rf4,8; the 

yellowish powdered precipitate transforms rapidly to long needle-like structures when 

reaching the temperature of ~110°C (figure 9.14). These well-ordered columnar 

arrangements vanish when reaching the mesomorphic transition phase (~120 °C) and 

ardly reappear when cooling down the sample. It is important to note that this 

particular organization of product HBC-Rf4,8 in the solid phase upon heating is the first 

reported so far for an HBC moiety and it proves the high tendency of this latter product 

to self-organize in well-defined columnar architectures. 

    

h
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Figure 9.14. POM micrograph of the needles-like crystals of 114 formed at 110°C. 

 

9.2.4 SEM investigation of HBC-Rf4,8 and HBC-Rf6,6

 

To better understand this structural arrangement, we have carried out the sam  

oduct at room temperature showing an 

gglomerate structure composed of micrometer-sized needles which, upon warming up at 

e

experiment using an SEM equipped with a heating source where the precipitate of HBC-

Rf4,8 was placed on an Al support first which was then transferred to the SEM analyzing 

chamber to be characterized at reduced pressure and without sputtering. Figure 9.15 

depicts the morphology of the latter pr

a

50°C don’t show any change.  
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Figure 9.15. SEM micrographs of HBC-Rf4,8 at room temperature showing an 

agglomerate composed of micrometer-sized needles (upper left), magnification of 2x103 

(upper right), heating at 50°C (lower left), and magnification of 103 at the same 

mperature (lower right). 

ace in the solid phase (figure 9.16).  

te

 

Upon heating the sample at 70°C, slight changes of its morphology are observed 

especially at the interface with the heating source. The needles start to sinter when 

reaching 80°C, a temperature that is 40°C less than the liquid crystalline transition point 

(120°C) indicating that the change is taking pl
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Figure 9.16. SEM micrographs of HBC-Rf4,8 upon heating at 70°C (upper left), 

magnification of 103 at the same temperature (upper right), morphology change at 80°C 

(lower left), and the magnification of 2x103 at the same temperature revealing the 

beginning of sintering process (lower right). 

 

When the heating temperature reaches 90°C, the majority of the sample in contact with 

the susceptor smoothens whereas the largest agglomerates start to sinter at 115°C. The 

heating was stopped at this latter temperature to prevent the sample from reaching the 

liquid crystalline transition point. During the cooling stage, the morphology of the 

surface remains the same even at 70°C (figure 9.17).  
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Figure 9.17. SEM micrographs of HBC-Rf4,8 upon heating at 90°C (upper left), complete 

sintering at 115°C (upper right), the surface morphology upon cooling at 100°C (lower 

left), and at 70°C (lower right). 

 

Figure 9.18 shows that when the cooling temperature attains 50°C, the surface becomes 

rough and small tips appear. The magnification of the surface shows a continuous film 

constituted by bundles of columnar structures that persist even when reaching room 

temperature and revealing, therefore, the high degree of HBC-Rf4,8 to self-organize in 

columnar like structures even in solid state.  
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Figure 9.18. SEM micrographs of HBC-Rf4,8 on Al upon cooling. At 50°C showing rough 

surface (upper left), magnification of 2x103 revealing a bundle-like morphology (upper 

right), magnification of 4x103 showing the columns formed (lower left), and at room 

temperature (lower right). 

 

The same structural arrangement is observed when cooling a 3 x 10-4 M solution of HBC-

4,8 in 1,2,4-TCB after heating it for one hour at 90-120°C. This has led us to investigate 

ese needles by SEM: a 3 x 10-4 M solution of HBC-Rf4,8 in 1,2,4-TCB was heated at 

0°C for ~2 hours and the solution was cooled whereupon cloudy yellowish fiber-like 

structures started to form at 80°C. A droplet of this suspension was then put on an Al 

substrate and the wafer was placed in a vacuum chamber to evaporate the 1,2,4-TCB 

under ~10-4 Torr first, followed by the sputtering of the remaining product with gold in 

order to cover it with a ~5-10 nm thick conducting film. As it can be noticed from the 

SEM micrographs in figure 9.19, very long columnar structures were detected over a 

large area of the substrate. The size of these rectangular-like micrometer columns were 

found to be homogeneous where all the stacks have a length of ~150 µm and a width 

varying between 2.2-2.7 µm, the thickness was also found to be in the range of 1.6-1.9 

Rf

th

12
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µm. The magnification (8 x 104) of these rectangular-columnar structures reveals that 

each ‘column’ is constituted of many nanometer-sized sheets whose lateral assembly 

forms this particular structure. Another important characteristic of these columns is that 

they don’t coagulate. It is important to mention, however, that we weren’t able to detect 

smaller HBC stacks. This brings us to suppose that by the time the solvent was 

evaporating, the dissolved stacks in 1,2,4-TCB self-assembled into larger columnar 

structures or they have simply added to the existing ones.  

 

   

   
Figure 9.19. SEM micrographs of an evaporated ~3x10-4 M solution of HBC-Rf4,8 on Al 

showing the columnar structures at the centre of the substrate (upper left), the column 

width (upper right), the column thickness (lower left), and the magnification of 8 x 104 of 

a single column (lower right). 

 

In order to detect the presence of these solvated HBCs, we have performed a new SEM 

chnique: Cryo-SEM. This technique is based on the freezing of the solution very rapidly 

to liquid N2 temperatures (-196°C) under a 10-4 Torr vacuum. We expect under these 

conditions the solvated HBC nanometer-sized stacks to be prevented to self-assemble in 

te
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micrometer sized columns or even to add on the long fiber-like structures. Additionally, 

this procedure permits, for instance, in the case of presence of water, to form the 

amorphous ice since it prevents a volume increase during solidification. In order to be 

able to notice any changing, we have taken a sample from the same suspension we have 

investigated previously. Therefore, a droplet of the 3 x 10-4 M suspension of HBC-Rf4,8 in 

1,2,4-TCB was frozen at -195°C under 10-4 Torr then it was transferred under vacuum to 

the cryo-transfer system where the solidified solvents were sublimed at about -95°C 

under a ~10-6 Torr vacuum. At the end of sublimation, the remaining product was 

sputtered with platinum in order to form a ~10 nm conducting film and then cooled to -

130°C. Figures 9.20 and 9.21 show the preliminary results we have obtained by using 

this method: We can easily distinguish two types of columnar structures, the first ones 

resemble in their morphology to the ones we have observed with POM (figure 9.14) upon 

evaporating the 1,2,4-TCB (figure 9.19) while the second are nanometer-sized long 

filaments. Contrarily to what we have seen upon evaporating the solvent at room 

temperature, the columnar stacks in the cryo preparation are deposited in a near vertical 

position all along the crucible. In addition, these columnar structures are homogeneous 

in their distribution all over the surface of the substrate and they have uniform 

dimensions forming long tubular-like configurations. On the other hand, the nanometer-

sized filaments were also detected all over e substrate and even on the surface of the 

 

 because the sample was sputtered with a film of 

ically 10 nm). However, we can suppose that the nano-sized filaments are 

th

micrometer tubes. The dimensions of these ‘nano-columns’ are very homogeneous both

in their length (~750 nm) and their diameter (~30 nm), but the real size of these 

structures can’t be estimated at present

Pt (theoret

nothing but the solvated HBC fibers in 1,2,4-TCB which, upon freezing and evaporating 

this latter, weren’t able to aggregate in micrometer-sized columnar bundles.     
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Figure 9.20. Cryo-SEM micrographs of HBC-Rf4,8 at -130°C deposited on an Al substrate 

showing the general morphology of the columnar structures in the crucible (upper left), 

the vertical order of the columns (upper right), the tubular-like structures (down). 

 

Another type of micrometer-sized fibers was also detected, in some areas of the sample, 

having a length in the range of ~1,5-2 µm, a diameter of ~100-150 nm, and a well-

defined texture (figure 9.20, lower left). Additionally, these fibers are very sensitive under 

the electron beam, contrarily to the nanometer-sized filaments of HBC-Rf4,8 that resist 

when focusing the electron beam on one of them in order to detect it in a higher 

resolution. These observations show clearly that the nature of the micrometer-sized 

fibers is different from the nanometer-sized filaments, revealing, therefore, that the 

former might be the remaining traces of the solvent. This assumption was supported 

after measuring 1,2,4-TCB under the same conditions showing an identical morphology 

d behaving similarly under the electron beam (figure 9.21, lower right).      

 

an
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Figure 9.21. Cryo-SEM micrographs at -130°C showing the filament structures of HBC-

Rf4,8 (up), and the columnar-like structures of 1,2,4-TCB present with the medium (lower 

left) and when measuring it alone. 

 

The previous experiments prompted us to attempt a preliminarily deposition of HBC-Rf4,8 

. Nevertheless, the film 

contains uniformly dispersed notches all along the deposition area (figure 9.22). The 

diameters of these button-like structures were found to be ~150-200 nm.    

 

on a smooth well-oriented substrate by solvent evaporation. For this reason, a 3 x 10-4 M 

solution of HBC-Rf4,8 in 1,2,4-TCB was heated overnight then cooled at room 

temperature and allowed to settle for two days. The resulting solution was then filtrated 

to remove the fiber-like structures. A droplet from the faint yellow solution was placed on 

a Si(100) substrate and the resulting wet wafer was then put in a vacuum chamber to 

evaporate the solvent, followed by sputtering the surface with a ~5 nm film of gold to 

make the sample conducting. SEM investigation has showed the formation of a thin 

homogenous film that covers a large surface of the silicon wafer
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Figure 9.22. SEM micrographs of an evaporated clear solution of HBC-Rf4,8 on Si(100) 

showing the film morphology at the centre of the substrate (upper left), the morphology of 

the tips x 20000 (upper right), and x 40000 (lower left), and their diameters (lower right). 

 

The same experiment was performed using a ~1.7x10-7 M solution of HBC-Rf6,6 in 1,2,4-

TCB. Surprisingly, the deposited product was present as a film with poor adherence on 

the substrate as the many cracks in the film reveal (figure 9.23). Nonetheless, upon 

moving away from the center of the deposited film to the edges, we can notice the 

existence of highly ordered columnar dendrites from the inner-side of the evaporated 

droplet. On the other hand, many nano-sized needles-like arrays, having a length of ~1 

µm, are present in the outer-side of the dendrites. The detection of these latter is very 

hard since they move upon trying to focus the electron beam on them in order to 

measure them in a higher resolution.  
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Figure 9.23. SEM micrographs of an evaporated ~1.7x10-7 M solution of HBC-Rf6,6 on 

Si(100) showing the film formation at the centre of the substrate (upper left), the 

presence of dendrites at the edges (upper right), the highly ordered columnar dendrites 

(lower left), and the morphology of the nano-sized needles (lower right). 

 

The results herein allow us to draw out two important conclusions: the first is the high 

dendritic order in which product HBC-Rf6,6 deposits on well-oriented silicon substrates 

without forming a continuous uniform thin film that covers a large area of the substrate 

and adheres on it efficiently as the sulfur-containing HBC-SCF3 does, and the second 

important deduction is the fact that very different behavior between HBC-Rf4,8 and HBC-

Rf6,6 are seen upon their deposition on the same substrate under the same conditions. It 

is worth mentioning that these products only differ by the ratio of the 

perfluorinated/aliphatic lateral sections of the chains they bear. 
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10. HBCs with perfluoroalkyl alkoxy side chains 

 

 

10.1 Synthetical attempt of with R = ORf

 

We ha  tried thesi BC ve gh it  been blis the 

attem  of 

uinonoids rather than HBCs[288] as we have mentioned in section 7.4. The reason of this 

 to get the tolane species 119 (To-ORf4,8) as shown in figure 10.1. 

 

HBC 4,8

ve to syn ze this H  derivati  althou has  pu hed that 

pts to produce an HBC bearing alkoxy chains fail leading to the formation

q

trial can be seen as a logical extension to the HBC-OCF3 (65) i.e. to see whether the 

electron-withdrawing effect of the peripheral perfluorooctyl chain will influence the alkyl 

spacer and, hence would prevent the quinone formation affording the desired HBC 

derivative instead. The synthetical approach consisted of synthesizing the brominated 

phenoxy perfluoro building block first, followed by a step-by-step Sonogashira coupling 

reaction

TMS

OR

H

OR

TMSA, Pd(PPh3)2Cl2, CuI

ORRO

Ph3P,Piperidine, 80°C

116, Pd(PPh3)4, CuI

Piperidine, 80°C

NaOH, BTACl

CH2Cl2, RT

OH

Br

108, K2CO3, DMF

80°C, 83%

OR

Br

4-Bromophenol 116 117

118

119

87% 95%

64%

With R=  (CH2)4Rf8

 
 

Figure 10.1. Synthesis of tolane bearing perfluoroalkyl-alkoxy chains. 
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Table 21 below shows the conditions used for the different reactions leading to To-ORf4,8. 

Slight improvements of the work-up have allowed obtaining 116 in a good yield (83%). 

The first Sonogashira reaction affords the trimethylsilyl acetylene species 117 in 87% 

yield, whereas the second Sonogashira coupling reaction affords the tolane derivative in a 

moderate yield (64%).   

 

Table 21. Syntheses of tolane derivatives 119a. 

Entry 
Substrate 

(eq.) 

Reagent 

(eq.) 

Catalyst 

(Mol%) 

Co-cat. 

(Mol%) 
Base 

T 

(°C) 

t 

(h) 

Pdt 

(%Yld) 

1 
4-Bromo- 

phenol (1) 

108 

(1.3) 
- - K2CO3 (3)b 80 24 

116 

(83) 

2 
116 

(1) 

TMSA 

(1.2) 

Pd(PPh3)2Cl2

(3)c
CuI 

(6) 
Piperidined 80 25 

117 
(87) 

3 
118 

(1) 

116 

(1) 

Pd(PPh3)4

(6) 

CuI 

(15) 
Piperidined 80 48 

119 
(64) 

 

a: reactions were done under argon atmosphere. b: DMF as solvent.  c: 6 mol% of PPh3 were added. d: base 

used as solvent too. 

 

Trimerization of To-ORf4,8 has been done affording the hexaphenyl benzene derivative 

120 (HPB-ORf4,8) which has undergone cyclodehydrogenation reaction with 

FeCl3/CH3NO2 reagents combination affording the quinonoid 121 as figure 10.2 depicts.   

 

OR

OR

119

OR

RO

RO

OR

OR

OR

Co2(CO)8, Dioxane

121

OR

O

RO

RO OR

O

Reflux, 64%

120
With R = (CH2)4Rf8

 
 

Figure 10.2. Oxidation of HPB-ORf

 FeCl3, CH3NO2

CH2Cl2, 48%

4,8 to quinonoid derivative.   
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Table 22. Trimerization and cyclodehydrogenation of 119 and 120, respectivelya. 

Entry Substrate 
Reagent 

(nb. eq/ H) 
Additive Solvent 

Temp. 

(°C) 

Time 

(h) 

Product 

(%Yld) 

1 119 Co2(CO)8b - Dioxane reflux 48 120 (64) 

2 120  FeCl3(3) CH3NO2 CH2Cl2 RT 24c 121 (48) 
 

a: all the reactions were done under argon.. b: 5 mol% of cobalt. c: argon was bubbled for 19 hours. 

 

Scheme XII illustrates a possible mechanism that we propose for the quinonoid 

formation. The mesomeric structures of the radical cation intermediate 120.2 lead to the 

cleavage of the alkylated perfluoroalkyl chain forming, therefore, the first quinone group. 

Additional oxidation followed by the removal of a cationic proton affords intermediate 

120.4 which, after being subjected to the same preceding steps, yields the quinonoid 

121.    
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Scheme XII. Quinonoid formation during cyclodehydrogenation step. 

10.2 HBCs with phenoxy alkylated perfluoroalkyl substituents 

 

10.2.1 Introduction 

 

To circumvent the difficulty we have encountered during the attempted synthesis of HBC 

bearing alkylated perfluoroalkyl ethereal chains, we have envisaged intercalating these 

latter from the HBC core with a phenyl group to avoid the quinonoid formation. Tolane 

building blocks have been synthesized by two main synthetical routes: the first using 

Suzuki and Kumada cross-coupling reactions of the corresponding alkylated 

perfluoroalkyl phenyl derivatives with 4,4’-dibromotolane 36 building block whereas the 

second synthetical pathway uses Sonogashira reaction approach. 
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10.2.2 Tolane synthesis via Kumada and Suzuki cross-coupling. 

 

Br

OR

B(OH)2

OR

MgBr

OR

RO

2

DA,B,C

E F

With: 
A. n-BuLi, THF, -78--40°C, 3h ; B. B(OMe)3, -78-RT, 25 h; 
C. HCl 2 M, 44%; D. 36,Pd(PPh3)4, toluene, EtOH, H2O, K2CO3,
relfux, 5d, 63%; E. Mg, THF or Et2O, reflux; F. 36, Pd(dppf)Cl2,
THF, reflux

R = (CH2)4Rf8116

116.1

122

123

 
 

Figure 10.3. 123 synthetical attempts using Kumada and Suzuki conditions. 

s it can m figure 10.3, only Suzuki reaction conditions were successful 

whereas K

eacted with 4,4’-dibromotolane 36 under the Suzuki cross-coupling conditions to yield 

t

 

A be noticed fro

umada ones weren’t. Entry 1 in table 23 shows that the boronic acid 122 was 

r

the desired tolane building block 123 (To-PhORf4,8) in 63%. On the other hand, as it can 

be noticed from entry 2, we believe that the failure to obtain To-PhORf4,8 via the Kumada 

reaction is due to the high difficulty to form the perfluoroalkoxy phenyl Grignard reagent 

116.1, necessary to continue the reaction further on. To prove that, many reactions were 

carried out under different conditions to see if the Grignard reagent forms but neither the 

replacement of heating with sonication (entry 4) nor the changing of the solvent from 

THF to die hyl ether (entries 5 and 6) were successful: after quenching all the reaction 

mixtures with H2O, only the starting material 116 was found. We presume that this 

difficulty is due to the electron donating effect of the alkoxy group that deactivates the 

phenyl ring preventing, therefore, the formation of 116.1.   
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Table 23. Suzuki and Kumada cross-coupling reactions with 36. 

on igna s C-C Coupling reaction Bor ic acid/Gr rd reaction

En rodu dt Reagent 
Sol. 

(°C) 

t 

(d) 

yst 

(mol%) 
Sol. 

T 

(°C) 

t 

(d) 

t 

) 
try p ct P

(eq) (eq) 

T  Catal
Pd

(%Yld

1 3
K

- - - 
(PPh3)4

(10) 

oluene/

2O/EtOHb
80 5 6a

122 

(2.4) 

2CO3 

(16) 

Pd t

H

 123 

(63) 

2 36 Mg (8) THF  5 
Pd(dppf)Cl2

(20) 
THF 75 5 a

116 

(8) 
75 - 

3 - 
116 

Mg (1.2) T 2 - - - - - 
(1) 

HF 75 

4 - 
116 

(1) 
Mg (1.2) THF ))) 1 - - - - - 

5 - 
16 

(1) 
Mg (1.2) Et2O 45 1 - - - - - 

1

6 - 
16 

(1) 
Mg (1.2) Et2O ))) 1 - - - 

1
-  - 

 

s calculated wita: number of ts i h re  to 36 atio 1. 

 

10.2.3 Tolane synthesis v nogashira cross-coupling. 

 

As figure 10  the ne age il , the r starting materials 124 an 5 

hav een synthesized, ood yield by reacting the c available -

bromophenyl)-phenol with the alkylated pe fluoroalkyl chains BrRf  and BrRf . Two 

different pathways using Sonogashira cross-  

attempted to synthesize the t hereal chains with four and 

ix alkyl spacers To-PhORf4,8 and To-PhORf6,6 (130), respectively.  

equivalen spect . b: solvent r  3:2:

ia So

.4 on xt p lustrates majo d 12

e b in g s, ommercially  4-(4

r 4,8 6,6

coupling reaction conditions have been

olane species bearing dodecyl et

s

 



10. HBCs with Perfluoroalkyl Alkoxy Side Chains 139

TMS

R

TMSA, Pd(PPh3)2Cl2, CuI

RO

PPh3,Piperidine, 80°C

124/125, Pd(PPh3)4, CuI

Piperidine, 80°C

NaOH, BTACl

CH2Cl2, RT

Br

108/109, K2CO3, DMF

80°C, 24h

Br

4-(4-Bromophenyl)phenol

OH OR

R= p-PhO(CH2)4Rf8 (92%)   128
R= p-PhO(CH2)6Rf6 (100%) 129

R= (CH2)4Rf8       (59%) 123 
R= (CH2)6Rf6       (63%) 130

R= (CH2)4Rf8       (79%) 124 
R= (CH2)6Rf6       (90%) 125

R= p-PhO(CH2)4Rf8 (90%) 126 
R= p-PhO(CH2)6Rf6 (64%) 127

2

H

R

Direct coupling

s the reaction conditions for the different experiments we have done to 

ain To-PhORf4,8 and To-PhORf4,8. The one-pot Sonogashira reaction by bubbling 

n a piperidine solution containing 124 and in presence of catalytical amounts 

pper at 80°C (entry 3) has yielded decomposition products. 

t of the catalytical species (entry 4) hasn’t brought any significant 

cha n d th r th ina er oxy 

derivative 124 and 12 SA under the condit men ed he 

trimethylsilylated acetyle tives 6 a are d 90 4% 

yields, respec . Hy latt ct yiel  th ene 

deriva s 128 129 tively, in virtually q action of t ese 

latter products with their corresponding brominated derivatives 124 and 125, afford the 

desire tolane ies To 8 a hO  mod te yield (ent 8). 

Even ough the step-by no pa requir one more st the 

S

 

 
 

Figure 10.4. Syntheses of tolane derivatives 123 & 130 via Sonogashira coupling. 

 

Table 24 reveal

obt

acetylene i

of palladium and co

Increasing the amoun

nge. E tries 5 an 6 show at upon eacting e brom ted p fluoroalk

below, t5 with TM ions tion

ne deriva 12 nd 127  produce  in % and 6

tively drolysis of these er produ s has ded e acetyl

tive  and , respec uantitative yields. Re h

d  spec -PhORf4, nd To-P Rf6,6 in era ries 7 & 

th -step So gashira thway es ep than 

uzuki one, the higher overall yield obtained of To-PhORf4,8 is still higher (40% vs. 28%). 
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Table 24. Syntheses of tolane species 123 and 130a. 

Entry 
Substrate 

(eq.) 

Reagent 

(eq.) 

Catalyst 

(Mol%) 

Co-cat. 

(Mol%) 
Base 

T 

(°C) 

t 

(h) 

Pdt 

(%Yld) 

1 
4-(4-BrPh)-

phenol (1) 

108 

(1.1) 
- - 

K2CO3

(3)b
80 24 

124 

(79) 

2 
4-(4-BrPh)-

phenol (1) 

109 

(1.1) 
- - 

K2CO3

(3)b
80 24 

125 

(90) 

3 124 acetylenec
Pd(PPh3)2Cl2

(4)d
CuI

(6) 
Piperidine 80 48 - 

4 124 acetylene
Pd(PPh

e

c
3)2Cl2

(6)

CuI 

(9) 
Piperidine 80 53 - 

5 124 
TMSA Pd(PPh

f
g

(1.3) (3)d (6) 
80 24 

126 

(90) 

6 125 
TMSA 

(1.3) 

Pd(PPh3)2Cl2 

(3)d
CuI

(6) 
Piperidinee 80 16 

127 

(64) 

7 
128 

(1) 

124 

(1) 

Pd(PPh3)4

(6) 

CuI 

(15) 
Piperidinee 80 48 

123 

(59) 

8 
129 

(1) 

125 

(1) 

Pd(PPh3)4

(6) 

CuI 

(15) 
Piperidinee 80 48 

130 
(63) 

3)2Cl2 CuI
Piperidinee

 

a: reactions were done under argon atmosphere. b: DMF as solvent.  c: acetylene was bubbled in the reaction 

medium for 5 hours. d: 6 mol% of PPh3 were added. e: as solvent. f: 9 mol% of PPh3 were added.  

g:1:1 THF/piperidine solvent mixture.  

