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ABSTRACT 
 

The cuticular coat on the aerial parts of plants is considered as a physical barrier that 

prevents water loss and protects against prospective invaders, excess irradiance or xenobiotics. 

The hydrophobic cuticular layer is mainly composed of cutin, a complex polymer rich in 

esterified fatty acid derivatives associated and coated with waxes. It is the first line of defence 

microbes come in contact with, through which cutinase-producing pathogens can penetrate 1, 2. 

The cuticle breakdown products act as powerful signals for pathogens; they were shown to 

induce germination and appressorium formation 3, 4 and to trigger expression of the cutinase 

gene 5. It is unknown, however, if plants can react to changes in the structure of the cuticle. This 

was tested by overexpressing a fungal cutinase of the pathogen Fusarium solani f.sp. pisi in 

Arabidopsis thaliana (CUTE plants) 6. CUTE plants have a modified ultrastructure of the cuticle 

that lead to an increased permeability and to organ fusions, highlighting the importance of the 

cuticle for plant growth and development. 

In this work, we show that degradation of the cuticular layer leads to full immunity to 

Botrytis cinerea, an ubiquitous fungal pathogen causing important damages to many crop 

plants. This powerful defence is independent of the known defence signalling routes involving 

salicylic acid, ethylene or jasmonic acid. Moreover, the strong resistance to B. cinerea is 

accompanied by the diffusion of a fungitoxic activity and changes in gene transcription. The 

fungitoxic activity was shown to diffuse from CUTE leaves, to have a presumed size of 1000 to 

3500 Da and might be of proteinaceous nature. 

Further insights in the changes in gene expression after inoculation with B. cinerea were 

obtained by genome-wide microarray analysis. The expression of several members of the lipid 

transfer protein (LTP), peroxidase (PER) and protease inhibitor (PI) gene families was found to 

be strongly enhanced in CUTE plants compared to wild-type (WT) plants. The involvement of 

those genes in the defence against B. cinerea was demonstrated by overexpressing them in 

susceptible WT plants, which led to increased resistance. In addition, different mutants with 

cuticular defects, like lacerata 7 and bodyguard 8, also displayed a strong resistance to B. 

cinerea, associated with the diffusion of the fungitoxic activity and the priming of the LTP, PER 

and PI genes. Modification of the cuticle can thus activate a multi-layered resistance syndrome 

that reveals a novel defence pathway leading to complete resistance to B. cinerea. 

Full immunity to B. cinerea was also observed in A. thaliana following wounding of the 

leaf. The resistance was delimited at the wound site and was not associated with salicylic acid-, 

ethylene- or jasmonic acid defence responses. The fungitoxic phytoalexin camalexin was found 

to be involved in this resistance, since camalexin-deficient mutants were susceptible after 

wounding and inoculation. Wounding was shown to prime camalexin accumulation after 

inoculation with B. cinerea. Glutathione was also found to be required for the resistance, as 



 

 

mutants deficient in glutathione biosynthesis showed susceptibility to B. cinerea after wounding, 

indicating that basal levels of glutathione are needed for the wound-induced resistance. These 

results demonstrate how an abiotic stress can induce full immunity to the virulent fungus B. 

cinerea. 
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RESUME 
 

Toutes les parties aériennes des plantes sont recouvertes par la cuticule, une barrière 

physique qui empêche l’évaporation de l’eau et protège contre les microorganismes, l’excès de 

radiations et les xénobiotiques. Cette couche cuticulaire est principalement composée de 

cutine, un polymère complexe de dérivés d’acides gras inter-estérifiés, associé et recouvert de 

cires. Elle représente la première ligne de défense avec laquelle les microorganismes sont en 

contact, que certains pathogènes producteurs de cutinase peuvent cependant traverser 1, 2. Les 

produits de dégradation de la cuticule servent de signaux pour les pathogènes. Ainsi, on a 

montré qu’ils pouvaient induire la germination et la differentiation de l’appressorium chez 

certains champignons 3, 4, ainsi que l’expression du gène de la cutinase 5. On ignore cependant 

si les plantes réagissent elles aussi à des modifications de la structure de leur cuticule. Ceci a 

été testé à l’aide de plantes d’Arabidopsis thaliana transgéniques exprimant une cutinase 

fongique du pathogène Fusarium solani f.sp. pisi (plantes CUTE) 6. La structure de la cuticule 

des plantes CUTE est perturbée, menant à une augmentation de la perméabilité cuticulaire et à 

la formation de fusions d’organes, mettant ainsi en évidence l’importance de la cuticule pour la 

croissance et le développement des plantes. 

Ce travail montre que la dégradation de la couche cuticulaire induit une résistance totale 

contre Botrytis cinerea, un champignon très répandu causant d’importants dommages à de 

nombreuses plantes de culture. Cette forte immunité est indépendante des voies connues de 

signalisation de défense impliquant l’acide salicylique, l’éthylène ou l’acide jasmonique. De plus, 

la résistance à B. cinerea est accompagnée par la diffusion d’une activité fongitoxique et par 

des changements d’expression génique. L’activité fongitoxique est capable de diffuser à travers 

la couche cuticulaire plus perméable des plantes CUTE, aurait une taille de 1000 à 3500 Da et 

semble être de nature protéique. 

Des informations plus approfondies sur les changements d’expression génique 

provoqués par B. cinerea ont été obtenues par l’analyse de puces d’ADN de tout le génôme 

d’A. thaliana. Le niveau d’expression de plusieurs membres des familles de gènes codant pour 

des protéines de transfert de lipides (LTP), des peroxidases (PER) et des inhibiteurs de 

protéases (PI) s’est révélé plus intense dans les plantes CUTE que dans les plantes de type 

sauvage. La surexpression de ces gènes dans des plantes de type sauvage normalement 

susceptibles a procuré une augmentation de la résistance à B. cinerea, démontrant ainsi le rôle 

de ces gènes dans la résistance contre B. cinerea. De plus, les mutants lacerata 7 et bodyguard 
8, présentant des cuticules défectueuses, montrent également une résistance accrue à B. 

cinerea, associée à la diffusion de l’activité fongitoxique et au conditionnement de l’expression 

des gènes LTP, PER et PI. Ainsi, cette dernière observation renforce l’idée que des 



 

 

modifications cuticulaires puissent activer un syndrome de résistance à plusieurs niveaux, 

révélant une nouvelle voie de défense menant à une immunité totale contre B. cinerea. 

Une forte immunité contre B. cinerea a également été obtenue en appliquant une 

blessure sur les feuilles d’A. thaliana. Cette résistance est limitée au site de la blessure et n’est 

pas associée aux voies de défense dépendantes de l’acide salicylique, de l’éthylène ou de 

l’acide jasmonique. La camalexine, principale phytoalexine d’A. thaliana, est impliquée dans 

cette résistance, puisque des mutants déficients en camalexine sont moins protégés par la 

blessure contre B. cinerea. Il a également été montré que la blessure conditionne la plante à 

accumuler de la camalexine après inoculation avec B. cinerea. L’instauration de la résistance 

induite par la blessure nécessite aussi un taux normal de glutathion, puisque des mutants 

déficients dans la biosynthèse de glutathion sont moins protégés par la blessure que des 

plantes de type sauvage. Ces résultats démontrent comment l’application d’un stress abiotique 

peut induire une immunité totale contre le pathogène B. cinerea. 
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Plants are attacked by a broad range of microbes like bacteria, fungi, oomycetes, 

viruses, nematodes or insects. They have elaborated a multi-layered system of defence, 

comprising physical and chemical barriers, which are either preformed or induced after the 

infection. The hydrophobic cuticular layer covering all aerial plant organs is the first line of 

defence microbes have to overcome. Some pathogens, and in particular necrotrophic fungi like 

Botrytis cinerea, produce enzymes that can degrade this plant barrier. At the very beginning of 

the infection process, plants are able to perceive the presence of a pathogen by sensing the 

degradation of their cuticular layer and to switch on a complex programme of defence. This 

work focuses on the defence responses induced in Arabidopsis thaliana upon degradation of its 

leaf surface, either enzymatically by the action of fungal cutinases that breach the cuticle, or 

mechanically by wounding. 

 

I.1 Types of plant resistance 
 

The most common case in nature occurs when a plant encounters a pathogen to which it 

is not a host. This resistance shown by an entire plant species to a specific parasite or pathogen 

is known as non-host resistance, and is expressed by every plant towards the majority of 

potentially pathogenic microbes (Heath, 1985). The non-host resistance may be determined by 

preformed barriers; but it often depends on active responses following recognition of the 

pathogen or its activities as it attempts to penetrate the plant (Jones and Takemoto, 2004). 

Some pathogens are known to exhibit a total lack of specialization and infect a wide host 

range, as exemplified by most necrotrophic fungi or bacteria that kill colonized plant tissues. 

Basal resistance inhibits pathogen spread after successful infection and onset of disease (Dangl 

and Jones, 2001). The induction of basal resistance to invasive pathogens is a crucial 

protection layer. The numerous Arabidopsis mutants that are compromised in basal defences to 

virulent pathogens points to the involvement of many genes in maintaining this resistance layer 

and to the existence of numerous potential targets that the pathogen might disable to promote 

disease (Hammond-Kosack and Parker, 2003; Wiermer et al., 2005). Thus, disease results 

either from the failure of the recognition event or the ability of the pathogen to avoid or 

overcome the resistance response. Treatments with abiotic or biotic stimuli prior to inoculation 

can enhance this basal resistance, this is referred to as induced resistance. In many cases, 

induced resistance is not only expressed locally at the site of treatment but also systemically, in 

other parts of the plant. This is termed systemic induced resistance or systemic acquired 

resistance. 

During evolution specific plant species resistance was overcome by individual pathogens 

strains (or races) by the acquisition of virulence factors, which enabled them to either evade or 
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suppress plant defence mechanisms. As a consequence, individual plant cultivars have evolved 

resistance genes that recognize specific pathogen strains and allow the plant to resist infection 

(Nürnberger et al., 2004). This type of resistance is called gene-for-gene resistance, R-gene-

mediated resistance or cultivar-specific resistance. Many plant-pathogen interactions, especially 

those involving biotrophs, are governed by specific interactions between the products of 

pathogen avr (avirulence) gene loci and alleles of the corresponding products of a plant disease 

resistance (R) locus. When corresponding R and avr genes are present in both host and 

pathogen, the resistance is triggered (incompatibility). If either gene is inactive or absent, 

disease occurs (compatibility) (Flor, 1971). 

The spectrum of reactions elicited in plants undergoing either type of resistance is 

complex but nevertheless strikingly similar (Nürnberger et al., 2004). The most common 

expression of host resistance, and a frequent expression of non-host resistance, is the 

hypersensitive response (HR), a rapid death of cells at the infection site that is associated with 

defence gene activation (Goodman and Novacky, 1994). Specific R-mediated innate immunity 

is superimposed onto one or more basal defence pathways. Genetic overlap between specific 

and basal resistance responses suggests that one function of R-mediated signalling might more 

rapidly and effectively activate defence mechanisms that are shared by both pathways (Dangl 

and Jones, 2001). 

 

I.2 Preformed defences 
 

The plant surface is the first line of defence that microbes come in contact with. The 

epidermal cell layer is covered on all aerial parts with a hydrophobic cuticle mainly composed of 

wax and cutin. The plant cuticle has multiple roles, including the regulation of epidermal 

permeability, non-stomatal water loss and protection against insects, pathogens, UV light and 

frost. The cuticular layer is made of cutin and intra- and epicuticular waxes. The cutin polymer is 

mainly composed of 16 and 18 carbon interesterified hydroxy and epoxy-hydroxy fatty acids 

(Nawrath, 2002). Waxes consist of very-long-chain fatty acids, alcohols, aldehydes, alkanes, 

ketones, and esters (Kunst and Samuels, 2003). The cuticle represents a strong barrier for 

microbes that do not produce enzymes to degrade it. Such microbes might use natural 

openings like stomata or wounds to enter the plant. However, some phytopathogenic fungi are 

able to penetrate through the cuticle by secreting cutinases (Soliday et al., 1984). 

The cell wall of epidermal cells also represents a barrier for phytopathogenic fungi. The 

high molecular weight polysaccharides that compose the cell wall are cross-linked by ionic and 

covalent bonds into a network that resists physical penetration (Carpita and McCann, 2000). 

Plant cell walls are highly hydrated and gel-like. They are mainly composed of cellulose (β-1,4-
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linked glucose) and hemicellulose, of pectin in dicotyledons (mostly polygalacturonic acid) and 

of structural proteins. Some pathogens, like necrotrophic fungi, are able to directly penetrate the 

cell wall by producing various cell-wall degrading enzymes that relax the cell wall structure and 

finally lead to tissue maceration (Vorwerk et al., 2004). 

Cells walls are a reservoir of secondary metabolites and antimicrobial proteins. 

Phytoanticipins are low-molecular weight, antimicrobial compounds that are present in plants 

before challenge by microorganisms (Van Etten et al., 1994). Such antimicrobial compounds, 

like phenolics, tannins or saponins, may determine the host range of some fungal pathogens 

(Morrissey and Osbourn, 1999). In contrast, antimicrobial compounds that accumulate upon 

pathogen stress are called phytoalexins. Preformed antimicrobial proteins can act as inhibitors 

of pathogenic enzymes, like proteinase inhibitors (Shewry and Lucas, 1997) or 

polygalacturonase-inhibiting proteins (PGIPs) (De Lorenzo et al., 2001; De Lorenzo, 2002). 

They also include hydrolytic enzymes that may cause the breakdown of pathogen cell-wall 

components, like for example chitinases (Robinson et al., 1997) and glucanases (Beffa and al., 

1996). 

 

I.3 Perception of the pathogen 
 

I.3.1 Elicitors 
The timely perception of the pathogen by the plant is central to the activation of defence 

responses. Plants have complex innate mechanisms to recognize pathogenic microorganisms. 

The pathogen must either penetrate the plant cell wall and / or the membrane, or locally diffuse 

effectors or elicitors that are perceived by the host (Gòmez-Gòmez, 2004). An elicitor can be 

broadly defined as a biotic or an abiotic treatment that induces defence reactions in plants. An 

abiotic elicitor may be of physical or chemical nature, while a biotic elicitor is derived from a 

biological source. Elicitors from a variety of different plant pathogenic microbes have been 

characterized and shown to trigger defence responses in intact plants or cultured plant cells. 

Microbe-associated hydrolytic enzyme activities have been found to release elicitors of 

plant defence by limited degradation of the plant cell wall, such as oligogalacturonides (Shibuya 

and Minami, 2001). Thus, plants do not only recognize and respond to exogenous pathogen-

derived signals but also to endogenous plant-derived structures. 

Pathogen elicitors fall into two broad categories, specific and non-specific elicitors. The 

specific elicitors are so-called avr factors that are unique for a particular pathogen strain. Avr 

factors are produced by pathogens and function in host cells invasion, colony formation, 

avoidance of host immune responses, or in the adjustment to new nutrient sources (Van der 

Biezen and Jones, 1998). Many pathogen avr proteins are pathogenicity factors with virulence 
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effector functions that can actively or passively suppress host defences (Jones and Takemoto, 

2004). 

The non-specific elicitors are constitutively present in the pathogen. They are essential 

and therefore very conserved within a class of microbes. This broader, more basal, plant 

perception system mediates the activation of plant defence responses in a non-cultivar specific 

manner (Boller, 1995). These non-specific elicitors might be the prime inducers of defence 

responses in non-host plant-pathogen interactions (Heath, 2000). Elicitors like surface-derived 

structural molecules from pathogens, such as fungal cell-wall constituents (chitin, glucan, 

protein and glycoprotein), bacterial lipopolysaccharide or flagellin (Gòmez-Gòmez and Boller, 

2002; Erbs and Newman, 2003; Montesano et al., 2003) are conceptually similar to PAMPs 

(pathogen-associated molecular patterns) described for mammals and Drosophila (Parker, 

2003). However, non-pathogens also synthesize these molecules, so “pathogen-associated” is 

a misnomer and “microbe-associated” would be a more precise term (Ausubel, 2005). 

 

I.3.2 Plant receptors 
Many R genes have been identified in model and crop species. Despite the wide range 

of pathogen taxa and their presumed pathogenicity effector molecules, R genes encode only 

five classes of proteins (Dangl and Jones, 2001). The most important resistance proteins 

include the (NBS)-LRR proteins (nucleotide-binding site leucine-rich repeat proteins) and, to a 

lesser extent, LRR-RLK proteins (LRR-receptor-like kinases) and membrane-anchored LRR-

RLP proteins (LRR-receptors-like proteins) (Martin et al., 2003). Whereas the NBS-LRRs are 

involved in cytosolic perception, the LRR-RLKs and LRR-RLPs are involved in extracytosolic 

perception of various ligands, including pathogen molecules (Jones and Takemoto, 2004). 

Direct interactions between avr factors and R receptors have rarely been shown 

(Deslandes et al., 2003). Dangl and Jones (2001) postulated the “guard hypothesis”; it proposes 

other factors that participate in the recognition of the pathogen avirulence factor. The interaction 

between an R protein and its cognate avr determinant is mediated by a host protein that is the 

target for the effector function of the avr determinant, and under R-protein surveillance for such 

interference (Van der Biezen and Jones, 1998). Plant receptors for general elicitors might 

represent a subclass of R proteins that are capable of recognizing PAMPs rather than race-

specific pathogen effectors (Parker, 2003). 
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I.4 Inducible defences 
 

Upon pathogen detection, plants activate a number of defences. Many inducible defence 

responses are involved in the expression of both host and non-host resistance (Heath, 2000) 

(Figure 1). The earliest events following pathogen perception are calcium influx, alkalinization of 

the extracellular space, production of reactive oxygen intermediates (ROIs) and nitric oxide 

(NO), cell-wall cross-linking, protein kinase activation and transcriptional reprogramming. 

Transcriptional reprogramming establishes the “effector” arm of the plant innate immune system 

(Dangl and Jones, 2001). Resistance mechanisms induced by recognition of general and 

specific elicitors share similar signal transduction pathways. The MAPK (mitogen-activated 

protein kinase) cascade (see below) is a convergence point leading to both types of resistance 

(Zhang and Klessig, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Plant signalling responses induced by various pathogen elicitors. This model illustrates the possible 
integration of non-host and host-specific resistance signalling pathways. Red arrows indicate pathogen strategies for 
infection and black arrows indicate plant signalling for resistance (modified from Jones and Takemoto, 2004). 
 

I.4.1 Early events 
The early responses to pathogen invasion have been studied with plant cell cultures 

challenged with pathogens or purified elicitors. The earliest detectable cellular events are ion 

fluxes across the plasma membrane. An increase in cytosolic calcium was shown specifically in 
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gene-for-gene interactions (Grant et al., 2000). This phenomenon preceeds the burst of oxygen 

metabolism that produces ROIs, such as O2
- and H2O2 (Lamb and Dixon, 1997). Cells of many 

plant species have the potential to cause an oxidative burst as the very initial reaction leading to 

induced resistance (Doke, 1983). H2O2 can have two functions in plants: at low concentrations, it 

acts as a signalling molecule (Karpinsky et al., 1999; Dat et al., 2000), and at high 

concentrations as inducer of cell death (Dat et al., 2003). Indeed, exogenous application of 

ROIs can induce cell death in plants (Levine et al., 1996). However ROIs, although necessary, 

are not sufficient to trigger cell death and must therefore require accomplices. Studies have 

provided evidence that NO interacts with ROIs to induce HR and defence gene expression 

(McDowell and Dangl, 2000). ROIs can also be directly toxic to pathogens. 

Other plant responses associated with pathogen defence result from allosteric enzyme 

activation initiating cell-wall reinforcement by oxidative cross-linking of cell-wall components 

(Lamb and Dixon, 1997) and apposition of callose (Stone and Clarke, 1992). H2O2 acts as a 

substrate for the rapid oxidative cross-linking of cell-wall proteins and lignification, making cell 

walls more difficult to penetrate. Localized appositions of callose (β-1,3-glucan) in the cell wall 

beneath fungal penetration sites are called papillae. 

MAPKs link stimuli that are activated by external sensors to cellular responses. MAPK 

cascades are minimally composed of three kinase modules, MAPKKK, MAPKK and MAPK, 

which are linked in various ways to upstream receptors and downstream targets, and are 

activated by phosphorylation. The phylogenetic analysis of potential MAPK cascades in 

Arabidopsis has revealed bewildering complexity (Jonak et al., 2002). MAPK kinase cascades 

are implicated in signalling defence responses under biotic stress like pathogen invasion, and 

abiotic stresses like wounding, high salinity, high or low osmolarity, extreme temperature, 

drought, ozone, ROIs, and ultraviolet irradiation. A subset of plant responses to biotic and 

abiotic stresses is shared, such as the generation of ROIs and the activation of defence genes. 

MAPKs are likely to be one of the converging points in the defence-signalling network (Figure 1) 

(Zhang and Klessig, 2001). 

 

I.4.2 Late events 
Plant defence mechanisms include processes that require gene transcription and protein 

synthesis, like the HR, phytoalexin synthesis, lignification, synthesis of pathogenesis-related 

proteins (PR proteins) and systemic acquired resistance (SAR). These mechanisms are 

therefore slower. The most prominent plant defence response is the frequently observed, highly 

localized, hypersensitive cell death, or HR. The HR is the death of a limited number of cells in 

the immediate vicinity of the challenge, while the whole plant remains healthy. The HR is 

fundamental to resistance in the majority of situations in which a plant is challenged with an 
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avirulent organism. Such a reaction is sufficient in itself to prevent colonization of a plant by 

biotrophs because it deprives the pathogen of access to nutrient sources present in living cells 

(Cohn et al., 2001). However, necrotrophic pathogens are able to feed and live on dead plant 

tissues and can take advantage of the HR (Govrin and Levine, 2000) 

Phytoalexins are low-molecular-weight antimicrobial compounds that accumulate in 

plants after attempted pathogen invasion (Paxton, 1981). Phytoalexins have been extensively 

studied, but their role in disease resistance is primarily supported by correlative or 

circumstantial evidence (Hammerschmidt, 1999). The major phytoalexin in Arabidopsis is 

camalexin (Tsuji et al., 1991; Glazebrook and Ausubel, 1994), which accumulates after both 

biotic and abiotic stress (Zhao and Last, 1996; Zhao et al., 1998). Several pad mutants 

(phytoalexin-deficient) with defects in camalexin production have been isolated (Glazebrook and 

Ausubel, 1994; Glazebrook et al., 1997) The pad3 mutant is likely to have a defect in the 

biosynthetic pathway of camalexin (Zhou et al., 1999) 

Oligomers of chitin derived from enzymatic degradation of fungal chitin by plant 

endochitinases were found to induce lignin synthesis (Vander et al., 1998). Lignification is 

thought to reinforce physically the cell walls, to increase cell-wall resistance to degradation by 

pathogenic enzymes and to set up an impermeable barrier to the flow of nutrients and toxins 

(Humphreys and Chapple, 2002). 

Plant defence mechanisms include the transcriptional activation of pathogenesis-related 

genes, such as the production of lytic enzymes (chitinases, glucanases, and proteases) or anti-

microbial proteins (defensins) (Kombrink and Somssich, 1997). PR proteins can be defined as 

“proteins encoded by plants which are induced in tissue infected by pathogens as well as 

systemically and are associated with the development of SAR” (Van Loon and Van Strien, 

1999). Several PR proteins including PR-1, β-1,3-glucanases (PR-2), chitinases (PR-3, PR-4), 

and osmotin (PR-5) show antimicrobial activities in vitro (Sticher et al., 1997). Their antimicrobial 

activity is synergistic (Mauch et al., 1988). The importance of PR proteins in plant resistance 

was shown by overexpression in various plants (Datta et al., 1999). 

Activation of local responses at the point of infection can be followed by establishment of 

secondary immunity throughout the plant, called SAR, which is long lasting and effective against 

a broad spectrum of pathogens (Ryals et al., 1996). The onset of SAR is accompanied by a 

local and systemic increase in the endogenous levels of salicylic acid (SA) (Malamy et al., 1990; 

Métraux et al., 1990) and the activation of a large set of genes, including those encoding PR 

proteins (Van Loon and Van Strien, 1999). SAR is also able to induce cellular defence 

responses more rapidly or to a greater degree than in non-induced plants. This process, called 

priming, leads to the enhanced expression (or potentiation) of defence-related genes once 

pathogen infection occurs (Conrath et al., 2002). 
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I.4.3 Defence signalling pathways 
Several signal molecules establish molecular bridges between the earliest responses 

and later ones, as well as between localized responses such as HR and more generalized 

responses such as SAR (Reignault and Sancholle, 2005). Three endogenous plant signalling 

molecules are involved in plant defence, namely SA, jasmonic acid (JA) and ethylene (ET) 

(Dong, 1998; Thomma et al., 2001). These molecules are involved in two major defence 

signalling pathways: an SA-dependent pathway and an SA-independent pathway that involves 

JA and ET (Kunkel and Brooks, 2002). The study of cellular transduction mechanisms involving 

these molecules is facilitated due to discovery of Arabidopsis mutants in the signalling 

pathways. 

 

I.4.3.1 SA-mediated defences 

SA levels increase in infected plant tissues, and exogenous application of SA results in 

enhanced resistance to a broad range of pathogens (Ryals et al., 1996). SA is required for 

gene-for-gene resistance, for the induction of local defences that contain the growth of virulent 

pathogens, and for the establishment of SAR (Delaney et al., 1994; Nawrath and Métraux, 

1999). The SA-dependent pathway was studied using transgenic Arabidopsis plants expressing 

an SA hydroxylase that degrades SA to catechol (NahG plants) (Delaney et al., 1994). These 

NahG plants are blocked in the expression of PR-1, PR-2 and PR-5, that contribute to the 

resistance against virulent Pseudomonas syringae pv tomato and Hyaloperonospora parasitica 

(Delaney et al., 1994). Mutations in eds1 (enhanced disease susceptibility 1), eds4, or pad4 

(phytoalexin deficient 4) reduce SA levels in infected leaves (Zhou et al., 1998; Gupta et al., 

2000; Feys et al., 2001). Mutations in eds5 and sid2 (SA induction deficient 2) block SA 

synthesis (Nawrath and Métraux, 1999; Wildermuth et al., 2001). NPR1 (NON-EXPRESSOR 

OF PR1) functions downstream of SA and is required for PR gene expression (Cao et al., 1997; 

Fan and Dong, 2002). In general, pathogens that are controlled by SA-dependent responses 

colonize the apoplast and multiply within the host tissue for several days before causing plant 

cell death and tissue damage (Kunkel and Brooks, 2002). 

