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Many-body calculation of helium
1D-3D term intervals for 1snd
(n = 12 ~ 20) high Rydberg states

Liming He and Wei Cao

Abstract: With many-body perturbation theory, 'D—*D term intervals of helium 1snd

(n = 12 ~ 20) configurations are calculated. Based on two different models, Rayleigh—
Schrodinger perturbation expansion terms consisting of bound states only, and those of
continua are evaluated, respectively. As for bound states, zeroth-order wave functions are
strictly generated from self-iteration solutions of the Hartree equation and residues of
infinite expansion series are dealt with by the integral processing method, while a simplified
hydrogen potential is adopted to get the continua. Using Rayleigh—Schrddinger expansions,
we evaluate exchange energy up to third-order terms. It is found that level splittings are
mainly attributed to summations over bound states. The fine-structure level splittings yielded
here are found to agree quite well with experimental results.

PACS Nos.: 31.15.Md, 32.10Fn, 02.60Ed

Résumé : Nous calculons, dans le cadre de la théorie des perturbations a N corps, les
intervalles de terme 'D—*D pour I’hélium dans les configurations 1snd (n = 12 ~ 20). Sur
la base de deux modeles différents, nous évaluons les termes de 1’expansion de Rayleigh—
Schrodinger pour les états liés seulement et pour ceux dans le continu. Pour les états liés,
les fonctions d’onde a 1’ordre zéro sont obtenues a partir des solution d’auto-interaction des
équations de Hartree et les restes de I’expansion infinie sont traités par méthode intégrale,
alors qu’un potentiel simplifié de type hydrogeéne est utilisé pour le continu. Nous avons
utilisé les expansions de Rayleigh—Schrodinger pour calculer les énergies d’échange jusqu’au
troisiéme ordre. Nous observons que la séparation des niveaux est surtout due aux sommes
sur les états liés. Les séparations de structure fine trouvées ici sont en bon accord avec les
résultats expérimentaux.

[Traduit par la Rédaction]

1. Introduction

Atomic Rydberg states are of great importance in both theoretical and experimental research [1-3].
As the simplest many-body system, helium is an ideal candidate for verifying quantum mechanics and
theoretical methods for treating many-body problems. Research on helium level splitting structures of
highly excited states has became a new focus for both theorists and experimentalists [4].
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Many-body perturbation theory (MBPT) [5-7] is one of the most commonly used methods to deal
with many-body problems. Kelly [8] first introduced MBPT into the calculation of atomic structure. With
Brueckner—Goldstone (BG) perturbation expansion, Chang and Poe [9-10] calculated fine structures
of the D and F states for helium and its isoelectronic sequences, where a coarse zeroth-order wave
functions were used, and it was found that the large cancellation to the first-order exchange energy due
to the second-order contribution suggests that a higher order contribution should be included. To solve
this problem, Chang [11] combined perturbation theory and a configuration-interaction calculation with
the application of a finite basis constructed from B-splines.

The advances in variational technique made it possible to extend high-precision variational calcula-
tions into the high-energy range. The method adopted in this calculation is the combined configuration
interaction (CI)-Hylleraas (Hy) basis [12, 13]. It has been shown that a careful choice of basis functions
greatly improves the convergence and permits very accurate energy level calculations to be performed.
According to these works, Drake gave the most elaborate and precise results [14—16]. Many of the
eigenvalues have converged to better than 1078 a.u. [15]. The singlet—triplet splittings remain clearly
resolved for all states up to 10, but are no longer visible to this degree of precision for the higher states.
In contrast, the perturbation theory approach is able to yield higher accuracy. This stems from the fact
that in a perturbation approach, one often reduces the calculation to the direct evaluation of the terms
of interest. Thus, one may maintain the same level of high accuracy for different physical quantities,
such as level splittings or shifts, whose value may differ by many orders of magnitude.

Recently, the improved density-function theory [17-19] and combination of many-body pertur-
bation theory with the configuration-interaction (CI) method [20-22] have been adopted for studying
excited states, but rarely for highly excited states. Related results of relativistic MBPT calculations from
Vidolova-Angelova et al. [23] have revealed that singlet—triplet splittings increase with nuclear charge,
and for sufficiently heavy atoms, these splittings may exceed the distance between adjacent Rydberg
states of the same series. Koc and Migdalek [24] also utilized relativistic MBPT to evaluate the fine
structure of Ag and Au atoms, but just limited it to the second-order corrections for some lower excited
states.

