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Barycenter and maximum likelihood ✩

Ruedi Flüge �, Ernst A. Ruh ∗

Department of Mathematics, University of Fribourg, CH-1700 Fribourg, Switzerland

Abstract

We refine recent existence and uniqueness results, for the barycenter of points at infinity of Hadamard manifolds, to measures on
the sphere at infinity of symmetric spaces of non compact type and, more specifically, to measures concentrated on single orbits.
The barycenter will be interpreted as the maximum likelihood estimate (MLE) of generalized Cauchy distributions on Furstenberg
boundaries. As a spin-off, a new proof of the general Knight–Meyer characterization theorem will be given.
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1. Introduction

Ordinary Cauchy distributions on Rn may naturally be seen as the restriction, to an affine part in real projective
space Pn, of its standard Riemannian measure. By doing so hidden symmetries become apparent. And consequently
a larger group, namely SL(n + 1,R), acts on these measures leaving the type, i.e. the images under affine transfor-
mations, invariant. Moreover this fact characterizes the Cauchy type. This is the content of the original Knight–Meyer
characterization theorem. In Section 4 we give a new proof of it in the general setting:

Definition 1. Let G be a semi simple Lie group of non compact type and Q a parabolic subgroup. The (generalized)
flag manifold G/Q is also called a Furstenberg boundary. The family of K-invariant probability measures on G/Q,
K ⊂ G maximal compact, is said to be the (generalized) Cauchy type.

Let K be maximal compact and denote by μK ∈ M1(G/Q) the K-invariant member in the set of probability
measures on G/Q. If a Furstenberg boundary G/Q is faithful, the map φ :G/K → M1(G/Q), gK �→ gμK is
injective—see below. This happens for example if G is simple. The family of distributions is then parametrized
by the symmetric space (of non compact type) M = G/K . Moreover the stabilizer subgroups Gξ of points at infinity
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ξ ∈ M(∞) are parabolic subgroups, thus the G-orbits in the sphere at infinity M(∞) are Furstenberg boundaries.
We therefore are in the following situation: the sample space is part of the boundary of the parameter space. That is
the point where Riemannian geometry comes into the picture: The notion of barycenter, whose existence and unique-
ness is discussed in Sections 2 and 3, coincides with the maximum likelihood estimate (MLE) of generalized Cauchy
distributions, see Section 5. This observation yields a very conceptional treatment of MLE by geometric reasoning.

Finally we like to mention two important ideas on which our paper is based: convexity and non-positive curvature,
as well as the (generalized) Bruhat double coset lemma which is fundamental to the study of parabolic subgroups.

2. The barycenter

Let M be a Hadamard manifold and denote by M(∞) the sphere at infinity. Any point at infinity ξ ∈ M(∞)

determines a unit vector field Xξ on M :

Xξ = unit vector at p pointing to ξ.

These vector fields admit potentials, namely minus one times the Busemann functions bξ (p). These are known to be
convex (see [9]).

If a Borel probability measure μ is given on M(∞), we form the following integrals:

Xμ(p) =
∫

M(∞)

Xξ (p)μ(dξ) and bμ(p) =
∫

M(∞)

bξ (p)μ(dξ).

Note that bμ is convex as well.

Definition 2. A point p ∈ M is called a barycenter of μ if it satisfies the following equivalent conditions:

(1) Xμ(p) = 0,
(2) p is a minimum of bμ.

This notion of barycenter of measures at infinity has already been studied and fruitfully used for example in [5,7].
The set of barycenters of a measure μ is a convex subset of M . Recall that on M(∞) a well known metric is given by
the angle metric:

� (ξ, η) = sup
p∈M

�
p

(
Xξ(p),Xη(p)

) = lim
t→∞

�
γ (t)

(
Xξ

(
γ (t)

)
,Xη

(
γ (t)

))
.

Where γ is a geodesic ray representing ξ , we write ξ = γ (∞). The last equality is Proposition 3.1.3 in [9]. The
link to the asymptotic behavior of bμ is this: Let γ be a unit speed geodesic in M and consider the convex function
f (t) = bμ(γ (t)). The derivative satisfies

f ′(t) = −
∫

M(∞)

〈
Xξ

(
γ (t)

)
, γ̇ (t)

〉
μ(dξ) = −

∫
M(∞)

cos � (
Xξ

(
γ (t)

)
,Xη

(
γ (t)

))
μ(dξ)

by Lebesgue’s dominated convergence, where η = γ (∞). The limit as t → ∞ is

(1)C(μ,η) =
∫

M(∞)

cos � (ξ, η)μ(dξ).