 

I.4.3.2 JA-mediated defences 

JA is a fatty-acid-derived molecule. Expression of thionin (Thi2.1) (Epple et al., 1995), 

defensin (PDF1.2) (Penninckx et al., 1996) and hevein-like protein (HEL, PR-4) (Norman-

Setterblad et al., 2000) is controlled via the JA-signalling pathway. The fad3 fad7 fad8 triple 

mutant (fatty acid desaturase) is impaired in JA production (Vijayan et al., 1998). The coi1 

(coronatine insensitive 1) (Xie et al., 1998) and the jar1 (JA resistant 1) (Staswick et al., 1992) 

mutants are impaired in the perception of JA. All these mutants have an increased susceptibility 
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to the fungi Alternaria brassicicola, Botrytis cinerea, and Plectosphaerella cucumerina (Thomma 

et al., 1998), the oomycete Pythium sp. (Staswick et al., 1998) and the bacteria Erwinia 

carotovora (Norman-Setterblad et al., 2000). The jin1 (JA insensitive 1) mutant has been 

recently discovered (Lorenzo et al., 2004). JIN1 encodes the bHLH-leucine-zipper transcription 

factor AtMYC2, which is nuclear-localised and rapidly upregulated by JA and abscisic acid in a 

COI1-dependent manner. jin1 mutants show increased resistance to necrotrophic pathogens. 

Thus, JA-mediated defences are generally required for resistance against necrotrophic 

pathogens. 

 

I.4.3.3 ET-mediated defences 

ET-signalling is required in addition to JA to induce the expression of Thi2.1, PDF1.2, 

and HEL. Indeed, expression of these genes is blocked in the ein2 mutant (ethylene insensitive 

2) (Penninckx et al., 1998; Norman-Setterblad et al., 2000). The ein2 mutant is affected in a 

membrane-associated signal transduction component of the ethylene response (McGrath and 

Ecker, 1998) and is more sensitive to B. cinerea (Thomma et al., 1999b) and E. carotovora 

(Norman-Setterblad et al., 2000). The etr1 (ethylene resistant 1) mutant is affected in the ETR1 

gene encoding an ethylene receptor (Chang et al., 1993). The constitutive expression of 

ETHYLENE RESPONSE FACTOR 1 (ERF1), a downstream component of the ET-signalling 

pathway (Solano et al., 1998), increases resistance to B. cinerea and P. cucumerina (Berrocal-

Lobo et al., 2002). The role of ET in plant defence is controversial, as it contributes to resistance 

in some interactions, but promotes disease in others (Kunkel and Brooks, 2002). The pattern of 

altered pathogen responses for ein2 generally parallels the patterns observed for the coi1 and 

jar1 mutants. Therefore ET and JA are often placed together in a single SA-independent 

pathway (Kunkel and Brooks, 2002). 

 

I.4.3.4 Cross-talk 

The different signalling pathways have different degrees of efficacy in limiting the growth 

of discrete pathogens (Figure 2). The defence signalling pathways do not work independently; 

positive and negative cross-talk has been observed between the pathways leading to an 

intricate plant defence network (Genoud and Métraux, 1999; Pieterse and Van Loon, 1999; 

Feys and Parker, 2000). JA and ET were shown in different studies to work in concert, like for 

the expression of PDF1.2 in response to A. brassicicola (Penninckx et al., 1996). Therefore, 

there are positive interactions between the JA- and the ET-signalling pathways, and the 

transcription factor ERF1 (ETHYLENE RESPONSE FACTOR 1) was suggested to integrate the 

signals from both pathways (Lorenzo et al., 2003). 
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Evidence for an antagonistic effect of SA on JA signalling came from the eds4 and pad4 

mutants, which are impaired in SA accumulation but exhibit enhanced responses to inducers of 

JA-dependent gene expression (Gupta et al., 2000). NPR1 has been identified in the cross-talk 

between SA and JA (Spoel et al., 2003). There is also evidence that JA antagonizes SA 

signalling. For example, the coi1 mutant shows enhanced expression of SA-dependent 

defences and enhanced resistance to P. syringae (Feys et al., 1994; Kloek et al., 2001). Some 

data also suggest positive and negative interactions between the SA- and the ET pathways 

(Kunkel and Brooks, 2002). 

Thus, separate signalling pathways may have evolved to allow plants to fine-tune their 

defence responses, to use the appropriate combination of defences against specific pathogens 

according to their infection strategies. Antagonistic interactions between the pathways might 

ensure that inappropriate defences are not activated (Kunkel and Brooks, 2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2. Cross-talk between signalling pathways (modified from Kunkel and Brooks, 2002). 
 

 

I.5 Interaction between Arabidopsis and Botrytis cinerea 
 

I.5.1 Botrytis cinerea 
The Ascomycete fungi Botrytis spp. are important plant pathogens, and in particular B. 

cinerea, the causal agent of grey mould. While some Botrytis species are restricted to specific 

plants, like B. alii on Allium spp, B. cinerea is a non-specialised necrotroph developing on more 

than 230 possible hosts, including agronomically important crops like ornamentals, vegetables, 

corns, fruits, etc. (Jarvis, 1977) (Figure 3a). B. cinerea can also provoke important damages to 

foodstuffs during transport and cold storage. It is known to induce one of the most important 

fungal diseases on plants worldwide, namely the grey mould of grapes (Figure 3b). 
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B. cinerea produces grey mycelium and long, branched conidiophores bearing grape-like 

clusters of conidia (Figure 3c). Conidia are considered as the main dissemination units and can 

be propagated by wind and rain. The fungus rarely produces a Botryotinia perfect stage in 

which ascospores are formed in an apothecium. It overwinters in the soil, as mycelium in plant 

debris or as sclerotia, and requires cool, damp weather (18-23°C) for best growth and 

establishment of infection. Thus, the life cycle of B. cinerea includes a saprophytic phase, where 

it can grow on dead plant material, and a pathogenic phase (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Disease symptoms caused by B. cinerea on strawberry (a) and grape (b). Clusters of conidia on hyphae 
can be visualised with a binocular (c) (source: internet). 
 

 

An infection starts with the attachment of conidia to the host surface. Under favourable 

conditions conidia produce a germ tube that penetrates the host surface. After penetration the 

underlying cells are killed and the fungus establishes a primary lesion in which necrosis and 

defence responses may occur. In some cases this is the onset of a period of quiescence during 

which the fungus does not grow. At a certain stage the defence barriers are breached and the 

fungus starts to grow, resulting in a rapid maceration of plant tissue (Prins et al., 2000). In the 

field, B. cinerea often takes advantage of wounded plant parts to start an infection, but it can 

also directly penetrate through the plant cuticle. Under our laboratory conditions, addition of 

nutrients to the inoculum and almost saturated relative humidity enable B. cinerea to directly 

penetrate Arabidopsis leaves. Tissue maceration can be observed after two to three days and 

B. cinerea completes its life cycle in less than a week. 
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Figure 4. Disease cycle of Botrytis grey mold diseases (Agrios, 2005). 
 

 

I.5.2 Pathogenicity factors of B. cinerea 
Conidia of B. cinerea are able to adhere to plant surfaces by secreting an extracellular 

matrix, to germinate and to penetrate cuticles (McKeen, 1974; Doss et al., 1993). Several 

cutinolytic enzymes have been characterised and purified from culture filtrates of B. cinerea 

(Salinas et al., 1986; Salinas, 1992; Gindro and Pezet, 1999). The cutinase gene (cutA) was 

cloned and found to be expressed during conidia germination and induced by 16C fatty acids 

(Van der Vlugt-Bergmans et al., 1997). However, a B. cinerea strain mutated in the cutA gene is 

as virulent as the wild type strain on gerbera and tomato, leading to the conclusion that this 

cutinase is not essential for infection (Van Kan et al., 1997). 

Other enzymes with cutinolytic activity have been discovered, like esterases and lipases 

(Salinas, 1992; Comménil et al., 1995; Comménil et al., 1999). Antibodies raised against the B. 

cinerea lipase prevented the infection of tomato leaves (Comménil et al., 1998). However, a 

recent study demonstrated that B. cinerea lip1 mutants and even lip1cutA double mutants 

retained full pathogenicity in various host systems (Reis et al., 2005). These authors suggest 

therefore that B. cinerea breaches the host cuticle mainly by physical forces rather than by 

enzymatic dissolution, and that it can not be excluded that there are other, yet uncharacterized, 

secreted cutinolytic enzymes involved in the penetration process. 

Furthermore, B. cinerea produces cell-wall degrading enzymes that provoke the lysis of 

the middle lamellae and the breaking-down of the tissues (Prins et al., 2000). It also produces 
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toxic levels of reactive oxygen intermediates (Deighton et al., 1999; Muckenschnabel et al., 

2002) and toxins like oxalic acid or botrydial (Rebordinos et al., 1996; Tiedemann, 1997; 

Colmenares et al., 2002), that result in the death and maceration of tissue, leading to plant 

decay. Many enzymes are expressed by B. cinerea during infection of plant tissues and some of 

them have been shown to have essential roles for its virulence. 

Endopolygalacturonases (Bcpg) are enzymes that degrade the polygalacturonic acid of 

the cell wall pectin. Six Bcpg were shown to be differentially expressed in various plant tissues 

(Ten Have et al., 2001) and Bcpg1 is required for full virulence of B. cinerea on tomato leaves 

and fruits and on apple fruits (Ten Have et al., 1998). Moreover, deletion of the Bcpg2 gene 

resulted in a strong reduction in virulence on tomato and broad bean (Kars et al., 2005). 

Likewise, disruption of the gene coding for a pectin methylesterase (Bcpme1) reduced B. 

cinerea virulence on apple fruits and on leaves of grapevine and Arabidopsis (Valette-Collet et 

al., 2003), which was not the case for the gene coding for the glutathione S-transferase 1 

(Bcgst1) (Prins et al., 2000). The two subunits of the protein Gα (Bcg) were found to be 

expressed at very early stages in infected bean leaves, and a mutation in the bcg1 gene 

reduces fungal pathogenicity (Schoulze Gronover et al., 2001). Among others, 

exopolygalacturonases (Rha et al., 2001) and aspartic proteinases (Movahedi et al., 1991; Ten 

Have et al., 2004) are also expressed during plant infection. Killing the plant tissue not only 

facilitates B. cinerea to penetrate and colonize its host, it also provides precious carbon sources 

for its growth. Thus, B. cinerea possess a very large array of weapons, probably providing it the 

ability to grow on a broad host range. 

 

I.5.3 Defence responses of Arabidopsis after inoculation with B. cinerea 
The generation of an oxidative burst is one of the earliest plant response to pathogen 

attack, that triggers HR. The HR deprives pathogens of food and the collapse of life-sustaining 

host cells is usually considered as a major barrier to many biotrophic pathogens (Torres et al., 

2002). Necrotrophs such as Botrytis or Sclerotinia can utilize dead tissue and might use the HR 

to their advantage for a better colonization of the host. Indeed, the susceptibility to B. cinerea 

correlates positively with the levels of O2
- or H2O2 produced (Govrin and Levine, 2000). The 

Arabidopsis MAPK kinase pathway is activated by bacteria, fungi, and ROIs, suggesting that 

signalling events initiated by diverse pathogens and external signals converge into a conserved 

MAPK cascade (Nühse et al., 2000; Asai et al., 2002). The kinase activities of MPK3 and MPK6 

are induced during infection by B. cinerea in Arabidopsis (Veronese et al., 2005). 

The ET- and JA-dependent pathway determines defences to necrotrophic pathogens in 

Arabidopsis and the expression of a set of PR genes that include the PR-3, PR-4 or PDF1.2 

(Penninckx et al., 1996; Penninckx et al., 1998). jar1 and coi1, the JA perception mutants, and 
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the triple fad mutant impaired in JA biosynthesis are characterised by an increased 

susceptibility to B. cinerea (Thomma et al., 1999b; Ferrari et al., 2003a). JA was also found to 

be important for B. cinerea resistance in tomato, as demonstrated by the increased 

susceptibility of the JA-biosynthesis mutant defenceless (Diaz et al., 2002). The Arabidopsis 

ET-insensitive mutant ein2 has enhanced susceptibility to B. cinerea (Thomma et al., 1999b). 

Arabidopsis plants overexpressing the ETHYLENE RESPONSE FACTOR 1, a gene involved in 

the ET-dependent expression of proteins such as chitinase or defensins, exhibit increased 

resistance to B. cinerea, accompanied by constitutive expression of PDF1.2 (Berrocal-Lobo et 

al., 2002). Furthermore, application of ET or JA reduces disease severity caused by B. cinerea 

in Arabidopsis and tomato (Thomma et al., 1999b; Diaz et al., 2002). Thus, JA and ET synthesis 

and signalling are required for both local and systemic resistance to B. cinerea (Thomma et al., 

1999b; Ferrari et al., 2003a). 

Mutants impaired in SA signalling, such as npr1 and pad4, have no effect on resistance 

to B. cinerea, whereas NahG plants that do not accumulate SA display enhanced disease 

symptoms (Ferrari et al., 2003a). Moreover, exogenous application of SA decreased lesion size 

and plants treated with a phenylalanine-ammonia lyase (PAL) inhibitor showed enhanced 

symptoms, leading to the idea that SA synthesized via PAL, and not via isochorismate synthase 

(ICS), mediates lesion development (Ferrari et al., 2003a). The non-protein amino acid β-

aminobutyric acid (BABA), an inducer of resistance in numerous plants, was found to protect 

Arabidopsis against B. cinerea. BABA-treated plants displayed a potentiated mRNA 

accumulation of PR-1 after infection and the protection was no longer effective in plants 

impaired in the SAR transduction pathway (Zimmerli et al., 2001). This indicates that the SAR-

signalling-pathway contributes to restrict B. cinerea infection. However, Govrin and Levine 

(2002) demonstrated that B. cinerea can induce the expression of SAR marker genes without 

resulting in the enhanced resistance characteristic of SAR. Furthermore, chemical or biological 

activation of SAR is not effective against B. cinerea. This suggests that SA may be required 

only for local resistance of Arabidopsis to B. cinerea. 

The pad3 and pad2 mutants isolated for their defect in camalexin accumulation upon 

pathogen treatment (Glazebrook and Ausubel, 1994; Glazebrook et al., 1997; Zhou et al., 1999) 

display an enhanced susceptibility to B. cinerea, suggesting that camalexin plays a major role in 

resistance to B. cinerea (Ferrari et al., 2003a; Denby et al., 2004). Camalexin was shown to 

have a direct toxic effect against B. cinerea (Ferrari et al., 2003a; Denby et al., 2004) but earlier 

observations did not support such a conclusion (Thomma et al., 1999a). Different B. cinerea 

isolates were shown to differ in their camalexin tolerance (Kliebenstein et al., 2005) and the 

production of camalexin was also found to vary greatly among different Arabidopsis ecotypes 

(Denby et al., 2004). This could explain the contradictory results among the different studies. 

SA, ET or JA application alone does not trigger camalexin accumulation (Thomma et al., 
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1999a), but SA is required for camalexin accumulation in response to pathogen infection (Zhao 

and Last, 1996). Camalexin has been shown to accumulate after treatments with ROI-inducing 

compounds (Zhao et al., 1998; Tierens et al., 2002). 

PGIPs are present in the plant cell walls and specifically inhibit endopolygalacturonases 

(PGs) of fungi. The two genes coding for PGIPs in Arabidopsis are induced in response to B. 

cinerea infection. Overexpression of either PGIP leads to a moderate reduction in the size of 

lesions caused by B. cinerea (Ferrari et al., 2003b). Inhibition of PGs by PGIPs might cause the 

accumulation of oligogalacturonides, which serve as elicitors of plant defence responses 

(Cervone et al., 1989). 

 

I.5.3.1 Recently described mutants with altered responses to B. cinerea 

Several mutants with enhanced susceptibility or resistance to B. cinerea have been 

discovered in the past few years. The ssi2 plants, mutated in the gene encoding a stearoyl-acyl 

carrier protein desaturase, are blocked in the expression of PDF1.2 and show enhanced 

susceptibility to B. cinerea (Kachroo et al., 2001). Enhanced susceptibility to necrotrophic 

(Alternaria, Botrytis, Plectosphaerella) but not to biotrophic pathogens (Hyaloperonospora, 

Pseudomonas) was observed in esa1 (enhanced susceptibility to Alternaria 1) mutants. These 

plants show a delayed expression of PDF1.2 and of camalexin accumulation upon pathogen 

inoculation (Tierens et al., 2002). 

The bos1 mutant (botrytis-susceptible 1) contains a T-DNA insertion in a gene encoding 

a R2R3MYB transcription factor. bos1 is more susceptible than wild-type (WT) plants to Botrytis 

and Alternaria, but accumulates WT levels of PDF1.2 (Mengiste et al., 2003). Infection with B. 

cinerea induces BOS1 in WT plants but not in coi1, suggesting an interaction between BOS1 

and the JA pathway. Three other bos mutants were described, that are more susceptible to B. 

cinerea and are affected in the regulation of PDF1.2. One of these (bos2) seems to be 

specifically linked to the establishment of the resistance to B. cinerea, while the other two (bos3 

and bos4) are also impaired in defences to Alternaria. Camalexin production is reduced in the 

bos2 and bos4 mutants but is enhanced in the bos3 mutant (Veronese et al., 2005). 

The ups1 (underinducer after pathogen and stress 1) mutant was isolated on the basis of 

its reduced expression of phosphoribosylanthranilate transferase, an enzyme involved in the 

biosynthesis of tryptophan. This mutant displays reduced levels of camalexin and a lower 

expression of SA- and JA- / ET-dependent defence genes after infection with B. cinerea, but is 

not more sensitive to B. cinerea than WT plants (Denby et al., 2005). The ocp3 (overexpressor 

of cationic peroxidase 3) mutant is more resistant to the necrotrophs B. cinerea and P. 

cucumerina. ocp3 plants display increased accumulation of H2O2 and constitutive expression of 

PDF1.2 and GST1. The OCP3 gene codes for a transcription factor that is constitutively 

expressed in healthy plants, but repressed during infection by necrotrophic pathogens (Coego 
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et al., 2005). The bik1 (botrytis-induced kinase 1) mutant is defective in a Ser/Thr kinase 

induced during B. cinerea infection. bik1 is more sensitive to B. cinerea and to A. brassicicola. It 

accumulates higher levels of SA but not camalexin after B. cinerea infection, while the 

expression of PDF1.2 is reduced (Veronese et al., 2005). 

 

I.5.3.2 Status of Arabidopsis disease resistance against B. cinerea 

Despite the fact that the ET- and JA-dependent pathway has been found to determine 

the resistance to necrotrophic pathogens, there is not always a clear correlation between the 

levels of expression of the PDF1.2 marker gene and the level of susceptibility to B. cinerea 

(Ferrari et al., 2003a). For example, in the ssi2, esa1, bos2, bos3, bos4 and bik1 mutants, 

enhanced susceptibility to B. cinerea correlates with a delayed or reduced expression of 

PDF1.2, whereas increased expression of PDF1.2 results in higher resistance in the ocp3 

mutant. However, susceptible responses to B. cinerea have been observed during normal 

activation of PDF1.2, as in the bos1 mutant for example. This suggests that PDF1.2 may not be 

sufficient to limit pathogen growth. 

The role of camalexin in the resistance to B. cinerea is the source of much discussion. 

Camalexin-deficient mutants like pad3 and pad2 show an enhanced susceptibility to B. cinerea, 

suggesting that camalexin plays a major role. Likewise, in addition to the bos2 and bos4 

mutants, the esa1 mutant shows an increased susceptibility to B. cinerea, which correlates with 

a delayed induction of camalexin. However, bos3 accumulates as much camalexin as WT 

plants, despite its enhanced susceptibility, and ups1 is impaired in camalexin accumulation, 

although its response to B. cinerea is not altered. As already mentioned, B. cinerea isolates 

seem to vary in their sensitivity to camalexin, which could explain the divergent results observed 

by research teams working with different B. cinerea strains. 

Resistance to B. cinerea might therefore be the result of a combined action of several 

antifungal proteins and yet unknown factors that are induced along with PDF1.2 and the 

production of camalexin. Moreover, B. cinerea is able to avoid plant defences in different ways. 

For example, isolates of B. cinerea were found to detoxify bean phytoalexins, the grapevine 

phytoalexin resveratrol, or the tomato α–tomatin (Osbourn, 1999). B. cinerea is also able to 

produce ROIs in the host tissue, which correlates with the occurrence of host tissue damage 

(Tiedemann, 1997). These high levels of ROIs might induce plant cell death to its own 

advantage. Thus, in contrast to the responses to biotrophic pathogens governed by gene-for-

gene interactions, resistance to necrotrophic pathogens like B. cinerea is determined by multiple 

host factors, which might be a logical consequence of the arsenal of virulence factors used by 

the fungus. 
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I.6 Role of the cuticle in plant defence 
 

I.6.1 Structure and function of the cuticle 
The hydrophobic cuticle coating cell walls of the epidermis of all aerial plant organs is the 

major barrier to protect plants against invading microbes, in addition to its role as permeation 

barrier for solutes, gases and water. The cuticular membrane can be subdivided into the 

cuticular layer of the cell wall and the cuticle proper. The cuticle proper can be easily detached 

in some plant species and its chemical composition is well known (Kolattukudy, 2001). Its major 

component is the polyester cutin. Analysis of the cutin composition of Arabidopsis has been 

performed only recently, mainly because its cuticle is extremely thin in comparison with other 

plants cuticles (Nawrath, 2002). The chemical composition of Arabidopsis cutin is different from 

other plants (Xiao et al., 2004; Bonaventure et al., 2005; Franke et al., 2005). It is characterised 

by the presence of C16 and C18 fatty acids bearing ω- and mid-chain hydroxyl groups 

(Kolattukudy, 2001). In addition, α,ω-dicarboxylic fatty acids and 2-hydroxy fatty acids were also 

identified in Arabidopsis cutin (Franke et al., 2005). Ultrastructural studies by transmission 

electron microscopy revealed that the cuticular membrane of Arabidopsis leaves covers the leaf 

epidermis as a very fine electron opaque layer (20 nm) that represents only a small fraction of 

the outer extracellular matrix of the epidermal cell. The cuticular membrane close to the veins 

tends to be slightly thicker (30 nm) (Franke et al., 2005). 

Mutagenised plant populations were screened for cuticular defects to find mutants, as 

tools to study the cuticle functions. The cuticle structure is conventionally analysed by 

transmission electron microscopy (TEM). A number of defects can be associated with improper 

cuticle formation in Arabidopsis mutants: poor growth and performance, sensitivity to low 

humidity, increased sensitivity to chemicals such as pesticides and herbicides, morphological 

irregularities in the shapes of organs and single cells, altered resistance to pathogens, distorted 

cell differentiation, illicit cell-cell interactions and cell death (Yephremov and Schreiber, 2005). 

Thus, the cuticle plays an essential role for the normal development of the plant and for the 

quality of the interface between the plant and its external environment (Sieber et al., 2000). 

 

I.6.2 Transgenic plants with a degraded cuticle 
An indirect way to analyse the cuticle function is to disrupt it by expressing a cutin-

degrading enzyme. Cutinases are enzymes produced by phytopathogenic fungi during infection 

of plants (Kolattukudy, 1985; Kolattukudy et al., 1995). Transgenic Arabidopsis plants were 

generated that overexpress a cutinase from Fusarium solani f.sp. pisi and therefore degrade 

their cutin in situ (Sieber et al., 2000). These constitutively cutinase-expressing plants (so-called 

CUTE plants) show an altered ultrastructure of the cuticle and an enhanced permeability of the 
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cuticle to solutes, in addition to ectopic pollen germination on leaves and strong organ fusions 

(Figure 5). The pleiotropic phenotype of CUTE plants overlaps the phenotypes of the mutants 

with defective cuticles. CUTE plants have no impairment in wax deposition and it was therefore 

assumed that the cutinase expressed in these plants specifically degrades the cutin polymer. 

Organ fusions occur early in organ development, and alterations in the shape of organs are 

observed when fused organs grow in different directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Organ fusions are observed in CUTE plants, as shown on rosette leaves (b) in comparison to WT leaves 
(a), and on inflorescence (d) in comparison to WT plants (c) (pictures c and d: Sieber et al., 2000). 
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Figure 6. (a) Ultrastructure of the cuticle of the 
stem (a, b; bar = 200 nm) and leaf (c, d, e; bar = 
250 nm) of CUTE and WT plants. The outer wall 
of a WT epidermal cell has a cuticle of uniform 
structure (arrowheads) overlaying the cell wall 
polysaccharides. (b) The contact zone between 
the cell wall polysaccharides and the cuticle of 
CUTE epidermal cells is interrupted (arrows), and 
amorphous material of cuticular origin is 
interspersed with polysaccharide microfibrils in a 
loosely structured cuticle (arrowheads). (c) The 
cuticle in WT leaves is thin and electron-dense. 
(d, e) The fusion zone between CUTE leaves is 
characterised by stretches of a direct contact of 
the polysaccharides (arrowheads) of the two 
epidermal cells and the local occurrence of 
interspersed cuticular material (arrows) (Sieber et 
al., 2000). 
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The cuticle in stems of WT plants is an electron-opaque, amorphous layer of uniform 

structure (Figure 6a). The cuticle of stems of CUTE plants is of uneven thickness and shows a 

loose structure and polysaccharide-like material in the outer layers (Figure 6b) whereas the 

cuticle in leaves of WT plants is a thin but very electron-dense layer (Figure 6c). In fusion zones 

of CUTE leaves, a direct contact between cell-wall polysaccharides of the two epidermal cell 

layers is observed, but stretches of small amounts of cuticular material also occur (Figure 6d, e). 