In this paper, MBPT are used to calculate the ' DD term intervals for 1snd (n = 12 ~ 20) high
Rydberg states. Based on two different models, the perturbation expansion terms consisting of bound
states only and those of continua are considered, respectively. According to Rayleigh—Schrédinger
expansions, we have evaluated the exchange energy up to the third-order terms. It has been found that
the contribution from the third-order exchange interaction is still large so cannot be neglected. The
splitting levels yielded here agree quite well with experimental data.

2. Method

2.1. Perturbation expansion

We use configuration state functions (CSFs) as the basis, therefore, the atomic state function of 1snd
states is written as [25]

o

W(yLS) =Y c;®(yLS) (0
i=0

where i = 0 is used to denote the real states, namely, yo = lsnd, and we usually set co = 1;

while y;(i # 0) for virtual states, denoted by p;g; for two intermediate electron configurations. The
perturbation approach is available if ¢; (i # 0) <« 1, which means the virtual states are the perturbation
of 1snd configuration states.

Within the framework of perturbation theory, we get

H=Hy+V @)
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where V is the perturbation operator. According to Rayleigh—Schrddinger perturbation expansion, the
perturbation corrections to the third order are as follows:

EQ =¢i5 +enq 3

EW = (0| V|do) )
o0

DoV | D7)

@ _ N 4 5
Z Ey— E; ®)
i=1

O _ i (Pol VD) (D VD)) (P;|V]D;) (”Z (D] VD7) (®;] V| Do) ©

(Eo — Ei)(Eo — Ej) (Eg — Ei)?

i,j=1
In the summations above, ®; and ®; should include all the configurations with the same parity.
What is more, all the wave functions of (1) ought to have identical term values (L and S) and their

components (M and Mg). If ® corresponds to products of two bound states p; and g; (BB-type),
then in (5) the symbol Y should consist of the double summations over two single-particle states. If ®

involves continuum staées, there should be an integral over the continua. Here, we have two possible
situations, one consists of a bound state and a continuum (BC-type) and the other ought to be dual
integral over two continuum orbitals (CC-type). It will be more complex for the former term of (6).

We divide the whole perturbation expansion into two parts: one with only the summations over
bound states (BB-type), the other including integrations over continua (BC-type and CC-type). The
calculation results reveal that the former dominates the contribution.

2.2. Solutions of the bound-state wave functions
Then we get the zeroth-order Hamiltonian

Hy = his + hpa @)

and the perturbation term (in Rydberg units) becomes

2
V="-vS vt ®)

12 "

where the Coulomb potential operators are
2 c 2
Vnd_ nd|—I|nd), Vi = (1s|—]1s ©
r2 r2

standing for the potential generated from the nd(1ls) electron to the 1s(nd) electron. Hartree operators
are defined as

4 4
hiy ==V, ——+ Vg hwa=—Vpg—— +V{ (10)
I'ls "'nd

n

Orbital wave functions are obtained from the self-iteration solutions of the Hartree equation

his@1s = €15015
RndPnd = EndPnd

(I

There are coupled equations in which the charge distribution of one electron depends on the other
and vice versa. Hartree proposed that these equations be solved by an iterative procedure called the
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self-consistent field method. Virtual states are similarly resolved for individual configurations. As £,
hg differ with configurations, wave functions of the same / are not orthonormal. So it is necessary to
design an orthogonalization procedure to maintain the orthogonality of the total basis set. At the same
time, least distortions to the states that contribute the largest perturbation to 1snd configurations ought
to be ensured. The coupling rule of angular momenta has been applied to build up configuration state
functions (CSFs), which can be expressed as products of spatial- and spin-related parts. As there are
no spin-dependent interactions in the Hamiltonian, only the spatial parts are employed to evaluate the
matrix elements.

It is worth mentioning that there is no corresponding D term in configurations of two equivalent
electrons according to the Pauli exclusion principle, which yields asymmetry of the level shift of singlet
and triplet by the second-order and higher order perturbation corrections. Besides, the normalization of
CSFs for the equivalent electron configurations is quite different from those of the other configurations.

2.3. Solutions to the radial equation of continuum states

Continuum states cannot be orthogonalized in the same way as bound ones. It should be noted that
the most dominant contribution of the continua comes from configurations such as 2pep, where gp is
a continuum state whose situation is similar to an electron seeing a hydrogen potential. It is natural
to adopt the hydrogen potential model, at the same time, the orthogonality of total basis states is still,
conveniently, strictly maintained. As to the bound state of the BC-type, we use the simple potential [4,
10]

2Z.