 

10.2.4 Trimerization and cyclodehydrogenation of 123 and 130.  

 

Both perfluoroalkoxy tolane derivatives To-PhORf4,8 and To-PhORf6,6 have undergone 

trimerization reactions using dicobalt carbonyl as catalyst as shown in figure 10.5 on the 

next page. Cyclodehydrogenation reaction of the corresponding hexaphenyl benzene 

moieties 131 (HPB-PhORf4,8) and 132 (To-PhORf6,6), using the mild FeCl3/CH NO2 

ombination, has also been performed affording the desired HBC products 133 (HBC-

PhORf4,8) and 134 (HB

3

c

C-PhORf6,6). 
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Co2(CO)8, dioxane

Ar

Ar

Ar

Ar

Ar

Ar

CH2Cl2

FeCl3, CH3NO2

Ar

Ar

Ar

Ar

Ar

Ar

123/130
reflux

131 Ar =

132 Ar = O(CH2)6Rf6 42%

O(CH2)4Rf8 53% 133 Ar =

134 Ar = O(CH2)6Rf6 73%

O(CH2)4Rf8 33%

 
 

Figure 10.5. Syntheses of HBC-PhORf4,8 and HBC-PhORf6,6. 

 

As it is mentioned in table 25 below, trimerization of the tolane species bearing four 

methylene spacers To-PhORf4,8 affords the hexaphenyl benzene moiety HPB-PhORf4,8 in 

53% (entry 1) wherea pacers To-PhORf6,6 

ffords 28% yield only (entry 2) of the hexaphenylbenzene derivative HPB-PhORf6,6. The 

s the tolane species bearing six methylene s

a

yield of this latter can be improved to 42% by increasing the reaction time (entry 3). The 

moderate yields obtained for both products are most probably due to the low solubility of 

the starting material in dioxane because these latter were always recovered during the 

work-up.  

 

Table 25. Trimerization of To-PhORf4,8 & To-PhORf6,6 and cyclodehydrogenation of their 

respective productsa. 

Entry Substrate 
Reagent 

(nb. eq/ H) 
Additive Solvent 

Temp. 

(°C) 

Time 

(h) 

Product 

(%Yld) 

1 123 Co2(CO)8b - Dioxane reflux 48 131 (53) 

2 130 Co2(CO)8c - Dioxane reflux 48 132 (28) 

3 130 Co2(CO)8c - Dioxane reflux 66 132 (42) 

4 131 FeCl3(6) CH3NO2 CH2Cl2 RT 9d 133 (33) 

5 132 FeCl3(6) CH3NO2 CH2Cl2 RT 8d 134 (73) 
 

a: all the reactions were done under argon.. b: 10 mol% of cobalt. c: 5 mol% of cobalt. d: argon was bubbled 

throughout the reaction. 
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Shown in table 25, the HBC derivative bearing four methylene spacers is obtained in a 

lower yield than the one bearing six methylene intercalators. This can be only explained 

by the fact that HPB-PhORf4,8 has a lower solubility in CH2Cl2 than HPB-PhORf6,6, which 

leads to a slower reactivity. Increasing the reaction time is therefore the best solution to 

overcome this problem especially that the unreacted starting material is recovered from 

the medium. Both products have undergone many purification steps by washing 

repeatedly the crude material with hot solvents, known to dissolve the starting material 

and the partially cyclodehydrogenated products, until no trace of these latter was found 

in the mother liquor. Both HBC-PhORf4,8 and HBC-PhORf6,6 were characterized by 

MALDI-TOF mass spectrometry showing the corresponding desired peaks (figures 10.6 

and 10.7), within the spectrometer margin error (~1-3 ppm), in addition to a mass 

corresponding to M + 32 which is most probably 

aused by the matrix used (see experimental section for more details).  

 

 in both spectra, an additional mass 

c

 
 

Figure 10.6. MALDI-TOF of HBC-PhORf4,8. 

 

Calculated for 
C150H84F102O6

Exact Mass: 3918.464 
Mol. Wt.: 3920.105 
m/e: 3919.467 (100.0%)  
        3920.471 (83.1%) 
        3918.464 (59.9%) 
        3921.474 (45.5%) 
        3922.477 (18.6%) 
        3923.481 (6.0%) 
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Figure 10.7. MALDI-TOF of HBC-PhORf6,6. 

BC-PhORf6,6 has also been measured by UV-Vis spectrometry showing the desired 

 

 

H

peaks, at 369, 395 and 453 nm (figure 10.8). Additionally, the molar absorption 

coefficient values taken from literature[193] have permitted to estimate the concentration 

which was found to be around 6x10-6 M in 1,2,4-TCB. On the other hand, 

characterization of HBC-PhORf4,8 by the same technique wasn’t possible due to its low 

solubility. This has led us to measure the fluorescence spectrum of this latter excited at 

the maximum wavelength of the UV-Vis spectrum found for HBC, i.e. 389 nm, which 

yielded a mirror image to the UV-Vis spectrum of HBC-PhORf6,6 as it can be seen from 

figure 10.9. Both spectra show relatively broad peaks which reveals that the HBC 

derivatives are present in the solvent as stacked aggregates rather than being totally 

dissolved in ‘monomeric’ forms.  

 

Calculated for 
C150H108F78O6

Exact Mass: 3486.690 
Mol. Wt.: 3488.334 
m/e: 3487.693 (100.0%) 
        3488.697 (82.9%) 

        3490.703 (18.6%) 
        3491.707 (6.1%) 

        3486.690 (59.9%) 
        3489.700 (45.5%) 
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Figure 10.8. UV-Vis of HBC-PhORf6,6. 
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Figure 10.9. Emission spectrum of HBC-PhORf4,8 excited at 389nm. 

 

10.2.5 DSC investigation of HBC-PhORf4,8 and HBC-PhORf6,6  

 

DSC measurements of both HBC-PhORf4,8 and HBC-PhORf6,6 have been performed to 

evaluate the changes brought about by the ethereal side chains. The first entry in table 

26 shows that HBC-PhORf4,8 has comparably high transition temperatures of 216 and 

222°C. This can be explained by the low flexibility of both the lateral phenyl spacer and 

the oxygen group besides the fact that eight out of twelve methylene carbons are 

perfluorinated which increases the stiffness of the molecule. Surprisingly, upon 

decreasing the ratio of the perfluorinated groups to the methylene spacers, the product 

doesn’t show any liquid crystalline phase. The reason of this is still unclear especially 
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that we do expect that the increase of the aliphatic side chain will decrease the transition 

mperature as we have seen in the previous section with products HBC-Rf4,8 and HBC-

f6,6. 

able 26. Phase transition temperatures, enthalpy changes and structural assignments 

te

R

 

T

for HBC-PhORf4,8 and HBC-PhORf6,6. 

Phase Transition 

temperature (°C) 

∆H 

(KJ mol-1) Entrya,b Compound 

heating/cooling heating/cooling 

Phase 

width 
(°C) 

Assignment 

1 
HBC-PhORf4,8 

(133) 

182/(c) 

216/207 

222/215 

3/(c) 

18.7/19 

6.3/25.6 

- 

34 

6 

K1↔ K2 

K2 ↔ D1 

D1 ↔ D2

2 
HBC-PhORf6,6 

(134) 
- - - - 

 

a: isotropic liquid was not formed below 360°C, decomposition occurs above ~300°C. b: rate of heating & 

cooling is 20°C. c: not determined. With K: crystalline, D: discotic.  

 

10.3 Conclusion 

 

On the synthetical level, we proved in this section the importance of 

cyclodehydrogenation as a key reaction to obtain HBC derivatives. Therefore, any 

synthetical strategy to design new HBCs must take into account the high sensitivity of 

this reaction step toward the electron withdrawing effect of substituents which have the 

ability to prevent the oxidation reaction to occur. We also proved that the insertion of a 

phenyl spacer between hexaphenylbenzene and the perfluorinated chain doesn’t 

sufficiently decrease the electron withdrawing effect to such an extent that 

cyclodehydrogenation would occur. On the other hand, several HBCs b aring 

erfluorinated lateral chains were synthesized successfully with moderate to high yields, 

depending on the nat  perfluorinated part 

om the central aromatic core. Nevertheless, we showed that the spacing with an 

e

p

ure and the length of the spacer separating the

fr

ethylene or a phenyl ethylene requires the use of harsh oxidation conditions using 

AlCl3/Cu(OTf)2 to afford the desired products HBC-Rf2,8 and HBC-PhRf2,8. On the other 

hand, upon using a butyl or a hexyl spacer, the cyclodehydrogenation reaction occurs 

with the mild FeCl3/CH3NO2 reagent yielding HBC-Rf4,8 in moderate yield and HBC-Rf6,6 

in very good yield. The same previous combination is sufficiently powerful to synthesize 
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HBC-PhORf4,8 and HBC-PhORf6,6 that bear alkylated perfluoroalkyl ethereal side chains 

spaced from the HBC core with a phenyl group. The presence of this aromatic spacer is 

rucial because otherwise quinonoid products will be obtained, as we have demonstrated 

for 121 which has been obtained instead of the desired HBC.   

 

On the experimental level, many unusual observations have been gathered and studied 

for some of these HBCs. From these we note the self-organization of HBC-Rf4,8 in the 

solid state and in solution into long micrometer-sized columnar structures. Different 

SEM techniques were used to investigate preliminarily this observation that revealed the 

homogeneity of these long columns and their probable composition of nano-sized 

filaments. On the other hand, cryo-SEM technique reveals the presence of homogeneous 

nano-sized columns besides the micrometer-sized ones we mentioned earlier. Preliminary 

studies of film deposition of HBC-Rf4,8 and HBC-Rf6,6 on Si(100) by solution evaporat  

ave also been done; the former forms a uniform thin film containing homogeneously 

di  

rows in highly ordered columnar dendritic structure. 

c

ion

h

spersed notches whereas the latter shows a poor adherence on the substrate but it

g
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11. Nitrogen-containing polycondensed aromatic systems 
 

 

11.1 Introduction 

 

As we have noted previously (section 5.2), the synthesis of an HBC-like disc-shaped 

molecule bearing a nitrogen atom in its center was envisaged because it was expected 

that the presence of this latter will enhance the electron donating property of such 

molecules due to the free electron pair the nitrogen atom contains. Computational 

investigations of the stacking behavior of both candidates[329] 22 and 23, whose 

structures are depicted in figure 11.1, have clearly confirmed that the symmetry of the 

former doesn’t influence or improve the π- stacking very much, because the molecules 

are more favorable to an off-centered arrangement rather than an ordered columnar-like 

one; therefore, the less there are atoms at the edges, the better the stacking will be 

allowing more freedom to the peripheral sp2 carbons to arrange.  For all these reasons, 

roduct 23 was believed to be a promising candidate as well as its synthesis was 

expected to be less problematic than the more symmetrical product 22. 

 

p

N

22 23

N

RR

R

R

R

R

With R= H or perfluorinated 
             chain

 
 

Figure 11.1. N-containing disc shaped aryls.  

 

There is no known synthetical strategy for getting such types of unknown molecules; 

consequently, we thought about proceeding nearly in the same manner as we have done 

to synthesize the HBC hesis can be 

ed by the cyclodehydrogenation of a corresponding trinaphthyl amine moiety 135 

own in figure 11.2 on the next page. Hence, the synthesis of this latter was believed 

derivatives: a closer look to 23 shows that its synt

achiev

as sh
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to be crucial since it constitutes the starting material for making the disc shaped 

romatic moiety 23.  a

 

N

23

R

R

R

With R= H or perfluorinated 
             chain

135

N

R R

[oxidation]

R

 
 

Figure 11.2. Oxidation of trinaphthyl amine to N-containing aryl disc shaped moiety.  

 

There are many synthetical approaches to obtain triaryl amine derivatives, most of which 

employ an aryl amine and an aryl halide in presence of a transition metal reagent that 

could be present either stoichiometrically or catalytically. However, listing all these 

ynthetical methods exceeds the aim of this work and for this reason we will only 

menti  331] 

ondensation reactions are the most famous using generally a stoichiometric amount of 

iodides and bromides species. Recently, the air-sensitive phosphine ligands was replaced 

s

on the most commonly used reactions. Copper-mediated Ullmann[330,

c

copper, a large excess of the aryl halide, with respect to the aryl amine, in presence of a 

base[332-334]. However, the limited choice of substrates, the high amounts of aryl halides 

and copper species required, besides the need for elevated temperatures have limited the 

use of these reactions. Recently, milder Ullmann-type reactions have been reported using 

catalytical amounts of copper species, a suitable ligand and, an appropriate base[335-339]. 

Nevertheless, the major drawback using these new methods is the fact that many 

additives are required in addition to the use of relatively expensive ligands and bases. 

Buchwald[340-343] and Hartwig[344, 345] have widely investigated the palladium-catalyzed 

couplings of amines. The general procedure [346] employs an equimolar mixture of the aryl 

amine and the aryl halide or triflate, a palladium catalyst, a suitable phosphine ligand 

and a mild organic base at low to medium temperatures under an inert atmosphere. 

Many improvements have been brought to this type of reaction: The syntheses of new 

phosphine ligands[276] have allowed the use of the inexpensive aryl chlorides instead of 
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by the air-stable imidazolium salts permitting a wider use of this reaction[347, 348]. 

Additionally, the use of low-cost nickel catalysts has also been found to be satisfactory 

r mild triaryl amine condensation reactions[349]. By comparing the two main N-C 

densation reactions require harsher 

and more slu itio the d-Hartwig co besides the fact 

that ter r n type  wide  c g ch  of substrates. 

Therefore, we have favored the use of the latter procedure over the former. However, the 

mechan um am n h ite er beha d is 

more complicated than the other palladium-catalyzed mechanisms we have showed so 

far. Ma mecha c proposi s are p ed in the literature from which we can 

conclude that the v riations in  are de ndent of many parameters such as the 

oxidation state of palladium ecies[350, 3 , the ty f liga se and r the 

amine is primary, secondary, atic or aromatic[352, 353]. Nevertheless, we present, in 

scheme XIII below, the mecha  which was foun be m lik in e i.e. 

upon using aromatic substrate

 

L R

fo

coupling reactions we can deduce that Ullmann con

ggish cond ns than Buchwal nditions 

the lat eactio has a r scope oncernin the oice

ism of the palladi -catalyzed inatio as a qu  diff ent vior an

ny nisti tion resent

a  these pe

 the  sp 51] pe o nd u d,  whethe

aliph

nism d to ost ely our cas

s.   

L2Pd(II)X2
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Oxidative
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-2L

RBr
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H
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2L
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Scheme XIII. Mechanism of the Buchwald-Hartwig reaction. 
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11.2 Synthesis of the perfluoroalkyl substituted precursors 

 

Synthesis of bromo- and aminonaphthalene derivatives bearing a perfluorinated chain 

with two methylene spacers has been performed using a similar procedure to that 

described in section 9.1. Figure 11.3 below, illustrates the different reaction steps 

required for this purpose: the diazotization of 136 and 137 has been done 

successfully[354] yielding the stable tetrafluoroborate diazonium salts 138 and 139 

respectively. Heck cross-coupling reaction of these latter with the commercially available 

perfluorinated olefinic chain yields the corresponding perfluoroalkenyl naphthalene 

moieties 140 and 141 in good yields.  

 

X

NH2

X

N2BF4

Rf8

Rf8

X

Rf8

X

Pd or Rh/C, H2

X= Br        136
X= NO2     137

CH2Cl2, RTMeOH, 40°C

Pd(OAc)2

X= Br    (100%)    138
X= NO2 (99%)      139

X= Br   (76%)       140
X= NO2 (90%)      141

X= Br    (91%)    142
X= NH2 (94%)     143

BF3.Et2O

tBuNO2

 

material was recovered even after 

 both the amount reagents and the reaction time (entries 3 and 4). The 

placement of Sn/HCl by ZrCl4/NaBH4 combination[355] yields decomposition products 

nly (entry 5). On the other hand, the reaction of 141 under 1 bar of hydrogen in 

 

Figure 11.3. Syntheses of perfluorinated naphthalene derivatives 142 & 143. 

 

As it can be noticed from table 27 on the next page, the hydrogenation of 140 using the 

Rh/C catalyst under 50 bar hydrogen pressure affords the alkylated perfluoroalkyl 

naphthalene species 142 in very good yield (entry 1), whereas only the starting material 

is recovered upon applying the same conditions on the nitronaphthalene derivative 141 

(entry 2). This could be explained by the mildness of Rhodium as a hydrogenation 

catalyst on one hand, and the fact that the nitro group has a deactivating influence as a 

reason of its electron withdrawing effect on the other hand. Consequently, we have tried 

to reduce the nitro group to the amino derivative in a first step followed by the 

hydrogenation of the olefinic double bond. Nevertheless, upon employing 

tin/hydrochloric acid conditions, only the staring 

increasing

re

o
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presence of Pd/C as catalyst yields 87% of the desired product (entry 6) which is 

improved to 94% yield upon increasing the hydrogen pressure to 3 bar (entry 7).  

 

Tabl yd atio ctio 0 . 

Entry 
Substrate 

q.) 
Reagent 

(eq.) 
Catalyst 
(M  

Solvent 
T t 

 
Pdt 

e 27. H rogen n rea ns of 14 and 141

(e ol%) (°C) (h) (%Yld) 

1 
140 H2

(50 bar

Rh/C 

(2) 
CH l2  

(1) ) 
2C RT 24

142 

(91) 

2 
141 

(1) 

H2

(50 bar) 

Rh

) 
CH2 2

3 
141 Sn 

- HClaq 130 4 no rxn 

4 
141 Sn 

- HClaq 130 24 no rxn 

/C 

(2
Cl RT 24 no rxn 

(1) (2) 

(1) (25) 

5 
141 

(1) 

ZrCl4(1.2)/ 

NaBH4(4.8) 
- THF 

0 -

75 
20 Decomp. 

6 
141 

(1) 

H2

(1 bar) 

Pd/C 

(5) 

MeOH/ 

THF (1:1) 
RT 24 

143 

(87) 

7 
141 

(1) 

H2

(3 bar) 

Pd/C 

(5) 

MeOH/ 

THF (1:1) 
RT 24 

143 

(94) 

 

 

11.3 Synthetical attempts of the perfluoroalkyl substituted trinaphthyl amine 

 

11.3.1 Via a one-pot reaction 

 

In a first place, we have attempted to obtain the desired trinaphthyl amine derivative 135 

 a one-pot synthesis by reacting the aminonaphthalene moiety 143 with two fold 

excess of the brominated naphthalene compound 142 using the general reaction scheme 

depicted in figure 11.4.   

 

in
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R

Br

142

+

R

NH2

143

R

N

135

RR

R

NHR

R

+

145144

With A. Pd(OAc)2, t-Bu3P, 
NaOt-Bu, Xylene, 120°C  

 

Figure 11.4. One-pot Pd-catalyzed amination reaction. 

 

Table 28 on the next page shows the results of the series of trials we have done to obtain 

135. No trace of this latter product was found, only the binaphthyl amine species 144 

was isolated in 35% yield after one day; the unreacted starting materials were recovered 

at the end of the reaction (entry 1). Increasing the reaction time (entry 2) has only 

increased the yield of 144 and afforded traces of perfluorinated naphthalene derivative 

145, resulting from the debromination of 142. This latter product indicates that even 

though the formation of the binaphthyl amine intermediate 144 occurs, the reaction is 

not carrying on towards a second C-N coupling but instead of this, the metallated 

bromonaphthalene intermediate is cleaving and forms 145 which reveals that the 

reaction is somewhat hindered. To prove this assumption, an equimolar mixture of 142 

and 143 has been reacted, under the same conditions used previously, affording the 

binaphthyl amine 144 in 83% yield (entry 3) and indicating a good reactivity when a 1:1 

mixture of both starting materials is present. 

 

 

 

 

A

A

R = (CH2)2Rf8
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Table 28. One-pot reaction attempts of perfluorinated trinaphthyl amine derivative 

135a,b. 

Entry 
(eq.) (eq.)  (Mol%) (Mol%) (eq) (°C) (h) (%Yld) 

143 142 Pd(OAc)2 t-Bu3P NaOt-Bu T t Pdt 

1 1 2.3 5  20 3.5 120 24 144 (35) 

2 5 20 4
 (63),

 (tr

3  1 20 1.  48 144 (83) 

1 2. 5   120 46 
144  

145 aces) 

1 5  5 125
 

a ctions were done under atmosphere. b: xyle  as solvent.  
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An alternative explanation to the sterical hindrance, we menti i e  
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naphthalene gr p, could be the po e degrad of t dium complex whose 

activity becom critical, after affording the bina yl am pec h idi  

sec dary pr  can’t be suspe it is well-known that the pKa ry  

are known to p upon the addition of a second aryl group, hence we expect that the 

sec dary am s prot  is more tive than the primary one. s nt

attempts have been done to investigate the reac st g in thyl amine 

species 135 as the starting material, instead of the aminon thalene derivativ

ov me the possible erosion of the different p m xe in e r  

In a second attempt, we have d th ity  b l a  

employing stronger bases and by hanging cidic on by the more

lithium ion affording the ami .1 react  with 2 er  

reaction conditions[356-358] (Figure 11.

 

: rea argon ne was used

3.2 Usi 44 as sta materia

oned n th previous

ag reven he hthyl am pecies 5 to co le w h an ditiona

ou ssibl ation he palla

es phth ine s ies. T e ac ty of the

on oton cted since  of a l amines

 dro

on ine’ on  reac  Con eque ly, many 

tion: fir , by usin  the b aph

aph e 143, to 

erco a ulladi comple s dur g th eaction.

 increase e activ of the inaphthy mine by

exc its a  prot  reactive 

de species 144  th is at ed  14 und different

5).  
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Y = Li  144.1
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146

With  R = (CH2)2Rf8 and Z = R
 

 

Figure 11.5. Using binaphthyl amine (or amide) as a starting material. 

 

Table 29 on the next page, depicts the different reactions conditions applied and their 

corresponding results. Upon employing the classical conditions that we have used lately 

in the one-pot reactions attempts (table 27), both the debrominated product 145 and the 

C-C coupled product 146 were isolated in 10 and 32% respectively (entry 1). This result 

has prompted us to investigate the reaction at different temperatures assuming that a 

probable competition between thermodynamically and kinetically favored products is 

taking place. But when carrying out the reaction at room temperature for three days, 

y the starting materials are recovered (entry 2). The same result is also obtained after 

ld (entry 9). Therefore, we can assume that the 

roton, needed for the debromination to occur, is afforded either by the acetate moiety or 

y the butyl group but to prove this, more investigations should be carried out by doing 

onl

running the reaction at 70°C for two days and at 110°C for one day (entry 3 and 4 

respectively). We have also noticed that the reaction doesn’t take place even after 

approximately two days of reaction at 120°C which indicates a very low reactivity (entry 

5) probably caused by the relatively weak base employed. Therefore, we have replaced 

sodium-tert-butoxide with the more basic cesium carbonate but the reaction didn’t 

progress at room temperature (entry 6) and when carrying out the same reaction 

conditions at 120°C, again traces of the homocoupling product 146 are detected, by 1H 

NMR spectroscopy, after two days of reaction (entry 7). This latter product can be 

isolated in 5% yield when carrying out the reaction for three days (entry 8). We have also 

noticed that if the catalyst and the ligand amounts are increased, the debrominated 

product is isolated in a significant yie

p

b
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separate reactions that employ, in a first set of experiments, new Pd(II) and Pd(0) sources 

nd, in a second series of experiments, different ligands than tert-butyl phosphine.  a

 

Table 29. Attempted synthesis of 135 using binaphthyl amine derivative 144 (or amide 

144.1) and bromonaphthalene 142a,b. 

Entry Substrate 
(eq.) 

142 
(eq.) 