Fibrillar pectic polysaccharides are deposited in the fusion zones (Sieber et al., 2000). 

 

I.6.3 Mechanical and chemical role of the cuticle in defence 
It has long been recognised that the plant cuticle is the first barrier to be overcome by 

fungal pathogens (Köller et al., 1991). Many pathogenic fungi find their way via stomata or other 

openings, while some penetrate the cuticle directly. In some cases, direct penetration is 

facilitated by fungal cutinase loosening the cuticular matrix (Kolattukudy, 1985; Köller, 1995). 

Some fungi may also penetrate by physical force alone, even if cutinase is present (Stahl and 

Schäfer, 1992). Cuticle thickness has been demonstrated to have an effect on the ability of 

some pathogens to successfully penetrate the host cell (Gevens and Nicholson, 2000). For 

example, Venturia inaequalis penetrates only the thin cuticle of juvenile leaves, but fails to 

penetrate older leaves where the cuticle is thicker (Nicholson et al., 1973). 

Cuticle components also have a role in pathogenesis signalling. Surface wax of avocado 

plants susceptible to Colletotrichum gloeosporioides selectively induces the germination and 

appressorium formation of the pathogen, whereas that from non-hosts did not induce pathogen 

development (Podila et al., 1993). Degradation of the cutin polymer by fungal cutinases during 

infection releases cutin monomers. Cutin monomers have been found to stimulate germination 

and appressorium formation in Magnaporthe grisea (Gilbert et al., 1996) and differentiation of 

appressorial germ tube in Erysiphe graminis conidia (Francis et al., 1996). Cutin monomers 

induce the expression of the cutinase gene in many fungi (Kolattukudy et al., 1995). However, it 

was also demonstrated that cutin monomers can be toxic to fungi. Transgenic tomato plants 

expressing a yeast ∆-9 desaturase gene display changes in their fatty acid and cutin monomer 

profiles. Cutin monomers from these trangenic plants inhibited the germination of E. polygoni 

spores (Wang et al., 2000). Thus, the cuticle should be thought as a layer of hydrophobic 

material that, over time, changes in structural morphology as well as chemistry, and is not a “ 

hard” barrier of material that simply blocks fungal ingress (Gevens and Nicholson, 2000). 

There is evidence that cutin monomers might also act as signals in plants during 

pathogen attack, eliciting defence responses. They have been shown to induce medium 

alkalinisation and ethylene production of suspension-cultured potato cells (Schweizer et al., 

1996a) and H2O2 production in cucumber hypocotyls (Fauth et al., 1998; Kauss et al., 1999). 
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Indeed, application of specific cutin monomers leads to increased resistance to E. graminis f.sp. 

hordei and M. grisea in barley and rice respectively (Namai et al., 1993; Schweizer et al., 1994; 

Schweizer et al., 1996b). 

 

I.7 Aim of the work 
 

The cuticle is a barrier that pathogens have to overcome to reach plant cells and their 

nutrients. Plants have probably evolved sophisticated sensing mechanisms to detect the very 

early steps of pathogen invasion. We are interested in the role of cuticle defects to trigger innate 

immunity in Arabidopsis. As model of study, we focused on CUTE plants that degrade their own 

cuticle by secreting a fungal cutinase and their responses upon pathogen inoculation. CUTE 

plants were found to be totally resistant to the necrotrophic pathogen B. cinerea (Chassot and 

Métraux, 2005). The aim of this work was to analyse the mode of resistance of CUTE plants 

(Chapters II, III, IV) and other mutants with defects in cuticle ultrastructure (Chapter V) against 

B. cinerea. In addition to the specific enzymatic cuticle degradation of CUTE plants, disruption 

of the leaf integrity was also performed by wounding. Induced defence responses by this abiotic 

stimulus in correlation with resistance to B. cinerea were investigated (Chapter VI). 
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Aerial parts of land plants are covered with a cuticle made of cutin, a complex polymer 

rich in esterified fatty acid derivatives, associated and coated with waxes. The cuticle forms a 

protection against water loss, irradiation, xenobiotics, and is involved in the delimitation of 

organs during development 1, 2. It is assumed that the cuticle also constitutes a physical barrier 

to microbial invaders, through which cutinase-producing pathogens can penetrate. The cuticle 

breakdown products act as powerful signals for pathogens 1. It is unknown, however, if plants 

can react to changes in the structure of the cuticle. Here we show that degradation of the 

cuticular layer by the expression of a fungal cutinase in Arabidopsis plants (CUTE plants) leads 

to full immunity to Botrytis cinerea, an ubiquitous fungal pathogen causing important damages 

to many crop plants. This powerful defence is independent of the known defence signalling 

routes involving salicylic acid, ethylene or jasmonic acid and is accompanied by the diffusion of 

a fungitoxic substance and changes in gene transcription. After inoculation with B. cinerea, 

several members of the lipid transfer protein, peroxidase, and protease inhibitor gene families 

were induced in CUTE plants and in bodyguard, a mutant with defects in the cuticle structure 3, 

that shows a similar resistant phenotype. Our results demonstrate the involvement of those 

genes in the defence against B. cinerea in Arabidopsis, since their overexpression in 

susceptible wild type plants led to increased resistance. Modification of the cuticle can thus 

activate a multi-layered resistance syndrome that reveals a novel defence pathway and adds to 

our knowledge on plant innate immunity. 

 

III.1.1 Results and Discussion 
 

The importance of the cuticular layer for plant growth and development was investigated 

previously in transgenic Arabidopsis plants constitutively expressing a fungal cutinase gene 

from Fusarium solani f.sp. pisi fused with a signal sequence for secretion (CUTE plants) 4. 

Surprisingly, CUTE plants were completely resistant to the virulent necrotrophic pathogen B. 
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cinerea, which causes soft rot lesions on wild type (WT) plants (Fig. 1a, b), while the disease 

symptoms after inoculation with other necrotrophic fungi were unchanged (data not shown). 

Similarly, a strong protection was observed in the cuticle-defective mutant bodyguard (bdg), that 

shares a number of morphological characteristics with CUTE plants 3 (Fig. 1a, b). Plants 

expressing the cutinase gene driven by a dexamethasone-inducible promoter 5 (so-called DEX-

CUTE plants) also exhibited resistance (Supplementary Fig. 1a, b). Protection was completely 

lost in Arabidopsis transformed with a non-functional F. solani cutinase gene containing a point 

mutation in the catalytic site 6 (data not shown; see Methods). Resistance similar to that in 

CUTE and bdg was also observed in WT plants after application of purified F. solani cutinase 

(Fig. 1b), the direct effect of which was harmless to B. cinerea (data not shown; see Methods). 

Taken together, these observations support the notion that plants can react to cuticular defects, 

presumably by the action of endogenous signals or elicitors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hyphal growth of B. cinerea was inhibited after spore germination on the plant surface of 

the resistant plants and penetration did not take place (data not shown). A fungitoxic activity 

diffusing from the leaf surface was observed in CUTE and bdg plants (Fig. 2). The fungitoxic 

activity was demonstrated in both in-vitro and in-vivo assays. The early arrest of fungal growth 

in the resistant plants might therefore be related to the secreted fungitoxic compound(s), the 

chemical nature of which remains to be determined. This provides a first powerful defence layer 

against invasion by B. cinerea. 
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Figure 1. Effect of cuticular defects on resistance to B. 
cinerea. a, Appearance of WT, CUTE and bdg plants 3 
days post-inoculation (dpi) with B. cinerea. The inoculation 
droplets are still visible on CUTE and bdg leaves. b, 
Percentage of outgrowing lesions in inoculated WT, CUTE, 
bdg (grey bars) and WT plants treated with cutinase 
compared to control (white bars) 3 dpi (5 independent 
experiments, n=60 ± SD).
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Figure 2. Fungitoxic activity diffusing from the leaf surface in plants with cuticular defects. In vitro fungitoxic activity of 
CUTE and bdg exudates to B. cinerea, in comparison to WT diffusate (upper pictures) (10 independent experiments, 
typical examples are shown). In-vivo activity of diffusates, shown by the appearance of WT plants 3 dpi with B. 
cinerea mixed with diffusates of WT, CUTE and bdg plants (lower pictures) (10 independent experiments, n=60). 
 

 

 

 

 

 

 

 

 

 
 
Figure 3. Resistance to B. cinerea in signalling mutants with cuticular defects. Percentage of outgrowing lesions in 
various defence signalling mutants overexpressing the cutinase of F. solani f.sp. pisi (35S-CUTE construct) in 
comparison to untransformed controls 3 dpi with B. cinerea (3 independent experiments, n=24 ± SD). 
 

 

We also tested the involvement of the major signalling routes commonly associated with 

plant defence reactions and involving the hormones salicylic acid (SA), ethylene (ET) or 

jasmonic acid (JA). Resistance to B. cinerea was shown previously to be associated mainly with 

the JA- and ET- signalling pathways, and with SA and camalexin for local responses 7, 8, 9, 10. 

Mutants defective in the SA- (sid2, pad4) 11, 12, the ET- (ein2, etr1) 13, 14, or the JA- (jar1) 15 

pathways were transformed with the F. solani cutinase under the control of a constitutive 

promoter and all transformants displayed full resistance, comparable to the original CUTE 

plants (Fig. 3). Therefore, resistance of CUTE plants is independent of pathways involving these 

signals. Furthermore, overexpression of the F. solani cutinase in the pad2 and pad3 16 mutants 

WT diffusate CUTE diffusate bdg diffusate

in
 v

itr
o

ef
fe

ct
in

 v
iv

o
ef

fe
ct

WT diffusate CUTE diffusate bdg diffusate

in
 v

itr
o

ef
fe

ct
in

 v
iv

o
ef

fe
ct

WT etr1 ein2 jar1 sid2 pad4 pad3 pad2

+ + ++ + +++- - - -- - --35S-CUTE 
construct

%
 o

fo
ut

gr
ow

in
g

le
si

on
s

100

60

40

20

80

WT etr1 ein2 jar1 sid2 pad4 pad3 pad2WT etr1 ein2 jar1 sid2 pad4 pad3 pad2

+ + ++ + +++- - - -- - --+ + ++ + +++- - - -- - --35S-CUTE 
construct

%
 o

fo
ut

gr
ow

in
g

le
si

on
s

100

60

40

20

80

100

60

40

20

80



Cuticular defects lead to full immunity to a major plant pathogen 

41 

impaired in the production of the fungitoxic phytoalexin camalexin, resulted in fully immune 

plants, indicating that camalexin is not involved (Fig. 3). Moreover, CUTE plants show no 

induction of known defence genes such as pathogenesis-related proteins (PRs) or plant 

defensin (PDF1.2) during infection with B. cinerea, unlike infected WT plants (Supplementary 

Fig. 2a). In addition, the production of reactive oxygen species was absent in CUTE plants 

(Supplementary Fig. 2b). The induction of these responses in WT plants correlates with the 

massive development of symptoms. 

Further insights in the changes associated with resistance of CUTE plants were obtained 

by genome-wide gene expression studies using Affymetrix microarrays. Gene expression was 

analysed 12 and 30 h after inoculation with B. cinerea (data available on internet). Interesting 

candidate genes were selected both on the basis of their earlier and higher induction after 

inoculation with B. cinerea in CUTE compared to WT plants. These genes were also induced in 

infected WT plants, albeit to a lower level, indicating that they might be part of an attempted but 

insufficient defence response against the virulent pathogen. Moreover, the cuticle-defective 

mutant bdg 3 also showed enhanced expression of the same genes as in CUTE plants after 

inoculation with B. cinerea, providing further support that these genes are involved in the 

response associated with cuticular defects (Supplementary Fig. 3). Among the candidates filling 

these criteria, genes were selected on their conspicuous affiliation to large gene families 

(Supplementary Table 1) and the microarray data were confirmed using Real-time RT-PCR 

(data not shown). The possible implication of such genes was tested by constitutive 

overexpression in WT plants. Resistance to B. cinerea was observed in transformed plants 

overexpressing closely-related members of the lipid transfer protein (LTP) family (At4g12470, 

At4g12480, At4g12490) 17, of the class III peroxidase (PER) family (At2g37130, At5g39580, 

At5g64120) 18 and of the proteinase inhibitor (PI) family (At2g38870, At2g43510) 19 (Fig. 4). 

Overexpression of other candidate genes like At4g23600, At2g43590, or At2g50200 did not 

provide significant protection against B. cinerea, in addition to two other genes (At2g38530, 

At3g20470) with different expression patterns (Fig. 4). Interestingly, a considerable increase in 

the expression of the selected genes was also observed in both CUTE and bdg plants after 

mock inoculation and was further enhanced in the presence of B. cinerea, indicating that the 

signalling pathways for their induction are complex with pathogen-dependent and pathogen-

independent elements. Taken together, our data support that the combined action of the 

products of the LTP, PER and PI genes contributes to the resistance of cuticle-defective plants 

possibly forming a second protective shield against infection with B. cinerea. Thus, defective 

cuticles might provide cues that condition the plant for a better defence towards B. cinerea upon 

perception of different environmental stimuli. 
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Generally, LTPs are known to be associated with the formation of the cutin and suberin 

layers and to inhibit fungal growth 20, 21, 22. For example, heterologous expression of a LTP from 

pepper in Arabidopsis was recently reported to increase the resistance to B. cinerea 23. The 

biochemical function of the three LTP genes identified remains unknown but our data provide 

the first experimental support for their implication in resistance to B. cinerea in Arabidopsis. 

Members of the class III PER gene family encode proteins involved in cell-wall lignification and 

crosslinking, H2O2 generation or detoxification, and in responses to wounding and pathogens 18. 

PER activity was associated with crosslinking of phenolic acids at infection sites of B. allii in 

onion cell walls 24. In bean leaves, aggressive isolates of B. cinerea suppressed the PER activity 

compared to non-virulent isolates, supporting a role for PER in plant resistance as scavengers 

of harmful active oxygen species 25. Our results are in agreement with these observations and 

provide a new biological function for a group of hitherto undescribed PER genes in plants in 

relation to B. cinerea resistance. B. cinerea secretes aspartic proteases during the early stages 

of infection that are likely to play a primordial role in pathogenesis 26, 27. Proteinase inhibitors 

produced in many plants, including trypsin inhibitors, can inhibit B. cinerea proteases in vitro 19, 

and overexpression of proteinase inhibitors from Nicotiana alata in tobacco was recently shown 

to protect against B. cinerea 28. The data presented here corroborate these findings and support 

a role for PI genes in the defence of Arabidopsis against B. cinerea. 

In summary, Arabidopsis plants displaying cuticular defects induce changes leading to 

complete resistance to B. cinerea. Immunity results from a multi-layered defence that is 

independent of SA, ET, JA, and involves an effective diffusible fungitoxic activity. In addition, the 

expression of genes such as LTP, PER, PI that are naturally induced by B. cinerea in WT 

plants, is strongly enhanced in plants with cuticular defects. The resistance syndrome presented 

is the first example by which a species normally susceptible to a necrotrophic fungus 

establishes full immunity. These results increase our knowledge on plant defences and highlight 

a novel mechanism that might possibly be exploited to protect plants against this ubiquitous 

fungal pathogen. 
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Figure 4. Effect of overexpression of 
candidate genes identified in microarrays 
on the resistance to B. cinerea. Each bar 
represents the mean of the percentage of 
independent primary transformants of 
each selected gene (indicated by the 
gene locus number) exhibiting full 
resistance (4 independent experiments, 
n=60 ± SD). Resistance was tested on 3 
leaves per transformant. The resistance 
to B. cinerea conferred by the 
overexpression of the LTP, PER and PI
genes was further confirmed in 
transformants of the second generation. 
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III.1.2 Supplementary Figures 
 

 

 

 

 

 

 

 

 

 

 
 
Supplementary Figure 1. Effect of inducible cutinase expression on resistance to B. cinerea. a, Appearance of DEX-
CUTE plants induced with DEX 3 dpi with B. cinerea compared to controls. b, Percentage of outgrowing lesions in 
DEX-CUTE plants induced with DEX 3 dpi compared to controls (5 independent experiments, n=60 ± SD). 
Dexamethasone (Sigma) was dissolved in ethanol at 30 mM and diluted into H2O + 0.01% Tween20 (Fluka) to a final 
concentration of 0.03 mM. Two to 3 weeks after transplanting, DEX-CUTE and WT plants were sprayed twice a day 
with the DEX solution and again 4 days later. Plants were infected with B. cinerea 3 days after the second treatment. 
After spraying of DEX, trays were covered overnight with a lid. Induction of cutinase was confirmed by an enzymatic 
assay 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Supplementary Figure 2. Defense reactions in WT and CUTE plants after inoculation with B. cinerea. a, Gene 
expression analysis (Northern blot) of PR-1, PDF1.2, PR-3 and PR-4 in WT and CUTE plants 0, 12, 24, 36 and 48 
hpi with B. cinerea. 5 µg of RNA per sample was loaded. The experiment was repeated 2 times with similar results.  
b, Production of H2O2 in infected WT and CUTE plants. The presence of H2O2 was visualised by 3,3’-
diaminobenzidine (DAB) 33 staining 24 and 36 hpi with B. cinerea. Detached leaves were immersed in 1 mg ml-1 
DAB-HCl pH 3.8 (Sigma) and vacuum-infiltrated. After overnight incubation, leaves were bleached in 4 mg ml-1 
chloralhydrate and observed with a microscope. The experiment was carried out on 32 plants and repeated 2 times. 
Typical examples are shown. 
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Supplementary Figure 3. Priming of genes in the mutant bdg after inoculation with B. cinerea. Relative expression 
of the genes At4g12470, At5g39580, At2g37130, At2g38870 and At2g43510 in WT (bars with white background) and 
bdg plants (bars with coloured background), mock (dashed bars) or B. cinerea inoculated (full bars). Each bar 
represents the mean of triplicate samples ± SE (WT 0 is arbitrary defined as 1). The experiment was repeated 2 
times with similar results. 
 

 

 

 

 

 

 

 

 

 

 
Supplementary Table 1. Selected candidate genes identified in microarrays. Microarray expression values (raw 
data) of WT and CUTE plants at 0, 12 and 30 hpi with B. cinerea (Bc = B. cinerea) and with mock solution. 
 
 
 

III.1.3 Material and Methods 
 

Plant material 

Plants were grown on a pasteurized soil mix of humus / perlite (3:1) under a 12 h light and 12 h dark cycle, with a 

night temperature of 16 to 18°C and a day temperature of 20 to 22°C (60 to 70% humidity). WT plants are the 

Arabidopsis accession Col-0, obtained from the Arabidopsis Biological Reasearch Center (Columbus, OH). The 

Arabidopsis mutant sid2 was sid2-1 12; pad3 was pad3-1, pad2 was pad2-1 and pad4 was pad4-1 11, 16; etr1 was etr1-

1 and ein2 was ein2-1 13, 14; jar1 was jar1-1 15. The mutant bdg was bdg-1 3. 

WT CUTE
hpi

treatments - - mock Bc mock Bc mock Bc mock Bc

At4g12470 pEARLI 1-like protein * 5.5 46.3 208 2056.2 2265.5 5257.8 4721.7 8208.7 6431.5 8498.4
At4g12480 pEARLI 1 * 1.5 3.2 14.2 144.3 113.9 1270.1 202.2 1264 2515.8 2686
At4g12490 pEARLI 1-like protein * 19.8 100.9 41.5 101.2 90.2 6223.1 138.9 610.8 1983.3 6087.4
At2g37130 peroxidase 21 45.2 194.4 52.2 135 167.6 802.8 1753.2 1663.6 4110 1828.6
At5g39580 peroxidase ATP24a 22.8 26.4 28.6 108.1 15.8 435.6 114.7 734.5 453.7 968
At5g64120 peroxidase 46.2 100 137 972.1 1132.6 4592.1 3755.2 6654.7 6429.1 7745.5
At2g38870 protease inhibitor 231 482.4 189.2 989.8 588.9 6103.3 3205.3 4098.1 5187.1 6975.2
At2g43510 trypsin inhibitor 29.6 329.2 16.9 108.8 72.2 1132.3 607.4 1167.6 2225.1 1921.4
At4g23600 tyrosine transaminase 193.7 4217.9 597.9 1286.7 335.6 1318.4 3576.5 3167.7 1005.6 729.1
At2g43590 chitinase 18.3 2.3 39 1167.5 34.2 164 116 2530.8 289.8 1396.8
At5g50200 wound-responsive protein 3 43.5 74.4 64.5 202.8 241.9 824.1 542.8 647.8 762.2 1162.8
At2g38530 non-specific lipid-transfer protein 2 7.5 204 335.7 348.1 580.5 4.4 2331.4 1893.5 9572.8 5288.4
At3g20470 glycine-rich protein 66.9 750.7 110.4 52.5 206.9 5.2 1122.3 408.3 1219.4 503.9

* lipid-tranfer family / protease inhibitor / seed storage family protein
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Inoculation with B. cinerea 

B. cinerea strains B05.10 29 and BMM 30 provided by J. van Kan and B. Mauch-Mani were grown on 1x PDA (Potato 

Dextrose Agar, 39 g l-1, Difco). Spores were harvested in water and filtered through glass wool to remove hyphae. 

Spore concentration was adjusted to 5 x 104 spores ml–1 in ¼ PDB (Potato Dextrose Broth, 6 g l-1, Difco) for 

inoculation. Leaves were inoculated with 5 µl droplets of spore suspension to evaluate the symptoms. The level of 

protection was estimated by the potential of B. cinerea to cause soft rot symptoms extending beyond the inoculation 

site (outgrowing lesions). The spore suspension was sprayed on whole plants for microarray and real-time RT-PCR 

experiments. Control plants were inoculated with ¼ PDB (mock). The inoculated plants were kept under a water-

sprayed transparent lid to maintain high humidity. Both B. cinerea strains gave similar results for all experiments 

carried out. 

In-vitro effect of cutinase and application of cutinase on leaves 

Purified cutinase from F. solani, kindly provided by M. Van der Burg-Koorevaar (UNILEVER Vlaardingen, The 

Netherlands), was diluted in 10 mM Na-acetate pH 5.2. The in-vitro B. cinerea growth assay was performed in a final 

volume of 12 µl. Nine µl of the cutinase solution were mixed with 3 µl of B. cinerea spores in PDB to a final 

concentration of 1000, 100 or 10 µg ml–1 of cutinase and 5 x 104 spores ml–1 in ¼ PDB, and deposited on a 

microscope glass slide. After incubation under high humidity conditions for ca. 16 h fungal growth was observed 

under the microscope. For cutinase application on WT plants, 5 µl droplets of 100 µg ml–1 cutinase or buffer were 

deposited on leaves and incubated for 3 days under high humidity to prevent evaporation of the droplets. Droplets 

were removed and replaced by a droplet of B. cinerea spores. 

In vitro and in vivo  effect of leaf diffusates  

Five µl droplets of ¼ PDB were incubated for 18 h on WT, CUTE and bdg leaves. Leaf diffusates were collected. 

Nine µl of the exudate solution was mixed with 3 µl of B. cinerea spores in H2O to a final concentration of 5 x 104 

spores ml–1 and deposited on a microscope glass slide. Fungal growth was observed under the microscope after 

incubation under high humidity conditions for ca. 16 h. In vivo tests were performed by inoculating WT Arabidopsis 

leaves with the leaf diffusates mixed with B. cinerea spores. Disease symptoms were evaluated 3 days later. 

Plant transformation 
Arabidopsis Col-0 plants, sid2 12, ein2 13, 14, etr1 13, 14, jar-1 15, pad2, pad3 and pad4 mutants 11, 16 were transformed 

with a F. solani cutinase as previously described 4. The presence of the 35S-CUTE construct was confirmed by the 

morphological phenotype typical for CUTE plants. 

DEX-CUTE plants were generated using the glucocorticoid-inducible system 5.The F. solani cutinase gene fused with 

the tobacco chitinase A signal sequence were excised from pMMB7066:SS:CUT (see 4) with SstI/XbaI and cohesive 

ends were filled in with T4 DNA polymerase (New England Biolabs). The pTA7002 binary vector 5 was opened using 

the XhoI site and prepared for blunt-end ligation with the SS-CUT insert. This construct was transformed in 

Agrobacterium tumefaciens pGV3101. WT plants were transformed by vacuum infiltration and several independent 

homozygous lines were analyzed. 

The mutated cutinase gene from F. pisi 6 was amplified from the pET-16b using the oligonucleotides 5’-CUT (5’-

TGCTAGCGCTGGTAGAACAACTCG-3’; NheI site underlined) and 3’-CUT (5’-TAGGTACCTCAAGCAGAACCACG-

3’; KpnI site underlined). The gene was cloned behind the signal sequence of the tobacco chitinase A in the 

pPMB7066:SS:CUT (see 4) previously digested with NheI/KpnI. The fusion construct was then cloned in the 

pART7/pART27 vector system 31 and WT plants were transformed as previously described 4. 