Its sign tells you whether f converges to a finite value or to ±∞ as t → ∞. This was observed in [1] to prove the
following

Theorem 3. Let μ be a Borel probability measure on M(∞), where M is a Hadamard manifold with either strictly
negative curvature or with an analytic metric. Then there exists a unique barycenter of μ if and only if μ satisfies the
obtuse angle condition, that is if

C(μ, ξ) < 0 for all ξ ∈ M(∞).

2
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More details as well as the case of general Hadamard manifolds may be found in [1]. In the case of strictly negative
curvature, which includes rank one symmetric spaces, the criterion becomes quite simple. Since then any pair of
distinct ideal points can be joined by a unique geodesic, one gets

C(μ, ξ) = μ
({ξ }) − μ

(
M(∞) \ {ξ}) = 2μ

({ξ}) − 1

and a unique barycenter exists if and only if μ({ξ}) < 1
2 for all ξ ∈ M(∞).

3. Bruhat Lemma

We turn to the case of symmetric Hadamard manifolds. Since the behavior of the barycenter of measures at infinity
is rather pathological for euclidean spaces, it is natural to consider in the sequel symmetric spaces of non compact
type. That is M = G/K where G is a semi simple (real) Lie group with finite center and K a maximal compact
subgroup. We need some facts of their rich structure. First the sphere at infinity partitions into equivalence classes
given by

C(ξ) = {
η ∈ M(∞) | Gξ = Gη

}
.

These are partially ordered by

C(ξ) � C(η) ⇐⇒ Gξ ⊃ Gη.

The maximal ones are called Weyl chambers and the others (Weyl) faces. Denote by C(ξ) = {η ∈ M(∞) | C(η) �
C(ξ)}, the set of points lying in the faces of the down set of C(ξ). It is the closure of C(ξ) in the cone topology,
and is called the closed chamber or face, see [9]. A fixed closed Weyl chamber, or the set of standard parabolic
subgroups, may be identified—as a poset—with not co-empty subsets of {1,2, . . . , r} for some r known as the
rank of M . This allows a consistent labeling of all chambers and faces. A flat at infinity is F(∞) = {γ (∞) |γ ⊂
F for some fixed maximal flat F ⊂ M} ⊂ M(∞). We have the following

Proposition 4. Let ξ, η ∈ M(∞), p0 ∈ M and a, b ∈ R>0. Let ζ = γ (∞), where γ is determined by γ (0) = p0 and
γ̇ (0) = 1

‖aXξ +bXη‖ (aXξ + bXη)(p0). Then the following are equivalent:

(1) ξ, η ∈ C(ζ ), i.e. C(ξ) � C(ζ ) and C(η) � C(ζ );
(2) if ξ, η ∈ F(∞) then ζ ∈ F(∞);
(3) aXξ + bXη = ‖aXξ + bXη‖Xζ ;
(4) abξ + bbη = ‖aXξ + bXη‖bζ ;
(5) �

p(Xξ ,Xη) ≡ const for all p ∈ M .

Proof. The equivalence (1) ⇐⇒ (2) follows immediately from Proposition 3.6.26 in [9]. Next (1) �⇒ (3): since (3)
holds at p0 it holds everywhere in M as Gζ is transitive on M . (3) ⇐⇒ (4) is clear. To prove (4) ⇐⇒ (5) we note
that a function f on M is a Busemann function if and only if following properties are satisfied (see [4, p. 24]):

(1) f is a convex C1-function,
(2) ‖gradf ‖ ≡ 1 on M .