Catalyst
(Mol%) 

Ligand 
(Mol%) 

Base 
(eq) 

T 
(°C) 

t 
(h) 

Pdt 
(%Yld) 

1 144 
(1) 1 Pd(OAc)2 

(5) 
t-Bu3P 

(20) 
NaOt-Bu 

(1.5) 
125 72 145 (10) 

146 (32) 

2 144 
(1) 1 Pd(OAc)2 

(10) 
t-Bu3P 
 (40) 

NaOt-Bu 
(1.5) 

RT 75 no rxn 

3 144 
 (1) 1 Pd(OAc)2 

(10) 
t-Bu3P 
 (40) 

NaOt-Bu 
(1.5) 

70 48 no rxn 

4 144 
 (1) 1 Pd(OAc)2 t-Bu

(10)  (40) (1.5) 

5 144 
(1) 1 Pd(OAc)2 

(10) 
t-Bu3P 
 (40) 

NaOt-Bu 
(1.5) 

120 40 no rxn 

6 144 
 (1) 1 Pd(OAc)2 

(5) 
t-Bu3P 
 (20) 

Cs2CO3

(1.5) 
RT 120 no rxn 

7 144 
 (1) 1 Pd(OAc)2 

(5) 
t-Bu3P 
 (20) 

Cs2CO3

(1.5) 
120 48 146 

(traces)c

8 144 
 (1) 1 Pd(OAc)2 

(5) 
t-Bu3P 
 (20) 

Cs2CO3

(1.5) 
120 72 146 (5)c

9 144 
 (1) 1 Pd(OAc)2 

(25) 
t-Bu3P 
 (100) 

Cs2CO3

(3) 
120 120 145 (82) 

10 144 
 (1) 1 Pd(OAc)2 

(5) 
t-Bu3P 
 (20) 

Cs2CO3

(3) 
130 48 145 (36)c

146 (16) 

11 144 
 (1) 1 Pd(OAc)2 

(5) 
t-Bu3P 
 (20) 

NaOHaq

(12M)d 125 48 decomp. 
pdts 

12 144 
 (1) 1 Pd(OAc)2 

(5) 
t-Bu3P 
 (20) 

NaOH 
(2.2)e 100 52 145 (40)c

146 (22) 

13 144.1 
(1)f 1 Pd[(o-tol)3P]2Cl2

(5) 
(o-tol)3P 

(20) 
- 90 18 no rxn 

14 144.1 
(1)g 1 Pd2dba3 

(2.5) 
(o-tol)3P 
(20+15) 

- 90 24 145 (13)c

15 144.1 
(1)h 1 Pd[(o-tol)3P]2

(20) 
(o-tol)3P 

(60) 
- 90 24 no rxn 

16 144.1 
(1)h 1 Pd2dba3 

(2.5) 
t-Bu3P 
 (20) 

- 90 46 145 (42)c

3P NaOt-Bu 110 24 no rxn 

 

a: reactions were done under argon. b: xylene or toluene were used as solvent. c: NMR yield. d: 2eq.of T Br 
were used as a PTC. e: dioxane was used as solvent. f i, pentane, RT, 16hrs. g: n-BuLi, Et2O, -50°C- RT, 

24hrs. h: n-BuLi, TH , -90°C- RT, 24hrs.  
 

BA
: n-BuL
F
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Surprisingly, upon increasing the reaction temperature to 130°C, both products 145 and 

146 are detected (entry 10). This reveals that a competition takes place between 

debromination, which is kinetically more favored, and homocoupling, which is 

thermodynamically more favored. The substitution of cesium carbonate with a hydroxylic 

base yields decomposition products, when a concentrated aqueous solution of sodium 

hydroxide is used in presence of tetrabutyl ammonium bromide (TBABr) as phase 

transfer catalyst (entry 11). On the other hand, the addition of powdered sodium 

hydroxide to the medium affords both 145 and 146 (entry 12).  

 

In summary, all the trials to activate the aminic proton by using stronger bases or 

onducting the reaction at different temperatures turned out to be unsuccessful. 

Accordingly, we have tried to overcome the problem by exchanging the proton with a 

better reacting group, i.e. lithium ion: all the amide derivatives were synthesized in situ 

by ion exchange with n-BuLi and then reacted, in a next step, with the brominated 

species 142 in presence of a suitable palladium complex. Nevertheless, the reactions 

using the commercially available Pd[(o-tol)3P]2Cl2 and Pd[(o-tol)3P]2, which was prepared 

according to literature[359], were found to be inefficient (entries 13 and 15 respectively). 

On the other hand, the use of Pd2dba3, with either an aromatic or an aliphatic 

phosphine, affords the alkylated perfluoroalkyl naphthalene product 145 (entries 14 and 

16 respectively). The combination of these last two trials with the result obtained in entry 

9, reveals that the proton source needed for debromination are most probably the 

substituents of the phosphine ligand.   

    

In conclusion, neither the replacement of s um tert-butoxide with stronger bases nor 

the proton different 

alladium/ligand combinations, have afforded the desired trinaphthyl amine derivative 

GC/MS 

ithout being analyzed by any viable technique that reveals the structure of this 

olecule, like NMR for example, since the molar mass of both the C-C- coupled product 

nd the trinaphthyl amine is identical. 

c

odi

 exchange with a lithium ion, nor the usage of a series of 

p

135. This allows only one remaining assumption to stand for true and that is the steric 

hindrance caused by the two bulky naphthyl groups preventing, consequently, the third 

naphthalene moiety to bind to the nitrogen atom. It is also worthwhile to note that only 

few patents were found in the literature describing the synthesis of the parent 

trinaphthyl amine[360, 361] which was characterized by mass spectrometry and 

w

m

a
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11.3.3 Oxidative cyclization of binaphthyl amine 144 

 

T o m o g brom ion b roduc

146, as a direct reason of the steric hindrance of the binaphthyl amine moiety 144, we 

thou selective ox of this latt

mem ered a nzo d 4 lust n fig  11.6 he 

a  

lectronic stabilizing effect than two naphthalene groups which will enhance the acidity 

o overc me the for ation of h mocouplin  and de inat y-p ts 145 and 

ght about attempting a regio idative cyclization er to its six-

b za-be chrysene erivative 1 7 as il rated i ure  below. T

dvantage of this latter product is the fact that its rigid aromatic group has a stronger

e

of the amine’s proton. Additionally, the aromatic core will allow more space for an 

additional naphthalene moiety to add on. The combination of both expected results 

should, therefore afford the product 148 obtained via a C-N coupling reaction without 

any problem. On top of that, the advantage of having this latter product is that, upon 

oxidative cyclization, it can only afford the disc shaped 23 due to the lack of any other 

possibility of oxidation. 

 

142, Pd cat., ligand

Base

R

N

148

RR

R =  (CH2)2Rf8

NH

R

R

144

Ox.
NH

R

R

147

Ox.

R

N

23

RR

 
 

Figure 11.6. New approach using cyclized product 147 as a starting building block. 
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It is worthwhile to point out that two main cyclodehydrogenation reactions of diarylamine 

derivatives that are reported in literature: the first uses photochemical reaction 

conditions[362-364] while the second employs palladium(II) species as an oxidant[365, 366]. 

Nevertheless, both methods lead exclusively to the formation of the five-membered ring 

carbazole derivatives. Consequently, this has led us to explore reagents that have never 

been used previously on this type of particular substrate, such as, the conditions 

employed previously to aromatize hexaphenylbenzene into HBC or the hypervalent iodide 

reagent, [bis(trifluoro-acetoxy)iodo]benzene (PIFA), well-known for cyclization reactions of 

nitrogen containing products[367-369]. Preliminary oxidative cyclization reactions have been 

performed using the conditions depicted in figure 11.7 below. 

 

N
H

RR

149

A

R = (CH2)2Rf8

NH

R

B

R

144

With:
A. PIFA, BF3.Et2O, CH2Cl2, reflux, 7 h, 13% 
B. FeCl , CH3NO2, CH2Cl2, RT, 24 h3

Polymeric materials

 
 

Figure 11.7. Oxidative cyclization of binaphthyl amine species 139. 

 

As listed in table 30 on the next page, the cyclodehydrogenation of the binaphthyl amine 

moiety 144, using FeCl3/CH3NO2 combination of reagents, leads to the formation of a 

tarry product whose ESI-MS spectrum shows the formation of unidentified 

decomposition products (entry 1). On the other hand, the use of PIFA/BF3.Et2O 

combinations leads to the formation of the carbazole 149 in 13% yield (entry 2).  
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Table 30. Oxidative cyclization of 144a.  

En ub e  Additive Solve
m

(°C) 

e

(h) 

Pr
try S strate R agent nt 

Te p. Tim  oduct 

(%Yld) 

1 144 FeCl3 .5) C CH2C RT 24b dec s (12 H3NO2 l2 omp. pdt

2 144 PIFA(1.2) B CH2C eflux 9 149 (13) F3.Et2Oc l2 r
 

a: all the reactions  done under argon..  was bub  hours. c: 2:1 ratio of BF3.Et2O/PIFA. 

 

Even though the above preliminary reactions aren cient u ve, ed 

study of the reaction done with FeCl /CH3NO d be excluded due to the 

decom sition products i ated at end of eaction. Neverthele ore 

ex l 

e present herein (entry 2, table 30), refluxing the medium could have forced the 

 

 were  b: argon bled for 4

’t suffi ly concl si a deepen

3 2 coul

po sol the the r ss, a m

haustive study must be carried out when using the PIFA reagent, because in the tria

w

reaction toward a kinetic pathway to afford the carbazole 149 by-product instead of the 

desired six-membered ring product 147. Hence, a thorough exploration of the reaction 

conditions, more specifically the study of the temperature effect on the product 

formation, should be done to see whether 147 product could be obtained via this route. 

 

To prove that steric hindrance is the main reason for not obtaining the trinaphthyl amine 

derivative 23, we have replaced the bromonaphthalene species 142 with its phenyl 

homologue 88 as well as with the commercially available 4,4’-dibromobiphenyl 150 

(figure 11.8) and carried out the same reaction conditions that have been applied so far.     
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+
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NH
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With: A. Pd(OAc)2, t-Bu3P, NaOt-Bu, toluene 
120°C, 3d, 64%; B. Pd(OAC)

R1 = (CH2)2Rf8  144
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B
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R1
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R2= Br, R3= p-PhBr  150

N

R1

R1
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2, t-Bu3P, NaOt-Bu, 
toluene, 120°C, 10d, 50%  

 

Figure 11.8. Pd-catalyzed reaction of binaphthyl amine 144 with bromophenyl 88 and 

4,4’-diromobiphenyl 150.  

 

Table 31, lists the different trials carried out to obtain 151 and 152: The reaction 

between the binaphthyl amine derivative 144 and the alkylated perfluoroalkyl 

bromobenzene 88, affords the triaryl amine moiety 151 in a relatively low yield (24%) 

even after six days of reaction in presence of Pd2dba3 (entry 1). Nevertheless, we were 

able to improve the yield significantly (64%) and in a shorter reaction time by replacing 

the so far used palladium(0) catalyst with Pd(OAc)2 (entry 2). On the other hand, the 

reaction between binaphthyl amine derivative 144 and 4,4’-dibromobiphenyl 150 in 

presence of  Pd2dba3 affords the desired alkylated perfluoroalkyl tetranaphthylbenzidine 

species 152 in 28% and 38% yield after four and six days of reaction, respectively (entry 

3 and 4). Similarly to the reaction affording 151, the use of Pd(OAc)2 instead of Pd2dba3 

proves the yield to 50% after a one week reaction time. The relatively long reaction 

mes required to form both 151 and 152 prove clearly that steric hindrance is the main 

reason for preventing a third naphthalene species to bind to the nitrogen atom.   

  

 

 

im

ti
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Table 31. Synthetical attempts of alkylated perfluoroalkyl triaryl aminea-c. 

Entry Substrate 
(eq.) 

139 
(eq.) 

Catalyst
(Mol%) 

Ligand 
(Mol%) 

NaOt-Bu 
(eq) 

t 
(d) 

Pdt 
(%Yld) 

1 88 
(1) 1 Pd2dba3 

(2.5) 
t-Bu3P 
 (10) 

1.5 6 151 (24) 

2 88 
(1) 1 Pd(OAc)2 

(5) 
t-Bu3P 

(20) 
1.5 3.5 151 (64) 

3 150 
(1) 2 Pd2dba3 

(10) 
t-Bu3P 
 (80) 

3 4 152 (28) 

4 150 
(1) 2 Pd2dba3 

(2.5) 
t-Bu3P 
 (20) 

3 6 152 (38) 

5 150 
(1) 2 Pd(OAc)2 

(10) 
t-Bu3P 
 (40) 

3 7 152 (50) 
 

a: reactions were done under Ar. b: toluene was used as solvent. c: all the reactions were heated at 120°C. 
 

Triarylamines are well-known as hole transporting materials and they have found 

applications[370] in many thin layer electroluminescence (EL) devices such as Organic 

Light Emitting Diodes (OLED), Organic Field Effect Transistors (OFET), and solar cells, 

besides their wide use in electrophotographic devices like photocopiers and laser 

printers. This wide application is due to th easily accessible oxidation potential of the 

nitrogen atom which  generates a stable 

mine radical cation necessary for the hoping mechanism. However, the wide fields of 

ave mentioned above require from the triarylamine products many 

ssential properties such as high thermal stability, electrochemical reversibility, high 

e 

, on hole injection, forms a free electron and

a

applications we h

e

glass transition temperatures (Tg) to avoid any morphological change and last but not 

least, the ability to form amorphous phases. Listing the numerous triarylamines that 

have been synthesized and tested for this purpose exceeds the aim of this work; 

therefore, we provide herein some references describing the different groups of 

triarylamines that have been synthesized and explored so far[331, 333, 334, 336, 346, 356, 371-373].  

 

Interestingly, the triaryl amine derivative 151, isolated as a transparent waxy solid, was 

found to produce fibers even at room temperature. Polarized optical microscope 

observation of a fiber drawn at room temperature reveals a long homogenous structure 

that also shows clearly aligned features as illustrated in figure 11.9.   
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Figure 11.9. POM micrograph (x 100) of a fiber of 151 drawn at room temperature. 

SC measurements of these compounds have revealed promising properties because the 

alorimetric traces of both products showed no mesophases and high melting points: the 

rmer product doesn’t melt even at 450°C, while the latter has a melting point of 242°C. 

pon cooling the samples from the liquid phase and heating them again at a rate of 

0°C/min, they didn’t show any exothermic crystallization peak which reveals the 

amorphous nature of both 151 and 152. This could be explained by the disordered 

packing of the molecules due to the perfluorinated chains they bear at their periphery. 

Significant thermal stability was also observed since the products were allowed to run 

many times at elevated temperatures. Upon cooling 152 from the liquid phase, two 

exothermic peaks at 198°C and 210°C appear, revealing that two different crystallites are 

present at least. This observation can be only explained by a contribution of the different 

structural conformations product 152 possess and which is caused by the planar 

chirality of the product since four atropisomers having different energies can form, 

leading to several physically different crystallites. Figure 11.10 on the next page depicts 

the some of these possible conformations that could be present. 

 

 

 

D

c

fo

U

2



11. N-containing Polycondensed Aromatic Systems 163
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Figure 11.10. Possible conformations of 152. 

 

11.4 Conclusion 

 

Synthesis of the disc-shaped naphth-annelated cyclazine bearing peripheral 

perfluorinated chains 23 was not possible due to the extreme difficulty to synthesize the

key intermediate trinaphthyl amine 135 that upon oxidation, was expected to afford the

desired product. Many reaction conditions have been examined to synthesize 135 but

none of the trials were successful. We also prove in this project that steric hindrance is

the main reason for not being able to form the trinaphthyl amine moiety 135 because the

addition of a third naphthalene group to the binaphthyl amine 144 is diverted from

nitrogen to carbon, while the addition of phenyl or biphenyl groups affords the 

corresponding triaryl amines 151 and 152. Moreover, preliminary oxidative cyclization

attempts of the binaphthyl amine 144 have afforded the five-membered carbazole

derivative 149 instead of the required six-membered aryl amine 147 exclusively. On the

other hand, preliminary investigation of the triarylamine products 151 and 152 show

that they could be promising candidates as hole transporting materials especially on the
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background that two recent patents[361, 374] describe the utility of some tetranaphthyl 

benzidine derivatives. 
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12.1 HBCs bearing perfluorinated groups 

th 

irectly attached perfluorinated aliphatic chains couldn’t be aromatized to their 

en the hexaphenyl benzene and the lateral perfluoroalkylated 

alkyl chains. Moreover, the synthesis of HBC targets decorated with ethereal side chains, 

was made possible either when using a perfluoromethyl group (HBC-OCF3) or upon 

employing a phenyl intercalator between the oxygen atom and the central aromatic core 

(HBC-PhORf4,8 & HBC-PhORf6,6). The use of one of these alternatives prevents the 

oxidation of the hexaphenylbenzene derivatives, bearing directly attached ethereal 

chains, to their quinonoid products. 

 

Two out of three HBC primers (HBC-OCF3 & HBC-SCF3) designed for this purpose are 

expected to be valid candidates. Each of them is a ditopic molecule where the aromatic 

disk is surrounded by six heteroatoms (O or S) well-known for their good adhesion on 

metallic and intermetallic substrates. Preliminary SEM investigations have thus revealed 

promising and unusual observations: the deposition of HBC-SCF3 on Si(100) forms a 

thin, smooth film that covers the surface of the substrate homogenously whereas HBC-

Rf6,6 deposits in well-organized columnar dendrites.  

 

On the other hand, when depositing a dilute solution of HBC-Rf4,8, in 1,2,4-TCB, a film  

forms that shows notches whose origin is still unclear, whereas a high concentration of 

the same product leads to the formation of non-coagulated micrometer-sized columnar 

structures homogenous in size, shape, and morphology. The observation of these 

structures at a high magnification reveals that they are made up of layers. 

  

The investigation of the same concentrated solution of HBC-Rf4,8 with cryo-SEM allowed 

the detection of two types of self-organized stacks: besides the micrometer sized columns 

we mentioned previously, nanometer-sized filaments were observed whose length and 

 

Syntheses of several HBC derivatives bearing different perfluorinated and mixed 

perfluoroalkylated alkyl groups, ranging from short to long tails, have been done 

successfully. The cyclodehydrogenation was found to be the key reaction in the 

production of any new HBC molecule. All hexaphenyl benzene starting materials wi

d

corresponding HBCs as a reason of the high electronegativity of the perfluorinated 

chains.  

 

Additionally, smoother reaction conditions were found to be sufficient when increasing 

the aliphatic spacers betwe
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diameter is in the order of  750 nm and 30 nm, respectively. These nano-filaments can 

e regarded as a direct and a reliable proof on the possibility of obtaining free-standing, 

elf-assembled singular columnar stacks when employing a perfluoroalkylated alkyl HBC 

erivative with a right match of alkyl and perfluoroalkyl chains.   

he solid state investigation of the same product (HBC-Rf4,8) under a POM and an SEM 

vealed a structural organization upon heating: the same micrometer-sized fibers were 

learly observed under the optical microscope whereas a bundle-like morphology has 

een detected under the electronic microscope. One possible application of these 

icrometer-sized self-organized columns might be their employment as molecular wires. 

evertheless, more has to be done in the future in order to build a functional field 

mission tip based on self-assembled HBC columns. One task will be to find a suitable 

chnique to deposit a first layer of equally dispersed HBC primers on a substrate. A 

econd hurdle to overcome will be to find the optimal conditions that afford single 

olumnar architectures of the perfluorinated HBCs: one way to investigate would be the 

ddition of a non-solvent to the solution of HBC columns in 1,2,4-TCB which will only 

ix with the latter solvent causing an increase of the dilution between the HBC stacks 

ut without dissolving them into isolated molecules.  

 deeper investigation of the HBCs bearing ethereal groups (HBC-OCF3, HBC-PhORf4,8 & 

BC-PhORf6,6) would be also of interest to see whether these groups introduce special 

atures to the π-stacked columns, such as helicity. The synthesis of new HBC molecules 

ecorated laterally with branched and cyclic perfluorinated groups might bring a better 

flon-isolation effect of the central aromatic core from its surroundings in addition to a 

ossible formation of helical stacks.     

2.2 N-containing PAH  

he synthesis of such type of molecules is believed to be of potential interest for 

lectronic application because of the low oxidation potential the nitrogen atom has with 

respect to a carbon atom. None the less, the attempted synthesis of the 

perfluoroalkylated disc-shaped naphth-annelated cyclazine 23 couldn’t be achieved as a 

reason of the impossibility to produce the trinaphthyl amine starting material 135. Steric 

hindrance is the main reason for not being able to synthesize the desired product by 

addition of a third naphthalene substituent to the binaphthyl amine 144.  
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A better strategy, however, would be to couple two naphthalene derivatives through a C-

 bond first, followed by cyclization via the formation of a C-N bond affording, therefore, 

e six-membered aza-benzo chrysene derivative 147 whose nitrogen atom is less 

terically hindered than the binaphthyl amine derivative 144, which should permit a 

ird naphthalene group to bind without any major difficulties.     

evertheless, the synthesis of two alkyl perfluoroalkylated triaryl amine derivatives 151 

nd 152 was successful. Both products appear to be very good candidates for an 

pplication like OLED because they fulfill most of the requirements for such type of 

evices, from these we note, a high viscosity, a good thermal stability over a wide range, 

nd an amorphous state.  
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IV. Experimental part 
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13. Analytical tools for characterizing PAHs  
 

 

13.1 Optical spectroscopy 

 

Because of its extended aromatic core, HBC has characteristic absorption bands that 

allow its analysis with optical spectroscopy. Nevertheless, the very low solubility of HBC 

in common organic solvents, as well as in inorganic ones, prohibited the exploit of such 

types of analytical methods until Clar and coworkers[193] found that TCB is a fair solvent 

for HBC. An undetermined concentration of BC in TCB has been measured in a 100 cm 

ation of a saturated solution of HBC 

t a 10-4 M concentration in 1,2,4-TCB, by heating the solution at 100°C for 12 hours 

H

cell affording a spectrum that reveals three characteristic peaks at 342.5, 360, and 387.5 

nm. Samori and coworkers[92] have reported the form

a

followed by filtration of the yellow solution through a Millipore® filter with pores of 200 

nm diameter. We have further improved this method by sonicating the solution for 2 

hours instead of heating it overnight which allowed reaching a ten fold excess of 

saturation in the same solvent (~10-3 M). Figure 13.1 below shows a typical spectrum of 

HBC in 1,2,4-TCB.  

 

C~2 x 10-4 M
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Figure 13.1. UV-Vis spectrum  HBC in 1,

0.6

of 2,4-TCB. 

Recently, Fleming and coworkers[98] have reported the effect of concentration on the 

luminescence and luminescence-excitation spectra of two soluble HBC derivatives whose 

structures are shown in figure 13.2 on the next page. Interestingly, the report proves 

that the previously published UV-VIS spectra of all the HBC derivatives (figure 13.2), are 
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the ones of aggregation products and not the isolated HBC molecules. Furthermore, the 

study shows that different spectra of both products are obtained at low, medium, and 

high concentrations.  

 

C12H25

C12H25

C12H25

C12H25

C12H25

C12H25

HBC-C8,2 HBC-PhC12  
 

Figure 13.2. Structures of HBC-C8,2 and HBC-PhC12

 M) both products are present in the solvent as 

olated molecules. The additional phenyl groups of HBC-PhC12 don’t contribute to the π-

 

At very low concentrations (10-15 – 10-9

is

conjugation since no significant red-shift was observed. Instead, an inhomogeneous 

broadening of the spectrum, brought about by the tilting of the exo-phenyl groups, is 

detected (figure 13.3).  
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Figure 13.3. Normalized low concentration luminescence (left) and normalized low 

2 is more blue shifted and is better resolved than HBC-PhC12 

dicating, therefore, a superior aggregation of the former over the latter. At higher 

concentrations (≥1.4 x 10-6 M) the peaks of the isolated HBC-C8,2 molecules disappear, 

and the luminescence spectrum is narrowed by ~20% with respect to the intermediate 

concentration spectrum revealing, therefore, a complete aggregation. On the other hand, 

the spectra of HBC-PhC12 show, at the same concentrations, a broadening of both its 

excitation as well as its luminescence spectra by 87% and 38%, respectively. Knowing 

that the aggregates emission is seen in the range of 2.1-2.6 eV whereas the single 

molecules emission is observed in the region of 2.6-3.0 eV, the luminescence-excitati n 

pectrum of HBC-PhC12 was collected at 2.69 eV showing clearly the presence of 

retation of the data collected from different 1H-SS-NMR 

asurements, which correlated with simulated data, were supposing an enhancement 

concentration luminescence-excitation (at 10-13 M). 

 

At intermediate concentrations (~10-9 - 10-8 M) aggregates of both products can be seen 

in the spectra but HBC-C8,

in

o

s

monomeric molecules even at high concentration (inset in figure 13.4).  