V() =— (12)
where Z. is the effective nuclear charge, defined as
Ze =2, [=0,1
y (13)
Ze =1, [=2,3,

It should be mentioned that the corresponding perturbation operator under this simplified model
should be changed to the one mentioned in ref. 9.
The continuum radial equation can be written as

2 1+ 2z
[_@ 2 _Tej| Per(r) = € Py, (14)

We define Z. = 1 for all continua. The normalized continuum wave functions have to fit the asymptotical
formula [26]

—
Pgyr — o0

1
cos(kr + &p) (15)
vk
where k = /. Certain numerical problems arise in the calculations of continuum functions from (15).
It can be evaluated practically only for some large but finite radius » = r¢. To properly normalize this
function, it is necessary to extrapolate to find its amplitude at infinity. This can be realized with careful
consideration.

2.4. Integral processing for the residues in perturbation expansion

The perturbation expansions involve infinite series. Here, a properly approximate procedure is quite
useful. Actually, as to the second-order BB-type perturbation corrections of a certain configuration
series, dual summations of two infinite orbital series must be included. To facilitate this procedure, let
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the summation procession of (5) be enumerated to the states where two orbitals (p and ¢g) have the same
quantum number, that is to say n,, = n,; = n. Then we define the summation results as E,(lz). A similar
method can be used when we deal with the third-order corrections, although the former term of (11)
consists of quadruple summations.

Define
AEn = En - En—l (16)

Then we can get a series {AE,}, which declines with n. The summation of the whole series is the
second- or third-order perturbation energy. If this series can be simulated by an analytical function, then
the residue of the series can be substituted by the integral over the function, while the convergency of
the series can be verified.

Choose the simulating function

AE, = — a7

where a and r are parameters determined by a least-squares-fitting procedure from partial terms of the
series (say n = ng — n,). Then the integration

* g
Re =/ —rdn (18)
ne+1 1

is utilized to express the residue of summation series after n,.
The standard error

Ne
> (AE, — 5)?
n=ny
_ 19
’ ne—no+ 1 (19)
could be denoted by the preciseness of the fitting procedure. Normally ng and n, are set to be large
enough and the curve extrapolation should also be investigated carefully to ensure effective simulations.

2.5. An improved Numerov algorithm

For higher Rydberg states and continua, as in the remote regions where the radial functions is
still changing rapidly, the mesh points must be sufficiently close together in this region to achieve a
desired accuracy. But this cannot be realized by the conventional Numerov algorithm, which leads to an
inaccuracy for both the radial function and the related matrix elements [27]. Here, we use an improved
Numerov algorithm [27, 28] with the merits both of insuring numerical accuracy and, as well, mastery
of the requirement of numerical effort. Early methods would put equal step sizes & between points with
an occasional doubling of step size. The key points of such a new algorithm is that we can set certain
points, after which the step size will never be increased. This is very necessary for us to construct
an effective basis set and to evaluate the perturbation matrix elements exactly by using the numerical
integral method.

3. Results and discussions

Based on the theoretical methods mentioned above, the self-consistent iterative procedure has been
applied to obtain the orbital wave functions for sd, pp, pf, and dd configuration series, respectively,
which are then orthogonalized and used to construct corresponding CSFs. With these CSFs as a basis,
perturbation energies are calculated order by order. We have mainly been concerned about the exchange
term, the only contribution to the singlet—triplet level splittings. In principle, an MBPT calculation
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Fig. 1. The fitting result of second-order perturbation corrections contributed by the pp configuration series
as to the calculation of the 1s12d state. Evaluated results from 30 to 55 (o) have been used for fitting the
simulation curve, and those from n = 56 ~ 65 (x) are applied to verify the extrapolating ability of the
simulation.

Energy (E)/GHz

30 35 rib 4‘5 SID SIS B0 ES
Main Quntum Number n

Table 1. The fitting results of pp series for the second-order
MBPT calculation of lsnd (n = 12 ~ 20) configurations. r
and a are the fitting parameters, and oy, o, represent standard
errors for fitting and extrapolating respectively. a, oy, 0. and
integration Re are in units of GHz, while others are unitless.

n r a of Oe Re

12 3.046 8.03 2.038(—7) 4.888(—=7) 1.039(-3)
13 3050 656 1.822(—7) 4.002(—=7) 8.353(—4)
14 3054 545 1.652(=7) 3.330(=7) 6.815(—4)
15 3.058 458 1517(=7) 2812(=7) 5.632(—4)
16 3.062 390 1.409(=7) 2.406(=7) 4.707(—4)
17 3066 336 1.324(=7) 2.083(=7) 3.974(—4)
18 3.071 293 1.258(=7) 1.824(—7) 3.385(—4)
19 3076 257 1207(=7) 1.615(=7) 2.906(—4)
20 3.082 228 1.172(=7) 1.444(=7) 2.513(—4)

should involve whole summations over bound states and integral over continua. But actually, only a
certain main configuration series are accessible and the residues are obtained approximately by using
an integral-processing method.