Candidate genes selected from the microarray analysis were overexpressed in WT plants by using the 

pART7/pART27 vector system 31.  Gene coding sequences were amplified by PCR on cDNA from infected plants,  

using the following primers: 5’-At4g12470 (5’-CCTTACAACACCGAATATAAC-3’) and 3’-At4g12470 (5’-
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ATCGCATCGTATGCATAATG-3’); 5’-At4g12480 (5’-TCAAAGACACTGAATAAATCC-3’) and 3’-At4g12480 (5’-

TCACATCGTATGCATAGCTG-3’); 5’-At4g12490 (5’-CACTCAAACATTCTCCATAAC-3’) and 3’-At4g12490 (5’-

GTGCGTCGTATGTGTAATTG-3’); 5’-At2g37130 (5’-AGAGAGAGAGAGCAATGGC-3’) and 3’-At2g37130 (5’-

CAAGGACCATCAATATTAGTTC-3’); 5’-At5g39580 (5’-AAAAAATGGGCTTGGTCCG-3’) and 3’-At5g39580 (5’-

TAGCCATAAAAACTTAATCACTG-3’); 5’-At5g64120 (5’-ATGGGTTTGGTTAGATCATTG-3’) and 3’-At5g64120 (5’-

TTTATCACGACAGATTCTAATC-3’); 5’-At2g43510 (5’-AGAAAATGGCAAAGGCTATC-3’) and 3’-At2g43510 (5’-

GCGATTGCTTTAGATTTTACTG-3’); 5’-At2g38870 (5’-CATACAAATACATCAGAAGAC-3’) and 3’-At2g39970 (5’-

CTTTTTCATTATGAATATAGAAAT-3’); 5’-At4g23600 (5’-ATGACTCTGGGATGCAAA-3’) and 3’-At4g23600 (5’-

TTACTTAACACCATTGACGTCT-3’); 5’-At2g43590 (5’-ATGGCTTTCACAAAAATCTC-3’) and 3’-At2g43590 (5’-

TTAGCAACTAAGGTTAGGA-3’); 5’-At5g50200 (5’-ATGGCGATCCAGAAGAT-3’) and 3’-At5g50200 (5’-

TCATTTGCTTTGCTCTATCTTG-3’); 5’-At2g38530 (5’-ATGGCTGGAGTGATGAAGT-3’) and 3’-At2g38530 (5’-

CTTCATTTGACCGTCGCT-3’); 5’-At3g20470 (5’-ATGGCTTCCAAGTCACTCT-3’) and 3’-At3g20470 (5’-

TCAATGATGTCCACCACC-3’). The coding sequences were cloned in the pGEM®-T Easy Vector (Promega) and 

excised with EcoRI, or with SacI/SacII and blunt-ended. The fragments were cloned in the pART7 vector opened with 

EcoRI or with SmaI and the orientation was checked by PCR using a 5’-primer annealing upstream of the insertion 

site (5’-ATCCCACTATCCTTCGCAA-3’) and a 3’-primer annealing in the insert.  The constructs were cloned in the 

pART27 vector and Arabidopsis Col-0 plants were transformed as previously described 4. Overexpression levels of 

the transgenes in primary transformants were confirmed using RT-PCR. Enhanced resistance to B. cinerea exhibited 

by primary transformants and overexpression of the transgenes were confirmed on 5 independent lines of the second 

generation for the LTP, PER and PI genes. 

Microarray analysis 

Whole genome expression analysis using 20k Affymetrix microarrays (Paradigm Genetics Inc.) was performed on WT 

and CUTE plant samples uninoculated, mock-inoculated or inoculated with B. cinerea, 12 and 30 hpi. Genes were 

selected using a program called FiRe 32 with the following criteria: among the genes induced by B. cinerea in WT 

plants (>2 fold), genes overexpressed (>2 fold) in CUTE plants were selected (induced genes with expression values 

<100 were eliminated). For confirmation of the microarray data, RNA was prepared using the TRIzol® reagent 

(Molecular Research Center, Inc., Invitrogen) and retrotranscribed in cDNA (Omniscript® RT kit, Qiagen). Real-time 

PCR was performed using the Absolute QPCR SYBR Green Mix (ABgene). Microarray expression values were 

confirmed in two independent experiments. Analysis of gene expression in bdg and WT after inoculation with B. 

cinerea was performed by Real-time RT-PCR. Gene expression values were normalised with the expression of the 

plant actin 2 gene. 
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III.2 Supplementary data 
 

III.2.1 Results and Discussion 
 

B. cinerea growth can be visualised histochemically using Trypan blue, a dye that stains 

fungal cells and dead plant cells. B. cinerea was observed 12, 24, 36 and 48 hours post-

inoculation (hpi) and was found to germinate on CUTE plants without further hyphal growth, 

extensive fungal growth took place after germination on WT plants (Figure 1). 

We tested whether B. cinerea attempts to penetrate CUTE leaves by analysing 

microscopically semi-thin sections of infected leaves. Samples collected at 12, 24 and 30 hpi 

were fixed and embedded. Transverse sections of 5 µm were stained with FITC-WGA 

(fluorescein isothiocyanate labelled wheat germ agglutinin) and CW (calcofluor white) (Meyberg, 

1988). FITC-WGA exclusively stains fungal cell walls, while CW stains both fungal and plant cell 

walls. This double staining allows specific detection of fungal hyphae and visualisation of plant 

cell walls. Figure 2 shows sections through hyphae (in green) and plant cells (in blue) in WT and 

CUTE leaves. B. cinerea is visible at the surface of WT plants at 12 and 24 hpi and hyphae are 

found within plant tissues at 30 hpi. However, no fungal hyphae can be observed within CUTE 

tissues at similar time points, strongly suggesting that fungal growth already stops at the surface 

of CUTE leaves. 

CUTE plants were found to be fully resistant to the necrotrophic fungus B. cinerea. 

Interactions with other pathogens were also tested. No difference was observed between CUTE 

and WT plants when infected with the obligate biotrophs Erysiphe cichoracearum and 

Hyaloperonospora parasitica, the non-obligate biotroph Phytophthora porri, as well as the non-

host Blumeria graminis (data not shown). Testing other necrotrophic fungi like Plectosphaerella 

cucumerina, Alternaria brassicicola and Sclerotinia sclerotiorum also revealed no increased 

resistance of CUTE plants (Figure 3). Thus, the defence reactions mounted by CUTE plants 

appear to be quite specific to B. cinerea. 

The resistance of CUTE plants to B. cinerea is provided by the expression of the 

cutinase enzyme of F. solani f.sp. pisi. To test whether the cutinase itself might be directly toxic 

to B. cinerea, spores were incubated with different concentrations of the enzyme (Figure 4a). 

No inhibition of fungal growth could be observed in vitro, leading to the conclusion that the 

resistance is triggered by the action of the cutinase on the plant and its subsequent release of 

unknown compounds. Moreover, overexpression of an inactive cutinase containing a mutation 

in the catalytic site (Rogers et al., 1994) did not provide resistance in transformed Arabidospis 

plants (data not shown). 
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Figure 1. Trypan blue staining of WT and CUTE leaves 12, 24, 36 and 48 hpi with B. cinerea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. FITC-WGA staining of sections through WT and CUTE leaves 12, 24 and 30 hpi with B. cinerea. 
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Figure 3. Disease symptoms of WT and CUTE plants inoculated with different necrotrophic fungi. a. WT, pad3 and 
pad3-CUTE plants inoculated with A. brassicicola, 4 dpi. WT Col-0 plants are resistant while pad3 is susceptible as 
pad3-CUTE plants. b. WT and CUTE plants inoculated with P. cucumerina, 5 dpi. c. WT and CUTE plants inoculated 
with S. sclerotiorum, 3 dpi. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. a. Toxicity of the F. solani cutinase to B. cinerea spores incubated with different concentrations of the 
enzyme (microscope pictures). b. Effect of overexpression of B. cinerea cutinase A or lipase 1 on resistance to B. 
cinerea. Symptoms of WT, 35S-CUTA and 35S-LIP1 plants inoculated with B. cinerea, 3 dpi. 
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The protection of CUTE plants might be specifically induced by the cutinase of F. solani 

f.sp. pisi. To test this, we isolated the cDNAs from B. cinerea strain BMM coding for the cutinase 

A (CUTA) (Van der Vlugt-Bergmans et al., 1997) and the cutinolytic lipase 1 (LIP1) (Reis et al., 

2005). WT plants constitutively overexpressing these genes (35S-CUTA and 35S-LIP1 plants) 

have a phenotype similar to CUTE plants, with respect to plant growth and development. 

Moreover, 35S-CUTA and 35S-LIP1 plants are just as resistant to B. cinerea (Figure 4b) as 

CUTE plants (Figure 4b). Thus, the phenotype and the resistance of CUTE plants are not 

specific to the cutinase enzyme of F. solani f.sp. pisi. This raises the question of why the 

cutinase produced during infection by B. cinerea does not induce resistance. In WT plants, the 

rapidly growing fungus can apparently overcome the effect of cutinase produced in planta. The 

quantity of the cutinase produced might be insufficient to trigger resistance. The timing of 

cutinase production might also explain this phenomenon, as CUTE plants already contain high 

amounts of cutinase before infection with B. cinerea. Moreover, a B. cinerea strain mutated in 

both the CUTA and the LIP1 genes was recently shown to be as virulent as the WT strain (Reis 

et al., 2005), supporting the minor role of these two cutinolytic enzymes during infection with B. 

cinerea. 

The absence of disease development in CUTE plants might be related to a lack of host 

recognition by B. cinerea due to the degraded CUTE surface. The hypothesis was tested by 

monitoring the expression of some fungal genes typically associated with pathogenesis, coding 

for a cutinase (BccutA) (Van Kan et al., 1997), an exopolygalacturonase (Bcpgx) (Rha et al., 

2001), an endopolygalacturonase (Bcpg1) (Ten Have et al., 1998), a pectin methyl esterase 

(Bcpme1) (Valette-Collet et al., 2003), an aspartic proteinase (Bcap1) (Ten Have et al., 2004), a 

glutathione-S-transferase (Bcgst1) (Prins et al., 2000), and a G protein α subunit 2 (Bcg2) 

(Gronover et al., 2001). Gene expression in B. cinerea was quantified 12, 24, 36 and 48 hpi on 

WT and CUTE plants (Figure 5). No major differences in the expression of BccutA, Bcpgx, 

Bcpme1, Bcgst1 and Bcg2 genes were noticeable in B. cinerea inoculated on susceptible and 

resistant plants. However, the expression of Bcpg1 and Bcap1 was strongly reduced on CUTE 

plants in comparison to WT plants. Thus, B. cinerea germinating on CUTE leaves expresses at 

least part of the pathogenesis-associated genes similarly when growing on susceptible plants. 

The two genes that are expressed differentially might be important determinants for the reduced 

pathogenicity of the fungus on CUTE leaves, but this cannot be deduced from this experiment. 

We can nevertheless conclude that the fungal pathogenic behaviour is not completely blocked 

on CUTE plants by the absence of surface recognition. 
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Figure 5. Expression of B. cinerea pathogenesis-associated genes in WT and CUTE plants. WT (white bars); CUTE 
(grey bars). Mean relative expression (in fold change) of 2 independent experiments (± SD). Each value in one 
experiment is the mean of triplicate samples (± SE). 
 

 

Polygalacturonase-inhibiting proteins (PGIPs) are defence proteins present in the plant 

cell walls that specifically inhibit endopolygalacturonases (PGs) of fungi. A direct role for PGIPs 

in defence against B. cinerea was shown by the transgenic expression of a pear PGIP in tomato 

that resulted in a reduction of symptoms (Powell et al., 2000). Moreover, overexpression of both 

AtPGIP1 and AtPGIP2 genes in Arabidopsis led to increased resistance to B. cinerea (Ferrari et 

al., 2003). Therefore, the implication of PGIPs in the resistance of CUTE plants to B. cinerea 

was investigated. The PGIP activity of uninduced WT and CUTE extracts was measured in vitro 

(Figure 6a). PG isolated from B. cinerea was able to degrade the pectin-containing medium and 

to produce a halo representing the extent of pectin degradation (a). The reduction in the 

diameter of the halo confirmed the presence of PGIP activity in both extracts of AtPGIP1 and 

AtPGIP2 overexpressing plants (b, c), as already observed by Ferrari et al. (2003). Interestingly, 

CUTE extracts contained a strong PGIP activity (e), in comparison to WT extracts (d), meaning 

that CUTE plants produce PGIPs prior to infection. This was confirmed by gene expression 

analysis of AtPGIP1 and AtPGIP2 in WT and CUTE plants during infection with B. cinerea 

(Figure 6b). AtPGIP2 was found to be constitutively expressed in CUTE plants, while its 

expression was detectable 36 hpi in WT plants. However, AtPGIP1 expression was strongly 

induced after 24 hpi in WT plants, but was not induced in CUTE plants. The endogeneous PGIP 

activity of CUTE plants might therefore result from the presence of AtPGIP2. Antisense 

Arabidopsis plants with reduced PGIP expression (AsPGIP plants, kindly provided by G. de 

Lorenzo) were described to be more sensitive to B. cinerea (personal communication). 
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Overexpression of the F. solani cutinase construct in AsPGIP plants still provided full immunity 

against the fungus (Figure 6c). This suggests that PGIPs could play a role but are not essential 

for the resistance of cutinase-expressing plants to B. cinerea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further insights in the changes associated with resistance of CUTE plants were obtained 

by genome-wide gene expression studies using Affymetrix microarrays. Gene expression was 

analysed 12 and 30 hpi with B. cinerea. Interesting candidate genes were selected both on the 

basis of their earlier and higher induction after inoculation with B. cinerea in CUTE compared to 

WT plants. The possible implication of such genes was tested by constitutive overexpression in 

WT plants. Resistance to B. cinerea was observed in transformed plants overexpressing 

closely-related members of the lipid transfer protein (LTP) family (At4g12470, At4g12480, 

At4g12490), of the class III peroxidase (PER) family (At2g37130, At5g39580, At5g64120) and 

of the proteinase inhibitor (PI) family (At2g38870, At2g43510). Overexpression of other 

candidate genes like At4g23600, At2g43590, or At2g50200 did not provide significant protection 

against B. cinerea, in addition to two other genes (At2g38530, At3g20470) with different 

expression patterns (see III.1). The presence of the transgene was controlled in 10 independent 

primary transformants (T1 generation) by RT-PCR (data not shown). 
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Figure 6. Role of PGIPs in the resistance of CUTE plants to B. cinerea. a.
PGIP plate assay showing the PGIP activity of different extracts: a) PG of 
B. cinerea, b) PG of B. cinerea + extract of 35S-PGIP1 plants, c) PG of B. 
cinerea + extract of 35S-PGIP2 plants, d) PG of B. cinerea + extract of WT 
plants, e) PG of B. cinerea + extract of CUTE plants. b. AtPGIP1 and 
AtPGIP2 gene expression analysis of WT and CUTE plants 0, 12, 24, 36 
and 48 hpi with B. cinerea, and 24 and 48 after treatment with mock 
(Northern blot). The RNA loading is shown. c. Effect of F. solani cutinase 
overexpression in AsPGIP plants on resistance to B. cinerea. Symptoms 
of AsPGIP and AsPGIP-35S-CUT inoculated with B. cinerea, 3 dpi. 
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Transformants of the second generation (T2 generation) were analysed for the 

transgenes that conferred resistance to B. cinerea in the T1 generation. Seeds were collected 

from individual T1 plants and 24 T2 plants per line were grown. The percentage of outgrowing 

lesions was calculated on the 24 T2 plants for each line. The level of expression of the 

transgene was quantified by Real-time RT-PCR on a pool of one leaf of each of the 24 T2 

plants. Here one example of the LTP, PER and PI overexpressing plants is shown: T2 lines 

overexpressing At4g12470, At5h39580 and At2g43510 (Figure 7). In some cases the level of 

overexpression of the transgene correlates with an increased resistance to B. cinerea, as for 

LTP-overexpressing lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Analysis of transgenic lines overexpressing the LTP At4g12470, the PER At5g39580 and the PI 
At2g43510. The percentage of outgrowing lesions was counted on 24 T2 plants per line, 3 dpi with B. cinerea (upper 
graphs). The relative gene expression was quantified on a pool of one leaf per T2 plants for each line. Bars are mean 
of triplicate samples (± SE). 

 

 

MAPK cascades link stimuli that are activated by external sensors to cellular responses. 

Different MAPKs are involved during defence signalling. The induced resistance of CUTE plants 

could be the consequence of an increased or earlier activation of MAPKs during infection, or of 

the activation of a different set of MAPKs from WT plants leading to an efficient defence 

response. An in-gel kinase assay was performed on protein extracts of WT (one plant) and 

CUTE (four individual plants) plants (Figure 8; carried out by David Lecourieux, personnal 

communication). Extracts from CUTE plants show a stronger MAPK activity than the WT 

extract. An in-vitro kinase assay made after immunoprecipitation with specific MAPK antibodies 

revealed a stronger activity of MAPK6 and MAPK4 in CUTE plants (Figure 8). This experiment 
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was not repeated and therefore no premature conclusions should be drawn. However, it opens 

new avenues to understand the resistance mechanisms of CUTE plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III.2.2 Material and Methods 
 

Staining of fungal hyphae 

To visualise growth of B. cinerea under the microscope, inoculated leaves were stained with lactophenol-trypan blue 

(Nawrath and Métraux, 1999). To visualise penetration of hyphae in leaves, small pieces of leaves cut around the 

inoculation site were fixed for 1h30 to 2h in 2% glutaraldehyde and 0.05 M Na-cacodylate pH 7.0. The material was 

washed 6 times 10 min in 0.05 M Na-cacodylate and fixed in 1% osmium tetroxide and 0.05 M Na-cacodylate 

overnight at 4°C. The samples were washed, dehydrated in a graded series of acetone and embedded by the method 

of Spurr (1969). Semi-thin sections of 5 µm were fixed on glass slides by heating to 95°C for 2h. The resin was 

removed by exposing the sections to 2% NaOH in absolute ethanol for 5 min (Meyberg, 1988). After washing in 

ethanol and rehydration, the sections were immersed in H2O for 10 min. The sections were then incubated with 50 µg 

ml-1 FITC-WGA (excitation: 450-490 nm; emission: 550 nm) in 10 mM phosphate buffer for 2h. The sections were 

washed in distilled water and additionnally stained for 5 min with 0.1% calcofluor white. Samples were observed with 

a fluorescence microscope. 

Inoculation of WT and CUTE plants with different pathogens 

Alternaria brassicicola and Plectosphaerella cucumerina were grown on 1x PDA (Potato Dextrose Agar, 39 g l-1, 

Difco) at room temperature. Spores were harvested in water and filtered through glass wool to remove hyphaes. The 

spore concentration was adjusted to 5 x 104 spores ml–1 in ¼ PDB (Potato Dextrose Broth, 6 g l-1, Difco) for 

inoculation. Leaves were inoculated with 5 µl droplets of spore suspension and symptoms were evaluated after 4-5 

days. Sclerotinia sclerotiorum was grown on 1x PDA at 18°C. An agar plug was transferred to 20 ml of 1x PDB liquid 

medium and incubated for 48h at 22°C, 180 rpm. The culture medium was removed by centrifugation and mycelium 

aggregates were resuspended in 20 ml ¼ PDB and homogenised. Leaves were inoculated with 5 µl droplets of 

mycelium fragments and symptoms were evaluated after 2-3 days. 
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Figure 8. In-gel kinase assay of uninduced WT and 
CUTE plants (1st picture). In-vitro kinase assay of 
WT and CUTE plants after immunoprecipitation with 
antibodies that bind to MAPK6, MAPK3 or MAPK4 
(2nd, 3rd and 4th pictures). 
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In-vitro effect of cutinase on B. cinerea 

Purified cutinase from F. solani, kindly provided by M. Van der Burg-Koorevaar (UNILEVER Vlaardingen, The 

Netherlands), was diluted in 10 mM Na-acetate pH 5.2. The in-vitro B. cinerea growth assay was performed in a final 

volume of 12 µl. Nine µl of the cutinase solution were mixed to 3 µl of B. cinerea spores in PDB to a final 

concentration of 1000, 100 or 10 µg ml –1 of cutinase and 4 x 105 spores ml –1 in ¼ PDB, and deposited on a 

microscope glass slide. After incubation under high humidity conditions for ca. 16h, fungal growth was observed 

under the microscope. 

B. cinerea cutinase and lipase overexpression in WT plants 

The CUTA (accession number Z69264) (van der Vlugt-Bergmans et al., 1997) and LIP1 (accession number 

AY738714) (Reis et al., 2005) genes from B. cinerea strain BMM were amplified by PCR on cDNA from liquid cultures 

using the oligonucleotides 5’-cutA (5’-ACTGCTAGCGCTGCTCCAACAGGTTCC-3’; NheI site underlined), 3’-cutA (5’-

GATGAGCTCCTACAATCCGGCTGC-3’; SacI site underlined), 5’-lip1 (5’-ACTGCTAGCGCTCTTCCAGTCGAAAA 

TGC-3’; NheI site underlined), and 3’-lip1 (5’-GATGAGCTCTCAAATATAAAAGCTGGGC-3’; SacI site underlined). 

Their putative signal sequence was not amplified. The genes were cloned in the pART27 binary vector (Gleave, 

1992). WT plants were transformed as previously described (Sieber et al., 2000). Independent transformed plants 

were collected for further analysis. The morphology of the plant confirmed the presence of the cutinase or the lipase 

genes. 

Monitoring pathogen gene expression using real-time RT-PCR 
WT and CUTE plants were inoculated with B. cinerea spores and leaves were harvested 12, 24, 36 and 48 hpi. RNA 

was extracted using the RNeasy® Plant Mini Kit (Qiagen) and retrotranscribed in cDNA (Omniscript® RT kit, 

Qiagen). Real-time PCR was performed using the Absolute QPCR SYBR Green Mix (ABgene). Gene expression 

values were normalised with the B. cinerea actin (BcactA) expression. Primers used: 5’-actA (5’-

AATGTGTAAGGCCGGTTTCG-3’) and 3’-actA (5’-CTTCTCCATATCATCCCAGTTG-3’); 5’-cutA (5’-

AATCTGCTCTTGGGTCATCTTC-3’) and 3’-cutA (5’-AGCTGGATAAGGTTGATGTGAC-3’); 5’-bcpg1 (5’-

TTCAACTTCTCTCAATGGCCTC-3’) and 3’-bcpg1 (5’-AGTCAAGTCAAGAGTAGTACC-3’); 5’-bcpme1 (5’-

CTTTCCTTTGCGGCCACTCTTC-3’) and 3’-bcpme1 (5’-AGGTGTAGTGGTAGTGGTGGAG-3’); 5’-pgx (5’-

CAACGCCACAGGACGATTCATG-3’) and 3’-pgx (5’-GAAGTGCGCTCATAATGGCTGG-3’); 5’-ap1 (5’-

CACTAAACCTGGACCATACTTC-3’) and 3’-ap1 (5’-ATTTTGTTGGTCTTCTGCTGGG-3’); 5’-gst1 (5’-

TGGGTCTTTCCTACGAGGTAC-3’) and 3’-gst1 (5’-TGACCTTGCATGGGACCTACAC-3’); 5’-g2 (5’-

CCACAGAGATGAGAAGGTTATG-3’) and 3’-g2 (5’-TGTCATTCTCAAGCCATCCAAG-3’). 

PGIP assay 

PG activity was measured using an agarose diffusion assay in plates containing 100 mM Na-acetate pH 4.6, 0.5% 

polygalacturonic acid (? degree of polymerisation) and 0.8% agarose. WT and CUTE leaves were homogenised with 

2 ml g-1 tissue of 1M NaCl and 20 mM Na-acetate pH 4.7. After 1h of shaking at 4°C, the homogenate was 

centrifuged and the supernatant filtered through Miracloth®. Extracts from plants overexpressing PGIP1 and PGIP2 

were kindly provided by Giulia de Lorenzo (University of Rome). A solution containing B. cinerea PG (provided by 

Giulia de Lorenzo) was mixed with 2.5 µl of the plant extract and added to 0.5 cm wells in the plates. Plates were 

incubated for 18-36h at 30°C, and the halo caused by PG activity was visualised after 5 min of treatment with 6N HCl. 

Cutinase overexpression in AsPGIP plants 
Arabidopsis AsPGIP plants (kindly provided by G. de Lorenzo) were transformed with the F. solani cutinase gene as 

previously described (Sieber et al., 2000). Independent transformed plants were collected for further analysis based 

to their antibiotic resistance and on the typical developmental phenotype of CUTE plants. Twenty-four primary 

transformants were used for quantification of resistance to B. cinerea. 
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Analysis of plants overexpressing genes selected from the microarray data 
Overexpression of the transgenes in primary transformants (T1 plants) was evaluated in 10 of 60 primary 

transformants. RNA was prepared using the TRIzol® reagent (Molecular Research Center, Inc., Invitrogen) and 

retrotranscribed in cDNA (Omniscript® RT kit, Qiagen). Presence of the transgene was evaluated by RT-PCR. 

Quantification of transgene expression level in transformants of the second generation (T2 plants) was performed by 

real-time RT-PCR using the Absolute QPCR SYBR Green Mix (ABgene). Gene expression values were normalised 

with the expression of the plant actin 2 gene. 
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IV. Cutinase-expressing plants and the 
diffusion of a fungitoxic compound 
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Aerial parts of plants are covered with a hydrophobic cuticular layer offering physical 

protection against water loss, irradiation, and mechanical protection against microbes. Many 

phytopathogenic fungi can breach this layer by secreting cutinases that degrade cutin, the main 

component of the cuticle. Transgenic Arabidopsis plants that overexpress a fungal cutinase 

from Fusarium solani f.sp. pisi targeted to the extracelluar space (CUTE plants) have a 

perturbed cuticle ultrastructure. Degradation of the cuticular layer leads among others to a 

phenotype with strongly increased permeability of the cuticle. Moreover, CUTE plants are fully 

resistant to the virulent necrotrophic fungus Botrytis cinerea. Here we show that a compound 

with strong fungitoxic activity diffuses from CUTE leaves and plays a role in the defence against 

B. cinerea. The active compound was shown to diffuse from CUTE leaves or from wild-type 

(WT) leaves digested with purified cutinase. The compound has a presumed size of 1000 to 

3500 Da and might be of proteinaceous nature. It is also strongly fungitoxic against the closely-

related fungus Monilinia laxa. Further fractionation of WT and CUTE diffusates revealed the 

presence of fungitoxic activity in untreated WT plants too, albeit in lower amount. These results 

report the discovery of a highly fungitoxic substance that might be naturally present in the 

extracellular matrix of Arabidopsis plants. 