 

This direct observation of the free HBC-PhC12 molecules even at high concentrations is in 

contradiction to the interp

me

of the π-stacking brought by the exo-phenyl groups leading, consequently, to much 

closely packed columns than the alkylated HBCs[196].    
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Figure 13.4. Normalized high concentration luminescence (left) and normalized high 

concentration luminescence-excitation (at 1  x 10-6 M). Inset: comparison of excitation 

ollected at 2.69 eV of isolated molecules at 10-13 M and noncoupled molecules at 1.4 x 

 summary, optical spectroscopy is a helpful tool for an immediate detection of HBCs 

3.2 MALDI-TOF mass spectrometry 

AHs are very good candidates for matrix-assisted laser desorption ionization and time-

of-flight (MALDI-TOF) analysis since most of them absorb at the laser wavelength (337nm 

in the case of N2). Nevertheless, the high insolubility of PAHs has always been the main 

reason for not analyzing them with MALDI-TOF mass spectrometry since this technique 

requires a high dilution and a good molecular distribution of the analyte in the matrix. 

Räder and coworkers[375, 376], have circumvented this hurdle by elaborating a new dry 

sample preparation that consists of mechanically mixing one part of the analyte with a 

500 fold excess of the matrix and grinding them together while cooling with liquid 

nitrogen to assure a good homogeneity. The mixture is then suspended in a non-solvent 

(H2O or cyclohexane), sonicated, and finally deposited on the sample holder for analysis. 

The choice of the matrix is of high importance and it was proven that good electron 

acceptors are the best matrices for such type of analytes since most of the PAH 

derivatives are detected as oxidized radical cations (M●+). Räder et al. have used the well-

known electron acceptor product 7,7,8,8-tetracyanoquinodimethane (TCNQ) as a matrix, 

.4

c

10-6 M (dashed dotted line). 

 

In

after performing a reaction. Additionally, it permits a direct observation and study of the 

aggregation phenomenon. In spite of the high insolubility of the HBC derivatives bearing 

perfluorinated chains, we were able to characterize many of them either by UV 

spectroscopy or by the more sensitive fluorescence.    

 

1

 

P
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while we preferred to employ trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyliden]-

malononitrile (DCTB), a recently introduced ‘magic’ matrix. 

 

CN

CN

NC

NC t-Bu

CN

CN

TCNQ DCTB  
 

Figure 13.5. Structures of TCNQ & DCTB. 

 

The dry sample method has revealed its efficiency even for the high molecular weight 

PAHs like, for example, the one depicted in figure 13.6 where the detected peaks match 

exactly the isotopic patterns, a fact that wouldn’t take place if the mass iffered by one 

additional hydrogen only.   

 

d

    
 

Figure 13.6. MALDI-TOF spectrum obtained by applying the dry sample preparation 

method using TCNQ as matrix (left) yielding the isotopically resolved MALDI-TOF 

spectrum of PAH C222H42 (right); the bars underneath represent the calculated 

spectrum[213]. 

   

However, the low volatility of the PAHs represents a serious problem since it causes a 

major decrease of their corresponding signal intensities. This was proven by analyzing a 

1:1 mixture of the PAH C222H42 (figure 13.6) with its cyclodehydrogenated side products: 

the mass spectrum is illustrated in figure 13.7 showing that the signal intensity of the 

side-products is 285 times greater than the desired PAH one. This clearly reveals a much 

lower desorption and ionization efficiency of the cyclic aromatic product with respect to 
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the partially dehydrogenated and the chlorinated products whose minor presence will be 

detected by MALDI-TOF spectrometry as the major product.    

 

   
 

Figure 13.7. Sample containing only side products (left) and a 1:1 mixture of these latter 

with the desired PAH[375].   

 

MALDI-TOF mass spectrometry analyses of the different HBCs bearing perfluorinated 

chains have revealed the same aspect as reported by Räder and coworkers, where for a 

nearly pure sample of HBC-PhRf2,8, the presence of trace amounts of the unreacted 

hexaphenyl benzene starting material (HPB-PhRf2,8) is detected with higher signal 

intensity with respect to the target molecule as figure 13.8 depicts. 
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Figure 13.8. MALDI-TOF spectrum HBC-PhRf2,8 containing traces of HPB 2,8. 

Exhaustive washin  traces of residual 

starting materials and afford the target molecule HBC-PhRf2,8. It is noteworthy that the 

 
 

Figure 13.9. MALDI-TOF spectrum of HBC-PhRf2,8. 

-PhRf

 

gs of this product with suitable solvents remove the

error of the instrument is estimated to be 3 ppm at maximum. 

 

Target 
molecule 

Target 
molecule 
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Additionally, many MALDI-TOF mass spectra of products which were isolated after 

performing unsuccessful cyclodehydrogenation reactions reveal the presence of the 

starting material as a (M + 60)●+ peak as shown in figure 13.10. Likewise, some mass 

spectra of successful oxidation reactions reveal the presence of the HBC derivatives as (M 

+ 32)●+. The structures of these products are still unknown but it is most probably 

caused by either the sample preparation or an interaction of the products with the 

matrix.   

 

 
 

Figure 13.10. MALDI-TOF spectrum of the hexaphenyl benzene HPB-CF3 as (M + 60)●+. 

 

Nonetheless, most of the MALDI-TOF measurements performed on the perfluorinated 

HBCs have shown very good peak intensities as well as masses matching (albeit 

unresolved) perfectly the isotopic patterns. 

 

M + 60 
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Interestingly, we noticed in many cases ma  peaks corresponding to two or three time 

Calculated for C114H84F78

m/e: 2935.536 (100.0%) 
         2934.533 (78.9%)  
         2936.539 (62.8%) 
         2937.543 (26.1%)   
         2938.546 (8.1%) 

 

Figure 13.11. MALDI-TOF spectrum of HBC-Rf6,6. 

ss

the molecular weight of the HBC derivatives. This reveals, therefore, that this technique 

is able to detect the π-stacked aggregates too. 
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Figure 13.12. MALDI-TOF spectrum of HB

2 x M 

C-Rf4,8 showing also the (2 x M)●+ peak. 

his has prompted us to analyze the non-alkylated HBC with the same technique. The 

MALDI-TOF mass spectrum of this latter product reveals clearly the mass peaks that 

belong to π-stacked HBCs showing up to six stacked molecular columns as illustrated in 

figure 13.13. 

 

 

 

T
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pecial care must be applied during the sample preparation 

therwise the desired peaks won’t be detected. Some artifact peaks whose origin is still 

xceed the aim of this work, however, the authors 

terpreted the data they have obtained supposing that the HBC derivatives bearing exo-

henyl groups have a superior degree of order in columnar stacking that excels the ones 

 
 

Figure 13.13. MALDI-TOF spectrum of HBC showing the peaks of its columnar stacks 

up to (6 x M)●+. 

 

In summary, MALDI-TOF technique is a very efficient tool for characterizing high 

molecular weight PAHs with low solubility like the ones we have synthesized. However, 

traces of the starting material or side products present in the medium show up with very 

high intensity. Additionally, s

2 x HBC 

3 x HBC 4 x HBC 
6x HBC 

5x HBC 

Calculated for C42H18

m/e: 522.141 (100.0%) 
         523.144 (46.7%) 
         524.148 (10.7%) 

o

unknown are present in some of the spectra. Surprisingly, many spectra revealed the 

presence of dimers and oligomers implicating the possibility of detecting small columnar 

stacks. 

 

13.3 Solid-state NMR 

 

Few reports describe the use of special 1H-SS-NMR techniques for characterizing and 

elucidating the degree of order in columnar stacking for different HBCs molecules[195, 377]. 

Presenting these methods will e

in

p
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that lack these extra phenyls, a conclusion that turned out to be in contradiction to the 

optical measurements study mentioned in section 13.1. Nevertheless, 13C-CP-MAS can 

be used as a useful method to detect the presence of HBC derivatives as shown in figure 

13.14.  

 

 
Figure 13.14. 13C-CP-MAS spectra of HBC-C12 and HBC-PhC12[196]. 

 

Nonetheless, the problems we have encountered when carrying out different SS-NMR 

experiments to measure the tolane derivative 94 (To-Rf2,8), as well as the relatively high 

amounts required to perform such type of analysis (~150-200 mg), have prevented us 

from exploring this technique more in depth.  
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14. General remarks 
 

 

All the chemical reagents were purchased from Acros, Aldrich, Fluka and Strem unless 

therwise specified.  Solvents were dried by passing them, under an argon atmosphere, 

proposed by Grubbs and 

oworkers[378]. The solvents were saturated with argon for 15-30 minutes prior to use.  

Thin layer chromatography (TLC) analyses were done using aluminum sheets coated with 

silica gel 60 F254. Column chromatography was carried out using Merck silica gel 60 

(0.04-0.063, 230-400 mesh).  

 

NMR spectra were measured with Bruker Avance DRX 500 (1H: 500 & 13C: 125.77 MHz) 

and Bruker Avance DPX 360 (1H: 360 & 13C: 90.55 MHz) spectrometers using CDCl3, 

THF-d8, and C6D6 as solvents. Chemical shifts are referred to tetramethyl silane (TMS) as 

l standard. Solid state NMR (SS-NMR) measurements were performed on a 
13

 Uicam

measurements. The samples were placed in an aluminum crucible and analyzed, under  

MS 600 platinum heating plate connected to a Linkam TMS 93 

ocessor, the photographs were taken with a Fujix Digital camera HC-300Z. Scanning 

croscopy micrographs were recorded using a Philips ESEM FEG XL30 and a 

LTO 2500 Cryo system.    

o

through a special purification system similar to the one 

c

an interna

Bruker Avance 300 MAS ( C: 75.5 MHz) spectrometer. Electron impact (EI) and 

electrospray ionization (ESI) mass spectra (MS) were recorded on a Vacuum Generators 

Micromass VG 70/70E spectrometer and on a FT/ICR mass spectrometer Bruker 4.7T 

BioApex II, whereas MALDI-TOF spectra were performed on a Bruker Reflex spectrometer 

with DCTB as matrix. UV-Vis spectra were recorded on a Perkin-Elmer Lambda 40 diode 

array spectrophotometer using 1,2,4 trichlorobenzene as solvent unless otherwise 

specified;  λmax (logε). GC-MS: ThermoQuest TraceGC 2000/Voyager. IR: FTIR  

Mattson 5000 spectrometer. 

 

Differential scanning calorimetry traces were recorded using a Mettler Toledo DSC822e, 

calibrated with indium (m.p. = 156.6°C, ∆Hf = 28.45 KJ mol-1) before each series of 

 a

stream of helium and nitrogen, with a heating/cooling rate of 20°C min-1. Polarization 

optical microscopy (POM) was carried out using an Axioscope Zeiss microscope equipped 

with a Linkam TH

pr

electron mi

Gatan A
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15. Synthesis of the HBC primers 

 

 

15.1 HBC with R = CF3

 

15.1.1 Trimethyl{[4-(trifluoromethyl)phenyl]ethynyl}silane 40 

 

Br

CF3 CF3

TMS

38 40  
 

Method A. In a 100 ml two-necked round bottomed flask a solution of 1-bromo-4-

(trifluoromethyl)benzene 38 (1.37 ml, 9 mmol), triphenylphosphine (143 mg, 0.54 mmol), 

CuI (103 mg, 0.54 mmol), and trans-dichlorobis(triphenylphosphine) palladium(II) (193 

mg, 0.27 mmol) in piperidine (30 ml) was heated at 80°C, under an argon atmosphere. 

Trimethylsilylacetylene (TMSA) (1.7 ml, 12 mmol) was then added dropwise under a 

ositive stream of argon and the mixture was stirred at the mentioned temperature for p

24 hours. The brown solution was extracted with a saturated solution of NH4Cl and 

methylenedichloride (3 x 50 ml), the combined organic layer was then washed with 

distilled water (3 x 50 ml), dried over Na2SO4 and filtered. After removal of the solvent, 

the residual brown oily product was then purified by flash column chromatography 

(SiO2, pentane/hexane 1:1) to yield 40 (2.1 g, 96%) as a faint yellow liquid. TLC (SiO2, 

pentane/hexane 1:1): Rf = 0.71. 1H-NMR (360 MHz, CDCl3): δ 7.55 (m, 4H, Ph), 0.26 (m, 

9H, TMS). EI-MS: m/z 242 (M●+, 35%), 227 ([M-CH3]●+, 100%), 223 ([M-F]●+, 18%), 197 

([M-C2H6]●+, 25%).  
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15.1.2 1-Ethynyl-4-(trifluoromethyl)benzene 41 

 

CF3

TMS

4140

CF3

H

 
 

Method B. To a solution of 40 (~0.65 ml, 2.66 mmol), and benzyltriethylammonium 

hloride (BTACl) (1.4 g, 6 mmol) in dichloromethane (5 ml) was added 20 ml of a 10 M 

0

henyl]ethynyl}benzene 42 

c

solution of NaOHaq  The biphasic solution was then stirred at room temperature for 18 

hours. The brown solution was extracted with ether (3 x 25 ml) and the combined 

organic layer was then washed with distilled water (3 x 25 ml), dried over Na2SO4 and 

filtered. After removal of the solvent, the residual colorless oil was purified by filtration 

over a short silica gel plug, under reduced pressure, using pentane as eluent affording 

41 (0.33 g, 73%). Colorless liquid. TLC (SiO2, pentane): Rf = 0.77. 1H-NMR (36  MHz, 

CDCl3): δ 7.59 (m, 4H, Ph), 3.2 (s, 1H, acetylene).  

 

15.1.3 1-(trifluoromethyl)-4-{[(4-trifluoromethyl)p

 

Br

CF3 CF3

H

CF3

CF3

38 41

42

+

 
 

The reaction was done following method A: 38 (0.4 ml, 2.8 mmol), 41 (0.49 g, 2.8 mmol), 

iphenylphosphine (90 mg, 0.34 mmol), CuI (64 mg, 0.34 mmol), trans-

ichlorobis(triphenylphosphine) palladium(II) (120 mg, 0.17 mmol), and piperidine (15 

tr

d
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ml). Reaction time: 48 hours. Purification was carried out by filtration over a short silica 

el plug, under reduced pressure, using pentane as eluent to yield 42 (0.31 g, 35%) as a 

MR (360 MHz, 

DCl3): δ 7.64 (m, 8H, Ph). 13C-NMR (90.55 MHz, CDCl3):  δ 132.1 (Ph), 130.79-130.42 (q, 
2J(C, F) = 33 Hz, Ph), 126,49 (Ph), 125.52 (Ph), 119.45-128.47 (q, 1J(C, F) = 272 Hz, CF3), 

90.25 (acetylene). EI-MS: m/z 314 (M●+, 100%), 295 ([M-F]●+, 30%), 264 ([M-CF2]●+, 20%), 

225 ([M-2(C2F5) + H]●+, 16%). 

 

 

15.1.4 Hexakis[4-(trifluoromethyl)phenyl]benzene 43 

 

g

white solid. TLC (SiO2, pentane/methylene dichloride (1:1): Rf = 0.77. 1H-N

C

CF3

CF3 CF3

F3C

F3C

CF3

CF3

CF3

42 43  
 

Method C. In a dry 50 ml two-necked round bottomed flask, fitted with a reflux 

ondenser, a suspension of 42 (0.29 g, 0.9 mmol) in dioxane (15 ml) was purged with 

rgon for 30 minutes before Co2(CO)8 (34 mg, 90 µmol) was then added under a positive 

tream of argon and the reaction mixture was refluxed for 24 hours. After evaporation of 

e solvent, the black metallic species were removed by filtration over a short silica gel 

lug, under reduced pressure, using THF as eluent. The solvent was removed and the 

sidual off-white precipitate was suspended in pentane and collected by suction 

ltration over Millipore® (404 mg, 67%). 1H-NMR (360 MHz, CDCl3): δ 7.18-7.20 (m, 12H, 

 6.9-7.93 (m, 12H, Ph). 13C-NMR (90.55 MHz, CDCl3):  δ 142.55 (Ph), 139.77 (Ph), 

31.15 (Ph), 129.31-128.23 (q, 2J(C, F) = 33 Hz, Ph,), 124.26-124.38 (m, Ph), 119.2-

1.45 (q, 1J(C, F) = 271.4 Hz, CF3). EI-MS: m/z 942 (M●+, 100%), 923 ([M-F]●+, 10%), 873 

3]●+, 8%). 

c

a

s

th

p

re

fi

Ph),

1

13

([M-CF
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hyl)phenyl]benzene 43 15.1.5 Cyclodehydrogenation of hexakis-[4-(trifluoromet

 
CF3

F3C

F3C

CF3

CF3

CF3

39

CF3

F3C

F3C

CF3

CF3

CF3

43  
 

Method D. Copper(I riflate (1.34 g, 3.6 mmol) was charged in a 50 ml two-necked 

o o

e®, washed successively with NH4OHaq (10%, 

0 ml), HCl  (1 M, 100ml), H O (3 x 50 ml), and ether (100 ml). The yellowish-brown 

z 1002 
●+, 9%), 503 (100%).  

 

 

 

 

 

 

 

 

 

 

I) t

round b tt med flask and dried completely under vacuum and heating. After reaching 

room temperature, AlCl3 (0.48 g, 3.6 mmol), 43 (942 mg, 0.1 mmol), and CS2 (50 ml) 

were added under an argon atmosphere and the reaction was heated at 30°C for 24 

hours followed by quenching the medium with MeOH (50 ml). The residue was then 

collected by suction filtration over Millipor

10 aq 2

residue was finally dried in vacuum. Yellow solid (12 mg, ~10%). MALDI-TOF: m/

([M+72]●+, 18%), 936 ([M-6]
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15.2 Tolane with R = p-PhCF3

 

15.2.1 Trimethyl{[4’-(trifluoromethyl)-1,1’-biphenyl-4-yl]ethynyl}silane 53 

 
TMS

CF3

50

53

Br

CF3

 

eaction was carried out employing method A: 4-bromo-4’-(trifluoromethyl)-1,1’-

enyl[259, 325] 50 (1.05 g, 3.5 mmol), TMSA (0.65 ml, 4.55 mmol), triphenylphosphine 

 0.21 mmol), CuI (40 mg, 0.21 mmol), trans-dichlorobis(triphenylphosphine) 

dium(II) (75 mg, 0.1 mmol), and piperidine (10 ml). Purification was carried out by 

short silica gel plug, under reduced pressure, using pentane as eluent to 

53 (0.83 g, 75%) as a white solid. TLC (SiO2, pentane: Rf = 0.65). 1H-NMR (360 MHz, 

DCl3): δ 7.69 (br. s, 4H, Ph), 7.52-7.58 (m, 4H, Ph), 0.27 (s, 9H, TMS).  

 

The r

biph

(56 mg,

palla

filtration over a 

yield 

C
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15.2.2 4-Ethynyl-4’-(trifluoromethyl)-1,1’-biphenyl 54 

 
TMS H

53

CF3

54

CF3

 
 

Applying method B: 53 (0.83 g, 2.61 mmol), BTACl (1.2 g, 5.22 mmol), NaOHaq (10 M, 20 

ml), CH2Cl2 (3 ml). Filtration over a short silica gel plug, under reduced pressure, with 

entane as eluent afforded 54 (0.53 g, 83%) as a white solid. TLC (SiO2, pentane: Rf = 

 

p

0.62. 1H-NMR (360 MHz, CDCl3): δ 7.67-7.72 (m, 4H, Ph), 7.55-7.61 (m, 4H, Ph), 3.16 (s, 

1H, acetylene).  

 

15.2.3 4-(Trifluotomethyl)-4’-{[4’-(trifluoromethyl)-1,1’-biphenyl-4-yl]ethynyl}-1,1’-

biphenyl 55 

 

CF3

50

Br

54

CF3 Ar

Ar

55
CF3Ar =

+

H

 
 

Method E. 4-Bromo-4’-(trifluoromethyl)-1,1’-biphenyl 50 (0.3 g, 1 mmol), 54 (0.25 ml, 1 

enylphosphine) palladium(0) (70 mg, 60 µmol), and CuI (40 mg, 0.15 mmol), tetrakis(triph
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mmol) were placed in a 100 ml two-necked round bottomed flask fitted with a reflux 

ondenser and dried under vacuum. Piperidine (10 ml) was then injected in the medium 

and the solution was reacted at 85°C for 24 hours, under an argon atmosphere. The 

orange-brown suspension was extracted with a saturated solution of NH4Cl and 

methylenedichloride (3 x 50 ml), the combined organic layer was then washed with 

distilled water (3 x 50 ml), condensed to the fifth of its volume and the white precipitate 

was collected by vacuum filtration over Millipore® affording 55 (0.3 g, 65%). EI-MS: m/z 

466 (M●+, 100%), 227 ([M-CF3+H]●+, 9%).  

 

 

 

 

 

c
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15.3 HBC with R = 3,5-Ph(CF3)2
 

15.3.1 4’-{[3’, 5’-bis(trifluoromethyl)-1,1’-biphenyl-4-yl]ethynyl}-3,5-bis(trifluoromethyl)-

1,1’-biphenyl 58 

 

Br

Br

36

+

B(OH)2

F3C CF3

Ar

Ar

58

57
CF3

CF

Ar =

3  
 

Method F. In a 100 ml two-necked round bottomed flask fitted with a reflux condenser, 

4,4’-dibromotolane[221] 36 (0.34 g, 1 mmol), the boronic acid derivative 57 (0.5 , 2 

mmol), te rakis(triphenylphosphine) palladium(0) (116 mg, 0.1 mmol), and K

3 g

t

ion was reacted at reflux for 48 hours, under an argon 

sphere. The dark brown biphasic solution was then extracted with NH4Clsat. and 

dichloride (3 x 50 ml). The combined organic layer was washed with H2O (3 x 

 dried over Na2SO4, and filtered. Removal of the solvent yielded a black solid which 

gel plug, under reduced pressure, using a 4:1 mixture of 

ane/CH2Cl2 in order to eliminate the metallic species. The residual yellow solid was 

oform (or hexane) yielding 58 (0.36 g, 60%) as a faint yellow 

d. 1H-NMR (360 MHz, CDCl3): δ 8.04 (s, 2H, Ph), 7.88 (s, 1H, Ph), 7.69-7.71 (d, 

J(H,H) = 8.17 Hz , 2H, Ph), 7.63-7.65 (d, 3J(H,H) = 8.17 Hz, 2H, Ph). 13C-NMR (90.55 

Hz, CDCl3):  δ 142.78 (Ph), 138.45 (Ph), 132.93 (Ph), 132.15-133.25 (q, 2J(C, F) = 37 Hz, 

h), 127.64 (Ph), 127.47 (Ph), 122.21 (Ph), 121.67 (Ph), 119.2-128.23 (q, 1J(C, F) = 272.8 

z, CF3), 90.79 (acetylene). EI-MS: m/z 602 (M●+, 42%), 583 ([M-F]●+, 5%), 390 ([M-

h(CF3)2+H]●+, 100%). 

 

2CO3 (2.23 g, 

16 mmol) were placed under an argon atmosphere. A solution mixture constituted of 

toluene (16.8 ml), ethanol (4.2 ml) and H2O (8.4 ml) was injected in the medium and the 

resulting biphasic solut

atmo

methylene

50 ml),

was filtered over a short silica 

pent

then recrystallized from chlor

liqui
3

M

P

H

P
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15.3.2 Hexakis{4-[3’,5’-bis(trifluoromethyl)]-1,1’-biphenyl}benzene 59 

 

Ar

Ar

58 59

Ar

Ar

Ar

Ar

Ar

Ar

CF3

CF3

Ar =

 

m/z 1806 (M●+, 10%), 1595 ([M-Ph(CF3)2+H]●+, 100%). MALDI-TOF: m/z 1808 
●+, 30%), 752 (100%).  

 

 

 

 

 

 

 

 

 

The reaction was done according to method C: 58 (0.27 g, 0.46 mmol), Co2(CO)8 (17.3 

mg, 46 µmol) and dioxane (10 ml). After removal of the solvent, the resulting black 

precipitate was suspended in THF and washed successively with HClaq (1 M, 2 x 50 ml) 

and H2O (3 x 50 ml). The organic layer was evaporated and the resulting beige product 

was suspended in ether and collected by suction filtration over Millipore®. The white 

precipitate was isolated after exhaustive washings with ether and CH2Cl2 (0.23 g, 83%). 