Hence Busemann functions ‘add’ as stated above if and only if the angle between their gradients remains constant.
Finally to prove (5) �⇒ (2) note that (5) implies � (ξ, η) = �

p(Xξ ,Xη) < π for all p ∈ M—since there are no
Euclidean factors—and that happens if and only if Xξ(p) and Xη(p) span a flat sector (see [9, Proposition 3.1.2]) that
contains 1

‖aXξ +bXη‖ (aXξ + bXη)(p) and (2) follows. �
This proposition can be interpreted in the following way: fix ξ ∈ M(∞) maximal (regular) then the pointed Weyl

chamber at p ∈ M asymptotic to C(ξ) is given by
∑r

i=1 aiXξi
(p) where ai > 0 and ξi ∈ C(ξ) are minimal. Now we

can sharpen the criterion in Theorem 3.

3



ht
tp

://
do

c.
re

ro
.c

h

Corollary 5. Let μ be a probability measure on M(∞) where M is a symmetric space of non compact type. Then a
unique barycenter exists if and only if

C(μ, ξ) < 0 for all minimal ξ ∈ M(∞).

Proof. Let η ∈ M(∞) then Xη can be expressed as Xη = ∑n
i=1 aiXξi

with ξi ∈ C(η) minimal and ai � 0 by the
proposition above. Thus

C(μ,η) = lim
t→∞

∫
M(∞)

〈
Xξ

(
γ (t)

)
,Xη

(
γ (t)

)〉
μ(dξ) =

n∑
i=1

aiC(μ, ξi),

where γ (∞) = η, is negative if the C(μ, ξi) are. Necessity is clear. �
It follows from basic properties of root systems that �

p(Xξ (p),Xη(p)) � π
2 if ξ, η ∈ C and equality can occur only

if M is reducible. To study the semi simple case, it is sensible to consider only faithful Furstenberg boundaries:

Definition 6. Let M = M1 × M2 × · · · × Ml be the decomposition of M into its irreducible factors and γ (t) =
(γ1(t), γ2(t), . . . , γl(t)) a geodesic, where γi(t) ∈ Mi for all t ∈ R and 1 � i � l. The Furstenberg boundary G/Gξ

with ξ = γ (∞) is called faithful if γ̇i (t) �= 0 for all 1 � i � l.

Closed Weyl chambers are fundamental domains for the action of G on M(∞):

(2)M(∞) =
∐
ξ∈C

Gξ.

Furthermore Gξ ∼= G/Gξ and the stabilizer Gξ is a parabolic subgroup of G. Let W be the Weyl group of G. The
(generalized) Bruhat Lemma or Bruhat decomposition states that

(3)G =
∐

w∈Wη\W/Wξ

GηwGξ or G/Gξ =
∐

w∈Wη\W/Wξ

Gη[w],

where ξ, η ∈ C and [ . ] denotes cosets. This is a cellular decomposition of G or G/Gξ respectively, if η is regular
that is to say that the stabilizer subgroup Wη is trivial. There is exactly one orbit of maximal dimension—called large
one—namely Gηw

∗Gξ or Gη[w∗] respectively where w∗ ∈ W is the element that sends the Weyl chamber C to its
opposite −C, see [17, pp. 49 and 76]. Let μ ∈ M1(M(∞)) be a probability measure that is concentrated on a single
G-orbit. The function

G/Gξ −→ R

gξ �→ � (η, gξ) = � (
g−1η, ξ

)
,

where ξ, η ∈ C as above pushes down to Gη\G/Gξ � Wη\W/Wξ and hence is a simple function with level sets the
Gη-orbits. Plugging that into (1) we get

C(μ,η) =
∫

M(∞)

cos � (η, ξ)μ(dξ) =
∫

G/Gξ

cos � (η, gξ)μ(dgξ)

=
∑

w∈Wη\W/Wξ

cos � (η,wξ)μ
(
Gη[w]).

Given η ∈ M(∞), then for any ξ ∈ M(∞) there is a g ∈ G such that there is a closed Weyl chamber C with η,gξ ∈ C,
by the fundamental domain property of closed Weyl chambers, i.e. (2). These remarks yield an other corollary to
Theorem 3:

4
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Corollary 7. Let μ be a Borel probability measure on M(∞) that is concentrated on one G-orbit Gξ0. Then a unique
barycenter exists if and only if∑

w∈Wη\W/Wξ

cos � (η,wξ)μ
(
Gη[w]) < 0 for all (minimal) η ∈ M(∞),

where ξ = gξ0 and η lie in some common closed Weyl chamber C. In particular, if G/Gξ is faithful, a unique barycen-
ter exists for probability measures that are absolutely continuous w.r.t. a quasi invariant measure.