 

IV.1 Introduction 
 

B. cinerea is a common plant pathogenic fungus that causes the gray mold disease of 

several crops. In response to pathogens, plants are generally able to mount a spectrum of 

defence responses that commonly confer resistance to a wide range of pathogens. Plants 

possess a range of tools against a Botrytis infection. These include pre-formed and induced 

plant defence compounds, like secondary metabolites, structural barriers and anti-fungal PR 

proteins (van Baarlen et al., 2004). Extracts of many plants have been shown to contain low-

molecular-weight compounds which inhibit the growth of fungi in vitro. These compounds may 

be present in extracts from healthy unchallenged plants (preformed antimicrobial compounds or 

phytoanticipins), or may be found only in extracts of plants which have either been challenged 

with pathogens or stressed (phytoalexins) (Osbourn, 1999). 

Trans-resveratrol, for example, is the most abundant stilbene in grapevine (Creasy and 

Creasy, 1998). Resveratrol displayed no immediate toxicity towards B. cinerea (Pezet and Pont, 

1995). Long-term incubation of B. cinerea with resveratrol led, however, to inhibition of 

germination of conidia, as well as elongation of germ tubes and hyphae (Adrian et al., 1997). In 

many cases Botrytis species have adapted to antifungal compounds, which can be detoxified or 

secreted. B. cinerea possesses a large family of functional transporter genes, some of which 

confer protection to plant defence metabolites including resveratrol (Schoonbeck et al., 2001). 
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PR proteins represent a large array of proteins that are synthesised by the host plant 

after challenge with a pathogen or related situations. Infection with B. cinerea leads to induction 

of PR proteins in many plants (van Loon, 1985). Several PR proteins display some toxicity 

towards B. cinerea in vitro, e.g. a grape PR-like protein (chitinase) has a very high botryticidal 

activity (Derckel et al., 1998; Salzman et al., 1998). Legumes produce antifungal proteins 

including chitinases, ribosome-inactivating proteins, cyclophilin-like proteins, defensins, 

protease inhibitors, lectins, peroxidases and lysozymes (Wong and NG, 2005). Despite their 

antimicrobial activity in vitro, there is little evidence to support a potential role of PR proteins in 

effective plant disease resistance to B. cinerea. The homologous or heterologous expression of 

PR proteins in transgenic plants, or the infiltration of single PR proteins in leaves, has rarely led 

to any significant level of protection (van Baarlen et al., 2004). 

Antifungal peptides inhibit the in-vitro growth of B. cinerea by targeting microbial 

membranes (Stotz et al., 2004). Overexpression of the lipid transfer protein Ace-AMP1 from 

onion increased resistance of scented geranium to B. cinerea (Bi et al., 1999). An antifungal 

peptide with a molecular mass of 6.5 kDa, limenin, was isolated from the seeds of shelf beans. 

It suppresses mycelial growth of B. cinerea and other fungi (Wong and NG, 2005). Vulgarinin, a 

broad-spectrum antifungal peptide was isolated from haricot beans, with a molecular mass of 7 

kDa (Wong and NG, 2005). Others peptides with toxic activity against B. cinerea have been 

isolated from black pumkin seeds (Wang and NG, 2003), from green chickpea (Chu et al., 2003) 

or from Ceylon spinach seeds (Wang and NG, 2004). 

Arabidopsis plants that constitutively express a fungal cutinase enzyme are fully immune 

to B. cinerea. Diffusates from leaves of CUTE plants were shown to have a strong fungistatic 

activity against B. cinerea in vitro, whereas diffusates from WT leaves allowed rapid hyphal 

growth. In this study, we report the characterisation of the fungitoxic activity. 

 

IV.2 Results and Figures 
 

CUTE plants are completely resistant to B. cinerea. The fungus germinates but stops 

growing at the surface of CUTE leaves, while it rapidly grows on susceptible WT plants and 

causes typical soft rot lesions. We hypothesised that a toxic substance could diffuse from CUTE 

leaves in the 5 µl inoculation droplets and lead to the early arrest of the growth of B. cinerea in 

planta. Five µl droplets of inoculation medium (1/4 potato dextrose broth or PDB) without spores 

were deposited on WT and CUTE leaves. The droplets were incubated during ca. 16 h under 

high humidity conditions. Incubated droplets or diffusates were collected and mixed with spores 

of B. cinerea and their fungitoxic activity was determined in an in-vitro growth assay (see 

Methods). In addition, this mixture was used to infect WT plants. We observed an effect of the 
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CUTE diffusate on B. cinerea in vivo (Figure 1). Spores germination was not inhibited, but 

hyphal growth was strongly slowed down, in comparison to the rapid growth of spores incubated 

with the WT diffusate. Moreover, infection of susceptible WT plants was completely inhibited 

when spores were in the presence of the CUTE diffusate (Figure 1). This absence of symptoms 

could also be observed on tomato plants inoculated with spores mixed with the CUTE diffusate 

(Figure 1). Therefore, we conclude that CUTE plant leaves contain a fungistatic compound that 

diffuses in droplets of inoculation medium and has an in-vitro and in-vivo effect against B. 

cinerea. 

 

 

 

 

 

 

 

 

 

 

 

 

The PDB inoculation medium is made of potato extract (4 g l-1) and glucose (20 g l-1). It 

contains less than 20% NaCl and more than 90% of its components are smaller than 1000 Da. 

It is diluted 4 times in our inoculation conditions. In order to facilitate the future purification, 

different solutions that would allow the diffusion of the fungitoxic compound from CUTE leaves 

were tested. The fungitoxic compound did neither diffuse in H20 nor in a glucose solution (5 g l-1) 

(data not shown). However, the fungitoxic activity diffused in droplets of a 1M NaCl solution (ca. 

5% NaCl) from CUTE leaves, while the WT diffusate allowed growth of B. cinerea (Figure 2). 

The presence of the fungitoxic activity in intercellular wash fluids (Figure 2) confirmed the 

hypothesis of an extracellular compound diffusing out of the leaves. NaCl seems to be needed 

to extract the compound(s). The active compound(s) could be bound to the extracellular matrix 

by ionic forces that are not loosened by H20. 

Application of purified cutinase of F. solani f.sp. pisi on WT leaves led to resistance to B. 

cinerea when the fungus was applied directly on the sites treated with cutinase (see III.1, data 

not shown). The fungitoxic compound was also found to diffuse in droplets of a solution 

containing cutinase, as shown on Figure 3. Indeed, incubation of droplets of a 100 µg ml-1 

cutinase solution during 3 days on WT leaves released the fungitoxic compound. This was 

confirmed in vitro and in vivo on WT plants usually susceptible to B. cinerea. This phenomenon 
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Figure 1. In-vitro and in-vivo effect of WT 
and CUTE diffusates (in ¼ PDB) on B. 
cinerea. CUTE diffusate strongly slows 
down hyphal growth in vitro (left 
pictures), as well as inhibits infection of 
Arabidopsis leaves (middle pictures) and 
tomato leaves (right pictures) in vivo. WT 
diffusate does not impair growth of B. 
cinerea in vitro or development of 
infection in vivo. 
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was dependent on the quantity of cutinase applied, as a 10 µg ml-1 cutinase solution was less 

effective in releasing the fungitoxic compound, and on the duration of cutinase application, as 

an incubation time of 1 day was not enough to collect the fungitoxic compound (data not 

shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CUTE plants are resistant to B. cinerea but not to other fungi and Oomycetes that were 

tested in our lab (see III.2). The WT and CUTE diffusates were incubated with spores of other 

fungi, to assess whether the fungitoxic activity was also specific to B. cinerea in vitro. The CUTE 

diffusate showed no toxic activity against spores of the necrotrophs Plectosphaerella 

cucumerina and Alternaria brassicicola (Figure 4). This fits the observation that CUTE plants 

are not resistant to P. cucumerina; pad3-CUTE plants are not resistant to A. brassicicola either 

(see III.2). However, the growth of spores of Monilinia laxa was inhibited by the CUTE diffusate 

(Figure 4). M. laxa is an Ascomycete which is phylogenetically very close to B. cinerea. It 

causes the brown rot of stone fruits; heavily infected fruits become mummified. Both Botrytis 

and Monilinia genera belong to the family of Sclerotiniaceae. This close linkage could explain 

the similar result obtained with the CUTE diffusate. However, in-planta evidence of a toxic 

activity against M. laxa could not be analysed, as the fungus is a pathogen restricted to stone 

fruits that does not infect Arabidopsis. 
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Figure 3. Diffusion of the fungitoxic 
activity from WT leaves treated with 
purified cutinase of F. solani. Droplets of 
buffer or of different amounts of cutinase 
were incubated for 3 days on WT leaves. 
Diffusates were tested in vitro and in vivo
on B. cinerea. The fungitoxic compound 
diffused from WT leaves treated with 
cutinase. 
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Figure 2. Presence of the fungitoxic compound 1M NaCl 
diffusates and in intercellular wash fluids. Droplets of 1M 
NaCl allowed the diffusion of the toxic compound (in-vitro
effect). The toxic compound was shown to be present in the 
intercellular wash fluid of CUTE plants (in-vitro effect). 
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Figure 4. In-vitro effect of WT and CUTE diffusates on necrotrophic fungi. The CUTE diffusate had no fungitoxic 
activity on A. brassicicola and P. cucumerina, as no differences with the WT diffusate were observed. Hyphal growth 
of B. cinerea and M. laxa was slowed down by the CUTE diffusate, whereas the WT diffusate had no direct toxic 
effect. 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5. Characterisation of the fungitoxic compound. The fungitoxic compound was inactivated by heat treatment, 
as shown in vitro, compared to controls. It remained active after lyophilisation, as shown in vitro and in vivo, and was 
not removed by extraction with chloroform, as shown in vivo. 
 

 

In an attempt to determine the chemical nature of the fungitoxic compound, several 

experiments were carried out on both WT and CUTE diffusates (in ¼ PDB). The toxicity of the 

CUTE diffusate was inactivated by heating for 5 minutes at 95°C in vitro (Figure 5). The 

fungitoxic activity was not removed by extraction with chloroform, suggesting that the compound 

is not of lipidic nature (Figure 5). The active compound resisted lyophilisation (Figure 5), a 

processus necessary for further purification. To evaluate the size of the active compound, WT 

and CUTE diffusates were dialysed with membranes of different size of pores: 1000 MWCO 

(molecular weight cut-off), 3500 MWCO, 8000 MWCO and 15’000 MWCO. The dialysates were 
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tested in vitro with spores of B. cinerea (Figure 6). The active compound was retained on the 

1000 MWCO membrane, but passed through the 3500 MWCO membrane. Thus, the active 

CUTE compound is heat-sensitive, not soluble in chloroform, and has probably a size between 

1000 and 3500 Da. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6. In-vitro effect of dialysed WT and CUTE diffusates. The activity of the CUTE diffusate was retained by the 
1000 MWCO membrane, but not by the 3500, 8000 and 15’000 MWCO membranes. The active compound has an 
approximate molecular mass of 1000 to 3500 Da. 
 

 

The WT and CUTE diffusates were treated with proteases, to test whether the active 

compound may be of proteinaceous nature. Pronase E, a mixture of endo- and exo-proteinases 

that cleaves almost any peptide bond, and proteinase K, an endolytic protease that cleaves 

peptide bonds at the carboxylic sides of aliphatic, aromatic or hydrophobic amino acids, were 

tested. Diffusates were treated with 1% of protease for 3 h at 37°C or overnight at room 

temperature. Treatment with pronase E decreased the fungitoxic activity of the CUTE diffusate 

after both incubation times, without having any effect on the WT diffusate (Figure 7). Treatment 

with proteinase K also decreased the fungitoxic activity, but after overnight incubation (Figure 

7). These results suggest that the active compound diffusing from CUTE plants could be a small 

peptidic molecule. 
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Figure 7. Treatment of WT and CUTE diffusates with proteases. WT and CUTE diffusates were incubated with 
buffer, with 1% pronase E or with 1% proteinase K, for 3 h at 37°C or overnight at room temperature. CUTE diffusate 
treated with both proteases lost (partially) its fungitoxic activity, compared to controls. 
 

 

Diffusates (in ¼ PDB or 1M NaCl) of CUTE leaves were shown to have an in-vitro and an 

in-vivo effect against B. cinerea. We tested the in-vitro fungitoxic activity of 3 different protein 

extracts of WT and CUTE plants (Table 1, 3 first lines). CUTE material extracted with the 2 first 

solutions contained fungitoxic activity similar to the CUTE diffusate, while CUTE material 

extracted with the 3rd solution, similar to the WT extract, did not show any activity. Unlike the 

other solutions for extraction of plant proteins, the 3rd solution contained β-mercaptoethanol, a 

disulfide-reducing agent, which interferes with proteins and could thus inactivate or denature 

them. In addition, CUTE extract 2 had no PGIP activity but could still inhibit fungal growth, like 

the CUTE diffusate (Table 1, 5th line). CUTE extract 3 displayed cutinase activity, but no 

inhibition of fungal growth. This fits the data showing no fungal growth inhibition by the purified 

cutinase of F. solani f.sp. pisi (see III.2 and Table 1, 6th line). Moreover, the CUTE diffusate 

contained the fungitoxic compound, but no PGIP or cutinase activities were detectable (Table 1, 

6th line). The presence of the cutinase enzyme in the different samples was also confirmed on a 
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Western blot (data not shown). Therefore, these results strengthen the hypothesis that the 

active compound might be of proteinaceous nature, and exclude the participation of the 

cutinase of F. solani f.sp. pisi or of PGIPs, as the fungitoxic activity is independent of the 

presence of PGIP or cutinase activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1. Properties of different extracts of WT and CUTE plants. Different protein extracts (3 first lines), IWF, 
diffusates and purified cutinase of F. solani were tested: for their in-vitro effect on B. cinerea, for their PGIP activity 
and for their cutinase activity. 

 

 

CUTE diffusate (in 1M NaCl) showing fungitoxic activity was further purified by gel 

filtration chromatography. The 35 resulting fractions were tested in vitro for their effect against 

B. cinerea. Five consecutive fractions superposed on a peak of absorption at 280 nm displayed 

full inhibition of fungal growth (Figure 8a, b). Fractions eluted before or after the active fractions 

were devoid of fungitoxic activity. As control, the inactive WT diffusate (in 1M NaCl) was purified 

on the column. Surprisingly, discrete fractions with fungitoxic activity were also found (Figure 

9b). Fractions of WT and CUTE diffusates were compared after gel filtration chromatography 

performed the same day and under similar conditions. The number of fractions showing in-vitro 

fungitoxic activity was less important in the purified WT diffusate, compared to the purified 

CUTE diffusate (Figure 9a). Dilution series of active fractions of both WT and CUTE diffusates 

were carried out to estimate the fungitoxic activity. An active CUTE fraction diluted up to 8 times 

still showed full inhibition of fungal growth (data not shown), while an active WT fraction could 

only be diluted up to 4 times (data not shown). These results suggest that the fungitoxic 

substance is also present in WT diffusates, but in lower amounts. 
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The final aim of this study is the determination of the chemical structure of the active 

compound. Active fractions resulting from the gel filtration chromatography of CUTE diffusates 

were dialysed (500 MWCO), washed with ether to remove plastic traces and lyophilised, before 

analysis by mass spectrometry (MS). The chemical analysis did however not yet produce useful 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8. Gel filtration chromatography of CUTE diffusate. a. Absorption spectrum (280 nm) of CUTE diffusate eluted 
from the column. Fractions are numbered on the x-axis. The yellow box represents the fractions with strong fungitoxic 
activity against B. cinerea. b. Fractions were tested in vitro on B. cinerea. In-vitro effect of fractions 16 to 25 are 
shown. 
 

fractions

ab
so

rp
tio

n 
(2

80
 n

m
)

22212019 231817161514131211108 97654321 24 25 26 27 28 29 30 31 32 33 34 35

with fungitoxic
activity

16 17 18

19-23 2524

in-vitro activity of fractions on growth of B. cinerea

a

b

fractions

ab
so

rp
tio

n 
(2

80
 n

m
)

22212019 231817161514131211108 97654321 24 25 26 27 28 29 30 31 32 33 34 35

with fungitoxic
activity

fractions

ab
so

rp
tio

n 
(2

80
 n

m
)

22212019 231817161514131211108 97654321 24 25 26 27 28 29 30 31 32 33 34 35

fractions

ab
so

rp
tio

n 
(2

80
 n

m
)

22212019 231817161514131211108 97654321 24 25 26 27 28 29 30 31 32 33 34 35

ab
so

rp
tio

n 
(2

80
 n

m
)

ab
so

rp
tio

n 
(2

80
 n

m
)

22212019 231817161514131211108 97654321 24 25 26 27 28 29 30 31 32 33 34 3522212019 231817161514131211108 97654321 24 25 26 27 28 29 30 31 32 33 34 35

with fungitoxic
activity

16 17 18

19-23 2524

in-vitro activity of fractions on growth of B. cinerea

16 17 18

19-23 2524

in-vitro activity of fractions on growth of B. cinerea

a

b



Cutinase-expressing plants and the diffusion of a fungitoxic compound 

71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Gel filtration chromatography of CUTE and WT diffusates. a. Absorption spectrum (280 nm) of CUTE 
diffusate eluted from the column. The grey box represents the fractions with strong fungitoxic activity against B. 
cinerea. b. Absorption spectrum (280 nm) of WT diffusate eluted from the column. The grey box represents the 
fractions with strong fungitoxic activity against B. cinerea. 
 

 

IV.3 Discussion 
 

CUTE plants revealed the presence of an intercellular toxic compound in Arabidopsis 

Col-0 plants. This compound has a strong fungistatic activity against B. cinerea and M. laxa in 

vitro, and inhibits infection of WT plants in vivo. We highlight the existence of a natural 

fungitoxic compound that can easily diffuse from CUTE plants due to their enhanced cuticular 

permeability. The intact cuticle of WT plants serves as barrier to the flow of solutes but is not 

completely impermeable. This explains why the toxic activity could not be observed in the in-

vitro assay of WT diffusates, but was found in purified fractions, therefore in lower amounts. In 

addition, external application of purified cutinase of F. solani on WT leaves degraded the 

cuticular layer and allowed the diffusion of the toxic compound. The amount of toxic compound 

present in diffusates is thus positively correlated with the permeability of the cuticle. The 

fungitoxic compound diffuses into droplets of ¼ PDB, or into droplets containing similar amounts 

of salt but not, however, in droplets of H2O. NaCl is probably necessary to release the active 

molecule, that might be bound with ionic forces to the extracellular matrix. It is also possible that 
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the ¼ PDB or salt droplets induce reactions in the plant that lead to the production and 

secretion of the toxic compound. 

We have shown that the expression of three LTP genes is primed in CUTE plants after 

inoculation with B. cinerea, compared to WT plants (see III.1). LTPs are small, basic, soluble 

proteins with eight cystein residues at conserved positions (Kader, 1996). They are 

characterized by their ability to transfer lipids between natural and artificial membranes in vitro, 

and may be involved in cuticle deposition (Kader, 1996). LTPs play also a role in plant defence. 

Purified LTP2 from barley applied on tobacco leaves eliminated symptoms caused by infiltration 

of Pseudomonas syringae pv tabaci (Molina and Garcia-Olmedo, 1997). Overexpression of the 

barley LTP2 in transgenic tobacco and Arabidopsis enhanced tolerance to P. syringae pv tabaci 

and P. syringae pv tomato, respectively (Molina and Garcia-Olmedo, 1997). Three LTP genes 

were found to be strongly induced by pathogens in pepper (Jung et al., 2003). Overexpression 

of one of the pepper LTP genes in Arabidopsis led to enhanced resistance to B. cinerea and to 

P. syringae (Jung et al., 2005). Purified LTPs were shown to display antimicrobial activity. Two 

homogeneous LTPs were obtained from crude cell-wall preparations from leaves of Arabidopsis 

Col-0, as well as from spinach leaves. These LTPs showed toxic activity in vitro against the 

bacteria Clavibacter michiganensis and P. solanacearum, and the fungus F. solani (Segura et 

al., 1993). A LTP from Vitis vinifera displayed antifungal activity in vitro; it reduced mycelium 

growth of B. cinerea, but only in calcium-free medium (Gomes et al., 2003). Antifungal LTPs 

were also isolated from intercellular wash fluid of sugar beet leaves. They showed strong 

antifungal activity against Cercospora beticola, the causal agent of leaf spot disease in sugar 

beet (Nielsen et al., 1996; Kristensen et al., 2000). 

The experiments carried out to characterise the nature of the active compound of CUTE 

and WT diffusates suggest that it might be of proteinaceous nature. The activity of the toxic 

compound was sensitive to heat and protease treatment. Hypothetically, the toxic compound 

could be a LTP. In Arabidopsis, 71 putative LTPs have been identified (Beisson et al., 2003) 

and they were found to be located extracellularly (Thoma et al., 1993). They all have eight 

cystein residues at conserved positions, but are highly divergent. Studies of the 3D structure of 

LTPs demonstrated that the protein has four α-helices cross-linked by four disulfide bridges 

(Shin et al., 1995). We have shown that extraction of CUTE plant material with a buffer 

containing the reducing agent β-mercaptoethanol eliminated the fungitoxic activity. Proteins with 

highly reactive thiol groups were demonstrated to form disulfide bridges with β-mercaptoethanol, 

thus interfering with protein-protein interactions or leading to protein denaturation (Begg and 

Speicher, 1999). 

The fungitoxic compound diffusing from WT and CUTE leaves should be constitutively 

present in leaves. The three LTP genes isolated from the microarray analysis (see III.1, and 

Table 1) were shown to be induced by B. cinerea. At4g12470 and At4g12490 are more 
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expressed in uninduced CUTE plants that in uninduced WT plants (8 and 5 times, respectively), 

and could thus diffuse in the droplets. LTP genes were not only induced by B. cinerea, but also 

quite strongly by the mock treatment. In addition, the expression of the three LTPs was more 

strongly induced by mock treatment in CUTE plants than in WT plants. Since ¼ PDB or salt is 

needed to extract the active compound, we could hypothesize that salt induces responses in 

CUTE and WT plants, during the time of incubation of the droplets. CUTE plants would react 

stronger because of their higher cuticular permeability. 

 

 
WT CUTE

hpi
treatments - - mock Bc mock Bc mock Bc mock Bc

At4g12470 pEARLI 1-like protein 5.5 46.3 208 2056.2 2265.5 5257.8 4721.7 8208.7 6431.5 8498.4
At4g12480 pEARLI 1 1.5 3.2 14.2 144.3 113.9 1270.1 202.2 1264 2515.8 2686
At4g12490 pEARLI 1-like protein 19.8 100.9 41.5 101.2 90.2 6223.1 138.9 610.8 1983.3 6087.4

WT CUTE
300 12 30 12

 
 
Table 1. Microarray data of the three genes coding for pEARLI 1 or pEARLI 1-like proteins, that belong to the lipid 
transfer protein family. 
 
 
 

Many LTP genes are induced by various abiotic stresses, like drought stress and/or 

water deficit (Trevino and O'Connell, 1998) and high salinity stress (Torres-Schumann et al., 

1992). Expression of LTPs was induced in the leaves of pepper plants under drought and high 

salinity conditions (Jung et al., 2003). Transgenic Arabidopsis lines expressing the pepper gene 

CALTPI showed high levels of tolerance to NaCl and drought stresses (Jung et al., 2005). Thus, 

NaCl contained in the ¼ PDB inoculation medium might be responsible for the induction of the 

LTP genes in the mock samples. The droplets deposited on WT and CUTE leaves to collect the 

diffusates might induce reactions in the plant during the time of incubation. On the other hand, 

one could imagine that the application of liquid on leaves induces reactions. Changes in 

composition of the cell wall and membrane are known to occur under water stress conditions 

(Iraki et al., 1989). There is evidence that LTP transcripts accumulate under water stress in 

aerial plant parts such as leaves, stems and flowers (Torres-Schumann et al., 1992; Jung et al., 

2003). LTPs might be involved in the repair of stress-induced damage in cells, as well as in 

inhibiting water loss via the assembly or deposition of the cell wall, membrane, and cuticular 

materials under water-stress conditions (Sterk et al., 1991). 

We have not yet been able to determine the structure of the active compound that was 

isolated from Arabidopsis WT and CUTE diffusates, leaving all previous suggestions as 

hypothesis. The size of LTPs was found to be around 9 kDa (Kader, 1996). In our experiments, 

the active fungitoxic compound had approximately a size between 1000 and 3000 Da, which 

does not fit to the size of LTPs. However, we could isolate discrete fractions with strong 

fungitoxic activity by gel filtration chromatography. These fractions will be used for mass 
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spectrometry analysis, coupled to gas chromatography, or for direct sequencing of the amino 

acids, to confirm or infirm the presence of LTP. 

 

IV.4 Material and Methods 
 

Collection of leaf diffusates 

Five µl droplets of ¼ PDB (Potato Dextrose Broth, 6 g l-1, Difco) or 1M NaCl were deposited on leaves of WT or 

CUTE plants and the trays were covered to maintain high levels of humidity. Leaf diffusates were collected with a 

pipette tip after ca. 18 hours of incubation. For collection of bigger volumes of leaf diffusates, ca. 5 ml of ¼ PDB or 

1M NaCl were poured in a Petri dish (8.5 cm in diameter). Leaves of WT and CUTE plants were deposited on the 

liquid (upper face on the liquid) to fill the surface. Petri dishes were sealed with parafilm and the liquid was collected 

after 18 hours of incubation at room temperature. Leaf diffusates were stored at -20°C. 