EI-MS: 

(M
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15.3.3 2,5,8,11,14,17-Hexakis[3,5-bis(trifluoromethyl)phenyl]hexabenzo[bc,ef,hi,kl,no,qr] 

-coronene 45 

 
R

R

R

R

R

R

R

59

R

R

R

R

R

CF3

CF3

R =

45  
 

he cyclodehydrogenation reaction was carried out employing method D: 59 (100 mg, 55 T

µmol), Cu(OTf)2 (0.82 g, 2.19 mmol), AlCl3 (0.3 g, 2.19 mmol) and CS2 (140 ml). Time of 

reaction: 39 hours at 35°C.  The residue was collected by suction filtration over 

Millipore®, washed successively with NH4OHaq (10%, 60 ml), HClaq (1 M, 60ml), H2O (60 

ml) and ethanol (100 ml). The brown precipitate was washed subsequently with CH2Cl2 

(160 ml), ether (60 ml), chloroform (60 ml) and finally THF (150 ml) and the resulting 

yellow precipitate was dried in vacuum (90 mg, 90%). MALDI-TOF: m/z 1797 (M●+, 20%), 

747 (50%), 498 (100%).  
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15.4 HBC with R = OCF3

 

15.4.1 Trimethyl{[4-(trifluoromethoxy)phenyl]ethynyl}silane 61 

 

Br

OCF3 OCF3

TMS

60 61  
 

hylsilylated acetylene derivative was synthesized using method A: 60 (1.35 ml, The trimet

9 mmol), TMSA (1.73 ml, 12 mmol), Pd(PPh3)2Cl2 (0.19 g, 0.27 mmol), Ph3P (143 mg, 0.54 

mmol), CuI (102 mg, 0.54 mmol) and piperidine (30 ml). Purification was carried out by 

passing the product, twice, through a short silica gel plug, under reduced pressure, 

using pentane as eluent to yield 61 with trace amount of 60 (1.39 g, 60% with 95% 

purity (from 1H-NMR spectrum)) as a faint yellow liquid. TLC (SiO2, hexane: Rf = 0.76). 
1H-NMR (360 MHz, CDCl3): δ 7.54-7.57 (m, 2H, Ph), 7.13-7.15 (m, 2H, Ph), 0.25 (s, 9H, 

TMS).  

 

15.4.2 1-ethynyl-4-(trifluoromethoxy)benzene 62 

 

OCF3

TMS

6261

OCF3

H

 
 

Deprotection was done using method B: 61 (0.58 g, 2.1 mmol), BTACl (1 g, 4.2 mmol), 

aOHaq (15 ml, 10 M), and CH2Cl2 (5 ml). Filtration over a short silica gel plug, under 

duced pressure, with pentane as eluent afforded 62 (0.53 g, 65%) as a faint yellow 

N

re
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liquid. TLC (SiO2, hexane: Rf = 0.76). 1H-NMR (360 MHz, CDCl3): δ 7.5-7.53 (d, 3J(H,H) = 

.64 Hz, 2H, Ph), 7.16-7.18 (d, 3J(H,H) = 8.64 Hz, 2H, Ph), 3.1 (s, 1H, acetylene).  

 

15.4.3 1-(trifluoromethoxy)-4-{[4-(trifluoromethoxy)phenyl]ethynyl}benzene 63 

 

8

Br

OCF3

OCF3

H

OCF3

OCF3

60

62 63  
 

The cross-coupling reaction was carried out employing method E: 60 (0.54 g, 2.2 mmol), 

62 (0.41 g, 2.2 mmol), Pd(PPh

+

 x 25 ml). The combined organic layer was washed 

ith H2O (3 x 25 ml), dried over Na2SO4, and filtered. Removal of the solvent yielded a 

ellowish oily product which was purified by column chromatography using pentane as 

luent yielding 63 (0.31 g, 41%) as a faint white solid. TLC (SiO2, pentane: Rf = 0.75). 1H-

MR (360 MHz, CDCl3): δ 7.56-7.52 (m, 2H, Ph), 7.21-7.19 (br. d, 2H, Ph). 13C-NMR 

0.55 MHz, CDCl3):  δ 149.47 (Ph), 133.48-133.57 (Ph), 122.03 (Ph), 121.15 (Ph), 

16.52-125.07 (q, 1J(C, F) = 257.6 Hz, CF3), 89.09 (acetylene). EI-MS: m/z 346 (M●+, 

3]●+, 45%).

3)4 (154 mg, 0.13 mmol), CuI (63 mg, 0.33 mmol), and 

piperidine (20 ml). The solution was purged with argon for 30 minutes before carrying 

out the reaction at 85°C for 48 hours. The dark solution was then extracted with 

NH4Clsat. and methylenedichloride (3

w

y

e

N

(9

1

100%), 277 ([M-CF
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15.4.4 Hexakis[4-(trifluoromethoxy)phenyl]benzene 64 

 
OCF3 OCF3

OCF3

F3CO

F3CO OCF3

OCF3

OCF3

63 64  
 

The trimerization reaction was done according to method C: 63 (0.31 g, 0.87 mmol), 

Co2(CO)8 (16.5 mg, 44 µmol) and dioxane (15 ml). The black precipitate was filtered over 

a short silica gel plug, under reduced pressure, using THF as solvent and the resulting 

yellow-brown solid was suspended in pentane and collected by suction filtration over 

Millipore®. The off-white precipitate was isolated after several washings with pentane 

(0.21 g, 71%). 1H-NMR (360 MHz, CDCl3): δ 6.88-6.9 (br. d, 12H, Ph), 6.8-6.83 (br. d, 

12H, Ph). 13C-NMR (90.55 MHz, CDCl3):  δ 147.78 (Ph), 140.29 (Ph), 138.75 (Ph), 132.85 

(Ph), 120.23 (Ph), 116.44-124.93 (q, 1J(C, F) = 256.28 Hz, CF3). EI-MS: m/z 1038 (M●+, 

100%), 954 ([M-OCF3+H]●+, 10%), 867 ([M-2(OCF3)+2H)]●+, 5%), 346 (42%). 
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[bc,ef,hi,kl,no,qr]coronene 65 15.4.5 2,5,8,11,14,17-Hexakis(trifluoromethoxy)hexabenzo

 
OCF3

F3CO

F3CS

OCF3

OCF3

OCF3

65

OCF3

F3CO

F3CO

OCF3

OCF3

OCF3

64  
 

The oxidation reaction was carried out following method D: 64 (104 mg, 0.1 mmol), 

Cu(OTf)2 (1.49 g, 4 mmol), AlCl3 (0.54 g, 4 mmol) and CS2 (130 ml). The green-brown 

residue was collected by suction filtration over Millipore®, washed successively with HClaq 

(1 M, 50ml), H2O (50 ml), NH4OHaq (10%, 50 ml), H2O (50 ml), ethanol (50 ml), CS2 (50 

ml), and CH2Cl2 (50 ml). The resulting yellow-green precipitate was dried in vacuum (14 

mg, 14%). MALDI-TOF: m/z 1026 (M●+, 6%), 564 ([M-3(OCF3)-3(CF3)]●+, 100%). UV-Vis: 

361 (5.2), 389 (5.06), 423.49 (4.76). 
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15.5 HBC with R = SCF3

 

15.5.1 1-[(trifluoromethyl)thio]-4-({4-[(trifluoromethyl)thio]phenyl}ethynyl)benzene 69 

 
Br

SCF3

F3CS SCF3

66
69

 
 

A dry three-necked round bottomed flask, kept under an argon atmosphere was charged 

with 66 (0.45 ml, 3 mmol), Pd(PPh3)2Cl2 (43 mg, 60 µmol), Ph3P (24 mg, 90 µmol), CuI 

(17 mg, 90 µmol), and piperidine (10 ml). The argon balloon was replaced by a bubbler 

nd the solution was then purged with acetylene for 20 minutes at room temperature 

 1 3 .09 

 EI-MS: m/z 378 (M●+, 100%), 309 ([M-CF3]●+, 55%), 240 ([M-2CF3]●+, 30%), 

208 ([M-CF3-SCF3]●+, 11%). 

 

 

 

 

 

 

 

 

 

 

a

followed by heating the solution at 80°C. The acetylene stream was stopped after 6 hours 

and the reaction was run at the same temperature for 18 additional hours, under an 

argon atmosphere (total reaction time: 24 hours). The dark brown solution was extracted 

with NH4Clsat. and CH2Cl2 (3 x 25 ml). The combined organic layer was washed with H2O 

(3 x 25 ml), dried over Na2SO4, and filtered. Removal of the solvent yielded a yellowish 

oily product which was purified by filtration, under reduced pressure, over a short silica 

gel plug using pentane as solvent affording 69 (0.32 g, 57%) as a white solid. TLC (SiO2, 

pentane: Rf = 0.84). 1H-NMR (360 MHz, CDCl3): δ 7.64-7.66 (d, 3J(H, H) = 8.172 Hz, 4H, 

Ph), 7.56-7.58 (d, 3J(H, H) = 8.172 Hz, 4H, Ph). 13C-NMR (90.55 MHz, CDCl3):  δ 136.11 

(Ph), 32.53 (Ph), 125.47 (Ph), 124.91-133.86 (q, 1J(C, F) = 251 Hz, CF ), 89

(acetylene).
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5.5.2 Hexakis{4-[(trifluoromethyl)thio]phenyl}benzene 70 1

 

SCF3

SCF3 SCF3

F3CS

F3CS

SCF3

SCF3

SCF3

69 70  
 

The reaction was done employing method C: 69 (0.29 g, 0.77 mmol), Co2(CO)8 (15 mg, 38 

mol) and dioxane (15 ml). After removal of the solvent, the resulting black metallic 

pecies were removed by filtration, under reduced pressure, over a short silica gel plug 

sing THF as eluent. The yellow-orange filtrate was evaporated and the resulting orange 

product was suspended in pentane and collected by suction filtration over Millipore® 

(0.25 g, 86%). 1H-NMR (360 MHz, CDCl3): δ 7.19-7.26 (d, 3J(H, H) = 8.172 Hz, 12H, Ph), 

6.81-6.84 (d, 3J(H, H) = 8.172 Hz, 12H, Ph). 13C-NMR (90.55 MHz, CDCl3):  δ 141.77 (Ph), 

139.59 (Ph), 135.19 (Ph), 131.87 (Ph), 124.12-134.33 (q, 1J(C, F) = 308 Hz, CF3), 122.71 

(Ph). EI-MS: m/z 1134 (M●+, 100%), 932 ([M-2SCF3]●+, 10%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ

s

u



15. Synthesis of the HBC Primers 203

15.5.3 2,5,8,11,14,17-Hexakis[(trifluoromethyl)thio]hexabenzo[bc,ef,hi,kl,no,qr]coronene 

1 

F3CS

SCF3

SCF3

SCF3

7

 
SCF3

F3CS

71

F3CS

SCF3

SCF3

SCF3

F3CS SCF3

70  
 

Method G. To a solution of 70 (114 mg, 0.1 mmol) in dry methylene dichloride (30 ml) 

was added, a degassed solution of anhydrous iron (III) chloride (1.5 g, 9 mmol) in 

nitromethane (7 ml) during a period of 5-10 minutes. The brown suspension was purged 

y stream of argon throughout the entire reacti . After stirring for 6 hours, 

ch

 6

CF ] , 35%), 564 ( 1%), 520 (100%). UV-Vis: 351.49 (4.46), 391.52 (5.07), 422 (4.8). 

with a stead on

the reaction was quenched with methanol (25 ml) and the resulting yellow suspension 

was extracted with H2O and methylene di loride (3 x 25 ml). The combined organic 

layer was then evaporated and the bright yellow solid was suspended in pentane, 

refluxed for 24 hours, and collected by suction filtration over Millipore®. Yellow 

precipitate (74 mg, 66%). MALDI-TOF: m/z 750 ([M-3SCF3-CF3]●+, 8%), 49 ([M-4SCF3-

3 ●+ 7
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16. Synthesis of the HBCs with long perfluorinated chains 

 

 

16.1 Attempted synthesis of HBC with R = p-PhC6F13

 

16.1.1 Trimethyl{[4’-(tridecafluorohexyl)-1,1’-biphenyl-4-yl]ethynyl}silane 77 

 

Br

Rf6

Rf6

TMS

76

77  
 

The Sonogashira cross-coupling reaction was carried out according to method A: 4-

bromo-4’-(tridecafluorohexyl)-1,1’-biphenyl[325] 76 (2.5 ml, 4.53 mmol), TMSA (0.86 ml, 

6.04 mmol), Pd(PPh3)2Cl2 (0.1 g, 0.14 mmol), Ph3P (75 mg, 0.27 mmol), CuI (52 mg, 0.27 

mmol) and piperidine (22 ml). Purification by column chromatography using pentane as 

luent afforded 77 (1.72 g, 67%) as a white solid. TLC (SiO2, hexane: Rf = 0.4). 1H-NMR 

60 MHz, CDCl3): δ 7.65-7.73 (m, 4H, Ph), 7.56 (br. s, 4H, Ph), 0.28 (s, 9H, TMS).  

e

(3
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16.1.2 4-Ethynyl-4’-(tridecafluorohexyl)-1,1’-biphenyl 78 

 

Rf6

H

78

Rf6

TMS

77  
 

To a solution of 77 (1.72 g, 3.02 mmol) in methanol (170 ml) was added an aqueous 

solution of NaOH (34 ml, 1 M) and the reaction mixture was stirred overnight at room 

temperature. After extracting the solution with ether, the organic layer was dried over 

Na2SO4. Recrystallization from methanol yielded 78 as a white solid (1.12 g, 2.26 mmol). 
1H-NMR (360 MHz, CDCl3): δ 7.66-7.73 (m, 4H, Ph), 7.56-7.62 (m, 4H, Ph), 3.17 (s, 1H, 

acetylene).  
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16.1.3 4-(Tridecafluorohexyl)-4’-{[4’-(tridecafluorohexyl)-1,1’-biphenyl-4-yl]ethynyl}-1,1’-

iphenyl 79 b

 

Br

Rf6 Rf6

H

76 78

+
Ar Ar

Rf6Ar =

79

 
 

The tolane derivative 79 was synthesized as per method E: 76 (1.2 g, 2.21 mmol), 78 (1.1 

g, 2.21 mmol), Pd(PPh3)4 (154 mg, 0.13 mmol), CuI (63 mg, 0.33 mmol), and piperidine 

(25 ml). The reaction was carried out at 85°C for 48 hours. The dark solution was then 

extracted with NH4Clsat. and ether (2 x 50 ml). The beige precipitate suspended in the 

combined organic layer was collected by filtration and refluxed in pentane (60 ml). The 

resulting off-white precipitate was collected by suction filtration (1.23 g, 58%). 1H-NMR 

(360 MHz, CDCl3): δ 7.74-7.76 (d, 4H, Ph), 7.65-7.7 (m, 12H, Ph). EI-MS: m/z 966 (M●+, 

100%), 277 ([M-(CF2)4CF3]●+, 85%), 428 ([M-2(CF2)4CF3]●+, 18%), 214 (18%). 
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16.1.4 Hexakis{4-[4’-(tridecafluorohexyl)]-1,1’-biphenyl}benzene 81 

 

Ar

Ar

79 81

Ar

Ar

Ar

Ar

Ar

Ar

Ar = Rf6  
 

The trimerization reaction was done applying method C: 79 (0.4 g, 0.41 mmol), Co2(CO)8 

(8 mg, 21 µmol) and dioxane (50 ml). ter removal of the solvent, the resulting black 

precipitate was extracted with HCl

 Af

ashed with H2O (3 x 50 ml) and concentrated to the fifth of its volume 

ore filtering it on a short silica gel plug, under reduced pressure, in order to remove 

e 

Millipore  and 

shed exhaustively with pentane (0.18 g, 48%). 1H-NMR (360 MHz, CDCl3): δ 7.54 (br. s, 

24H, Ph) 7.20-7.22 (d, 3J(H, H) = 8.17 Hz, 12H, Ph), 7 -7.03 (d, 3J(H, H) = 8.17 Hz, 12H, 

Ph). EI-MS: m/z 2899 (M●+, 100%). MALDI-TOF: m/z 2898 (M●+, 100%). 

 

 

 

 

 

 

aq (1 M, 50 ml) and ether (3 x 50 ml). The combined 

organic layer was w

bef

the residual metallic species. The ethereal layer was evaporated and the resulting whit

product was suspended in pentane, collected by suction filtration over ®

wa
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16.2 HBC with R = (CH2)2C8F17

 

16.2.1 {[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)phenyl]ethynyl} 

(trimethyl) silane 90 

 
TMS

Rf8

Br

Rf8

88 90  
 

The trimethylsilylated derivative acetylene was synthesized using method A: 4-bromo-

perfluorinated derivative[302] 88 (1.35 g, 7.5 mmol), TMSA (1.41 ml, 10 mmol), 

Pd(PPh3)2Cl2 (0.16 g, 0.22 mmol), Ph3P (0.12 mg, 0.45 mmol), CuI (86 mg, 0.45 mmol) 

and piperidine (20 ml). Reaction time: 22 hours. Purification was carried out by filtration 

over column chromatography using pentane as eluent. White solid (3.19 g, 69%). TLC 

, pentane: R = 0.81). 1H-NMR (360 MHz, CDCl δ 7.41-7.43 (br. d, 2H, Ph), 7.14-(SiO2 f 3): 

7.16 (br. d, 2H, Ph), 2.88-2.93 (m, 2H, CH CH Rf ), 2.33-2.38 (m, 2H, CH CH Rf ), 0.25 

(s, 9H, TMS).  
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16.2.2 1-Ethynyl-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)benzene 92  

 

Rf8

TMS

Rf8

90 92

H

 
 

Deprotection was done following method B: 90 (4 g, 6.45 mmol), BTACl (3 g, 13 mmol), 

aOHaq (25 ml, 10 M), MeOH (20), CH2Cl2 (4 ml). Filtration by column chromatography N

using pentane as eluent afforded 92 (2.73 g, 80%). TLC (SiO2, pentane: Rf = 0.76). 1H-

NMR (360 MHz, CDCl3): δ 7.44-7.47 (d, 3J(H,H) = 8.17 Hz, 2H, Ph), 7.17-7.19 (d, 3J(H,H) = 

8.17 Hz, 2H, Ph), 3.07 (s, 1H, acetylene), 2.9-2.94 (m, 2H, CH2CH2Rf8), 2.29-2.44 (m, 2H, 

CH2CH2Rf8).  

 

16.2.3 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-Heptadecafluorodecyl)-4-{[4-(3,3,4,4,5,5,6,6, 

7,7,8,8,9,9,10,10-heptadecafluorodecyl)phenyl]ethynyl}benzene 94 

 

Rf8

Br

Rf8

88 92

+
Rf8

Rf8

94

H

 
 

The Sonogashira cross-coupling reaction to synthesize the tolane derivative 79 was 

erformed using method E: 88 (1.1 g, 1.8 mmol), 92 (1 g, 1.8 mmol), Pd(PPh3)4 (117 mg, 

.11 mmol), CuI (52 mg, 0.27 mmol), and piperidine (12 ml). The reaction was carried 

ut at 80°C for 29 hours. The dark solution was extracted with NH4Clsat. and pentane (2 x 

0 ml) followed by combining the organic layer and washing it with H2O (2 x 50 ml). The 

suspended white precipitate was collected by filtration and washed exhaustively with 

p

0

o

5
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pentane yielding a white solid (1.17 g, 57%). 1H-NMR (360 MHz, CDCl3): δ 7.48-7.5 (d, 

(H,H) = 8.17 Hz, 4H, Ph), 7.2-7.22 (d, 3J(H,H) = 8.17 Hz, 4H, Ph), 2.91-2.96 (m, 4H, 

 (M●+, 52%), 637 ([M-

CH2(CF2)7CF3]●+, 100%), 204 (42%). 

 

16.2.4 Hexakis[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)phenyl] 

benzene 96 

 

3J

CH2CH2Rf8), 2.35-2.5 (m, 4H, CH2CH2Rf8). EI-MS: m/z 1070

Rf8

Rf8

Rf8

Rf8Rf8

Rf8

Rf8

Rf8

94 96  
 

The synthesis of the hexaphenyl benzene derivative 96 was carried out applying method 

 of 

esulting black precipitate was extracted with HClaq (1 M, 50 ml) and 

ther (3 x 50 ml). The combined organic layer was washed with H2O (3 x 50 ml). The 

ethereal layer was evaporated and the resulting bright orange product was suspended in 

chloroform to be finally collected by suction filtration over Millipore®. The off-white 

precipitate was isolated after several washings with ether (194 mg, 49%). 1H-NMR (360 

MHz, CDCl3): δ 6.67-6.73 (m, 24H, Ph), 2.64-2.68 (m, 12H, CH2CH2Rf8), 2.06-2.19 (m, 

12H, CH2CH2Rf8). EI-MS: m/z 3211 ([M+H]+, 100%). MALDI-TOF: m/z 3211 [(M+H]+, 

100%), 2839 (78%), 2774 (60%), 2431 (66%), 1725 (77%). 

 

 

 

C: 94 (0.4 g, 0.37 mmol), Co2(CO)8 (7 mg, 19 µmol) and dioxane (50 ml). After removal

the solvent, the r

e
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16.2.5 2,5,8,11,14,17-Hexakis(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl) 

hexabenzo[bc,ef,hi,kl,no,qr]coronene 98 

 

Rf8

Rf8

Rf8Rf8

Rf8

Rf8

98

Rf8

Rf8

Rf8Rf8

Rf8

Rf8

96  
 

The cyclodehydrogenation reaction was done as per method D: 96 (115 mg, 36 µmol), 

Cu(OTf)2 (0.53 g, 1.42 mmol), AlCl3 (0.19 g, 1.42 mmol) and CS2 (120 ml). Reaction time: 

24 hours at 30°C.  The green residue was collected by suction filtration over Millipore®, 

washed successively with NH4OHaq (10%, 60 ml), H2O (50 ml), HClaq (1 M, 60ml), ethanol 

(50 ml), CH2Cl2 (60 ml), and CHCl3 (80 ml). The resulting yellow precipitate was 

suspended in CHCl3 (50 ml) and refluxed for 3 hours. The bright yellow precipitate was 

collected by suction filtration over Millipore® and washed with a hot solution of CHCl3 (50 

ml) followed by an exhaustive washing with THF yielding 9  mg, 19%). MALDI-TOF: 

/z 3199 (M●+, 100%). 

8 (21

m
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16.3 Tolane with R = p-Ph(CH2)2C8F17 

 

6.3.1 4’-Bromo-1,1’-biphenyl-4-diazonium tetrafluoroborate 85 1

NH2 N2BF4

83

Br Br

85  
 

To a cooled solution of 4'-Bromo-biphenyl-4-ylamine[304] 83 (1.3 g, 5 mmol) in 

tetrafluoroboric acid (8 M, 1.6 ml) and H2O (4 ml) at 0°C, was added dropwise a 

aturated aqueous solution of sodium nitrite (0.42 g, 6 mmol) during a period of 10 

,10,10-heptadecafluorodec-1-enyl]-

,1’-biphenyl 87 

s

minutes and the reaction mixture was stirred at the same temperature for additional 30 

minutes. The precipitate that formed was collected by suction filtration and washed, 

successively, with chilled solutions of HBF4 (5%, 20 ml), MeOH (20 ml) and ether (20 ml). 

The off-white precipitate 85 (1.58 g, 92%) was allowed to dry in air overnight and used 

without characterization.   

 

16.3.2 4-Bromo-4’-[(1E)- 3,3,4,4,5,5,6,6,7,7,8,8,9,9

1

 

Br

87

N2BF4

Br

85

Rf8

 
 

Method H. To a stirred suspension of the diazonium salt 85 (5.9 g, 17 mmol) and 

alladium acetate (38 mg, 0.17 mmol) in methanol (45 ml), was added dropwise p
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3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodec-1-ene (4.7 ml, 17 ml) durin

minutes. The

g 10-15 

 reaction mixture was then warmed at 40°C and allowed to react for 

dditional 90 minutes. After removal of the solvent, the resulting grey product was 

passed through a silica gel column chromatography using a 4:1 mixture of 

CH2Cl2/pentane as eluent affording 87 (11.02 g, 96%) as a white solid. 1H-NMR (360 

MHz, CDCl3): δ 7.54-7.61 (m, 6H, Ph), 7.46-7.48 (br. d, 2H, Ph), 7.18-7.23 (d, 1H, 

CH=CHRf8), 6.19-6.3 (q, 1H, CH=CHRf8). EI-MS: m/z 676 (M●+, 13%), 307 ([M-

(CF2)6CF3]●+, 10%), 228 (100%). 