Taking the calculation of the helium 1s512d configuration as an example, Fig. 1 presents the fitting
results of second-order perturbation corrections contributed by the pp series. Setting ng = 30 and
ne = 55, the simulating function with its parameters (r and a) have been determined with the results
evaluated from (16). We then extrapolate this curve to n = 65 and compare it with calculated results.
The curve inosculates well with data calculated at both the fitting and extrapolating regions. So it can be
concluded that the asymptotic behavior of the series (5) is well simulated by the analytical representation,
and, from which, a reliable substitution of the residues (by (18)) can be obtained.

Table 1 gives the fitting results of the second-order perturbation corrections to lsnd (n = 12 ~
20) configurations by pp series (BB-type). Parameters r and a are obtained with partial series from
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Table 2. Contributions from various configurations of BB-type to the
second-order exchange terms (GHz).

n pp series  sd series pf series  dd series Total

12 —2527  2999(—3) 3.830(—4) —3.286(—4) —2.524
13 —1.996  2373(=3) 2.945(—4) —2.588(—4) —1.994
14 —1.603  1.908(=3) 2321(—4) —2.074(—4) —1.601
15 —1307  1.557(=3) 1.866(—4) —1.687(—4) —1.305
16 —1.080  1.286(—3) 1.525(—4) —1.391(—4) —1.079
17 —0902  1.075(=3) 1264(—4) —1.160(—=4) —0.901
18 —0.761  9.073(=4) 1.061(—4) —9.776(=5) —0.760
19 —0.648  7.726(—4) 8.994(—5) —8.314(—=5) —0.647
20 —0.556  6.633(—4) 7.696(=5) —7.129(=5) —0.555

Table 3. Contributions of BC-type and CC-type configurational series to the second exchange terms(GHz).

n pp series (BC)  pf series (BC) sd series (BC) dd series (BC) pp series (CC) Total

12 —3.402(—1) 3.129(—1) 3.881(—4) —2.892(—4) —3.872(—6) —2.652(=2)
13 —2.695(—1) 2.472(—1) 3.130(—4) —2.277(—4) —3.061(—6) —2.167(=2)
14 —2.170(-1) 1.986(—1) 2.556(—4) —1.824(—4) —2.461(—6) —1.789(=2)
15 —1.773(=1) 1.620(—1) 2.110(—4) —1.484(—4) —2.007(—6) —1.488(~2)
16 —1.466(—1) 1.338(=1) 1.760(—4) —1.224(—4) —1.658(—6) —1.245(=2)
17 —1.226(—1) L117(=1) 1.483(—4) —1.021(—4) —1.385(—6) —1.060(—2)
18 —1.035(=1) 9.429(—2) 1.260(—4) —8.599(—5) —1.169(—6) —8.951(=3)
19 —8.820(—2) 8.027(—2) 1.076(—4) —7.314(-5) —9.959(—7) —7.716(=3)
20 —7.575(=2) 6.892(—2) 9.379(—5) —6.272(=5) —8.533(=7) —6.643(=3)

ng = 30ton, = 55. Column 4 and 5 are standard errors for the fitting areas and extrapolating regions,
respectively, while the last column presents the residues of the integral processing procedure denoted
above.

Contributions from various configurations of BB-type to the second-order exchange terms are given
in Table 2. The residues for perturbation expansion series have been included for each configuration.
The results indicate that the pp configuration series dominates the contribution, while the contributions
from the dd series are five-orders smaller than those from the pp series. As only four effective floating
numbers are maintained here, the effects of the dd and other series, such as ff etc., could be neglected.

As to the problems related to continua, BC-type contributions from four configuration series have
been evaluated and presented in columns 2 to 5 in Table 3. The calculated results indicate that the
absolute values from the pp and pf series are comparable but with opposite signs, while those from
the sd and dd series are trivial. As to the CC-type, only the pp series are concerned and the results
are listed in column 6. It is obvious that the CC-type contributions are small enough to be neglected.
The net sums of the BC-type contributions are presented in the last column of Table 3 and are much
smaller than those of the corresponding BB-type because of the counteractions between pp and pf
series. We take the total results of the second-order perturbation corrections as reference to the selection
of configuration series in the third-order perturbation calculation.