Isolation of fungal spores 

B. cinerea strains B05.10 and BMM, Alternaria brassicicola and Plectosphaerella cucumerina were grown on 1x PDA 

(Potato Dextrose Agar, 39 g l-1, Difco) at room temperature. Spores were harvested in water and filtered through 

glass wool to remove hyphae. Spores of Monilinia laxa were isolated from infected mummified fruits (quince, prune). 

Spores were scratched with a pipet tip and mixed in H2O. Concentration of spores was evaluated with a Thomma 

counting chamber. 

In-vitro effect of leaf diffusates 

Nine µl of leaf diffusates were mixed with 3 µl of fungal spores to a final concentration of 5 x 104 spores ml –1 and 

deposited on a microscope glass slide. Fungal growth was observed under the microscope after incubation under 

high humidity conditions for ca. 16 h. Leaf diffusates extracted with ¼ PDB were mixed with spores in H2O. Leaf 

exudates extracted with 1M NaCl were mixed with spores in 1x PDB. 

In-vivo effect of leaf diffusates 

3x µl of leaf diffusates extracted with ¼ PDB were mixed with x µl of B. cinerea spores in H2O to a final concentration 

of 5 x 104 spores ml –1. Leaves were inoculated with 5 µl droplets of spores mixed with diffusates and symptoms were 

evaluated 3 dpi. Inoculated plants were kept under a water-sprayed transparent lid to maintain high humidity. Both B. 

cinerea strains gave similar results for all of the experiments carried out. 

In-vitro and in-vivo effect of cutinase 

Purified cutinase from F. solani, kindly provided by M. Van der Burg-Koorevaar (UNILEVER Vlaardingen, The 

Netherlands), was diluted in 10 mM Na-acetate pH 5.2. Five µl droplets of buffer, 10 µg ml-1 cutinase solution or 100 

µg ml-1 cutinase solution were deposited on WT leaves and incubated for 3 days under high humidity to prevent 

evaporation of the droplets. Droplets containing leaf exudates were collected. The in-vitro and in-vivo effects of these 

diffusates were tested as previously described with B. cinerea spores. 

Plant extracts 

Protein extract 1 (for PGIP assay, see III.2): WT and CUTE leaves were homogenised with 2 ml g-1 tissue of 1M NaCl 

and 20 mM Na-acetate pH 4.7. After 1h of shaking at 4°C, the homogenate was centrifuged 10 min (13’000 rpm, 4°C) 

and the supernatant filtered through Miracloth ®. Protein extract 2: WT and CUTE leaves were homogenised with 2 

ml g-1 tissue of 50 mM Tris HCl pH 7.5. The homogenate was centrifuged (10 min, 13’000 rpm, 4°C) and the 

supernatant was collected. Protein extract 3: WT and CUTE leaves were homogenised with 2 ml g-1 tissue of 0.1 M 

Tris HCl pH 7.3, 5 mM EDTA, 0.1% Triton and 0.2% β-mercaptoethanol. The homogenate was centrifuged 10 min at 

4°C and the supernatant was collected. The different protein extracts were stored at –20°C. 
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Intercellular wash fluid (IWF) 
WT or CUTE leaves cut at the petiole were immersed in a buffer containing 50 mM Tris-HCl pH 7.5 and 150 mM 

NaCl. Leaves were vacuum-infiltrated and delicately dried on a towel. Infiltrated leaves were deposited in a syringe 

placed in a tube. The IWF was collected at the bottom of the tube after 20 min of centrifugation (150 g, 4°C). IWF 

were stored at –20°C. 

Dialysis 

WT and CUTE diffusates (in ¼ PDB) were dialysed with ready-to-use Spectra/Por® Float-A-Lyzer® tubes 

(Spectrum). Tubes for a dialysate volume of 300 µl were used (7 cm total length, 5 mm diameter), with MWCO 

(Molecular Weight Cut-Off) of 1000, 3500, 8000 and 15’000 Da. Samples were dialysed in 1 l of H2O at 4°C during at 

least 24 hours (3 changes of H2O). Fractions resulting from the gel filtration chromatography were lyophilised and 

dialysed with Spectra/Por® CE (Cellulose Ester) Membrane (500 MWCO, 16 mm flat width, 10 mm diameter, 0.81 

ml/cm). The cellulose membrane was stored at 4°C in a preservative solution of 0.1% sodium azide. 

Protease treatments 

Diffusates of WT and CUTE plants (in ¼ PDB) were digested with pronase E (from Streptomyces griseus, Sigma) or 

proteinase K (from Tritirachium album, Sigma). Enzymes were dissolved in 50 mM Tris pH 8.0 at a stock 

concentration of 20 mg ml-1. Enzymes were diluted 1:20 in leaf diffusates to a final concentration of 2.5 mM (1%). 

Samples were incubated 3h at 37°C or overnight at room temperature and checked for their in-vitro toxic effect 

against B. cinerea. 

Gel filtration chromatography 
The gel filtration chromatograph was performed on a column (length 250 mm, width 30 mm) with Bio-Gel P-4 (mesh 

200-400). One ml of diffusate of WT or CUTE plants (in 1M NaCl) was injected on the column and eluted with 10 mM 

ammonium acetate pH 8.5. Thirty fractions of 6 ml were collected (180 ml in total). Each fraction was lyophilised, 

resuspended in 50 µl H2O and tested for its in-vitro toxic activity against B. cinerea. Nine µl of each fraction was 

incubated with 3 µl of spores in 1x PDB as previously described. 
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Aerial parts of plants are covered with a hydrophobic cuticle offering physical protection 

against water loss and irradiation, and mechanical protection against microbes. Transgenic 

Arabidopsis plants secreting a fungal cutinase from F. solani f.sp. pisi (CUTE plants) have a 

defective cuticle ultrastructure that leads to increased cuticular permeability, ectopic pollen 

germination and organ fusions. In addition, CUTE plants are fully resistant to the necrotrophic 

fungus Botrytis cinerea, whereas highly susceptible wild-type plants develop soft rot symptoms. 

Upon inoculation with B. cinerea, the resistance was shown to be correlated with a primed 

expression of genes coding for lipid transfer proteins (LTP), peroxidases (PER) and protease 

inhibitors (PI). In addition, a compound with strong fungistatic activity against B. cinerea diffuses 

from CUTE leaves. Different mutants impaired in cuticle biosynthesis or formation have been 

recently described. We present here two novel mutants, so-called pec mutants (permeable 

cuticle mutants), that were screened for their increased cuticular permeability. We show that 

pec1 and pec9 mutants, in addition to other mutants with cuticular defects, share common 

characteristics with CUTE plants. Most of the mutants displayed enhanced resistance to B. 

cinerea similar to that of CUTE plants, since priming of the LTP, PER and PI genes and 

diffusion of the fungitoxic compound could be observed. These results highlight a common 

mechanism involved in the defence against B. cinerea in Arabidopsis plants with cuticular 

defects. 

 

V.1 Introduction 
 

The hydrophobic cuticle coats the cell walls of epidermal cells of all aerial plant organs. It 

is the major barrier to protect plants against invading microbes, in addition to its role as 

permeation barrier for solutes, gases and water. The outermost layer of the cuticle is composed 

of wax, whereas the cuticle proper deposited beneath is seen in electron micrographs as a thin 

lamellate layer (Kolattukudy, 2001). The major constituent of the cuticle proper is the lipid 

poyester cutin, made of C16 and C18 fatty acid derivatives (Kolattukudy, 2001). 

Mutagenised plant populations were screened for cuticular defects to find mutants, as 

tools to study the cuticle functions. Many mutants with reduced wax crystals on stems of 

Arabidopsis have been identified (Kornneef et al., 1989; McNevin et al., 1993; Jenks et al., 

1996). For example, mutants like wax1, cer10 or cer13 (eceriferum) have a reduced deposition 

of epicuticular wax, an altered leaf morphology and organ fusions (Jenks et al., 1996; Lolle et 

al., 1998). The fdh (fiddlehead) mutant is characterised by organ fusions in leaves and flower 

organs, pollen germination on leaves, and increased cuticle permeability (demonstrated by the 

chlorophyll leaching rate) (Lolle et al., 1992; Lolle et al., 1998; Lolle and Pruitt, 1999). The FDH 

gene may be involved in trichome initiation and codes for an enzyme of the FATTY ACID 
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ELONGATION family (Yephremov et al., 1999; Pruitt et al., 2000). The shn (shine) activation 

tag gain-of-function mutant shows a deep shiny green appearance, increased cuticle 

permeability, increased cuticular wax load and structure and altered epidermal differentiation 

compared with wild-type (WT) plants. Arabidopsis plants constitutively overexpressing the SHN 

gene (35S:SHN) show the same phenotype as the original activation tag line. SHN is an 

AP2/EREBP transcription factor and is suggested to be involved in the regulation of lipid 

biosynthesis (Aharoni et al., 2004). 

Genetic studies of cutin synthesis are less developed, but some mutants have been 

recently characterised. The lcr (lacerata) mutant shows organ fusions and ectopic pollen 

germination. lcr has a defect in a gene coding for a cytochrome P450 monooxygenase, that can 

catalyse the formation of ω-hydroxy fatty acids in yeast and could be involved in cutin 

biosynthesis (Wellesen et al., 2001). The wax2 mutant is deficient in both cutin and wax 

synthesis and shows an increased cuticular permeability and organ fusions. wax2 has a thinner 

cuticle and a reduced wax load (Chen et al., 2003). The lacs2 (long-chain acyl-CoA synthetase) 

mutant has a thinner cuticle than WT plants and shows a pleiotropic phenotype, such as 

reduced leaf size, plant growth and seed production, but no organ fusions. LACS2 might be 

required for cutin synthesis (Schnurr et al., 2004). The mutant att1 (aberrant induction of type 

three genes) is impaired in a cytochrome P450 catalyzing fatty acid oxidation and has a 

reduced cutin content in comparison to WT plants. att1 display increased resistance to a virulent 

strain of P. syringae and enhanced expression of the bacterial type III genes avrPto and hrpL 

(Xiao et al., 2004). The ace/hth (adhesion of calyx edges / hothead) mutant, deficient in fatty 

acid ω-alcohol dehydrogenase activity, shows a reduction in the levels of the major constituents 

of cuticular polyesters and cutin (Kurdyukov et al., 2006a). The bdg (bodyguard) mutant, which 

exhibits defects characteristic of the loss of cuticle structure, accumulates more cell wall-bound 

lipids and epicuticular waxes than WT plants. BDG is exclusively expressed in epidermal cells 

and might code for an extracellular synthase responsible for the formation of ester bonds in the 

cuticle (Kurdyukov et al., 2006b). Both bdg (in leaves) and ace/hth (in flowers) have a 

discontinuous or multilayered cuticle and show organ fusions (Krolikowski et al., 2003; 

Kurdyukov et al., 2006a; Kurdyukov et al., 2006b). 

The cuticle structure is conventionally analysed by transmission electron microscopy 

(TEM). This requires laborious procedures, unsuitable for large-scale screening of mutants with 

defective cuticles. Therefore, a direct screening method based on the staining of plants with 

toluidine-blue was developed by Tanaka et al. (2004). In summary, a number of defects may be 

associated with improper cuticle formation in Arabidopsis mutants: poor growth and 

performance, sensitivity to low humidity, increased sensitivity to chemicals such as pesticides 

and herbicides, morphological irregularities in the shapes of organs and single cells, altered 

resistance to pathogens, distorted cell differentiation, illicit cell-cell interactions and cell death 
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(Yephremov and Schreiber, 2005). Thus, the cuticle plays an essential role for the normal 

development of the plant and for the quality of the interface between the plant and its external 

environment (Sieber et al., 2000). 

Transgenic Arabidopsis plants overexpressing a fungal cutinase from F. solani f.sp. pisi 

(CUTE plants) display phenotypes similar to mutants with defective cuticles, like organ fusions, 

increased cuticular permeability and ectopic germination (Sieber et al., 2000). CUTE plants 

were shown to be totally resistant to the virulent necrotrophic fungus B. cinerea and were used 

as a tool to study the defence mechanisms linked to the sensing of cuticular defects. The 

expression of several genes coding for LTP, PER and PI was primed in CUTE plants, in 

comparison to WT plants. These genes play a role in the resistance against B. cinerea since 

their overexpression in WT plants led to increased protection to the fungus. In addition, a 

substance highly toxic to B. cinerea was found to diffuse from CUTE leaves. In this study, we 

show that many mutants with defects in cuticle structure and function are also fully resistant to 

B. cinerea. The mechanisms underlying this resistance are investigated. 

 

V.2 Results and Figures 
 

A double screening was performed on EMS-mutagenised plants (M2 plants) in order to 

isolate mutants with enhanced cuticular permeability, as well as mutants with increased 

resistance to B. cinerea strain BMM. The screening method for analysing the cuticular 

permeability came from an easy experiment with Calcofluor White (CW), a fluorescent dye used 

for the staining of fungi in inoculated leaves. CUTE leaves stained with CW showed a strong 

fluorescent background. Indeed, CW stains both fungal and plant cell walls; as CUTE plants 

have a more permeable cuticle, CW diffuses and binds to the plant cell wall cellulose. This 

observation gave rise to the “CW screening method” applied on M2 plants. CW staining was 

performed on one leaf per plant, two weeks after transplanting. M2 plants were grown for one to 

two more weeks and inoculated with B. cinerea strain BMM on three leaves per M2 plant. 

The mutants that were strongly stained with CW were called pec for permeable cuticle, 

while mutants that were more resistant to B. cinerea than the WT controls were referred to as 

bre for botrytis resistant. pec1 was isolated as strongly staining with CW, while pec9/bre1 was 

first isolated as B. cinerea resistant (bre1), but then identified as strongly staining with CW too 

(pec9) and was renamed pec9. Both pec1 and pec9 have a normal growth habit, but display 

ultrastructural changes in their cuticular membrane, increased sensitivity to herbicides, and 

increased water loss in comparison to WT plants. pec9 had a stronger phenotype than pec1 in 

almost all experiments. Both mutants very rarely show organ fusions, but when organ fusions 
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occur, the cuticular membrane is disrupted or missing (Christiane Nawrath, personal 

communication). 

Mapping localised pec1-1 in a region of 30 kb potentially identical with At2g26910. Three 

T-DNA insertion lines (SALK) were identified that showed an identical phenotype: pec1-2, pec1-

3 and pec1-4. At2g26910 encodes an ABC-transporter called PDR4, belonging to the PDR 

family. One member of this family was characterised in tobacco as being capable of 

transporting the diterpene sclareol. The transport function of PEC1 still remains to be identified 

(Christiane Nawrath, personal communication). 

pec9-1 was localised by mapping to the middle of chromosome I. A candidate gene 

approach led to the lacs2-1 gene (At1g49430) (Schnurr et al., 2004). Indeed, pec9-1 does not 

complement lacs2-1. Thus, pec9-1 is allelic to lacs2-1 and will be called pec9-2, or lacs2-2. 

lacs2-2 does not complement the T-DNA insertion line (GABI) lacs2-3 either. LACS2 is a long-

chain acyl-CoA synthetase  that has been found to have higher specific activity with ω-

hydroxylated fatty acids than with normal fatty acids in E. coli (Schnurr et al., 2004). The 

analysis of residual bound lipids in lacs2-2 and lacs2-3 shows that all oxygenated fatty acids 

and their derivatives are reduced in the polyester, particularly the dicarboxylic acids (80% 

reduction). Thus, LACS2 is involved in a central step in cutin formation. Cutin monomers might 

be potentially exported as CoA-esters or esterified to glycerol before transport (Christiane 

Nawrath, personal communication). 

Transgenic CUTE plants display a disrupted cuticle structure and are fully immune to B. 

cinerea. We tested whether Arabidopsis mutants with defects in cuticle structure were also 

resistant to B. cinerea. The mutants bdg, lcr, ace/hth, pec1-1, pec1-2 (SALK line), pec9-1 

(=lacs2-2) and pec9-2 (=lacs2-3, GABI line) were compared to the WT ecotype Col-0; the wax2 

mutant was compared to the WT ecotype C24; 35S-SHN was compared to the WT ecotype Ws. 

lcr, bdg, pec1, pec1-2, pec9 and pec9-2 were found to be strongly resistant to B. cinerea, in 

comparison to WT Col-0 plants that show soft rot symptoms 3 days post-inoculation (dpi) 

(Figure 1a). However, the mutant ace/hth was as susceptible as WT Col-0 plants (Figure 1). 

The WT C24 ecotype was less susceptible to B. cinerea than Col-0, but no enhanced resistance 

could be observed in the mutant wax2 (Figure 1a). The overexpressing line 35S:SHN was fully 

resistant to B. cinerea, in comparison to the WT Ws plants (Figure 1a). Thus, all mutants that 

have defects in the cuticle structure, except ace/hth, have an enhanced resistance to B. 

cinerea, similar to CUTE plants. The level of resistance was also evaluated by counting the 

percentage of outgrowing lesions 3 dpi with B. cinerea (Figure 1b). lcr was the least resistant of 

all resistant mutants in the Col-0 background. 
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Figure 1. Resistance level of WT plants and mutants after infection with B. cinerea. a. Appearance of cuticle mutants 
3 dpi with B. cinerea, compared to controls. b. Percentage of outgrowing lesions on cuticle mutants and controls, 3 
dpi with B. cinerea. 
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Figure 2. In-vitro (a) and in-vivo (b) effect of diffusates from WT plants and mutants on B. cinerea. 

Col-0 bdg lcr ace / hth

pec 1-1 pec 1-2 pec 9 -1 pec 9-2

35S-SHNwax2 WsC24

b.  in vivo effect

Col-0 bdg lcr ace / hth

pec 1-1 pec 1-2 pec 9 -1 pec 9-2

35S-SHNwax2 WsC24

a.  in vitro effect

Col-0 bdg lcr ace / hth

pec 1-1 pec 1-2 pec 9 -1 pec 9-2

35S-SHNwax2 WsC24

b.  in vivo effect

Col-0 bdg lcr ace / hth

pec 1-1 pec 1-2 pec 9 -1 pec 9-2

35S-SHNwax2 WsC24

b.  in vivo effect

Col-0 bdg lcr ace / hth

pec 1-1 pec 1-2 pec 9 -1 pec 9-2

35S-SHNwax2 WsC24

a.  in vitro effect

Col-0 bdg lcr ace / hth

pec 1-1 pec 1-2 pec 9 -1 pec 9-2

35S-SHNwax2 WsC24

a.  in vitro effect



Chapter V 

86 

We have shown that a fungitoxic substance diffuses from leaves of CUTE and bdg plants 

(see III.1). In Chapter IV, we have hypothesised a natural fungitoxic compound that would be 

present in higher amounts in diffusates of CUTE plants because of their increased cuticular 

permeability. Leaf diffusates were collected for the different mutants with cuticular defects and 

WTs and tested in vitro for their fungitoxic activity against B. cinerea (Figure 2a). All mutants 

displaying enhanced resistance to the fungus (Figure 1) secreted the fungitoxic substance. The 

fungitoxic activity was also demonstrated in an in-vivo assay, where WT Col-0 plants were 

inoculated with B. cinerea spores mixed with the different diffusates (Figure 2b). However, the 

diffusates of ace/hth and wax2 plants did not show any fungitoxic activity, although they have an 

enhanced cuticular permeability (Chen et al., 2003; Kurdyukov et al., 2006a). Analysis of 

transpiration rates of rosettes is commonly used as a measure of cuticle permeability. The 

transpiration rate of ace/hth was found to be higher than that of WT plants and similar to the 

transpiration rates of lcr and pec1-2. The transpiration rate of bdg was the highest, followed by 

pec9-2 (Christiane Nawrath, personal communication). Thus, a fungitoxic activity can be 

recovered in leaf diffusates of most mutants that have defects in their cuticle, with the exception 

of a least one mutant where no fungitoxic activity was observed despite higher cuticle 

permeability. The reason for this peculiar behaviour needs to be further determined. 

The resistance of CUTE plants to B. cinerea is related to the priming of LTP, PER and PI 

genes (see III.1). In a first experiment, expression of the LTP gene At4g12470, of the PER 

genes At5g39580 and At2g37130, and of the PI genes At2g43510 and At2g38870 was 

analysed in WT, bdg and lcr plants after inoculation with B. cinerea. Gene expression was 

analysed 12 and 30 hpi with B. cinerea, in comparison to mock-sprayed plants. The level of 

expression of these genes was higher in the lcr and bdg mutants after inoculation with B. 

cinerea than in WT plants at similar time points (Figure 3). Thus, like in CUTE plants, increased 

expression of the LTP, PER and PI genes was linked to the resistance of both mutants to B. 

cinerea. 

The expression pattern of the LTP, PER and PI genes was also checked in the pec 

mutants after inoculation with B. cinerea, in comparison to inoculated WT Col-0 plants. pec9-1, 

pec9-2 and pec1-2 were analysed, in addition to lcr (as control for primed expression of the 

genes) and ace/hth (Figure 4). Expression of the selected genes was primed in the lcr mutant, 

except for At4g12470, whose induction in WT plants was also different from the previous 

experiment, and At2g37130. The expression pattern of the susceptible ace/hth mutant was 

quite similar to that of WT Col-0 plants, in agreement with the observation that ace/hth was as 

susceptible as WT plants to B. cinerea. The expression patterns of pec9-2 and pec9-1 however, 

were quite variable; the expression of At4g12470 and At2g37130 was primed upon inoculation 

with B. cinerea in pec9-2 but not in pec9-1, while the expression of the other genes was not 
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primed. pec1-2 did not show any increased expression of the selected genes after inoculation 

with B. cinerea, in comparison to WT plants. 

These results suggest that the expression of these five genes is variable in the different 

mutants displaying strong resistance to B. cinerea, i.e. bdg, lcr, pec9-1, pec9-2 and pec1-2. 

Although lcr and bdg showed a consistent priming of these genes like CUTE plants after 

inoculation with B. cinerea, the different results obtained with the pec mutants do not allow 

drawing strong correlations between the level of expression of these genes and the resistance 

to B. cinerea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Priming of genes in the mutants lcr and bdg after inoculation with B. cinerea. Mean normalised gene 
expression of the genes At4g12470, At5g39580, At2g37130, At2g43510 and At2g38870 in WT and mutants, mock 
(white bars) or B. cinerea inoculated (grey bars). Each bar represents the mean of triplicate samples ± SE. The 
experiment was repeated one time with similar results. 
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Figure 3. Priming of genes in the mutants lcr, ace/hth, pec9-2, pec9-1 and pec1-2 after inoculation with B. cinerea. 
Mean normalised gene expression of the genes At4g12470, At5g39580, At2g37130, At2g43510 and At2g38870 in 
WT and mutants, mock (white bars) or B. cinerea inoculated (grey bars). Each bar represents the mean of triplicate 
samples ± SE. The experiment was not repeated. 
 

 

V.3 Discussion 
 

CUTE plants have a modified cuticle, which is loosely structured and multilayered. Such 

perturbations lead to an enhanced cuticular permeability. CUTE plants, despite their degraded 

cuticle, display a total immunity against the virulent fungus B. cinerea. The increased resistance 

was not specific to the transgenic CUTE plants, but could also be observed in the bdg mutant, 

which exhibits cuticular defects (see III.1). This observation was extended to other mutants with 

cuticular defects, as shown in this study. Most mutants of Col-0 background tested, i.e. bdg, lcr, 

pec1 and pec9, except ace/hth, were highly resistant to B. cinerea in comparison to WT plants. 

35S-SHN plants were also fully resistant, in contrast to WT Ws plants. The wax2 mutant, which 

displays phenotypes typical of cuticular defects, was however not resistant to B. cinerea, like 

ace/hth (Figure 1a). 

Fungitoxic activity could be detected in all resistant mutants, while it was absent in the 

ace/hth, wax2 and WT diffusates (Figure 2a). Thus, there was a strong correlation between the 

resistance to B. cinerea and the presence of fungitoxic activity in plant diffusates, strengthening 

the idea that the toxic compound plays an important role in the resistance linked to cuticular 

defects. This statement supports the hypothesis that the increased permeability of the cuticle 

might be directly related to the presence (or the amount of) the toxic compound. Indeed, all 

mutants described with cuticular defects display an enhanced cuticular permeability, which 

leads on one hand to increased sensitivity to external compounds like herbicides, and on the 

other hand to enhanced leaking of intercellular molecules. The rate at which chlorophyll can be 

extracted from rosette leaves is commonly used as a measure of cell-wall and cuticle 
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permeability. Indeed, the mutant hth was described to have an increased rate of chlorophyll 

extraction from rosette leaves (Lolle et al., 1998), but ace/hth did neither show any toxic activity 

in leaf diffusates, nor resistance to B. cinerea. Moreover, the cuticle in the mutant formed 

multilayered patterns marked by breaks, resembling the cuticular structure of CUTE plants 

(Kurdyukov et al., 2006a). The wax2 mutant also showed increased epidermal permeability 

(Chen et al., 2003), but no toxic activity could be measured in its leaf diffusates (Figure 2a). 

Thus, diffusion of the toxic compound in inoculation droplets did not always correlate with 

increased cuticular permeability. 