Proof. Only the last statement needs further care: the Gη-orbits Gη[w] are either submanifolds of positive codimen-
sion and consequently μ(Gη[w]) = 0 or the large cell. In the latter case one has � (η,w∗ξ) > π

2 since η and w∗ξ lie
in opposite closed Weyl chambers and G/Gξ is assumed faithful. �

Recall that M(∞) may be identified with a sphere Sp ⊂ TpM in some tangent space.

Corollary 8. Let μ be a probability measure on M(∞) that is absolutely continuous w.r.t. the standard measure of a
unit sphere Sp at some p ∈ M . Then it has a unique barycenter.

Proof. For η ∈ M(∞) choose ζ regular such that η ∈ C(ζ ) and let C(ξ) � C(ζ ) be the faces. Then (2) and (3) read as

M(∞) =
∐

C(ξ)�C(ζ )

GC(ξ) =
∐

C(ξ)�C(ζ )

∐
w∈Wη\W/Wξ

GηC(wξ)

and all subsets in that partition except for GηC(w∗ζ ) have positive codimension whence

C(μ,η) =
∫

M(∞)

cos � (η, ξ)μ(dξ) =
∫

GηC(w∗ζ )

cos � (η, ξ)μ(dξ) < 0

as above. �
4. Knight–Meyer characterization of the generalized Cauchy type

In [15,16] the dynamic characterization of Cauchy distributions was discovered. This was generalized to Fursten-
berg boundaries in [8] and the final version was settled in [6]. It says:

Theorem 9. Let G be a semi simple Lie group of non compact type and μ a Borel probability measure on a Furstenberg
boundary G/Q. Then Qμ = Gμ if and only if μ is K-invariant for some maximal compact subgroup K ⊂ G.

It is enough to show the result for faithful boundaries. The proof is easy once one knows that the stabilizer subgroup
Gμ of μ is compact: the hypothesis on μ implies Gμ ∩Qg �= ∅ which is the same as Gμ ∩gQ �= ∅ for all g ∈ G. Thus
Gμ acts transitively on G/Q and μ is the normalized Haar measure of some maximal compact K ⊃ Gμ. Necessity
follows from the decomposition of G = KQ = QK .

We establish compactness of Gμ: consider the large Q-orbit Q[w∗] ⊂ G/Q and its complement ∂Q[w∗]. Since
Gμ = Qμ it follows that μ(g(Q[w∗])) = μ(Q[w∗]) and μ(g(∂Q[w∗])) = μ(∂Q[w∗]) for all g ∈ G. Let λ be a Haar
measure on G and denote by φ∂Q[w∗] the characteristic function of ∂Q[w∗]. Then λ(∂Qw∗Q) = 0 in G since it is a
finite union of submanifolds with positive codimension. Thus for all h ∈ G

0 = λ(∂Qw∗Q) =
∫
G

φ∂Q[w∗]
(
g[h])λ(dg) =

∫
G/Q

( ∫
G

φ∂Q[w∗]
(
g[h])λ(dg)

)
μ

(
d[h])

=
∫
G

( ∫
G/Q

φ∂Q[w∗]
(
g[h])μ(

d[h])
)

λ(dg) =
∫
G

μ
(
g−1∂Q[w∗])λ(dg)

5
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by Fubini’s theorem. Hence μ(g∂Q[w∗]) = 0 a.e. and consequently everywhere since it is a constant function of g.
That implies together with Corollary 7 that the measures to be characterized have a unique barycenter p0 ∈ M ∼= G/K .
On the other hand the obvious equivariance of the barycenter, that is

p ∈ M is a barycenter of μ ⇐⇒ gp ∈ M is a barycenter of gμ,

implies Gμ ⊆ Gp0 , which is a maximal compact subgroup of G as claimed in Theorem 9.
In [2] the results of [3] have been announced and used to prove the original characterization theorem along the

lines as above. This completes also the discussion on faithfulness:

Corollary 10. A Furstenberg boundary G/Q is faithful if and only if GμK
= K where μK is the K-invariant proba-

bility on G/Q for K ⊂ G maximal compact. That is if and only if the map

φ :G/K → M1(G/Q)

gK �→ gμK

is injective.