 

16.3.3 4-Bromo-4’-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-1,1’-biphenyl 

89 

 

 

a

Br

89

Rf8

Br

87

Rf8

 
 

Method I. A solution of 87 (11.6 g, 17 mmol) and Rh/C (0.7 g, 0.34 mmol) in degassed 

ethylene dichloride (60 ml) was placed under 50 atm. of H2 and the reaction mixture 

as stirred at room temperature for 40 hours. The solvent was evaporated and the 

sidual black solid was then purified by filtration over silica gel column chromatography 

sing a 4:1 mixture of CH2Cl2/pentane as eluent affording 87 (11.37 g, 98%). TLC (SiO2, 

entane: Rf = 0.92). 1H-NMR (360 MHz, CDCl3): δ 7.54-7.57 (d, 3J(H,H) = 8.17 Hz, 2H, 

h), 7.5-7.53 (d, 3J(H,H) = 7.7 Hz, 2H, Ph), 7.43-7.45 (d, 3J(H,H) = 8.17 Hz, 2H, Ph), 7.28-

.3 (d, 3J(H,H) = 7.7 Hz, 2H, Ph), 2.94-2.99 (m, 2H, CH2CH2Rf8), 2.33-2.48 (m, 2H, 

H2CH2Rf8).  

m

w

re
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p

P
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C
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16.3.4 {[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-Heptadecafluorodecyl)-1,1’-biphenyl-4-yl] 

ethynyl}(trimethyl)silane 91 

 

Br

Rf8

Rf8

TMS

89 91  
 

The Sonogashira cross-coupling reaction was done following method A: 89 (2.1 g, 3 

mmol), TMSA (0.57 ml, 4 mmol), Pd(PPh3)2Cl2 (65 mg, 90 µmol), Ph3P (50 mg, 0.18 

mmol), CuI (35 mg, 0.18 mmol) and piperidine (15 ml). Reaction time: 7 hours. 

Purification was carried out by column chromatography using pentane as eluent 

affording 91 (1.43 g, 69%) as a white solid. TLC (SiO2, pentane: Rf = 0.52). 1H-NMR (360 

MHz, CDCl3): δ 7.53-7.56 (m, 6H, Ph), 7.28-7.3 (d, 2H, Ph), 2.94-2.99 (m, 2H, CH2CH2Rf8), 

2.33-2.48 (m, 2H, CH2CH2Rf8), 0.26 (s, 9H, TMS).  
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16.3.5 4-Ethynyl-4’-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-1,1’-

biphenyl 93 

 

Rf8
93Rf8

TMS

91

H

 
 

Deprotection was performed according to method B: 91 (1.29 g, 1.85 mmol), BTACl (0.85 

g, 3.7 mmol), NaOHaq (10 M, 40 ml), MeOH (20 ml), CH2Cl2 (5 ml). Filtration by column 

chromatography using pentane as eluent afforded 93 (0.96 g, 83%). 1H-NMR (360 MHz, 

CDCl3): δ 7.53-7.55 (m, 6H, Ph), 7.29-7.31 (d, 2H, Ph), 3.13 (s, 1H, acetylene), 2.94-2.99 

(m, 2H, CH2CH2Rf8), 2.33-2.48 (m, 2H, CH2CH2Rf8).  
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16.3.6 4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-Heptadecafluorodecyl)-4’-{[4’-(3,3,4,4,5,5,6,6 

,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-1,1’-biphenyl-4-yl]ethynyl}-1,1’-biphenyl 95 

 

Br

Rf8 89

Rf8

93

+ Ar Ar

C8F17
Ar =

95

H

 
 

The tolane derivative 95 was synthesized employing method E: 89 (0.95 g, 1.4 mmol), 93 

(0.87 g, 1.4 mmol), Pd(PPh3)4 (0.1 g, 84 µmol), CuI (40 mg, 0.21 mmol), and piperidine 

(15 ml). The reaction was carried out at 85°C for 29 hours. The brown suspension was 

then extracted with NH4Clsat. and CH2Cl2 (3 x 50 ml). The off-white precipitate suspended 

in the combined organic layer was collected by suction filtration and washed 

exhaustively with ether then allowed to dry affording 95 (1.04 g, 61%) as a white solid. 
1H-NMR (360 MHz, CDCl3): δ 7.57-7.64 (m, 14H, Ph), 7.3-7.33 (d, 2H, Ph), 2.94-3 (m, 4H, 

CH2CH2Rf8), 2.35-2.45 (m, 4H, CH2CH2Rf8). 13C-SSNMR (75.5 MHz, solid state): 125-136 

(br., Ph), 119 (Ph), 110 (Ph), 89 (acetylene), 15-35 (CH2). EI-MS: m/z 1222 (M●+, 100%), 

1203 ([M-F]●+, 5%), 789 ([M-CH2(CF2)7CF3]●+, 58%), 369 (22%). 
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16.3.7 Hexakis{4-[4’-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)]-1,1’-

biphenyl} benzene 97 

 
Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

95 97 C8F17
Ar =

 
 

 

The trimerization reaction was done as per method C: 95 (0.34 g, 0.27 mmol), Co2(CO)8 

(5 mg, 14 µmol) and dioxane (40 ml). Reaction time: 72 hours. Removal of the solvent 

yielded a greenish product which was extracted with HClaq (2 M, 25 ml) and CH2Cl2 (2 x 

50 ml). The combined organic layer was washed with H2O (3 x 50 ml) and concentrated 

to the fifth of its volume. The suspended solid was, therefore, collected by suction 

filtration over Millipore® and washed with CH2Cl2 (80 ml). The resulting white precipitate 

was refluxed in THF (20 ml) for 1.5 hours, collected by suction filtration over Millipore® 

and washed with hot THF (60 ml) followed by diethyl ether (5 ml) and dried under 

vacuum to yield 97 (0.22 g, 66%). MALDI-TOF: m/z 3666 (M●+, 25%), 3360 (73%), 3163 

(85%), 2963 (66%), 2760 (66%), 2442 (100%). 
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16.3.8 2,5,8,11,14,17-Hexakis[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluoro- 

decyl) phenyl]hexabenzo[bc,ef,hi,kl,no,qr]coronene 99 

 
Ar

Ar

Ar

Ar

Ar

Ar

97

C8F17
Ar =

Ar

Ar

Ar

Ar

Ar

Ar

99  
 

The oxidative cyclization reaction was carried out following method D: 97 (0.1 g, 27 

µmol), Cu(OTf)2 (0.41 g, 1.1 mmol), AlCl3 (0.15 g, 1.1 mmol) and CS2 (100 ml). The green 

residue was collected by suction filtration over Millipore®, washed successively with 

NH4OHaq (10%, 60 ml), H2O (50 ml), HClaq (10%, 60ml), H2O (60 ml), ethanol (60 ml), 

CH2Cl2 (60 ml), and ether (60 ml). The faint brown solid was then refluxed in dioxane (50 

ml) for 4.5 hours and the resulting suspended yellow product was then collected by 

suction filtration of the hot solution over Millipore® followed by washing the precipitate 

with hot dioxane (55 ml) to afford 99 as a bright yellow solid (64 mg, 65%). MALDI-TOF: 

m/z 3688 (50%), 3653 (M●+, 100%). 
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16.4 HBC with R = (CH2)4C8F17

 

16.4.1 1-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)-4-{[4-

(5,5,6,6,7, 7,8,8,9,9,10, 10,11,11,12,12,12-heptadecafluorododecyl)phenyl]ethynyl} 

benzene 110 

 

(CH2)4Rf8

(CH2)4Rf8

110

Br

108

Br

Br

36

+

Rf8

 
 

Method J. To a Schlenk vessel containing freshly activated magnesium turnings (50 mg, 

2 mmol) was added a solution of the perfluoroalkylated alkyl chain derivative[313] 108 

(1.11 g, 2 mmol) in degassed THF (1.5 ml) and the mixture was refluxed for 24 hours. 

The resulting solution of the Grignard reagent was then transferred via a cannula to a 

Schlenk flask containing a suspension of dibromotolane 36 (168 mg, 0.5 mmol) and 

Pd(dppf)Cl2 (61 mg, 75 µmol) in degassed THF (2.5 ml) and the red mixture was refluxed 

for 6 days. The reaction was quenched with methanol (7.5 ml) and the suspended beige 

solid was collected by filtration and washed successively with a solution of NH4Clsat. (25 

ml), H2O (100 ml) and CH2Cl2 (75 ml). White solid (0.42 g, 75%). 1H-NMR (360 MHz, 

CDCl3): δ 7.44-7.46 (d, 3J(H,H) = 7.7 Hz, 4H, Ph), 7.14-7.16 (d, 3J(H,H) = 7.7 Hz, 4H, Ph), 

2.65-2.69 (br. t, 4H, CH2CH2CH2CH2Rf8), 2.02-2.16 (m, 4H, CH2CH2CH2CH2Rf8), 1.61-

1.77 (m, 8H, CH2CH2CH2CH2Rf8). EI-MS: m/z 1126 (M●+, 70%), 1207 ([M-F]●+, 16%), 665 

([M-(CF2)7CF3]●+, 100%), 204 (36%). 
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16.4.2 Hexakis[4-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) 

henyl] benzene 112 p

 

R
R

R

110

R

R

R

R

R

112

R = (CH2)4Rf8

 
 

The reaction was carried out applying method C: 110 (0.24 g, 0.21 mmol), Co2(CO)8 (4 

 11 µmol) and dioxane (30 ml). Removal of the solvent yielded a grey product which 

25 ml

in 

12H, CH CH CH CH Rf ), 1.89-2.04 (m, 12H, CH CH CH CH Rf ), 1.33-1.54 (m, 24H, 

0%),

mg,

was extracted with HClaq (2 M, 20 ml) and ether (2 x 25 ml). The combined organic layer 

was washed with H2O (2 x ) and the greenish solution was filtered over Millipore® to 

remove the insoluble metallic species. The yellowish ethereal solution was then passed 

through a short silica gel plug under reduced pressure. Evaporation of the solvent gave 

an off-white solid which was suspended pentane (10 ml) and collected by suction 

filtration over Millipore®. The precipitate was washed successively with pentane (10 ml) 

and ether (2 ml) yielding 112 (169 mg, 70%). 1H-NMR (360 MHz, CDCl3): δ 6.67-6.69 (d, 

3J(H,H) = 8.17 Hz, 12H, Ph), 6.61-6.63 (d, 3J(H,H) = 8.17 Hz, 12H, Ph), 2.37-2.41 (br. t, 

2 2 2 2 8 2 2 2 2 8

CH2CH2CH2CH2Rf8). EI-MS: m/z 3379 ([M+H]+, 10  714 (18%). 
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16.4.3 2,5,8,11,14,17-Hexakis(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadeca- 

fluorododecyl)hexabenzo[bc,ef,hi,kl,no,qr]coronene 114 

 
R

R

R

R

R

R

R

R

R

R

R

R

112 114

R = (CH2)4Rf8

 
 

The cyclodehydrogenation reaction was performed following method G: 112 (90 mg, 27 

µmol), FeCl3 (0.32 g, 1.92 mmol), CH3NO2 (5 ml), CH2Cl2 (35 ml). Reaction time: 10 

hours. The yellow-brown suspension was extracted with HClaq (2 M, 20 ml) and 

methylene dichloride (3 x 25 ml). The combined organic layer was then washed with H2O 

(2 x 25 ml) and the solvent was evaporated affording a bright yellow solid which was 

suspended in ether (20 ml), refluxed for 22 hours, and collected by suction filtration over 

Millipore®. Exhaustive washings of the precipitate with ether (120 ml) and CH2Cl2 (25 ml) 

afforded 114 as a yellow solid (31 mg, 35%). MALDI-TOF: m/z 3367 (M●+, 100%), 501 

(11%). 
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16.5 HBC with R = (CH2)6C6F13

 

16.5.1 1-(7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododecyl)-4-{[4-(7,7,8,8,9,9,10, 

10,11,11,12,12,12-tridecafluorododecyl)phenyl]ethynyl}benzene 111 

 

(CH2)6Rf6

(CH2)6Rf6

111

Br

109

Br

Br

36

+
Rf6

 
 

The Kumada cross-coupling reaction was carried out as per method J: The partially 

perfluorinated chain derivative[312] 109 (1.02 g, 2 mmol), Mg (50 mg, 2 mmol), 36 (168 

mg, 0.5 mmol), Pd(dppf)Cl2 (41 mg, 50 µmol), and THF (5 ml). Reaction time: 72 hours. 

The dark red suspension was extracted with NH4Clsat. and CH2Cl2 (2 x 50 ml). The 

combined organic layer was washed with H2O (2 x 25 ml), dried over Na2SO4, and filtered. 

Removal of the solvent yielded an orange product which was filtered over a short silica 

gel plug under reduced pressure using a 9:1 mixture of hexane/CH2Cl2. After the 

vaporation of the solvent, the white solid was suspended in cyclohexane and the 

recipitate was collected by suction filtration over Millipore® affording 111 (321 mg, 

5%). TLC (SiO2, 9:1 hexane/CH2Cl2: Rf = 0.32). 1H-NMR (360 MHz, CDCl3): δ 7.43-7.45 

, 3J(H,H) = 8.17 Hz, 4H, Ph), 7.14-7.16 (d, 3J(H,H) = 8.17 Hz, 4H, Ph), 2.6-2.64 (br. t, 

H, CH2(CH2)5Rf6), 1.97-2.12 (m, 4H, CH2(CH2)4CH2Rf6), 1.36-1.68 (m, 16H, 

H2(CH2)4CH2Rf6). 13C-NMR (90.55 MHz, CDCl3):  δ 142.79 (Ph), 131.55 (Ph), 128.43 (Ph), 

20.8 (Ph), 116-120 (m, CF2), 88.96 (acetylene), 35.76 (CH2), 28.82-30.96 (overlapped 

eaks, CH2), 20.08 (CH2). EI-MS: m/z 982 (M●+, 20%), 714 (13%), 593 ([M-

H2)5(CF2)7CF3]●+, 100%), 204 (45%).
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16.5.2 Hexakis[4-(7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododecyl)phenyl] benzene 

13 1

 

R

R

111

R

R

R

R

R

R

113

R = (CH2)6Rf6

 
 

The cyclotrimerization reaction was carried out applying method C: 111 (0.31 g, 0.31 

mmol), Co2(CO)8 (6 mg, 16 µmol) and dioxane (40 ml). Removal of the solvent yielded a 

dark product which was filtered under reduced pressure over a short silica gel plug using 

THF as solvent. Evaporation of THF yielded a yellow product which was suspended in 

cyclohexane (4 ml) and collected by suction filtration over Millipore® to afford 113 (0.25 

g, 80%) as a white product. 1H-NMR (500 MHz, CDCl3): δ 6.67-6.68 (d, 3J(H,H) = 8.25 Hz, 

12H, Ph), 6.6-6.61 (d, 3J(H,H) = 8.25 Hz, 12H, Ph), 2.33-2.36 (br. t, 12H, CH2(CH2)5Rf6), 

1.95-2.06 (m, 12H, CH2(CH2)4CH2Rf6), 1.5-1.56 (m, 12H, (CH2)4CH2CH2Rf6), 1.38-1.44 (m, 

12H, CH2CH2(CH2)4Rf6), 1.26-1.33 (m, 12H, (CH2)3CH2CH2CH2Rf6), 1.11-1.17 (m, 12H, 

CH2CH2CH2(CH2)3Rf6). 13C-NMR (90.55 MHz, CDCl3):  δ 140.38 (Ph), 138.76 (Ph), 138.53 

(Ph), 131.57 (Ph), 126.55 (Ph), 107-122 (m, CF2), 35.22 (CH2), 30.73-31.21 (overlapped 

eaks, CH2), 29.11 (CH2), 28.45 (CH2), 20.18(CH2). EI-MS: m/z 2947 ([M+H]+, 100%).  
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16.5.3 2,5,8,11,14,17-Hexakis(7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododecyl) 

hexabenzo[bc,ef,hi,kl,no,qr]coronene 115 

 
R

R

R

R

R

R

R

R

R

R

R

R

113 115

R = (CH2)6Rf6

 
 

The oxidative cyclization reaction was done using method G: 113 (0.1 g, 34 µmol), FeCl3 

(0.4 g, 2.45 mmol), CH3NO2 (5 ml), CH2Cl2 (30 ml). Reaction time: 5 hours. The yellow-

brown suspension was extracted with HClaq (2 M, 25 ml) and methylene dichloride (3 x 

25 ml). The combined organic layer was then washed with H2O (50 ml) and the solvent 

was evaporated affording a bright yellow solid which was suspended in CHCl3 (5 ml), 

sonicated for 5-10 minutes, and collected by suction filtration over Millipore®. After 

everal washings of the precipitate with CHCl3, 115 was isolated as a yellow solid (87 mg, 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

87%). MALDI-TOF: m/z 2934 (M●+, 100%). UV-Vis: 368 (4.46), 394.5 (5.07), 421.5 (4.64).
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16.6 Attempted synthesis of HBC with R = O(CH2)4C8F17

 

16.6.1 1-Bromo-4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)- 

oxy]benzene 116 

 
OH

Br

O(CH2)4Rf8

Br

4-Bromophenol 116

+ Br

108

Rf8

 
 

Method K. A solution of 4-bromophenol (0.7 g, 4 mmol), 108 (2.44 g, 4.4 mmol), and 

K2CO3 (1.68 g, 12 mmol) in degassed DMF (60 ml) was reacted, under argon, at 80°C for 

24 hours. The yellowish suspension was extracted with H2O and ether (3 x 25 ml). The 

combined organic layer was then washed with a saturated aqueous solution of NaCl (2 x 

50 ml), dried over Na2SO4, filtered and the solvent was evaporated to give a faint orange 

solid which was recrystallized from ethanol affording 116 (2.16 g, 83%). 1H-NMR (360 

MHz, CDCl3): δ 7.35-7.39 (br. d, 2H, Ph), 6.76-6.79 (br. d, 2H, Ph), 3.94-3.98 (br. t, 2H, 

OCH2CH2CH2CH2Rf8), 2.08-2.23 (m, 2H, OCH2CH2CH2CH2Rf8), 1.76-1.92 (m, 4H, 

CH2CH2CH2CH2Rf8). 13C-NMR (90.55 MHz, CDCl3):  δ 158.3 (Ph), 132.69 (Ph), 116.63 

(Ph), 113.36 (Ph), 67.82 (s, OCH2CH2CH2CH2Rf8), 30.82-31.3 (m, OCH2CH2CH2CH2Rf8), 

29.01 (s, OCH2CH2CH2CH2Rf8), 17.62-17.71 (m, OCH2CH2CH2CH2Rf8). EI-MS: m/z 648 

([M+H]+, 16%), 646 ([M+H]+, 17%), 173 ([M+H-(CH2)4Rf8]●+, 100%), 171 ([M+H-(CH2)4Rf8]●+, 

97%).  
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16.6.2 ({4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl)oxy]- 

phenyl}ethynyl)(trimethyl)silane 117 

 
TMS

O(CH2)4Rf8O(CH2)4Rf8

Br

116 117  
 

The Sonogashira cross-coupling reaction was done applying method A: 116 (0.8 g, 1.2 

mmol), TMSA (0.21 ml, 1.5 mmol), Pd(PPh3)2Cl2 (26 mg, 36 µmol), Ph3P (20 mg, 72 µmol), 

CuI (13 mg, 72 µmol) and piperidine (7.5 ml). Reaction time: 25 hours. Purification was 

carried out by filtration over a short silica gel plug, under reduced pressure, using a 9:1 

pentane/ether mixture as the eluent affording 117 (0.67 g, 87%). TLC (SiO2, 9:1 

pentane/ether: Rf = 0.8). 1H-NMR (360 MHz, CDCl3): δ 7.41-7.39 (br. d, 2H, Ph), 6.79-6.81 

(br. d, 2H, Ph), 3.98-4 (br. t, 2H, OCH2CH2CH2CH2Rf8), 2.1-2.25 (m, 2H, 

OCH2CH2CH2CH2Rf8), 1.79-1.9 (m, 4H, OCH2CH2CH2CH2Rf8), 0.23 (s, 9H, TMS).  

 

16.6.3 1-Ethynyl-4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)- 

oxy]benzene 118 

 
TMS

O(CH2)4Rf8

H

O(CH2)4Rf8

118117  
 

he deprotection was done using method B: 117 (0.68 g, 1 mmol), BTACl (0.47 g, 2 

mol), NaOHaq (7.5 ml, 10 M), CH2Cl2 (5 ml). Filtration over a short silica gel plug, under 

duced pressure, using a 98:2 mixture of pentane/ether yielded 117 (0.56 g, 95%). TLC 

iO2, 98:2 pentane/ether: Rf = 0.64). 1H-NMR (360 MHz, CDCl3): δ 7.39-7.41 (d, 3J(H,H) = 

T

m

re

(S
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8.64 Hz,  2H, Ph), 6.79-6.81 (d, 3J(H,H) = 8.64 Hz, 2H, Ph), 3.98-4.01 (br. t, 2

OCH

H, 

.09-2.23 (m, 2H, OCH2CH2CH2CH2Rf8), 

1.79-1.92 (m, 4H, OCH2CH2CH2CH2Rf8). 13C-NMR (90.55 MHz, CDCl3):  δ 159.58 (Ph), 

133.9-134.02 (Ph), 114.82 (Ph), 108-119 (m, CF2), 83.95 (acetylene), 76.14 (acetylene), 

67.25-67.93 (t, OCH2CH2CH2CH2Rf8), 30.78-31.28 (m, OCH2CH2CH2CH2Rf8), 30.12 (s, 

OCH2CH2CH2CH2Rf8), 17.63 (br. s, OCH2CH2CH2CH2Rf8). EI-MS: m/z 592 (M●+, 10%), 118 

([M-(CH2)4Rf8]●+, 100%).  

 

16.6.4 1-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)oxy]-4-({4-

[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)oxy]phenyl}ethynyl)- 

benzene 119 

 

2CH2CH2CH2Rf8), 2.99 (s, 1H, acetylene), 2

H

O(CH2)4Rf8

118

O(CH2)4Rf8

Br

116

+ R R

R = O(CH2)4Rf8

119

 
 

 

The Sonogashira cross-coupling reaction was done employing method E: 116 (0.15 g, 

0.23 mmol), 118 (0.14 g, 0.23 mmol), Pd(PPh3)4 (16.5 mg, 14 µmol), CuI (7 mg, 35 µmol), 

and piperidine (5 ml). The reaction was carried out at 85°C for 48 hours. The brown 

suspension was then extracted with NH4Clsat. and CH2Cl2 (3 x 50 ml). The combined 

organic layer was washed with H2O (2 x 25 ml) and the white suspended precipitate was 

ollected by suction filtration. The organic layer was evaporated and the residue was 

assed through a short silica gel plug, under reduced pressure, using CH2Cl2. 

ecrystallization of the residual product from chloroform and its combination with the 

hite precipitate collected at first afforded 119 (0.17 g, 64%). 1H-NMR (360 MHz, CDCl3): 

.43-7.45 (br. d, 4H, Ph), 6.84-6.86 (br. d, 4H, Ph), 4-4.03 (br. t, 4H, 

CH2CH2CH2CH2Rf8), 2.99 (s, 1H, acetylene), 2.1-2.3 (m, 4H, OCH2CH2CH2CH2Rf8), 1.82-

.93 (m, 8H, OCH2CH2CH2CH2Rf8). EI-MS: m/z 1158 (M●+, 32%), 684 ([M+H-(CH2)4Rf8]●+, 

5%), 210 (100%).  