Although the relations between fusion phenotypes and cuticle properties remain 

controversial, it is commonly accepted that an ability to produce epidermal fusions is linked to 

cuticle defects because, beside fusions, this class of mutants is characterised by increased rate 

of chlorophyll extraction from rosette leaves and pollen germination on non-reproductive organs 

(Lolle et al., 1998). The ace/hth mutant shows a perturbed cuticle ultrastructure but normal 

levels of epicuticular wax, organ fusions in the inflorescence, increased rate of chlorophyll 

extraction from rosette leaves and pollen germination on non-reproductive organs. ACE/HTH is 

specifically expressed in the epidermis of all vegetative and generative organs, with stronger 

expression in epidermal cells of young and actively growing vegetative and floral organs 

(Kurdyukov 2006a). The lipid profile of mutant inflorescences showed differences compared to 

the WT, indicating a defect in the oxidation of long-chain ω-hydroxy fatty acids to ω-oxo fatty 

acids. Parallel experiments with leaf samples showed similar results but greater differences 

between WT and mutant plants were observed from the inflorescence samples (Kurdyukov 

2006a). Likewise, the wax2 mutant displays a disorganized cuticle ultrastructure, an altered 

visible wax deposition, organ fusions between aerial organs, increased rates of chlorophyll 

extraction and increased transpiration rates, in comparison to WT plants (Chen et al., 2003). In 

contrary to other mutants tested in this study, wax2 has an altered visible wax deposition (Chen 

et al., 2003). Thus, ace/hth and wax2, despite their phenotype typical for cuticular defects, do 

not show increased resistance to B. cinerea. In contrast to bdg and lcr show strong organ 

fusions in leaves, ace/hth and wax2 display fusions in floral organs. The cuticular defects might 

be therefore less important in leaves, explaining the susceptibility of inoculated leaves to B. 

cinerea. 

The toxic compound in diffusates did not inhibit the germination of spores, nor the growth 

of hyphae, but significantly slowed down hyphal growth. It was also demonstrated that the 

fungitoxic compound had a strong in-vivo effect in preventing infection of normally susceptible 

WT Col-0 plants (Figure 2b). The direct fungitoxic activity might be sufficient to block infection of 

WT plants. However, the in-vitro toxic activity was strong but did not fully arrest fungal growth. 

Possibly, the toxic compound might also act as an elicitor and induce defence responses in WT 

plants, that lead to a complete stop of the infection. On the other hand, “normal” defence 
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reactions induced by the presence of B. cinerea could complete the direct effect of the 

compound on the pathogen and inhibit the infection. In addition, the participation of a third 

compound distinct from the toxic compound but with a similar molecular size (see IV.2) can not 

be excluded. It could be present in the diffusates and, parallel to the fungitoxic compound, act 

as inducer of defence reactions. 

Upon inoculation with B. cinerea, the resistance of CUTE plants was shown to be 

correlated with an earlier and stronger expression of LTP, PER and PI genes, in comparison to 

WT plants. Primed expression of these genes was also observed in the bdg mutant (see III.1), 

suggesting that induction of these defence responses might be common to plants with cuticular 

defects that display an enhanced resistance to B. cinerea, similar to CUTE plants. Indeed, the 

expression of LTP, PER and PI genes was also primed in the lcr mutant (Figure 3). The 

expression pattern of the susceptible ace/hth mutant resembled that of WT Col-0 plants, fitting 

the observation that ace/hth was as susceptible as WT plants to B. cinerea. However, the 

expression patterns of pec9-2 and pec9-1 were quite variable; the expression of some genes 

was primed upon inoculation with B. cinerea, while expression of the other genes was not 

primed. Indeed, the background of pec9-1 was found not to be Col-0, which may account for the 

differences observed between pec9-1 and pec9-2 (Christiane Nawrath, personal 

communication). pec1-2 did not show any priming of the selected genes after inoculation with B. 

cinerea. The implication of the LTP, PER and PI in defence against B. cinerea was 

demonstrated in WT plants overexpressing these genes, which resulted in an increased 

resistance to the fungus. For the pec mutants, however, the strong resistance to B. cinerea did 

not correlate with a higher expression of these genes. This observation raises the suggestion 

that there are probably other yet unknown elements that are involved in the resistance induced 

by cuticular defects, acting together to build an effective defence against this virulent pathogen. 

The full resistance of CUTE plants and other mutants with cuticular defects to B. cinerea 

highlights a multilayered defence taking place in Arabidopsis plants. Although most plants with 

defects in the cuticle ultrastructure share common characteristics like increased cuticular 

permeability, ectopic pollen germination, organ fusions and resistance to B. cinerea, it seems 

obvious that there are different classes of mutants. Indeed, all mutants described in this study 

show an enhanced permeability of the cuticle, whereas only some of them display strong organ 

fusions affecting leaves like CUTE plants, bdg and lcr. ace/hth and wax2 have organ fusions in 

floral organs, whereas pec1 and pec9 do only rarely show organ fusions (Christiane Nawrath, 

personal communication). These differences could play a role in the resistance to B. cinerea, in 

the diffusion of the fungitoxic compound(s) and the expression of the LTP, PER and PI genes. 

The fungitoxic compound, the diffusion rate of which is probably influenced by the permeability 

of the cuticle, was found to play a major role in the defence response, since its presence was 

always correlated with resistance to B. cinerea. However, two mutants with increased cuticular 
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permeability did not show any fungitoxic activity in their leaf diffusates, indicating that there are 

probably other parameters affecting the presence of the fungitoxic compound. The priming of 

the LTP, PER and PI genes also revealed some discrepancies among the different resistant 

mutants. 

In conclusion, CUTE plants represent a useful tool to study the plant responses involved 

in the defence against B. cinerea in Arabidopsis plants. CUTE plants enabled the discovery of 

new defence elements that were common to other mutants with cuticular defects. Thus, the 

cuticle integrity appears to play an important and complex role in the defence against 

pathogens. It remains to be understood how the virulent B. cinerea avoids these mechanisms 

on WT plants. 

 

V.4 Material and Methods 
 
Inoculation with B. cinerea 

B. cinerea strains B05.10 (Buttner et al., 1994) and BMM (Zimmerli et al., 2001) provided by J. van Kan and B. 

Mauch-Mani were grown on 1x PDA (Potato Dextrose Agar, 39 g l-1, Difco). Spores were harvested in water and 

filtered through glass wool to remove hyphae. Spore concentration was adjusted to 5 x 104 spores ml–1 in ¼ PDB 

(Potato Dextrose Broth, 6 g l-1, Difco) for inoculation. Leaves were inoculated with 5 µl droplets of spore suspension 

to evaluate the symptoms. The level of protection was estimated by the potential of B. cinerea to cause soft rot 

symptoms extending beyond the inoculation site (outgrowing lesions). The spore suspension was sprayed on whole 

plants for microarray and real-time RT-PCR experiments. Control plants were inoculated with ¼ PDB (mock). The 

inoculated plants were kept under a water-sprayed transparent lid to maintain high humidity. Inoculated leaves were 

stained with lactophenol-trypan blue (Nawrath and Métraux, 1999) to visualize growth of B. cinerea under the 

microscope. Both B. cinerea strains gave similar results for all experiments carried out. 

Collection of leaf diffusates 

Five µl droplets of ¼ PDB (Potato Dextrose Broth, 6 g l-1, Difco) were deposited on WT or CUTE leaves and trays 

were covered with a humid lid to maintain high levels of humidity. Leaf diffusates were collected with a pipette after 

18 hours of incubation. Leaf diffusates were stored at –20°C. 

In-vitro effect of leaf diffusates 

Nine µl of the leaf diffusate extracted with ¼ PDB was mixed with 3 µl of B. cinerea spores in H2O to a final 

concentration of 5 x 104 spores ml –1 and deposited on a microscope glass slide. Fungal growth was observed under 

the microscope after incubation under high humidity conditions for ca. 14 hours. 

In-vivo effect of leaf diffusates 

3x µl of the leaf diffusate extracted with ¼ PDB was mixed with x µl of B. cinerea spores in H2O to a final 

concentration of 5 x 104 spores ml –1. Leaves were inoculated with 5 µl droplets of the mixture and symptoms were 

evaluated after 3 days. The inoculated plants were kept under a water-sprayed transparent lid to maintain high 

humidity. Both B. cinerea strains gave similar results for all experiments carried out. 

Gene expression analysis 

RNA was prepared using the TRIzol® reagent (Molecular Research Center, Inc., Invitrogen) and retrotranscribed in 

cDNA (Omniscript® RT kit, Qiagen). Analysis of gene expression after inoculation with B. cinerea was performed by 

real-time RT-PCR (Absolute QPCR SYBR Green Mix, ABgene). The following primers were used: 5’-RTPCR-
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4g12470 (5’-CCTTACAACACCGAATATAAC-3’) and 3’-RTPCR-4g12470 (5’-GGACATTGGACCGGCTTG-3’); 5’-

RTPCR-5g39580 (5’-TCCGATCATTTGCTTTGGTC-3’) and 3’-RTPCR-5g39580 (5’-AATTGTCTCGGCATTAGGGC-

3’); 5’-RTPCR-2g37130 (5’-TCTCCTCGGCTTCTTTTGT-3’) and 3’-RTPCR-2g37130 (5’-

TACGGCTGTGTTACCGTGTTT-3’); 5’-RTPCR-2g43510 (5’-AGAAATGGCAAAGGCTATC-3’) and 3’-RTPCR-

2g43510 (5’-GCGATTGCTTTAGATTTTACTG-3’); 5’-RTPCR-2g38870 (5’-CATCAAATACATCAGAAGAC-3’) and 3’-

RTPCR-2g38870 (5’-CTTTTTCATTATGAATATAGAAAT-3’). Gene expression values were normalised with the plant 

actin 2 gene. The experiment was repeated 2 times with similar results. 

 

V.5 References 
 
Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Van Arkel, G., and Pereira, A. (2004). The SHINE clade of AP2 

domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought 

tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463-2480. 

Buttner, P., Koch, F., Voigt, K., Quidde, T., Risch, S., Blaich, R., Bruckner, B., and Tudzynski, P. (1994). 

Variations in ploidy among isolates of Botrytis cinerea - Implications for genetic and molecular analyses. 

Curr. Genet. 25, 445-450. 

Chen, X., Goodwin, M., Boroff, V.L., Liu, X., and Jenks, M.A. (2003). Cloning and characterization of the WAX2 

gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15, 1170-1185. 

Jenks, M.A., Rashotte, A.M., Tuttle, H.A., and Feldmann, K.A. (1996). Mutants in Arabidopsis thaliana altered in 

epicuticular wax and leaf morphology. Plant Physiol. 110, 377-385. 

Kolattukudy, P.E. (2001). Polyesters in higher plants. In: Advances in Biochemical Engineering Biotechnology: 

Biopolyesters, W. Babel and A. Steinbüchel, eds (Berlin: Springer-Verlag), 1-49. 

Kornneef, M., Hanhart, C.J., and Thiel, F. (1989). A genetic and phenotypic description of eceriferum (cer) mutants 

in Arabidopsis thaliana. J. Hered. 80, 118-122. 

Krolikowski, K.A., Victor, J.L., Wagler, T.N., Lolle, S.J., and Pruitt, R.E. (2003). Isolation and characterization of 

the Arabidopsis organ fusion gene HOTHEAD. Plant J. 35, 501-511. 

Kurdyukov, S., Faust, A., Tenkamp, S., Bär, S., Franke, B., Efremova, N., Tietjen, K., Schreiber, L., Saedler, H., 
and Yephremov, A. (2006a). Genetic and biochemical evidence for involvement of HOTHEAD  in the 

biosynthesis of long chain a-,w-dicarboxylic fatty acids and formation of extracellular matrix. Planta 11, 1-15. 

Kurdyukov, S., Faust, A., Nawrath, C., Bär, S., Voisin, D., Efremova, N., Franke, R., Schreiber, L., Saedler, H., 
Métraux, J.P., and Yephremov, A. (2006b). The epidermis-specific extracellular BODYGUARD controls 

cuticle development and morphogenesis in Arabidopsis. Plant Cell 18, 321-339. 

Lolle, S.J., and Pruitt, R.E. (1999). Epidermal cell interactions: case for local talk. Trends Plant Sci. 4, 14-20. 

Lolle, S.J., Cheung, A.Y., and Sussex, I.M. (1992). Fiddlehead: an Arabidopsis mutant constitutively expressing an 

organ fusion program that involves interactions between epidermal cells. Dev. Biol. 152, 383-392. 

Lolle, S.J., Hsu, W., and Pruitt, R.E. (1998). Genetic analysis of organ fusion in Arabidopsis thaliana. Genetics 149, 
607-619. 

McNevin, J.P., Woodward, W., Hannoufa, A., Feldmann, K.A., and Lemieux, B. (1993). Isolation and 

characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana. Genome 

36, 610-618. 

Nawrath, C., and Métraux, J.P. (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and 

PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393-1404. 



Chapter V 

94 

Pruitt, R.E., Vielle-Calzada, J.P., Ploense, S.E., Grossniklaus, U., and Lolle, S.J. (2000). FIDDLEHEAD, a gene 

required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. 

Proc. Natl. Acad. Sci. 97, 1311-1316. 

Schnurr, J., Shockey, J., and Browser, J. (2004). The acyl-CoA synthetase encoded by LACS2 is essential for 

normal cuticle development in Arabidopsis. Plant Cell 16, 629-642. 

Sieber, P., Schorderet, M., Ryser, U., Buchala, A., Kolattukudy, P., Métraux, J.P., and Nawrath, C. (2000). 

Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties 

of the cuticle and postgenital organ fusions. Plant Cell 12, 721-738. 

Tanaka, T., Tanaka, H., Machida, C., Watanabe, M., and Machida, Y. (2004). A new method for rapid visualization 

of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J. 37, 139-146. 

Wellesen, K., Durst, F., Pinot, F., Benveniste, I., Nettesheim, K., Wisman, E., Steiner-Lange, S., Saedler, H., 
and Yephremov, A. (2001). Functional analysis of the LACERATA gene of Arabidopsis provides evidence 

for different roles of fatty acid w-hydroxylation in development. Proc. Natl. Acad. Sci. 98, 9694-9699. 

Xiao, F., Goodwin, M.S., Xiao, Y., Sun, Z., Baker, D., Tang, X., Jenks, M.A., and Zhou, J.M. (2004). Arabidopsis 

CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J. 

23, 2903-2913. 

Yephremov, A., and Schreiber, L. (2005). The dark side of the cell wall: molecular genetics of plant cuticle. Plant 

Biosystems 139, 74-79. 

Yephremov, A., Wisman, E., Huijser, P., Huijser, C., Wellesen, K., and Saedler, H. (1999). Characterization of the 

FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the 

epidermis. Plant Cell 11, 2187-2201. 

Zimmerli, L., Métraux, J.P., and Mauch-Mani, B. (2001). beta-amino butyric acid-induced resistance of Arabidopsis 

against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126, 517-523. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

VI. Wound-induced resistance to Botrytis 
cinerea 



Chapter VI 

96 

VI.1 Article 
 

Wound-induced resistance to Botrytis cinerea 
 

Céline Chassot, Antony Buchala and Jean-Pierre Métraux 
 

Department of Biology, University of Fribourg, 3 rue Albert Gockel, CH-1700 Fribourg, Switzerland 

contact person: jean-pierre.metraux@unifr.ch 

 

Full immunity to the soft rot pathogen Botrytis cinerea strains B05.10 and BMM was 

observed in Arabidopsis thaliana Col-0 following wounding of the leaf. The resistance was 

observed strictly at the delimited wound site produced using laboratory forceps or syringe 

needles. Wound-induced resistance was not associated with salicylic acid-, jasmonic acid- or 

ethylene-dependent defence responses. The phytoalexin camalexin was found to be involved in 

this defence response since the pad2 and pad3 camalexin-deficient mutants were susceptible 

after wounding and the B. cinerea strains were sensitive to this toxin. Wounding alone did not 

induce camalexin but primed its accumulation after inoculation with B. cinerea. Glutathione was 

also found to be required for the resistance, as mutants deficient in the γ-glutamylcysteine 

synthetase such as pad2, rax1 or cad2 showed susceptibility to B. cinerea after wounding 

indicating that basal levels of glutathione are required for the wound-induced resistance. In 

addition, expression of the gene encoding the glutathione-S-transferase 1 was primed by 

wounding in leaves inoculated with B. cinerea. Our results demonstrate how abiotic stress can 

induce full immunity to virulent strains of B. cinerea, a process that involves camalexin and 

glutathione. 

 

VI.1.1 Introduction 
 

Botrytis cinerea is an ubiquitous pre- and postharvest necrotrophic pathogen with a 

broad host range (Pezet et al., 2004) that causes substantial crop losses (Tournas, 2005). B. 

cinerea conidia penetrate through the cuticule and epidermal walls leading to the death of 

invaded cells. The mycelium spreads through dead tissue leading to tissue softening, rot or 

necrosis, depending on the invaded parts. Botrytis circumvents plant defenses in various ways. 

For instance, this fungus can degrade the cuticle and the plant cell wall (Commenil et al., 1998; 

Staples and Mayer, 1995; ten Have et al., 1998) and detoxify plant antifungal products (Gil-ad et 

al., 2000; Pezet et al., 1991; Kliebenstein et al., 2005). During the infection process, B. cinerea 

weakens or damages its host using reactive oxygen species (ROS) (Liu et al., 1998), toxins or 

oxalic acid that chelates cell-wall calcium and enhances its own endopolygalacturonase activity 
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(Prins et al., 2000; Reino et al., 2004). Targeted inactivation of fungal genes involved in cell-wall 

degradation (ten Have et al., 1998; Valette-Collet et al., 2003) support the biological relevance 

of the cell wall as a food source or as a general barrier against invading fungi. Further defence 

reactions induced during infection with B. cinerea involve cell-wall strengthening (McLusky et 

al., 1999; Stewart and Mansfield, 1985). 

The defence reactions of the host plant to infection by B. cinerea have been studied in 

many plants. Oligogalacturonides protect grapevine against B. cinerea, presumably by eliciting 

defence responses such as increased chitinase and β-1,3-glucanase activities or the stimulation 

of an oxidative burst (Aziz et al., 2004). Changes in wyerone and wyeronic acid measured in 

Vicia faba were found to restrict growth of B. cinerea in broad bean (Mansfield and Hutson, 

1980). The accumulation of the lettuce phytoalexin lettucenine correlates with resistance to B. 

cinerea (Bennett et al., 1994). Resistance to B. cinerea in Arabidopsis was recently described to 

involve the phytoalexin camalexin (Kliebenstein et al., 2005; Denby et al., 2004; Ferrari et al., 

2003). The pad2-1 and pad3-1 mutants isolated for reduced accumulation of camalexin after 

inoculation with bacterial pathogens (Glazebrook et al., 1994) display a higher susceptibility to 

B. cinerea and camalexin has a direct toxic effect against B. cinerea (Denby et al., 2004, Ferrari 

et al., 2003). Earlier observations did not support such a conclusion (Thomma et al., 1999a), but 

different B. cinerea isolates were shown to differ in their camalexin tolerance (Kliebenstein et 

al., 2005). The production of camalexin was also found to vary greatly among different 

Arabidopsis ecotypes (Denby et al., 2004). This could explain the contradictory results among 

the different studies. 

The development of a hypersensitive reaction is part of the defence responses of plants 

and the collapse of life-sustaining host cells is usually considered as a major barrier to many 

biotrophic pathogens. Necrotrophs such as Botrytis or Alternaria might use the hypersensitive 

cell death to their advantage for a better colonization of the host (Govrin and Levine, 2000; 

Lincoln et al., 2002; Van Baarlen et al., 2004). In Arabidopsis, distinct defence signalling 

pathways operate against discrete groups of pathogens. For instance, the salicylic acid (SA)-

dependent pathway controls the expression of pathogenesis-related genes such as PR1 

together with defence to biotrophic pathogens such as Hyaloperonospora parasitica. The 

ethylene (ET)- and jasmonic acid (JA)-dependent pathway determines defence to necrotrophs 

and the expression of another set of PR genes that include the antimicrobial PR-3 (chitinase), 

PR-4 (hevein-like protein) or a plant defensin (PDF1.2) (Penninckx et al., 1996; Penninckx et 

al., 1998). 

The plant defensins alone may determine resistance to various Alternaria species as 

demonstrated in transgenic plants constitutively overexpressing plant defensin genes 

(Parashina et al., 2000; Terras et al., 1995). While there is a strong case for Alternaria 

resistance linked to PDF1.2 expression together with camalexin production, resistance to B. 



Chapter VI 

98 

cinerea might rather result from a combined action of several other antifungal proteins that are 

induced along with PDF1.2 (Thomma et al., 1998; Thomma et al., 1999). Enhanced 

susceptibility to necrotrophic (Alternaria, Botrytis, Plectosphaerella) but not biotrophic 

pathogens (Hyaloperonospora, Pseudomonas syringae) was observed in esa1 mutants. These 

plants show a delayed expression of PDF1.2 and of camalexin accumulation upon pathogen 

inoculation (Tierens et al., 2002). Thus, PDF1.2 is a good marker for responses against B. 

cinerea, but is not active itself. Resistance of tomato to B. cinerea is enhanced by ET 

treatments while an inhibitor of ET perception increases susceptibility (Diaz et al., 2002). A 

functional ET pathway is required for defence against B. cinerea in Arabidopsis (Thomma et al., 

1999). Arabidopsis plants overexpressing the ETHYLENE RESPONSE FACTOR 1, a gene 

involved in the ET-dependent expression of proteins such as chitinase or defensins, exhibit 

increased resistance to necrotrophs (Berrocal-Lobo et al., 2002). Recently, Ferrari et al. (2003) 

proposed that the local resistance to B. cinerea requires ET-, JA-, and SA-signalling pathways 

as well as synthesis of camalexin. 

Abiotic stimuli such as UV radiation, heat treatment or wounding have also been reported 

to be effective inducers of defenses against pathogens (Métraux and Durner, 2004). In 

particular, wounding of the plant surface creates a potential entry point for invading pathogens. 

Plants respond to this injury by localized defense responses including accumulation of 

phytoalexins (Kuc, 2000; Reymond et al., 2000) and antimicrobial proteins such as proteinase 

inhibitors or chitinase (Chang et al., 1995; Graham et al., 1986; Ryan, 1990). Genetic evidence 

demonstrates the involvement of octadecanoic acids as endogenous regulators for wound-

induced resistance to insects or pathogens (Howe, 2004). However, a substantial number of 

wound-induced genes are expressed independently of JA perception (Reymond et al., 2000). 

Wounding and insect feeding also produce signals (hydraulic, electrical or chemical) that can 

propagate systemically. For example in tomato, wounding results in the production of systemin, 

a systemic signal involved in the activation of proteinase inhibitors (Howe, 2004). Green leafy 

volatiles or isoprenoids are produced after mechanical wounding or pathogen/herbivore attacks 

in higher plants. They are perceived by JA-dependent and -independent pathways in 

Arabidopsis. Treatment of Arabidopsis plants with such volatiles induces defence responses 

and increases resistance to B. cinerea (Kishimoto et al., 2005). 

In this article, we describe a strong immunity of wounded Arabidopsis leaves in response 

to inoculation with B. cinerea. We have characterized the mechanisms involved in this defense 

and shown the implication of an early accumulation of camalexin after wounding. In addition we 

have documented the importance of glutathione in this process. 
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VI.1.2 Results 
 

Under the experimental conditions described, both B. cinerea strains B05.10 and BMM 

were strongly pathogenic on Arabidopsis ecotype Col-0 as shown in Fig. 1a (first row). 

Wounding of Arabidopsis leaves with laboratory forceps and subsequent inoculation of the 

wound-site with B. cinerea led to a strong immunity compared to unwounded leaves (Fig 1a, 

middle row). The wound-induced protection could also be induced by puncturing several holes 

with a syringe needle. No outgrowing lesions were observed after placing a droplet of a B. 

cinerea spore suspension on such a wound site (Fig 1a, lower row). In our experience, sharp 

wound sites that contain intact cells able to induce defense reactions appeared to lead to a 

stronger protection. Indeed, a single puncture performed with the tip of a syringe needle was not 

sufficient to induce resistance against B. cinerea. Full protection was obtained when inoculation 

droplets were placed at sites enclosing 4 punctures or more. A wound site with a large area of 

dead cells allowed the propagation of the fungus due to its capacity to use dead tissue as a 

saprophytic base. Inoculation of B. cinerea spores distally from a wound site produced 

symptoms, indicating the absence of a systemic wound-induced protection comparable to those 

on non-wounded leaves (Fig. 1b). The level of protection was estimated by the potential of B. 

cinerea to cause soft rot symptoms extending beyond the inoculation site. On wild-type (WT) 

Col-0 plants most inoculation sites result in water-soaked lesions but a limited number of lesions 

do not spread beyond the primary infection site. Under our experimental conditions, the 

percentage of spreading lesions was the most adequate way to compare the level of resistance 

of different plants. 

The dependency of wound-induced resistance on known signalling pathways for induced 

resistance was tested using several mutants as shown in Fig. 2. Wounding was performed on 

mutants affected in the ET perception (such as ein2 and etr1), JA signalling  (jar1, coi1) or SA 

accumulation (sid2, pad4). Inoculation of the wound sites with B. cinerea induced full resistance 

in all mutants compared to the corresponding WT plants, indicating that ET-, JA- and SA-

signalling are not involved in the wound-induced resistance. Furthermore, we tested the 

phytoalexin-deficient mutants pad2 and pad3, since camalexin has been previously implied in 

resistance to B. cinerea. Interestingly, protection induced by wounding was much less efficient 

on both pad2 and pad3 compared to WT plants. These results suggest that camalexin is 

involved in the wound-induced resistance to B. cinerea. In a recent study, camalexin was shown 

to have a variable impact on B. cinerea, depending on the pathogen isolate (Kliebenstein et al., 

2005). Therefore we tested the sensitivity of the B. cinerea isolates B05.10 and BMM used in 

the studies presented here. In-vitro tests where camalexin was incorporated in the germination 

medium confirmed a strong sensitivity of the B. cinerea B05.10 and BMM strains to camalexin 

(data not shown). 
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Figure 2. Percentage of outgrowing lesions after infection with B. cinerea on unwounded or forceps-wounded leaves. 
The resistance level of WT plants and different mutants to B. cinerea (5 x 104 spores ml–1 ¼ PDB) was evaluated as 
the percentage of outgrowing lesions. White bars: unwounded leaves; grey bars: wounded leaves. Symptoms were 
evaluated 3 days after inoculation. Bars represent the mean of 4 to 6 experiments (n=48 to 72, ±SD). 