Remark 11. (Compare Remark 3 in [6]) In all papers, we are aware of, on this characterization theorem except for
[15] and [6], there is the additional hypothesis on μ that it does not charge thin cells, called ‘Condition C’. Recalling
Furstenberg’s original definition of G-boundaries, that is compact homogeneous G-spaces F with the property that
for any ν ∈ M1(F ) there is a sequence {gn} ⊂ G such that gnν converges weakly to a point measure, see [10], yields
an alternative proof of the fact that Gμ = Qμ implies μ(∂Q[w∗]) = 0: Take {gn} with gnμ → δ[e]. Since Qμ = Gμ

we can assume qn = gn ∈ Q. Let 0 � f ∈ C(G/Q) with f ([e]) = 0 and f ≡ 1 in a neighborhood of the complement
of the large orbit ∂Q[w∗], then

μ
(
∂Q[w∗]) =

∫
∂Q[w∗]

μ �
∫

G/Q

f (qnx)dμ(x) = qnμ(f )
n→∞−→ f

([e]) = 0

as Q leaves the large orbit invariant.

5. Maximum likelihood estimate of generalized Cauchy distributions

Estimation of course is about finding the suitable parameter in certain statistical model of a given sample: Let
(X,B,pθ )θ∈Θ be a (parametric) statistical model, {xi}i=1...N a (random) sample and μ = 1

N

∑
δxi

the corresponding

empirical measure. Assume continuous (relative) density functions dpθ

dpθ0
. The likelihood function of that sample is

defined by

L(μ, θ) =
N∏

i=1

dpθ

dpθ0

(xi).

The parameter that maximizes that function for a given observation is called the maximum likelihood estimate and is
denoted by MLE(μ), if it exists and is unique. The log likelihood function is given by

�(μ, θ) = logL(μ, θ) =
N∑

i=1

log
dpθ

dpθ0

(xi).

It has the same maxima as L(μ, θ) and can be defined for an arbitrary probability measure μ:

�(μ, θ) =
∫
X

log
dpθ

dpθ0

(x)μ(dx).

This expression suggests how to link the barycenter to the MLE of generalized Cauchy laws on Furstenberg bound-
aries: Under what conditions is the logarithm of the density function of our Cauchy distributions proportional to the

6
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corresponding Busemann function, that is

log
dgμK

dμK

(hξ) = cbhξ (gp) for all g,h ∈ G,

where p ∈ M , K = Gp and μK is the K-invariant probability on G/Gξ ? Roughly the answer is that one has to choose
ξ in the ‘middle’ of the corresponding chamber or face.

Theorem 12. Let G/Q be a Furstenberg boundary, μ a probability measure of Cauchy type, p ∈ M , K ⊂ G and μK

as above. Then there is a point at infinity ξ ∈ M(∞) and c ∈ R such that

(1) G/Q ∼= Gξ ⊂ M(∞),
(2) dgμK

dμK
(hξ) = ecbhξ (gp) for all g,h ∈ G.

With this choice, the barycenter and MLE of a probability measure on G/Q coincide if they exist.

Although the result follows from inspection of the relevant formulæ, compare the discussion below, we give an
elementary

Proof. (Compare [11] and [18] Section 4.2) A (Borel) function σ :G × S → R, where G is a (topological) group and
S a G-space, is called a (Borel) cocycle if

σ(gh, s) = σ(g,hs) + σ(h, s) for all g,h ∈ G and s ∈ S.

It follows that the function φσ,s :Gs → R, defined by φσ,s(g) = σ(g, s), is a homomorphism of the stabilizer subgroup
Gs to R. Let K ⊂ G be a subgroup. Then a cocycle is called K-invariant if σ(k, s) = 0 for any k ∈ K and s ∈ S. If
moreover S is homogeneous and K ⊂ G is transitive on S = G/Gs0 , i.e. G = KGs0 = Gs0K , then a K-invariant
cocycle σ is uniquely determined by φσ,s0 :

σ(g, ks0) = σ(gk, s0) − σ(k, s0) = σ(k′q, s0) − 0 = σ(k′, qs0) + σ(q, s0) = φσ,s0(q),

where gk = k′q with q ∈ Gs0 and k, k′ ∈ K . In particular, if G is our semi simple Lie group, K = Gp for a fixed
p ∈ M and ξ ∈ M(∞) then the functions