 

c

p

R

w

δ 7

O

1
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16.6.5 Hexakis({4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)- 

xy]phenyl}benzene 120 o

 

O(CH2)4Rf8

O(CH2)4Rf8

119

O(CH2)4Rf8

Rf8(H2C)4O

Rf8(H2C)4O

O(CH2)4Rf8

O(CH2)4Rf8

O(CH2)4Rf8

120  
 

The hexaphenyl benzene derivative was synthesized according to method C: 119 (0.24 g, 

0.2 mmol), Co2(CO)8 (4 mg, 10 µmol) and dioxane (20 ml). Removal of the solvent yielded 

a dark product which was filtered under reduced pressure over a short silica gel plug 

using THF as solvent. Evaporation of THF yielded a yellow product which was suspended 

in ether (7 ml), sonicated, and collected by suction filtration over Millipore® to afford 120 

(0.15 g, 64%) as a white glassy solid. 1H-NMR (360 MHz, CDCl3): δ 6.65-6.68 (br. d,  12H, 

Ph), 6.39-6.42 (br. d, 12H, Ph), 3.78-3.8 (br. t, 12H, OCH2CH2CH2CH2Rf8), 2.04-2.14 (m, 

12H, OCH2CH2CH2CH2Rf8), 1.75 (br. s, 24H, OCH2CH2CH2CH2Rf8). 13C-NMR (90.55 MHz, 

CDCl3):  δ 156.38 (Ph), 140.58 (Ph), 134.12 (Ph), 132.88 (Ph), 113.22 (Ph), 67.22 (s, 

OCH2CH2CH2CH2Rf8), 31.02 (m, OCH2CH2CH2CH2Rf8), 29.02 (s, OCH2CH2CH2CH2Rf8), 

17.55 (s, OCH2CH2CH2CH2Rf8). EI-MS: m/z 3474 (M●+, 100%).  
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16.6.6 5,6,7,8-Tetrakis{4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluoro- 

dodecyl)oxy]phenyl}triphenylene-2,11-dione 121 

 
OR

RO

RO

OR

OR

OR

121

O

RO

RO

OR

OR

O

120

With R = (CH2)4Rf8

 
 

The reaction was carried out following method G: 120 (60 mg, 17 µmol), FeC  (0.1 g, 

0.62 mmol), CH3NO2 (1 ml), CH2Cl2 (15 ml). Reaction time: 24 hours including 5 hours of 

purging with argon. The red-brown suspension was extracted with H2O and ether (3 x 25 

ml). Evaporation of the organic layer afforded a brown solid which was suspended in 

ether (10 ml) and collected by suction filtration over Millipore®. Exhaustive washings of 

the precipitate with ether (50 ml) yielded 121 as a brown solid (21 mg, 48%). 1H-NMR 

(500 MHz, CDCl3): δ 7.17-7.18 (br. d, 4H, Ph), 6.88-6.9 (br. d,  4H, Ph), 6.55-6.58 (dd, 2H, 

o-quinone), 6.52-6.54 (br. d,  4H, Ph), 6.50-6.51 (d, 2H, o-quinone), 6.28-6.29 (d, 2H, m-

quinone), 6.12-6.14 (dd, 4H, Ph), 4.06-4.09 (br. t, 4H, OCH2CH2CH2CH2Rf8), 3.83-3.7 (t, 

4H, OCH2CH2CH2CH2Rf8), 2.2-2.32 (m, 4H, OCH2CH2CH2CH2Rf8), 2.03-2.15 (m, 4H, 

CH2CH2CH2CH2Rf8), 1.86-1.97 (m, 8H, OCH2CH2CH2CH2Rf8), 1.7-1.81 (m, 8H, 

H2CH2CH2CH2Rf8). IR [cm-1]: 3060 (w), 1662 [(CO)stretch.], 1612 (m), 1490 [(C=C)arene], 

149 (m), 704 (s). MALDI-TOF: m/z 2524 (M●+, 100%). 

l3

O

OC

1243 [(Ar-O-R)], 1207 (m), 1

 

 

 

 

 

 

 

 

 



16. Synthesis of the HBCs with Long Perfluorinated Chains 231

16.7 HBC with R = p-PhO(CH2)4C8F17

 

Tolane derivative 123 via a Suzuki cross-coupling reaction  

 

16.7.1 4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)oxy]phenyl- 

boronic acid 122 

 
Br

O(CH2)4Rf8

B(OH)2

O(CH2)4Rf8

116 122  
 

n-BuLi (1.5 mmol, 1 ml, 1.6 M in hexanes) was injected dropwise to a solution of 116 

(0.39 g, 0.6 mmol) in degassed THF (5 ml) at -85°C. The reaction was allowed to warm at 

-40°C over a period of 50 minutes and it was stirred for 130 minutes (total reaction time: 

3 hours). After cooling the solution once again at -85°C, B(OMe)3 (0.34 ml, 3 mmol) was 

injected and the reaction was stirred for 1 hour at -60°C, then it was warmed at room 

temperature overnight. HClaq (2 M, 15 ml) was finally added and the reaction was stirred 

at room temperature for 20 hours. The solution was extracted with HClaq (2 M, 25 ml) 

and CH2Cl2 (3 x 25 ml). After washing the combined organic layers with H2O (3 x 25 ml) 

and distilling off CH2Cl2, the faint yellow solid was suspended in ether an the white 

precipitate was collected by suction filtration over Millipore® (0.162 g, 44%). 1H-NMR (360 

MHz, CDCl3): δ 8.15-8.18 (d, 3J(H,H) = 8.6 Hz, 2H, Ph), 6.99-7.01 (d, 3J(H,H) = 8.6 Hz, 2H, 

Ph), 4.07-4.15 (br. t, 2H, OCH2CH2CH2CH2Rf8), 2.12-2.25 (m, 2H, OCH2CH2CH2CH2Rf8), 

1.86-1.94 (m, 4H, OCH2CH2CH2CH2Rf8). 
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16.7.2 4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl)oxy]-4’-({4’-

[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)oxy]1,1’-biphenyl-4-

l}ethynyl)-1,1’-biphenyl 123 

 

y

B(OH)2

O(CH2)4Rf8

122

Br

Br

Ar Ar+

36

123

Ar = O(CH2)4Rf8

 
 

The Suzuki cross-coupling reaction was done as per method F: 4,4’-dibromotolane[221] 36 

(26 mg, 79 µmol), 122 (120 mg, 0.19 mmol), Pd(PPh3)4 (10 mg, 7.9 µmol), and K2CO3 

(176 mg, 1.26 mmol), toluene (1.5 ml), ethanol (0.5 ml) and H2O (1 ml). Reaction time: 5 

days. The dark brown biphasic solution was then extracted with NH4Clsat. and 

methylenedichloride (50 ml). The suspended precipitate in the organic layer was collected 

by suction filtration and washed exhaustively with CH2Cl2 yielding a white solid (65 mg, 

63%). EI-MS: m/z 1310 (M●+, 100%), 1291 ([M-F]●+, 5%), 836 ([M-(CH2)4Rf8]●+, 43%), 362 

M-2(CH2)4Rf8]●+, 32%). 
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Tolane derivative 123 via a step by step Sonogashira cross-coupling reaction  

 

16.7.3 4-Bromo-4’-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)- 

oxy]-1,1’-biphenyl 124 

 

Br Br

4-(4-Bromophenyl)phenol

OH O(CH2)4Rf8

124

Br
+

108

Rf8

 
 

The reaction was carried out following method K: 4-(4-bromophenyl)phenol (1.01 g, 4 

mmol), 108 (2.44 g, 4.4 mmol), K2CO3 (1.68 g, 12 mmol), and degassed DMF (60 ml). The 

yellowish product was suspended in pentane (30 ml), sonicated and allowed to settle 

then it was collected by suction filtration and washed with ether (5 ml) affording 124 

(2.28 g, 79%). 1H-NMR (360 MHz, CDCl3): δ 7.52-7.54 (br. d, 2H, Ph), 7.47-7.49 (d, 
3J(H,H) = 8.6 Hz, 2H, Ph), 7.4-7.42 (d, 3J(H,H) = 8.6 Hz, 2H, Ph), 6.95-6.97 (br. d, 2H, 

Ph), 4.03-4.06 (br. t, 2H, OCH2CH2CH2CH2Rf8), 2.13-2.25 (m, 2H, OCH2CH2CH2CH2Rf8), 

1.8-1.95 (m, 4H, OCH2CH2CH2CH2Rf8). 13C-NMR (90.55 MHz, CDCl3):  δ 159.03 (Ph), 

140.1 (Ph), 133.06 (Ph), 132.2 (Ph), 128.7 (Ph), 128.4 (Ph), 121.23 (Ph), 115.25 (Ph),  

67.69 (s, OCH2CH2CH2CH2Rf8), 30.82-31.35 (m, OCH2CH2CH2CH2Rf8), 29.1 (s, 

CH2CH2CH2CH2Rf8), 17.71 (br. s, OCH2CH2CH2CH2Rf8). EI-MS: m/z 724 (M●+, 18%), 724 
●+, 22%), 249 ([M-(CH2)4Rf8]●+, 97%), 247 ([M-(CH2)4Rf8]●+, 100%).  

O

(M
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16.7.4 ({4’-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)oxy]-1,1

biphenyl-4-yl}ethynyl)(trimethyl)silane 126  

 

’-

Br

O(CH2)4Rf8

124
O(CH2)4Rf8

126

TMS

 
 

The Sonogashira cross-coupling reaction was done using method A: 124 (0.13 g, 0.41 

mmol), TMSA (80 µl, 0.54 mmol), Pd(PPh3)2Cl2 (9 mg, 13 µmol), Ph3P (7 mg, 25 µmol), 

CuI (5 mg, 25 µmol) and piperidine (10 ml). Purification was carried out by filtration over 

a short silica gel plug, under reduced pressure, using a 4:1 pentane/CH2Cl2 mixture as 

the eluent affording 126 (0.275 g, 90%). TLC (SiO2, 4:1 pentane/ CH2Cl2: Rf = 0.83). 1H-

NMR (360 MHz, CDCl3): δ 7.47-7.53 (m, 6H, Ph), 6.94-6.97 (d, 2H, Ph), 4.03-4.06 (br. t, 

2H, OCH2CH2CH2CH2Rf8), 2.13-2.25 (m, 2H, OCH2CH2CH2CH2Rf8), 1.81-1.93 (m, 4H, 

OCH2CH2CH2CH2Rf8), 0.26 (s, 9H, TMS). 
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16.7.5 4-Ethynyl-4’-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)- 

oxy]-1,1’-biphenyl 128 

 

O(CH2)4Rf8

128

O(CH2)4Rf8

126

TMS H

 
 

The elimination of the trimethylsilylated group was performed applying method B: 127 

(275 mg, 0.37 mmol), BTACl (174 mg, 0.75 mmol), NaOHaq (5 ml, 10 M), CH2Cl2 (12 ml). 

Filtration over a short silica gel plug, under reduced pressure, using pentane/CH2Cl2 

(4:1) yielded 128 (226 mg, 92%). TLC (SiO2, 4:1 pentane/CH2Cl2: Rf = 0.83). 1H-NMR (360 

MHz, CDCl3): δ 7.51-7.57 (m, 6H, Ph), 6.97-6.99 (d, 2H, Ph), 4.04-4.07 (br. t, 2H, 

OCH2CH2CH2CH2Rf8), 3.13 (s, 1H, acetylene), 2.13-2.25 (m, 2H, OCH2CH2CH2CH2Rf8), 

1.81-1.93 (m, 4H, OCH2CH2CH2CH2Rf8). 13C-NMR (90.55 MHz, CDCl3):  δ 159.12 (Ph), 

141.53 (Ph), 133.28 (Ph), 132.94 (Ph), 128.53 (Ph), 126.87 (Ph), 120.72 (Ph), 115.23 (Ph), 

84.04 (acetylene), 77.91 (acetylene), 67.69 (s, OCH2CH2CH2CH2Rf8), 30.85-31.34 (m, 

CH2CH2CH2CH2Rf8), 29.1 (s, OCH2CH2CH2CH2Rf8), 17.72 (br. s, OCH2CH2CH2CH2Rf8).  

 

O
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16.7.6 4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl)oxy]-4’-({4’-

[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)oxy]1,1’-biphenyl-4-

l}ethynyl)-1,1’-biphenyl 123 

 

 

y

O(CH2)4Rf8

128

Br

O(CH2)4Rf8

124

+ Ar Ar

Ar = O(CH2)4Rf8

123

H

 
 

The Sonogashira cross-coupling reaction was done as per method E: 124 (216 mg, 0.3 

mmol), 128 (0.2 g, 0.3 mmol), Pd(PPh3)4 (21 mg, 18 µmol), CuI (9 mg, 45 µmol), and 

piperidine (15 ml). The reaction was carried out at 80°C for 48 hours. The brown 

suspension was then extracted with NH4Clsat. and CH2Cl2 (3 x 50 ml). The combined 

organic layer was washed with H2O (25 ml) and the white suspended precipitate was 

cted by suction filtration affording 123 (232 mg, 59%). EI-MS: m/z 1310 (M●+, 

2)4Rf8]●+, 7%), 362 ([M-2(CH2)4Rf8]●+, 15%). 
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100%), 836 ([M-(CH
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16.7.7 Hexakis(4-{4’-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)- 

xy]-1,1’-biphenyl})benzene 131 o

 

Ar

Ar Ar = O(CH2)4Rf8

123

Ar

Ar

Ar

Ar

Ar

Ar

131  
 

The hexaphenyl benzene derivative was synthesized according method C: 123 (215 mg, 

0.16 mmol), Co2(CO)8 (6 mg, 16 µmol) and dioxane (60 ml). After distilling off the solvent, 

the grey product was suspended in ether (15 ml), sonicated for 5-10 minutes, and 

collected by suction filtration over Millipore® yielding 131 (115 mg, 53%) as an off-white 

solid. 1H-NMR (360 MHz, THF-d8): δ 7.34 (br. s,  12H, Ph), 7.14 (br. s,  12H, Ph), 6.82-

6.95 (br. d, 24H, Ph), 3.98 (br. s, 12H, OCH2CH2CH2CH2Rf8), 2.25 (m, 12H, 

OCH2CH2CH2CH2Rf8), 1.82 (br. s, 24H, OCH2CH2CH2CH2Rf8). (360 MHz, CDCl3): δ 7.85 

(br. s, 12H, Ph), 7.1 (br. s, 12H, Ph), 6.82-6.95 (br. d, 24H, Ph), 3.98 (br. s, 12H, 

OCH2CH2CH2CH2Rf8), 2.25 (m, 12H, OCH2CH2CH2CH2Rf8), 1.82 (br. s, 24H, 

OCH2CH2CH2CH2Rf8). EI-MS: m/z 3930 (M●+, 100%), 1310 (70%).  
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16.7.8 2,5,8,11,14,17-Hexakis{4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadeca

fluorododecyl)oxy]phenyl}hexaben

- 

zo[bc,ef,hi,kl,no,qr]coronene 133 

 

Ar = O(CH2)4Rf8

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

131 133  
 

The oxidative cyclization reaction was done using method G: 131 (101 mg, 26 µmol), 

FeCl3 (0.31 g, 1.85 mmol), CH3NO2 (5 ml), CH2Cl2 (30 ml). Reaction time: 9 hours. The 

yellow-brown suspension was extracted with NH4Clsat. (25 ml) and methylene dichloride 

(3 x 25 ml). The combined organic layer was then washed with H2O (2 x 50 ml) and the 

solvent was evaporated affording a brown-yellow solid which was suspended in THF (30 

ml), refluxed for 2 hours, and collected by suction filtration over Millipore®. After several 

washings of the precipitate with hot THF (60 ml), 133 was isolated as a yellow solid (33 

mg, 33%). MALDI-TOF: m/z 3949 (36%), 3917 ([M-H]●+, 90%), 1309 (100%).  
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16.8 HBC with R = p-PhO(CH2)6C6F13

 

16.8.1 4-Bromo-4’-[(7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododecyl)oxy]-1,1’-

biphenyl 125 

 

Br Br

4-(4-Bromophenyl)phenol

OH O(CH2)6Rf6

125

+ Rf6
Br

109

 
 

The reaction was carried out using method K: 4-(4-bromophenyl)phenol (0.75 g, 3 mmol), 

109 (1.59 g, 3.3 mmol), K2CO3 (1.24 g, 9 mmol), and degassed DMF (45 ml). Reaction 

time: 28 hours. The yellowish product was suspended in hexane, then it was collected by 

suction filtration affording 125 (1.76 g, 90%). 1H-NMR (360 MHz, CDCl3): δ 7.52-7.54 (br. 

d, 2H, Ph), 7.47-7.49 (br. d, 2H, Ph), 7.4-7.42 (br. d, 2H, Ph), 6.94-6.97 (br. d, 2H, Ph), 

3.99-4.02 (br. t, 2H, OCH2(CH2)4CH2Rf6), 2-2.15 (m, 2H, O(CH2)5CH2Rf6), 1.4-1.87 (br. m, 

8H, OCH2(CH2)4CH2Rf6). 13C-NMR (90.55 MHz, CDCl3):  δ 159 (Ph), 139.9 (Ph), 132.54 

(Ph), 131.93 (Ph), 128.42 (Ph), 128.11 (Ph), 120.9 (Ph), 114 (Ph),  67.92 (s, 

OCH2(CH2)4CH2Rf6), 30.95 (m, OCH2(CH2)4CH2Rf6), 29-29.15 (overlapped peaks, CH2),  

25.92 (CH2), 20.23 (CH2). EI-MS: m/z 652 ([M+H]+, 38%), 650 ([M+H]+, 34%), 249 ([M-

(CH2)6Rf6]●+, 100%), 247 ([M-(CH2)6Rf6]●+, 97%).  
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16.8.2 Trimethyl({4’-[(7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododecyl)oxy]-1,1’-

biphenyl-4-yl}ethynyl)silane 127 

 

Br

O(CH2)6Rf6

125
O(CH2)6Rf6

127

TMS

 
 

The reaction was done applying method A: 125 (325 mg, 0.5 mmol), TMSA (90 µl, 0.65 

mmol), Pd(PPh3)2Cl2 (10.5 mg, 15 µmol), Ph3P (7.8 mg, 30 µmol), CuI (5.7 mg, 30 µmol) 

and piperidine (25 ml). Reaction time: 16 hours. Purification was carried out by filtration 

over a short silica gel plug, under reduced pressure, using pentane/CH2Cl2 (4:1) 

affording 127 (0.21 g, 64%). TLC (SiO2, 4:1 pentane/ CH2Cl2: Rf = 0.71). 1H-NMR (360 

MHz, CDCl3): δ 7.5-7.53 (m, 6H, Ph), 6.95-6.97 (d, 2H, Ph), 3.99-4.02 (br. t, 2H, 

OCH2(CH2)4CH2Rf6), 2.01-2.15 (m, 2H, OCH2(CH2)4CH2Rf6), 1.81-1.93 (m, 2H, 

O(CH2)4CH2CH2Rf6), 1.61-1.79 (m, 6H, OCH2(CH2)3CH2Rf6), 0.26 (s, 9H, TMS). 
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16.8.3 4-Ethynyl-4’-[(7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododecyl)oxy]-1,1’-

biphenyl 129 

 

O(CH2)6Rf6

129

O(CH2)6Rf6

127

TMS H

 
 

The deprotection reaction was carried out employing method B: 127 (472 mg, 0.69 

mmol), BTACl (313 mg, 1.37 mmol), NaOHaq (9.5 ml, 10 M), CH2Cl2 (24 ml). Filtration 

over a short silica gel plug, under reduced pressure, using pentane/CH2Cl2 (4:1) yielded 

129 (416 mg, 100%). TLC (SiO2, 4:1 pentane/CH2Cl2: Rf = 0.71). 1H-NMR (360 MHz, 

CDCl3): δ 7.49-7.53 (m, 6H, Ph), 6.95-6.98 (d, 2H, Ph), 3.99-4.02 (br. t, 2H, 

OCH2(CH2)4CH2Rf6), 3.11 (s, 1H, acetylene), 2.01-2.15 (m, 2H, OCH2(CH2)4CH2Rf6), 1.81-

1.93 (m, 2H, O(CH2)4CH2CH2Rf6), 1.61-1.79 (m, 6H, OCH2(CH2)3CH2Rf6). 13C-NMR (90.55 

MHz, CDCl3):  δ 158.98 (Ph), 141.22 (Ph), 132.54 (Ph), 128.09 (Ph), 126.48 (Ph), 120.27 

(Ph), 114.86 (Ph), 93.71 (acetylene), 83.68 (acetylene), 67.79 (s, OCH2(CH2)4CH2Rf6), 

30.78-31.28 (m, OCH2(CH2)4CH2Rf6), 29.02 (CH2), 28.86 (CH2), 25.79 (CH2), 20.11 (CH2). 

EI-MS: m/z 596 (M●+, 54%), 194 ([M+H-(CH2)6Rf6]●+, 100%).  
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16.8.4 4-[(7,7,8,8,9,9,10,10,11,11,12,12,12-Tridecafluorododecyl)oxy]-4’-({4’-[(7,7,8

8, 9,9,10,10,11,11,12,12,12-tridecafluorododecyl)oxy]-1,1’-bip

, 

henyl-4-yl}ethynyl)-1,1’-

biphenyl 130 

 

O(CH2)6Rf6

129

Br

O(CH2)6Rf6

125

+ Ar Ar

Ar = O(CH2)6Rf6

130

H

 
 

The tolane derivative 130 was synthesized as per method E: 125 (249 mg, 0.38 mmol), 

129 (228 mg, 0.38 mmol), Pd(PPh3)4 (26 mg, 23 µmol), CuI (11 mg, 57 µmol), and 

piperidine (15 ml). The reaction was carried out at 80°C for 48 hours. The suspension 

was extracted with H2O and CH2Cl2 (3 x 50 ml) and the suspended product in the 

combined organic layer was collected by suction filtration over Millipore®. The product 

was further purified by sonication in CHCl3 (15 ml) for 5-10 minutes followed by 

collecting the precipitate by suction filtration over Millipore® affording 130 (266 mg, 

63%). EI-MS: m/z 1166 (M●+, 100%), 764 ([M+H-(CH2)6Rf6]●+, 4%), 362 ([M+H-

2(CH2)6Rf6]●+, 22%). 
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16.8.5 Hexakis(4-{4’-[(7,7,8,8, 9,9,10,10,11,11,12,12,12-tridecafluorododecyl)oxy]-1,1’-

iphenyl})benzene 132 

 

 

b

Ar

Ar Ar = O(CH2)6Rf6

130

Ar

Ar

Ar

Ar

Ar

Ar

132  
 

The trimerization reaction was carried out using method C: 130 (156 mg, 0.13 mmol), 

Co2(CO)8 (2.5 mg, 6.7 µmol) and dioxane (20 ml). After distilling off the solvent, the 

greenish product was dissolved in CHCl3 and filtered over a short silica gel plug under 

reduced pressure to discard the metallic species. The organic layer was evaporated and 

the residual product was suspended in hexane (10 ml), sonicated for 10 minutes and the 

precipitate was collected by filtration over Millipore®, under reduced pressure. 132 (66 

mg, 42%) as an off-white solid. 1H-NMR (360 MHz, CDCl3): δ 7.33-7.36 (br. d, 12H, Ph), 

7.08-7.11 (d, 3J(H,H) = 8.17 Hz, 12H, Ph), 6.9-6.92 (d, 3J(H,H) = 8.17 Hz, 12H, Ph), 6.82-

.84 (br. d, 12H, Ph), 3.92-3.95 (br. t, 12H, OCH2(CH2)5Rf6), 2-2.15 (m, 12H, 

O(CH2)5CH2Rf6), 1.74-1.8 (m, 12H, O(CH2)4CH2CH2Rf6), 1.58-1.67 (m, 12H, OCH2 

CH2(CH2)4Rf6), 1.43-1.53 (m, 24H, O(CH2)2CH2CH2(CH2)2Rf6). 13C-NMR (90.55 MHz, 

CDCl3):  δ 158.29 (Ph), 140.31 (Ph), 139.18 (Ph), 137.1 (Ph), 133.29 (Ph), 131.93 (Ph), 

127.72 (Ph), 124.77 (Ph), 114.56 (Ph), 67.73 (s, OCH2(CH2)5Rf6), 31.83 (m, 

O(CH2)5CH2Rf6), 29 (s, CH2), 28.84 (CH2), 25.75 (CH2), 20.08 (CH2). MALDI-TOF: m/z 

3600 (18%), 3501 (M●+, 100%), 3142 (19%), 3017 (21%), 2350 (13%).  