Table 4 gives the third-order contributions to exchange terms. As to the similarity between the later
terms of (6) and the second-order perturbation formula, the contributions of this term could be treated in
a similar way as in the second-order perturbation, as to the residue processing. These results are listed
in the fourth and fifth columns, where the former contain the contribution from BB-type only and the
latter are those of the BC-type. Such a huge difference of nine orders could be observed. The former
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Table 4. Calculated results of the third-order perturbation corrections (GHz). According to
(6), contributions from the former and latter terms are calculated, respectively.

Sum. ofbounds Int. of continua  Sum. of bounds Int. of bounds

n for the I1stterm  for the Istterm  for the 2nd term  for the 2nd term  Total
12 0.521 2.655(—5) 1.093(—2) —5.067(—12) 0.532
13 0.410 2.098(—5) 7.353(—3) —3.159(—12) 0.417
14 0.328 1.686(—5) 5.090(—3) —2.037(—12) 0.333
15 0.267 1.374(-5) 3.613(—3) —1.353(—12) 0.271
16 0.220 1.135(-5) 2.621(=3) —9.224(—13) 0.223
17 0.183 9.482(—6) 1.938(—3) —6.432(—13) 0.185
18 0.154 8.001(—6) 1.458(—3) —4.577(—13) 0.155
19 0.131 6.812(—6) 1.113(-3) —3.317(—13) 0.132
20 0.112 5.848(—6) 8.621(—4) —2.443(—13) 0.113

Table 5. 'D-D term intervals and comparisons to theoretical and experimental
data (GHz).

n First-order ~ Second-order Third-order Total  Expt. [30] Expt. [31]

12 4.866 —2.550 0.532 2.848 2.872 2.862
13 3.844 —2.014 0.417 2247  2.269 2.258
14 3.089 —1.618 0.333 1.804 1.823 1.812
15 2519 —1.319 0.271 1.471  1.486 1.475
16 2.080 —1.091 0.223 1.212 1.227 1.215
17 1.738 —-0.912 0.185 1.011  1.025 1.013
18 1.466 —0.769 0.155 0.852 0.865 0.852
19 1.249 —0.655 0.132 0.726  0.737 0.707
20 1.072 —0.562 0.113 0.623  0.632 0.596

term of (6) includes quadruple summations (or integrals). It is very complicated to evaluate over various
configuration series. For simplicity, only the pp and sd configuration series have been included in the
evaluation of BB-type contributions, while the pp and pf series are employed in the BC-type. The
calculated results are shown in columns 2 and 3, respectively. Comparison of the results reveals that
the dominant contributions mainly come from the summations over bound states. And the contributions
from the former term in (6) are more important than those of the latter one.

Table 5 presents the final results of helium 'D-3D term intervals for 1snd (n = 12 ~ 20) Rydberg
states and the comparisons with the experiments. Columns 2—4 give the exchange energies of the first-,
second-, and third-order perturbation corrections. Summations of these values give the net result, which
is in the fifth column. And the last two columns are the experimental results [30, 31]. Singlet—triplet
level splittings yielded here have been found to be in accord with these results.

From Table 5, it can also be foreseen that contributions of the fourth-order perturbation will be
negative, which will make the final results lower than the present ones. But the effects of magnetic or
spin-dependent interactions with their nondiagonal matrix elements [29], which are not included in this
work either, will counteract the contributions of the fourth-order perturbation in a certain scale. Such
investigations are worthy of further research.

4. Conclusion

How to choose zeroth-order solutions in a perturbation calculation is critical. Based on two different
models, the perturbation expansion terms consisting of bound states only and those of continua have
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been evaluated, respectively. As to the former, zeroth-order wave functions have been constructed from
the solutions of the Hartree equation based on the first principle and the residues of the summation
series are dealt with using the integral processing method, while a simplified hydrogen potential has
been applied to obtain the continuum wave functions. A large integral range is used to lead the residues
of the integral over continua to be negligible. The calculated results indicate that the summation series
over bound states domains the second- and third- order perturbation corrections to the level splittings.

We have utilized an improved Numerov algorithm [27, 28] to ensure the numerical efficiency and the
quantitative accuracy for higher Rydberg states and the continua and computed with double precision to
ensure the float calculation. Singlet—triplet level splitting for helium 1snd (n = 12 ~ 20) configurations
yielded here are found to agree quite well with two sets of experimental results, especially for higher
Rydberg configurations.
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