σ1 :G × G/Gξ → R σ2 :G × M(∞) → R

and

(g,hξ) �→ log
dg−1μK

dμK

(hξ) (g, ξ) �→ bξ

(
g−1p

)

where the Busemann functions are normalized such that bξ (p) = 0 for all ξ ∈ M(∞), are K-invariant cocycles.
Indeed, this follows from the chain rule for the Radon–Nikodym derivative for σ1 and from the definition of the
Busemann cocycle:

bξ (q) = lim
t→∞d

(
q, γ (t)

) − d
(
p,γ (t)

)
,

where γ (∞) = ξ whence

bξ

(
(gh)−1p

) = lim
t→∞d

(
h−1g−1p,γ (t)

) − d
(
p,γ (t)

)
= lim

t→∞d
(
g−1p,hγ (t)

) − d
(
p,hγ (t)

) + d
(
h−1p,γ (t)

) − d
(
p,γ (t)

)
= bhξ

(
g−1p

) + bξ

(
h−1p

) = σ2(g,hξ) + σ2(h, ξ).

On the other hand any parabolic subgroup can be written as Q = KQAN , where KQ = K ∩ Q and KAN = G is
a corresponding Iwasawa decomposition of G. Furthermore one has N ⊂ [Q,Q]—as [AN,AN ] = N—whence any
real homomorphism is already determined by its restriction to A. The image of A in M = G/K is the pointed flat F

7
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that we identify—as an abelian group—with a subspace F ⊂ TpM and any real Borel homomorphism is of the form

F � Y �→ 〈Y,X〉 = ‖X‖
〈
Y,

X

‖X‖
〉

for some X ∈ F.

Which in turn is a multiple of a Busemann function of F and, since F is totally geodesic, it is the restriction of bξ on
M with ξ = γ (∞) ∈ F(∞) where γ (0) = p and γ̇ (0) = X

‖X‖ (p). Thus

log
dgμK

dμK

(hQ) = cbhξ (gp).

It is clear that Q stabilizes ξ . �
To make more precise what is meant by the middle of the chamber or face and to point out the connection to

harmonic analysis, we need some notation: Let ξ ∈ G/K(∞) as in Theorem 12, take the Iwasawa decomposition of
G = KAN such that Gξ = (Gξ ∩ K)AN and denote by H(g) ∈ a the logarithm of the A-component of g = kan, i.e.
H(g) = log(a). Denote further ρξ = ∑

α(Xξ (p))>0 mαα where mα = dimgα is the multiplicity of the root α. Now

dgμK

dμK

(kξ) = const e−ρξ (H(g−1k)) k ∈ K and g ∈ G.

In other words 〈Xξ(p),Y 〉 = cρξ (Y ) for all Y ∈ a; the ‘middle’ however is intuitive only if g is a normal real form.
And one recognizes a typical instance of the integrand in Harish-Chandra’s integral formula for elementary spherical
functions. It is a well known fact that the relative densities of K-invariant measure on flag manifolds are of this form,
see [12–14] or your favored reference to the subject. Alternatively this formula can be derived along similar lines of
reasoning as in the proof of Theorem 12 by observing that (g, k) �→ λ(H(g−1k)) defines a K-invariant cocycle for
any λ ∈ a∗. Analogous remarks apply to Busemann functions.

5.1. MLE for empirical measures

In application empirical measures are of prominent importance.

Proposition 13. Let Gξ , where ξ ∈ M(∞) is chosen according to Theorem 12, be a Furstenberg boundary then there
is an integer N ∈ N such that MLE exists for almost all—w.r.t. the a quasi invariant measure—samples of size bigger
or equal to N .

Proof. Let C be an arbitrary closed Weyl chamber and ξi ∈ C be minimal for i = 1, . . . , r , where r is the rank of M

and g0ξ = ξ0 ∈ C. Choose a system of representatives {wi
j }j=0,...,ni

of Wξi
\W/Wξ0 , with wi

0 = w∗ for all i, and denote

ci
j = cos � (ξi,wj ξ0). Since the Gξ -orbits Gξi

[wi
j ] are real algebraic varieties, of positive codimension if j �= 0, there

is an Ni
j ∈ N such that the set {x = (x1, . . . , xn) ∈ (Gξ)n s. t. there is no Gη-orbit B with xk ∈ B for k = 1, . . . , n} is

Zariski open dense and hence has full measure if n � Ni
j . Put

N = min

{
n ∈ N | n >

|ci
j − ci

0|Ni
jni

|ci
0|

for all i = 1, . . . , r and j = 1, . . . , ni

}
.