 

 

 

 

 

 

 

6
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16.8.6 2,5,8,11,14,17-Hexakis{4-[(7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluoro- 

dodecyl)oxy]phenyl}hexabenzo[bc,ef,hi,kl,no,qr]coronene 134 

 

 

Ar = O(CH2)6Rf6

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

Ar

132 134  
 

The HBC derivative synthesis was done applying method G: 132 (103 mg, 29 µmol), 

FeCl3 (0.35 g, 2.12 mmol), CH3NO2 (5 ml), CH2Cl2 (40 ml). Reaction time: 8 hours. The 

yellow-brown suspension was extracted with NH4Clsat. (25 ml) and methylene dichloride 

(3 x 25 ml). The combined organic layer was then washed with H2O (3 x 50 ml) and the 

solvent was evaporated affording a brown-yellow solid which was suspended in CH2Cl2 

(30 ml), sonicated for 15 minutes, and collected by suction filtration over Millipore®. The 

precipitate was then washed successively CH2Cl2 (60 ml), H2O (60 ml), ether (60 ml), and 

finally CHCl3 (60 ml). 134 was isolated as a bright yellow solid (75 mg, 73%). MALDI-

TOF: m/z 3514 (36%), 3487 (M●+, 100%), 3124 (17%). UV-Vis: 369.5 (5.06), 395 (4.8), 

453 (4.01). 
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17. Attempted synthesis of nitrogen-containing PAH 

 

 

17.1 Synthesis of the perfluorinated binaphthyl amine compound 144

 

17.1.1 4-Bromonaphthalene-1-diazonium tetrafluoroborate 138 

 

Br

NH2

Br

N2BF4

136 138  
 

Method L. BF3.Et2O (2.5 ml, 19.5 mmol) was placed in a three-necked round bottomed 

ask equipped with an addition funnel, a septum, and a reflux condenser. The 

temperature was decreased to -15°C and a solution of 4-bromonaphthylamine 136 (3 g, 

13 mmol) in dimethoxy ethane (DME, 15 ml) was added dropwise first, followed by the 

addition of a solution of tBuNO2 (2.1 ml, 15.6 mmol) in DME (25 ml), at the same 

temperature, during 15 minutes. After stirring the reaction at -15°C for 20 minutes, the 

temperature was raised to 5°C over a period of 20 minutes. Pentane (50 ml) was then 

added and the suspended compound was collected by suction filtration, washed with 

ether (50 ml at 0°C, and 50 ml at RT) yielding a kaki solid (4.16  100%). 

 

17.1.2 1-Bromo-4-[(1E)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodec-1-enyl]- 

naphthalene 140 

 

fl

g,

Br

138 140

Br

N2BF4

Rf8

 
 

The Heck cross-coupling reaction was carried out following method H: diazonium salt 

38 (0.32 g, 1 mmol), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodec-1-ene (0.28 1
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ml, 1 mmol), Pd(OAc)2 (11.2 mg, 50 µmol), MeOH (3 ml). Reaction time: 3 hours. 

urification by filtration over a short silica gel plug using pentane/CH2Cl2 (4:1) afforded 

140 (0.495 g, 76%) as a yellow solid. TLC (SiO2, hexane: Rf = 0.73). 1H-NMR (360 MHz, 

CDCl3): δ 8.34-8.31 (br. d, 1H, aromatic), 8.04-8.02 (br. d, 1H, aromatic), 7.9-7.95 (br. d, 

1H, CH=CHRf8), 7.8-7.82 (d, 1H, aromatic), 7.62-7.68 (m, 2H, aromatic), 7.47-7.49 (d, 

1H, aromatic) 6.22-6.33 (q, 1H, CH=CHRf8).  

 

17.1.3 1-Bromo-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)naphthalene 

142 

 

P

Br

140 142

Rf8

Br

Rf8

 
 

he hydrogenation reaction was done employing method I: 140 (4.43 g, 6.7 mmol), Rh/C 

 

 by filtration over silica gel column chromatography with CH2Cl2 as eluent (4 

, 91%). TLC (SiO2, pentane: Rf = 0.62). 1H-NMR (360 MHz, CDCl3): δ 8.31-8.34 (m, 1H, 

aromatic), 7.94-7.98 (m, 1H, aromatic), 7.72-7.74 (d, 1H, aromatic), 7.61-7.66 (m, 2H, 

aromatic) 7.22-7.24 (d, 1H, aromatic), 3.34-3.38 (m, 2H, CH2CH2Rf8), 2.4-2.55 (m, 2H, 

CH2CH2Rf8). 13C-NMR (90.55 MHz, CDCl3):  δ 135.2 (aromatic), 132.62 (aromatic), 132.35 

(aromatic), 129.71 (aromatic), 128.4 (aromatic), 127.38 (aromatic), 127.3 (aromatic), 

126.75 (aromatic), 123.33 (aromatic), 122.26 (aromatic), 31.87-32.36 (m, CH2CH2Rf8), 

23.5-23.6 (m, CH2CH2Rf8). 

 

 

 

 

 

 

 

 

T

(0.28 g, 0.13 mmol), and degassed CH2Cl2 (35 ml). Reaction time: 24 hours. The product

was purified

g
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17.1.4 4-Nitronaphthalene-1-diazonium tetrafluoroborate 139 

 

NO2

NH2

NO2

N2BF4

137 139  
 

diazotization reaction was carried out applying method L: 137 (2.52 g, 13 mmol), 

3.Et2O (2.5 ml, 19.5 mmol), tBuNO2 (2.1 ml, 15.6 mmol), and DME (65 ml). Bright 

1.5 1-[(1E)- 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-Heptadecafluorodec-1-enyl]]-4-nitro- 

141 

The 

BF

yellow solid (3.82 g, 99%).

 

17.

naphthalene 

 

NO2

139 141

NO2

N2BF4

Rf8

 
 

The cross-coupling reaction was performed as per method H: diazonium salt 139 (1.7 g, 

.9 mmol), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodec-1-ene (1.56 ml, 5.9 

mmol), Pd(OAc)2 (66.5 mg, 0.3 mmol), MeOH (20 ml). Reaction time: 3 hours. Silica gel 

olumn chromatography using pentane/CH2Cl2 (4:1) yielded 141 (3.27 g, 90%) as a 

ellow solid. TLC (SiO2, 4:1 pentane/CH2Cl2: Rf = 0.61). 1H-NMR (360 MHz, CDCl3): δ 

.58-8.55 (d, 3J(H,H) = 8.17 Hz, 1H, aromatic), 8.18-8.2 (d, 3J(H,H) = 8.17 Hz, 1H, 

romatic), 8.1-8.13 (d, 1H, 3J(H,H) = 8.17 Hz, aromatic), 7.95-7.99 (br. d, 1H, CH=CHRf8), 

.72-7.81 (m, 2H, aromatic), 7.67-7.69 (d, 1H, aromatic) 6.3-6.41 (q, 1H, CH=CHRf8).  

 

5

c

y

8

a

7

 

 

 

 



 IV. Experimental Part 248

17.1.6 4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-1-naphthylamine 143 

 

NH2

141 143

Rf8

NO2

Rf8

 
 

The reaction was done applying method I: 141 (0.93 g, 1.5 mmol), Pd/C (0.08 g, 75 

µmol, 10% Pd), and degassed THF/MeOH (1:1, 15 ml) under 3 atm. of H2. Reaction time: 

24 hours. The product was purified by silica gel column chromatography with 

pentane/CH2Cl2 (2:1) as eluent (0.83 g, 94%). TLC (SiO2, 2:1 pentane/CH2Cl2: Rf = 0.21). 
1H-NMR (360 MHz, C6D6): δ 7.74-7.76 (d, 3J(H,H) = 8.17 Hz, 1H, aromatic), 7.49-7.51 (d, 
3J(H,H) = 8.17 Hz, 1H, aromatic), 7.2-7.35 (m, 2H, aromatic), 6.81-6.83 (d, 3J(H,H) = 7.74 

Hz, 1H, aromatic), 6.29-6.31 (d, 3J(H,H) = 7.74 Hz, 1H, aromatic), 3.3 (br. s, 2H, NH), 

3.06-3.1 (m, 2H, CH2CH2Rf8), 2.12-2.24 (m, 2H, CH2CH2Rf8).  

 

17.1.7  N,N-Bis[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-1-naphthyl]- 

amine 144 

 

NH2

143

Rf8

Br

142

Rf8

+ NH

Rf8

Rf8

144  
 

Method M. A Schlenk flask was charged with 142 (130 mg, 0.2 mmol), 143 (118 mg, 0.2 

mmol), Pd(OAc)2 (2.2 mg, 10 µmol), tBu3P (8.1 mg, 10 µmol), NaOtBu (30 mg, 0.3 mmol), 

and degassed toluene or xylene (2 ml). The reaction was carried out at 125°C for 48 

hours under an argon atmosphere. The dark brown solution was extracted with NH4Clsat. 

and ether (3 x 25 ml). The combined organic layer was washed with H2O (3 x 25 ml), 

dried over K2CO3, and filtered. Removal of the solvent yielded a brown product which was 

chromatographed using a mixture of pentane/CH2Cl2 (9:1) to afford 144 (191 mg, 83%) 
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as a faint yellow product. TLC (SiO2, 9:1 pentane/CH2Cl2: Rf = 0.41). 1H-NMR (500 MHz, 

C6D6): δ 7.94-7.95 (d, 2H, aromatic), 7.82-7.83 (d, 2H, aromatic), 7.23-7.38 (m, 4H, 

romatic), 6.81-6.82 (d, 2H, aromatic), 6.76-6.77 (d, 2H, aromatic), 5.8 (br. s, 1H, NH), 

125.77 MHz, 

6D6):  δ 140.3 (aromatic), 132.73 (aromatic), 131.91 (aromatic), 128.15 (aromatic), 

126.82 (aromatic), 126.8 (aromatic), 125.66 (aromatic), 123.71 (aromatic), 123.31 

(aromatic), 115.73 (aromatic), 31.4 (m, CH2CH2Rf8), 23.34 (m, CH2CH2Rf8). ESI-MS 

(HCOOH/THF): m/z 1206 ([M+CO2]●+, 35%), 1162 ([M+H]+, 100%), 288 (22%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

3.1-3.13 (m, 4H, CH2CH2Rf8), 2.17-2.27 (m, 4H, CH2CH2Rf8). ). 13C-NMR (

C
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17.2 Attempted syntheses of the N,N,N-tris[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-

heptadecafluorodecyl)-1-naphthyl]amine 135  

17.2.1 Using the binaphthylamine derivative 144 

 

 

R

Br

142

+

R

NH

R

R
145

NH

R

R

Z

+

146

With  R =  (CH2)2Rf8 and Z = R

144

 
 

The reaction was carried out following method M: 144 (116 mg, 0.1 mmol), 142 (66 mg, 

0.1 mmol), Pd(OAc)2 (1.12 mg, 5 µmol), tBu3P (4 mg, 20 µmol), Cs2CO3 (100 mg, 0.3 

mmol), and degassed xylene (10 ml). 145 (21 mg, 36% partially determined from 1H NMR 

spectrum), 146 (27 mg, 16%).  

 

145: 1H-NMR (500 MHz, C6D6): δ 7.72-7.74 (m, 1H, aromatic), 7.64-7.66 (m, 1H, 

aromatic), 7.54-7.56 (br. d, 1H, aromatic), 7.24-7.28 (m, 2H, aromatic), 7.14-7.17 (br. d, 
 aromatic), 6.87-6.89 (br. d, 1H, aromatic), 3.06-3.1 (m, 2H, CH2CH2Rf8), 2.09-2.2 (m, 

H, CH2CH2Rf8). 13C-NMR (125.77 MHz, C6D6):  δ 135.09 (aromatic), 134.46 (aromatic), 

31.85 (aromatic), 129.33 (aromatic), 128.29 (aromatic), 126.64 (aromatic), 126.44 

romatic), 125.98 (aromatic), 125.75 (aromatic), 123.04 (aromatic), 111.06-120.80 (m, 

F2), 31.9-31.3 (m, CH2CH2Rf8), 23.58 (br. s, CH2CH2Rf8). EI-MS: m/z 574 (M●+, 100%). 

 

46: 1H-NMR (500 MHz, C6D6): δ 8.23-8.25 (m, 1H, aromatic), 7.92-7.94 (d, 1H, 

romatic), 7.88-7.9 (m, 1H, aromatic), 7.72 (br. s, 1H, aromatic), 7.62-7.63 (d, 1H, 

romatic), 7.52 (br. s, 1H, aromatic), 7.31-7.36 (overlapped peaks, 3H, aromatic), 7.2-

.25 (m, 4H, aromatic), 6.98-7.01 (br. t, 1H, aromatic), 6.63 (br. s, 2H, aromatic), 6.48-

.49 (d, 1H, aromatic), 5.96 (s, 1H, NH), 3.19-3.3 (m, 2H, CH2CH2Rf8), 2.89-3.02 (m, 4H, 

1H,

2

1

(a

C

1

a

a

7

6
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CH2CH2Rf8), 2.31-2.39 (m, 2H, CH2CH2Rf8), 1.94-2.07 (m, 4H, CH2CH2Rf8). EI-MS: m/z 

733 (M●+, 70%), 1714 ([M-F]●+, 8%), 1300 ([M-CH2Rf8]●+, 100%), 156 (60%). 1

 

17.2.2 Starting from the perfluorinated binaphthyl amide derivative 144.1  

 

R

Br

142

+

R

NY

R

R
145

Y = H  144

Y = Li  144.1

R =  (CH2)2Rf8

 
 

n-BuLi (0.25 mmol, 0.16 ml, 1.6 M in hexanes) was injected dropwise to a solution of 

144 (116 mg, 0.1 mmol) in degassed THF (5 ml) at -85°C and the reaction was carried 

out for 2 hours. After allowing the reaction to warm gently at room temperature, it was 

stirred for 22 hours under argon (total reaction time: 24 hours). The volume of THF was 

concentrated to ~0.5 ml and the solution was added, via cannula, to a solution of 142 

(66 mg, 0.1 mmol), Pd2(dba)3 (2.3 mg, 2.5 µmol) and tBu3P (4 mg, 20 µmol) in degassed 

toluene (6 ml) and the reaction was carried out at 90°C for 46 hours under an 

atmosphere of argon. The green-yellow solution was extracted with NH4Clsat. and ether (3 

x 25 ml). The combined organic layer was washed with H2O (3 x 25 ml), dried over 

Na2SO4, and filtered. Removal of the solvent afforded a yellow product which was passed 

through a silica gel column chromatography with hexane as eluent to yield a white solid 

(24 mg, 42%). TLC (SiO2, 9:1 hexane: Rf = 0.66). 1H-NMR (500 MHz, C6D6): δ 7.72-7.74 

(m, 1H, aromatic), 7.64-7.66 (m, 1H, aromatic), 7.54-7.56 (br. d, 1H, aromatic), 7.24-7.28 

(m, 2H, aromatic), 7.14-7.17 (br. d, 1H, aromatic), 6.87-6.89 (br. d, 1H, aromatic), 3.06-

3.1 (m, 2H, CH2CH2Rf8), 2.09-2.2 (m, 2H, CH2CH2Rf8). 13C-NMR (125.77 MHz, C6D6):  δ 

135.09 (aromatic), 134.46 (aromatic), 131.85 (aromatic), 129.33 (aromatic), 128.29 

(aromatic), 126.64 (aromatic), 126.44 (aromatic), 125.98 (aromatic), 125.75 (aromatic), 

123.04 (aromatic), 111.06-120.80 (m, CF2), 31.9-31.3 (m, CH2CH2Rf8), 23.58 (br. s, 

H2CH2Rf8). EI-MS: m/z 574 (M●+, 100%). C
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17.2.3 5 -Bis(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-13H-dibenzo[a,i]- 

carbazole 149 

,8

 

NH

R

R 144

N
H

RR

149

R =  (CH2)2Rf8  
 

o a refluxed solution of the binaphthyl amine derivative 144 (116 mg, 0.1 mmol) in 

degassed CH2Cl2 (15 ml) was added, dropwise, a solution of [bis(trifluoro-

acetoxy)iodo]benzene (PIFA, 53 mg, 0.12 mmol) and BF3.Et2O (34 mg, 0.24 mmol) in 

CH2Cl2 (5 ml). The reaction was refluxed for 7 hours followed by stirring at room 

temperature overnight under argon. After evaporating the solvent, the starting material 

was removed by silica gel column chromatography using pentane/ether (4:1) and the 

fractions having an Rf < 0.5 were then collected and chromatographed using a 97.5:2.5 

pentane/ethyl acetate mixture as eluent which afforded 149 (15 mg, 13%) as a white 

product. TLC (SiO2, 9:1 pentane/ethyl acetate: Rf = 0.32). 1H-NMR (360 MHz, CDCl3): δ 

8.8 (br. s, 1H, NH), 8-8.03 (br. d, 2H, aromatic), 7.88 (s, 2H, aromatic), 7.77-7.79 (d, 2H, 

aromatic), 7.41-7.48 (m, 4H, aromatic), 3.4-3.44 (m, 4H, CH2CH2Rf8), 2.4-2.43 (m, 4H, 

CH2CH2Rf8). EI-MS: m/z 1159 (M●+, 42%), 1140 ([M-F]●+, 8%), 726 ([M-CH2Rf8]●+, 100%), 

293 (20%). 

 

 

 

 

 

 

 

 

 

T
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17

 

.3 Synthesis of perfluorinated aryl amine derivatives 

.3.1 N,N-Bis[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-1-naphthyl]- N-

[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)phenyl]amine 151 

 

17

R

Br

+

144

R

N

151

RR

R

NH

R

R =  (CH2)2Rf888

 
 

The reaction was done as per method M: 144 (116 mg, 0.1 mmol), 88 (60 mg, 0.1 mmol), 

Pd(OAc)2 (1.12 mg, 5 µmol), tBu3P (4 mg, 20 µmol), NaOtBu (15 mg, 0.15 mmol), and 

degassed toluene (5 ml). Reaction time: 82 hours. 151 (108 m

colorless solid. TLC (SiO2, 9:1 pentane/CH2Cl2: Rf = 0.65). 1H-NMR

8.26-8.28 (d, 3J(H,H) = 8.17 Hz, 2H, aromatic), 8.17-8.19 (d, 3J(H,H) = 8.64 Hz, 2H,

aromatic), 7.63-7.68 (t, 3J(H,H) = 7.7 Hz, 2H, aromatic), 7.45-7.48 (m, 4H, aromatic and

Ph), 7.25-7.27 (d, 3J(H,H) = 7.7 Hz, 2H, Ph), 7.13-7.15 (d, 3J(H,H) = 8.64 Hz, 2H,

aromatic), 6.73-6.76 (d, 3J(H,H) = 8.17 Hz, 2H, aromatic), 3.5-3.54 (br. t, 4H, CH2CH2Rf8), 

2.92-2.96 (br. t, 2H, CH2CH2Rf8), 2.67-2.78 (m, 4H, CH2CH2Rf8), 2.53-2.62 (m, 2H

CH2CH2Rf8). 1H-NMR (360 MHz, C6D6): δ 8.45-8.48 (d, 3J(H,H) = 8.64 Hz, 2H, aromatic)

7.73-7.76 (d, 3J(H,H) = 8.17 Hz, 2H, aromatic), 7.21-7.23 (d, 2H, aromatic), 7.09-7.17 (m

4H, aromatic and Ph), 6.8-6.84 (t, 4H, aromatic), 6.62-6.64 (d, 3J(H,H) = 8.17 Hz, 2H, 

aromatic), 3.05-3.09 (br. t, 4H, CH2CH2Rf8), 2.49-2.53 (br. t, 2H, CH2CH2Rf8), 2.08-2.23 

(m, 4H, CH2CH2Rf8), 1.83-1.98 (m, 2H, CH2CH2Rf8). 13C-NMR (90.55 MHz, C6D6):  δ

133.92 (aromatic), 133.35 (aromatic), 131.45 (aromatic), 129.8 (aromatic), 127.28

(aromatic), 127.3 (aromatic), 127.13 (aromatic), 126.08 (aromatic), 125.27 (aromatic),

124.38 (aromatic), 33.3 (br. s, CH2CH2Rf8), 32.51 (br. s, CH2CH2Rf8), 23.95 (br. s, 

CH2CH2Rf8). ESI-MS (HCOOH/THF): m/z 1732 ([M+HCO2]●+, 55%), 1683 (M●+, 100%). EI-

MS: m/z 1683 (M●+, 100%), 1664 ([M-F]●+, 40%), 1250 ([M-CH2Rf8]●+, 45%), 789 (10%).  

 

 

 

g, 64%) as a glassy 

 (360 MHz, THF-d8): δ 

 

 

 

, 

, 

, 
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17.3.2 N,N,N’,N’-Tetrakis[4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-1-

naphthyl]-1,1’-biphenyl-4,4’-diamine 152 

 

Br

+

144

152
R

NH

R

R =  (CH2)2Rf8

N

R

R

N

R

R
Br

150  
 

 

The reaction was carried out applying method M: 144 (116 mg, 0.1 mmol), 150 (16 mg, 

50 µmol), Pd(OAc)2 (1.12 mg, 5 µmol), tBu3P (4 mg, 20 µmol), NaOtBu (15 mg, 0.15 

mmol), and degassed toluene (5 ml). Reaction time: 7 days. After extraction, the off-white 

solid was suspended in CH2Cl2, sonicated for 15-20 minutes and collected by suction 

filtration over Millipore®. The precipitate was purified by successive washings with 

CH2Cl2 (60 ml) and ether (45 ml) affording 152 (62 mg, 50%) as a white solid. m.p.: 

242°C. 1H-NMR (360 MHz, THF-d8): δ 8.16-8.18 (d, 3J(H,H) = 8.64 Hz, 4H, aromatic), 

8.05-8.07 (d, 3J(H,H) = 8.6 Hz, 4H, aromatic), 7.51-7.55 (t, 3J(H,H) = 7.27 Hz, 4H, 

aromatic), 7.34-7.37 (m, 8H, aromatic), 7.29-7.31 (d, 3J(H,H) = 8.17 Hz, 4H, Ph), 6.65-

6.67 (d, 3J(H,H) = 8.17 Hz, 4H, Ph), 2.56-2.68 (m, 8H, CH2CH2Rf8). ESI-MS 

(HCOOH/THF): m/z 2473 (M●+, 100%), 1957 (58%), 686 (48%). EI-MS: m/z 2473 (M●+, 

100%).  
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A.1 Calorimetric data from DSC measurements 
 

 

Phase transition temperatures, enthalpy changes and structural assignments for 

perfluoroalkylated alkyl HBC derivativesa,b. 

Phase Transition 
temperature (°C) 

∆H 
(KJ mol-1) Entry Compound 

heating/cooling heating/cooling 

Phase 
width 

(°C) 

Assignment 

1 
(98) 

138/128 
HBC-Rf2,8 

122/114 

180/173 

1.4/1.2 

37.2/36 

7.7/6.5 

- 

16 

42 

D1↔ D2 

D2 ↔ D3 

D3 ↔ D4

2c
HBC-PhRf2,8 

(99) 
227/223 

236/235 

66.4/60.5 

19.8/14.2 

- 

9 

D1↔ D2 

D2 ↔ D3

3 
HBC-Rf4,8 

(114) 

82/(d) 

120/103 

190/171 

6/(d) 

58/52.6 

8.5/7.8 

- 

38 

70 

K1→ K2 

K2 ↔ D1 

D1 ↔ D2

4c
HBC-Rf6,6 

(115) 
50/(d) 

109/98 

4.6/(d) 

48/46 

- 

18 

K1→ K2 

K2 ↔ D1

5 

HBC-
PhORf4,8 

(133) 

182/(d) 

216/207 

222/215 

3/(d) 

18.7/19 

6.3/25.6 

- 

34 

6 

K1↔ K2 

K2 ↔ D1 

D1 ↔ D2

6 

HBC-

PhORf6,6 
(134) 

- - - - 

 

a: isotropic liquid wasn’t formed below 360°C, decomposition occurs above ~250°C. b: rate of heating & cooling 

is 20°C/min. c: two peaks were obtained upon heating. With K: crystalline, Dh: discotic hexagonal, D: discotic.  

d: not determined. 
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A.2 SEM micrographs of HBC-SCF3 (71) 
 

 

 

A.2.1 Precipitate  
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A.2.2 Deposited film from a dilute solution 

 

   

   



 SEM Micrographs 260

   
 

 

 

A.3 SEM micrographs of HBC-Rf4,8 (114) 
 

 

 

A.3.1 In-situ heating of the precipitate  
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A.3.2 Evaporation of the concentrated solution   
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A.3.3 Cyro-SEM of the concentrated solution   

 

 

Micrometer-sized columns 
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 SEM Micrographs 278

Nanometer-sized filaments   
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Solvent’s residue 

 

 

   

 
 

 

 

 



 SEM Micrographs 282

Cryo-SEM micrographs of 1,2,4-TCB 
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A.3.4 Deposited film from a dilute solution   
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A.4 SEM micrographs of HBC-Rf6,6 (115) 
 

 

A.4.1 Precipitate  

 

 

   

   

   



 SEM Micrographs 286

   
 

A.4.2 Deposited film from a dilute solution 
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