Let μ = 1
L

∑L
k=1 δxk

be the empirical measure of a sample (x1, . . . , xL) ∈ (G/Gξ)L with L � N . Then almost surely

C(μ, ξi) =
ni∑

j=0

ci
jμ

(
Gξi

[wj ]
) = ci

0 +
ni∑

j=1

(
ci
j − ci

0

)
μ

(
Gξi

[
wi

j

])
� ci

0 +
ni∑

j=1

∣∣ci
j − ci

0

∣∣Ni
j

L

� ci
0 + ni max

{∣∣ci
j − ci

0

∣∣Ni
j

L
, j = 1, . . . ni

}
< 0

since ci
0 < 0 and by the choice of N . �
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Let us finally inspect the classical case of ordinary Cauchy laws. The choice of a Weyl chamber in SL(n +
1)/SO(n + 1)(∞) corresponds to that of a full flag U1 � U2 � · · · � Un � Rn+1 in Rn+1, i.e. a maximal chain
of subspaces. The lattice of standard parabolic subgroups of SL(n + 1,R) is then given by stabilizers of flags in Rn+1

of the form

Ui1 � Ui2 � · · · � Uik � Rn+1.

In particular the maximal parabolic subgroups (corresponding to minimal faces) are exactly the stabilizer subgroups
of the proper subspaces U � Rn+1. Hence projective space is indeed a Furstenberg boundary:

Pn = SL(n + 1,R)/SL(n + 1,R)L with L ⊂ Rn+1 and dimL = 1.

The restriction to an affine part of the SO(n + 1)-invariant probability on Pn yields, in fact, an ordinary multivariate
Cauchy distribution. Let U � Rn+1 be a proper subspace and denote by P(U) the projective subspace induced by U .
Choose x, y ∈ Pn with x ∈ P(U) and y /∈ P(U). Then the Bruhat decomposition, see (3), reads as

Pn = SL(n + 1,R)Ux ∪ SL(n + 1,R)Uy = P(U) ∪ P(U)c,

where P(U)c = Pn \ P(U) is the complement. By Corollary 7, a probability measure μ on Pn has a unique barycenter
if and only if

ck
0μ

(
P(U)c

) + ck
1μ

(
P(U)

) = ck
0

(
1 − μ

(
P(U)

)) + ck
1μ

(
P(U)

)
< 0

or

μ
(
P(U)

)
<

−ck
0

ck
1 − ck

0

for any subspace U where k = dimU . Observe that minimal faces are 0-dimensional and the choice of the ‘middle’
becomes vacuous. Let a ⊂ sl(n + 1,R) be the abelian subalgebra consisting of diagonal elements. It is the tangent
space of a typical flat. Denote Xk ∈ a the element with the first k (diagonal) entries equal to n+1−k and the remaining
ones equal to −k. One finds then

ck
1 = 〈X1,Xk〉

‖X1‖‖Xk‖ and ck
0 = 〈X1,w

∗Xk〉
‖X1‖‖Xk‖

and

〈X1,Xk〉 = n(n + 1 − k) − (k − 1)(n + 1 − k) + (n + 1 − k)k = (n + 1)2 − k(n + 1),

〈w∗X1,Xk〉 = −k(n + 1 − k) + (n − k)k − kn = −k(n + 1),

since w∗ acts on a by reversing the order of the diagonal entries. Thus

−ck
0

ck
1 − ck

0

= k

n + 1

and we get:

Proposition 14. A probability measure μ ∈ M1(Pn) on real projective space Pn has a unique barycenter if and only
if

μ
(
P(U)

)
<

dimU

n + 1

for all proper subspaces U � Rn+1. In particular the MLE of an empirical measure exist almost surely if and only if
the sample has size bigger than n + 1.

This last proposition follows from Theorem 1 in [3], whose success motivated the investigation of the general
pattern behind that result.
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