Figure 1. Wound-induced resistance of 
Arabidopsis against B. cinerea. 
a. Disease symptoms on Col-0 WT plants 3 
days after mock (right row) and inoculation 
with B. cinerea (5 x 104 spores ml–1 ¼ PDB) 
(left row). Plants were inoculated by 
depositing 5 µl spore suspension on 
unwounded leaves (upper row), directly 
after wounding with a forceps (middle row), 
or directly after puncturing several tiny 
holes with a syringe needle (lower row). 
b. Leaves of WT plants were wounded with 
a forceps on one side of the central vein.
Five µl droplets of B. cinerea spores (5 x 
104 spores ml–1 ¼ PDB) were placed on the 
wounded site (arrow) and on the 
unwounded leaf half. Symptoms were 
evaluated 3 days after inoculation. 
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To further explore the importance of camalexin, we have determined the kinetics of 

camalexin accumulation in wounded WT plants after inoculation with B. cinerea (Fig. 3). The 

inoculation medium alone sprayed on wound sites had no effect on the accumulation of 

camalexin. The accumulation of camalexin in WT plants was triggered at 24 h after B. cinerea 

inoculation and increased drastically at 36 hours post-inoculation (hpi). Interestingly, in 

wounded and infected plants, camalexin was already detectable at 12 hpi. At 24 hpi, it has 

raised to a level 7-fold higher than that in unwounded B. cinerea-inoculated plants. The highest 

levels of camalexin were observed at 48 hpi in inoculated control plants, presumably due to the 

extensive disease development in the absence of wounding. Therefore, wounding primes 

camalexin accumulation after B. cinerea inoculation in WT plants. 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. Priming of camalexin accumulation in wounded and infected WT plants. 
WT plants were sprayed with the mock buffer (¼ PDB) (black bars), wounded and mock-sprayed (dark grey bars), 
inoculated with B. cinerea (5 x 104 spores ml–1 ¼ PDB) (white bars), and wounded and inoculated (light grey bars). 
Wounding was performed by puncturing the whole leaf surface with the « syringe stamp ». Three samples of leaves 
from 6 plants at least were collected at different time points after treatment. Camalexin was extracted and quantified 
by HPLC. Means and standard deviation of 3 replicates are shown. The experiment was repeated 2 times with similar 
results. 
 
 

The wound-induced priming of camalexin was further analysed in mutants of the ET 

(ein2), JA (jar1) and SA (pad4) pathways used in the experiment described in Fig. 2. Camalexin 

was determined after 24 hpi, a time point where priming has taken place after wounding and 

inoculation in WT plants. As presented in Fig. 4, a strong induction of camalexin could be 

measured in the ein2, jar1 and pad4 mutants indicating wound-induced priming similar to that 

induced in WT plants. Both pad3 and pad2 showed an absence respectively an intermediate 

level of camalexin accumulation in response to B. cinerea in wounded leaves. Priming in pad2 

led to about 3 times less camalexin than in WT plants. The absence of camalexin in pad3 

agrees with published results describing PAD3 as a cytochrome P450 monooxygenase directly 

involved in camalexin biosynthesis (Zhou et al., 1999). Whereas pad2 was the most susceptible 

of all mutants to B. cinerea, it did not display the lowest level of camalexin after wounding and 
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infection at 24 hpi. This suggests the participation of other components in the wound-induced 

resistance besides camalexin. 

 

 

 

 

 

 

 

 

 

 

 

The pad2 mutant has recently been shown to carry a mutation in GSH1 encoding a γ-

glutamylcysteine synthetase involved in the biosynthesis of glutathione (Parisy et al., 2006). To 

find out whether a basal level of glutathione is required for the wound-induced resistance to B. 

cinerea, two other glutathione-deficient mutants cad2-1 (cadmium hypersensitive 2-1) and rax1-

1 (regulator of ASCORBATE PEROXIDASE 2 1-1) were analysed. Both cad2 and rax1 carry 

point mutations in the GSH1 gene (Cobbett et al, 1998; Ball et al., 2004). The level of 

glutathione was determined in Arabidopsis WT plants, in pad2 as well as in cad2, rax1, and in 

pad3 which was included as susceptible plant (Fig. 5a). In accordance with published results, 

the level of glutathione was strongly decreased in pad2, rax1 and cad2, compared to WT plants 

(Parisy et al., 2006; Ball et al., 2004; Cobbett et al., 1998). The pad3 mutant shows a basal level 

of glutathione comparable to WT plants. Interestingly, rax1 and cad2 show a strong reduction in 

the wound-induced protection to B. cinerea, confirming a possible implication of glutathione in 

this phenomenon (Fig. 5b). However, priming of camalexin accumulation 24 h after wounding 

and inoculation with B. cinerea in cad2 and rax1 is similar to WT plants (data not shown). 

Wound-induced accumulation of glutathione or wound-induced priming similar to that of 

camalexin could not be observed in WT plants (data not shown). 

Glutathione is involved in the detoxification of organic compounds. Many xenobiotics as 

well as some metabolites like anthocyanins are conjugated with glutathione by a family of 

glutathione S-transferases (GST) and transported, possibly as conjugates, into the vacuole 

(Marrs, 1996). One of these GST’s, GST1 (Greenberg et al., 1994), was selected previously as 

a robust molecular marker for the production of ROS and found to be expressed independently 

of SA, JA and ET after wounding and pathogen attack (Kishimoto et al., 2005; Vollenweider et 

al., 2000; Grant et al., 2000). We analysed GST1 expression by real-time RT-PCR after 

wounding and inoculation with B. cinerea in WT plants (Fig. 6). GST1 mRNA accumulation was 
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primed after wounding and inoculation (Fig. 3). At 24 hpi the increase in GST1 expression 

induced by B. cinerea is larger than GST1 expression induced by wounding and B. cinerea. 

However, GST1 is also induced moderately by wounding alone and the expression peaks at 9 

hpi and decreases thereafter. These results suggest that basal glutathione levels and 

expression of the stress-inducible GST1 gene might play a role in the wound-induced resistance 

to B. cinerea, in addition to the accumulation of the phytoalexin camalexin. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Wound-induced resistance to B. cinerea in mutants impaired in glutathione biosynthesis. 
a. Level of total glutathione. Leaves of uninduced four-week old plants were analysed. Means and standard deviation 
from 3 independent measurements are shown. b. Percentage of outgrowing lesions after infection with B. cinerea (5 
x 104 spores ml–1 ¼ PDB) on unwounded leaves and leaves wounded with a forceps. Symptoms were evaluated 3 
days after inoculation. For each genotype, means and standard deviation from 3 independent experiments carried on 
24 plants are shown. 
 

 

 

 

 

 

 

 

 

 

 
Figure 6. Priming of GST1 mRNA accumulation. 
WT plants were sprayed with the mock buffer (¼ PDB) (black bars), wounded and mock-sprayed (dark grey bars), 
inoculated with B. cinerea (5 x 104 spores ml–1 ¼ PDB) (white bars), and wounded and inoculated (light grey bars). 
Wounding was performed by puncturing the whole leaf surface with the « syringe stamp ». Leaves from 4 to 6 plants 
were harvested at different time points for each treatment, RNA was extracted and transformed in cDNAs. GST1 
transcript level was quantified by real-time PCR and normalized with the plant ACTIN2 transcript. Data are expressed 
as mean normalized expression (no unit) of triplicate determinations. Standard error bars are represented. The 
experiment was repeated 2 times with similar results. 
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VI.1.3 Discussion 
 

In general, wounding of plant surfaces offers an ideal entry point for many 

microorganisms invading a plant and a number of pathogenic species use such breaches to 

invade their host. Plants have evolved mechanisms to recognize and respond to injuries by 

activating various resistance mechanisms against microorganisms or insects (Kuc, 2000; 

Reymond et al., 2000). Results presented here extend these observations to the case of an 

infection with the necrotrophic fungus B. cinerea. Wounding was found to predispose the 

defence of the tissue to an infection by a necrotrophic pathogen localised at the wound site. 

This type of process is generally referred to as priming (Conrath et al., 2002). Our experimental 

results suggest that sharply delimited wound surfaces are required to activate resistance 

responses, presumably offering an increased surface area for stress reactions to be induced. 

In previous studies, basal resistance to B. cinerea was mainly associated with ET- and 

JA-dependent defence responses (Diaz et al., 2002; Thomma et al., 1998; 1999). The local 

resistance to B. cinerea was also reported to depend on SA and camalexin (Ferrari et al., 2003). 

The chemical inducer β-aminobutyric acid was shown to decrease B. cinerea lesion size and 

prime the accumulation of SA-dependent responses such as the accumulation of PR1 mRNA 

while inhibiting ET- and JA-dependent responses (Zimmerli et al., 2000). However, the wound-

induced resistance to B. cinerea is independent of the JA-, ET- and SA- defence pathways, as 

shown with the different mutants presented in Fig. 2. This distinguishes our finding from 

previous studies. Moreover, the results presented here were carried under somewhat different 

conditions, since the leaf tissue was predisposed by wounding. Our observations complete 

these previous results and highlight the activation of a strong and localized immunity against B. 

cinerea at wound sites. The sensitivity to camalexin of B. cinerea isolates B05.10 and BMM 

used here, combined with the early accumulation of camalexin observed after wounding and B. 

cinerea infection as well as the decrease of wound-induced resistance observed in pad3, 

provides an explanation for the resistance observed in these plants. Under unwounded 

conditions, camalexin accumulation induced by the pathogen is likely to be too slow and the 

pathogen can outgrow the sites of high camalexin content. The accumulation of camalexin, 

unlike other metabolites such as sinapyl malate, flavonols, indole or aliphatic glucosides, was 

shown to remain confined to the necrotized infection area (Kliebenstein et al., 2005), making it 

likely that the absence of systemic effect results from the absence of a systemic accumulation 

of camalexin. 

The role of camalexin in the resistance to B. cinerea is the source of many discussions. 

Camalexin-deficient mutants like pad3 and pad2 show an enhanced susceptibility to B. cinerea, 

suggesting that camalexin plays a major role (Denby et al., 2004; Ferrari et al., 2003). The esa1 

mutant shows an increased susceptibility to B. cinerea which correlates with a delayed induction 
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of camalexin (Tierens et al., 2002). The ups1 mutant however is impaired in camalexin 

accumulation, although its response to B. cinerea is not altered (Denby et al., 2005). The bos 

(botrytis-susceptible) mutants also highlight the discrepancy of the role of camalexin, as bos2 

has a reduced camalexin accumulation after infection with B. cinerea and bos3 accumulates as 

much camalexin as WT plants, despite its enhanced susceptibility (Mengiste et al., 2003; 

Veronese et al., 2004). As reported recently (Kliebenstein et al., 2005), pad3, a mutant in the 

biosynthesis of camalexin, is more susceptible to B. cinerea in our experiments. B. cinerea 

isolates might vary in their sensitivity to camalexin and camalexin production can vary 

depending on the ecotypes. The B. cinerea strains used in our experiments were both found to 

exhibit sensitivity to camalexin and all the plants used here belong to the Arabidopsis Col-0 

ecotype that produces camalexin. The loss of resistance in pad3 together with the wound-

induced priming of camalexin, makes it reasonable to consider this metabolite a possible factor 

involved in resistance. Interestingly, wound-induced priming of camalexin is independent of ET, 

JA or SA signalling pathways (Fig. 2). The molecular basis of the wound-induced priming of 

camalexin offers a suitable experimental foundation for further studies. 

The complete loss of wound-induced resistance in pad2 combined with a higher 

camalexin content compared to pad3 implies that the resistance of pad2 must involve additional 

factors besides camalexin. This factor is likely to be glutathione, since pad2 has recently been 

shown to bear a mutation in the gene encoding GSH1 (Parisy et al., submitted). Both rax1 and 

cad2 mutants also have lower glutathione contents (between 10% and 35% of the WT Col-0 

plants) and show a reduction of resistance after wounding (Fig. 5). The level of wound-induced 

resistance in pad2, rax1 and cad2 is lower than in WT plants but somewhat variable despite a 

common defect in the GSH1 gene. The rax1 and cad2 plants were found to present many 

differences in the expression profiles of defence and stress genes even although they bear a 

mutation in the same gene (Ball et al., 2004). Glutathione metabolism influences many cellular 

processes; for instance, it might participate in the detoxification of fungal products. Perhaps, 

plant cells also require glutathione to avoid excessive damage caused by the accumulation of 

phytoalexin, or to quench the oxidative stress inflicted by the pathogen. In tomato leaves, the 

content in total glutathione and GSH is decreased after Botrytis infection (Kuzniak and 

Sklodowska, 1999, 2001), but glutathione levels in Phaseolus leaves are little affected by 

Botrytis infection (Muckenschnabel et al., 2001). In our study, the WT level of glutathione might 

be sufficient since we observe no increase during the wound-induced resistance of WT plants 

(data not shown). Thus, WT glutathione levels represent one component of the wound-induced 

resistance to B. cinerea, besides the accumulation of camalexin and possibly other yet unknown 

mechanisms. 

The glutathione S-transferase GST1 gene is used as marker gene for pathogen- and 

wound-induced responses (Jabs et al., 1996; Kishimoto et al., 2005; Rushton et al., 2002; 
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Vollenweider et al., 2000). As a next logical step, we tested whether GST1 expression might be 

affected by wounding. Our results show a wound-induced priming of GST1 in infected WT 

plants (Fig. 6). It was also recently shown in the ups1 mutant that a reduced GST1 expression 

accompanies a lower camalexin accumulation (Denby et al., 2005). In addition, the mutant ocp3 

(overexpressor of cationic peroxidase 3) shows increased resistance to B. cinerea and 

constitutively expresses the GST1 marker gene (Coego et al., 2005). Thus, resistance to B. 

cinerea has been linked to enhanced expression of GST1 and accumulation of camalexin. 

Summarizing, wounding of Arabidopsis Col-0 induces full immunity to B. cinerea that can 

be explained by the priming due to camalexin accumulation. In addition, glutathione is also likely 

to be involved in this process. These results add an interesting dimension to our understanding 

of plant defense against B. cinerea. 

 

VI.1.4 Material and Methods 
 
Plant maintenance 

Plants were grown on a pasteurized soil mix of humus / perlite (3:1) under a 12 h light and 12 h dark cycle, with a 

night temperature of 16 to 18°C and a day temperature of 20 to 22°C (60 to 70% humidity). WT plants are the 

Arabidopsis accession Col-0 obtained from the Arabidopsis Biological Reasearch Center (Columbus, OH). The 

Arabidopsis mutant eds5 was eds5-3 (Nawrath and Métraux, 1999), sid2 was sid2-1 (Nawrath and Métraux, 1999) 

and pad4 was pad4-1 (Glazebrook and Ausubel, 1994;). The etr1 mutant was etr1-1 (Schaller and Bleecker, 1995) 

(Nottingham Arabidopsis Stock Center), ein2 was ein2-1 (Alonso et al., 1999; Guzman and Ecker, 1990), jar1 was 

jar1-1 (Staswick et al., 1992; Staswick et al., 2002), pad3 was pad3-1 and pad2 was pad2-1 (Glazebrook and 

Ausubel, 1994; Glazebrook et al., 1997). 

Culture of B. cinerea and infection method 

B. cinerea strains B05.10 and BMM, provided by Jan van Kan et Brigitte Mauch-Mani, respectively, were grown on 1x 

PDA (Potato Dextrose Agar, 39 g l-1, Difco). Spores were harvested in water and filtered through glass wool to 

remove hyphae. Spore concentration was adjusted to  5 x 104 spores ml –1 in ¼ PDB (Potato Dextrose Broth, 6 g l-1, 

Difco) for inoculation. Droplets of 5 µl of spore suspension were deposited on leaves for quantification of outgrowing 

lesions. The spore suspension was sprayed on whole plants for camalexin measurements or real-time RT-PCR 

experiments. The inoculated plants were kept under a water-sprayed transparent lid to maintain high humidity. 

Control plants were inoculated with ¼ PDB. 

Wounding method 

Wounding was performed using a sharp laboratory forceps or by puncturing several holes (ca. 10) with a syringe 

needle (27GA). For wounding of whole leaves, a self-made “syringe-stamp” made of syringe needles 1 mm apart was 

used. Wounded leaves were inoculated directly after treatment (up to 15 minutes). 

Camalexin determination 

Leaf material (ca. 200 mg) was collected and assayed for camalexin as previously described for SA (Meuwly and 

Métraux, 1993). Samples were frozen and ground with a glass rod. 2 ml of 70% ethanol and 200 ng of internal 

standard (ortho-anisic acid, 1 ng µl-1 in ethanol) were added. After homogenization (Polytron; Kinematica, Littau, 

Switzerland) and centrifugation, the supernatant was decanted into a fresh tube and the extraction was repeated with 

2 ml of 90% methanol. Supernatants were pooled and evaporated under reduced pressure (Speed Vac, Buchler). 
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200 µl of 5% trichloroacetic acid was added to the remaining aqueous solution. After a brief centrifugation, the 

supernatant was transferred to a fresh tube and extracted with 2x 500 µl of ethyl acetate / cyclohexane (1:1). The 

pooled organic phases that contain the free phenols and camalexin were evaporated (Speed Vac) and resuspended 

in 200 µl (or more depending on the amount of plant tissue) of HPLC starting buffer (15% acetonitrile in 25 mM 

KH2PO4, pH 2.6). Chromatography was performed on a reverse phase HPLC column (ABZ+, 25 cm x 4.6 mm; 

Supelco, Buchs, Switzerland). The amount of camalexin was calculated in ng g-1 fresh weight, with reference to the 

amount of internal standard. 

Glutathione extraction 
Samples were extracted according to Harms et al. (2000) with some minor modifications (Parisy et al., 2006). Leaf 

material (ca. 200 mg) was collected, frozen and ground with a glass rod. Two ml of 0.1 N HCl and 50 µg of 

homoglutathione (internal standard) were added before homogenization (Polytron; Kinematica, Littau, Switzerland). 

Samples were centrifuged at 4°C (10 min, 13’000 g) and 120 µl of the supernatant was mixed to 200 µl of CHES 

buffer (0.2 M 2-N-cyclohexylamino-ethane sulfonic acid, pH 9.3). Ten µl of BMS (9 mM bis-2-mercaptoethylsulfone in 

200 mM Tris-HCl and 5 mM EDTA, pH 8.0) were added to the samples to allow reduction of total disulphides for 40 

min at room temperature. Free thiols were labeled for 15 min at room temperature in the dark with 15 µl of 15 mM 

monobromobimane in acetonitrile. The reaction was stopped with 250 µl of 15% HCl. The samples were kept on ice, 

centrifuged for 10 min and analyzed by HPLC column. The amount of total thiols was calculated in ng g-1 fresh 

weight, with reference to the amount of internal standard. 

RNA extraction and real time RT-PCR 

RNA was prepared using the TRIzol® reagent (Molecular Research Center, Inc., Invitrogen). 1 µg of RNA was 

retrotranscribed in cDNA (Omniscript® RT kit, Qiagen). Real-time PCR was performed using the Absolute QPCR 

SYBR Green Mix (ABgene). Gene expression values were normalised with the expression of the plant ACTIN2 gene. 

Primers used: 5’-ACT2 (5’-AGCACCCTGTTCTTCTTACCGAG-3’); 3’-ACT2 (5’-GGCGACATACATAGCGGGAGAG-

3’); 5’-GST1 (or ATGSTF6): (5’-ATCAAAGTTTTCGGTCACCCA-3’); 3’-GST1 (5’-TTTACCAAAGGGGTTGCGAAG-

3’). 
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The cuticle forms a continuous lipid membrane over the apical epidermal cell walls of 

essentially all aerial plant organs (Jenks et al., 2002). The cutin polymer, the structural 

component of the cuticle, is composed of esterified fatty acid derivatives and is embedded in a 

complex mixture of lipids called waxes. The cuticle plays a major role in the interaction of the 

plant with its environment. The main functions of the cuticle are to reduce the uncontrolled loss 

of water and apoplastic solutes, to protect tissue from mechanical damage, to reflect and 

attenuate radiation, and to form a mechanical barrier against penetration by fungal hyphae and 

insect mouthparts (Kerstiens, 1996). 

The cuticle is often the first contact point with environmental microbes and plays a critical 

role in the interaction of the plant with microorganisms (Kolattukudy, 2001). Many pathogenic 

fungi find their way via stomata or other openings, while some penetrate the cuticle directly. In 

some cases, direct penetration is facilitated by fungal cutinase loosening the cuticular matrix 

(Kolattukudy, 1985; Köller, 1995). The cuticle was shown to be a source of signals for invading 

fungal pathogens. Cutin monomers, the breakdown products of fungal cutinases, have been 

found to stimulate germination and appressorium formation (Gilbert et al., 1996) and to induce 

expression of the cutinase gene in many fungi (Kolattukudy et al., 1995). It has long been 

supposed that the plant cuticle functions only as an inert physical barrier against fungal 

infection. However, there is evidence that cutin monomers may also act as early alarm signals 

of fungal attack and trigger defence reactions in the host (Namai et al., 1993; Schweizer et al., 

1994; Schweizer et al., 1996; Schweizer et al., 1996; Fauth et al., 1998; Kauss et al., 1999). 

In this study, the reactions of plants to changes in the structure of their cuticle were 

investigated, and in particular the potential role of cuticular defects to trigger innate immunity. 

As model of study, transgenic Arabidopsis plants were generated that overexpress a cutinase 

from Fusarium solani f.sp. pisi and therefore degrade their own cutin in situ (Sieber et al., 2000). 

These plants that express cutinase constitutively (CUTE plants) show an altered ultrastructure 

of the cuticle and an enhanced permeability of the cuticle to solutes, in addition to ectopic pollen 

germination on leaves and strong organ fusions (Sieber et al., 2000). We show that degradation 

of the cuticular layer in CUTE plants leads to full immunity to Botrytis cinerea, an ubiquitous 

fungal pathogen causing important damages to many crop plants. As one of the main functions 

of the cuticle is to confer protection to the plant, this counter-intuitive result raised the exciting 

hypothesis that Arabidopsis plants might sense the degradation of their surface layer and 

induce effective defence responses. 

The powerful resistance of CUTE plants to B. cinerea was found to be independent of 

the known defence signalling routes involving salicylic acid (SA), ethylene (ET) or jasmonic acid 

(JA) and accompanied by changes in gene transcription. After inoculation with B. cinerea, the 

expression of genes coding for lipid transfer proteins (LTP), peroxidases (PER), and protease 

inhibitors (PI) was strongly enhanced in CUTE plants, in comparison to wild-type (WT) plants. 
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The involvement of these novel genes in the defence against B. cinerea was demonstrated by 

overexpressing them in WT plants. Such transgenic plants displayed an increased resistance to 

the fungus, supporting the contribution of these genes in the resistance to B. cinerea. The LTP, 

PER and PI genes are naturally induced by B. cinerea in WT plants, albeit to a lower level, 

indicating that they might be part of an attempted but insufficient defence response against the 

virulent pathogen. 

Several enzymes with cutinolytic activity have been characterised and purified from 

culture filtrates of B. cinerea, e.g. cutinases, esterases and lipases (Salinas et al., 1986; 

Salinas, 1992; Comménil et al., 1995; Comménil et al., 1999; Gindro and Pezet, 1999). The 

cutinase gene (cutA) of B. cinerea was found to be expressed, but not essential for infection 

(Van der Vlugt-Bergmans et al., 1997; Van Kan et al., 1997), like the lipase gene (lip1) (Reis et 

al., 2005). Overexpression of the cutA or lip1 genes of B. cinerea in Arabidopsis plants induced, 

in addition to the typical developmental phenotype of CUTE plants, full resistance to B. cinerea 

similar to that of CUTE plants overexpressing the cutinase of F. solani. In WT plants, the rapidly 

growing fungus can apparently overcome the effect of the cutinolytic enzymes produced during 

the infection. The quantity and the timing of the production of these enzymes might be 

insufficient to trigger resistance. 

The powerful defence of CUTE plants was found to be accompanied by the diffusion of a 

strong fungitoxic activity against B. cinerea, demonstrated in both in-vitro and in-vivo assays. 

The early arrest of fungal growth and the absence of fungal penetration on the surface of 

inoculated CUTE plants might be related to the secreted fungitoxic compound(s). The fungitoxic 

activity was shown to diffuse from CUTE leaves or from WT leaves digested with purified 

cutinase. Fungitoxic activity was also discovered in fractionated diffusates of WT plants, albeit in 

lower amount, suggesting the existence of a natural fungitoxic substance(s) in the extracellular 

matrix of Arabidopsis plants. The enhanced permeability of the cuticle of CUTE plants might 

play a role in the diffusion rate of the fungitoxic compound. 

Mutants with defects in the cuticle structure have been recently characterised. Poor 

growth and performance, sensitivity to low humidity, increased sensitivity to chemicals such as 

pesticides and herbicides, ectopic pollen germination and organ fusions can often be associated 

with improper cuticle formation in Arabidopsis (Yephremov and Schreiber, 2005). The full 

resistance to B. cinerea was not specific to the transgenic CUTE plants, but could also be 

observed in other plants with cuticular defects, like the mutants bodyguard (Kurdyukov et al., 

2006) and lacerata (Wellesen et al., 2001), the novel mutants pec1 and pec9 (permeable 

cuticle), and the overexpressing plants 35S-SHINE (Aharoni et al., 2004). The resistance to B. 

cinerea was paralleled with the diffusion of the fungitoxic activity, strengthening the important 

role of this activity in the defence against the fungus. The increased resistance of bdg and lcr 

was correlated with priming of the LTP, PER and PI genes in a way similar to CUTE plants, 



Chapter VII 

116 

whereas the expression of these genes was variable in other mutants tested. This may be taken 

to suggest that there are other elements involved in the induction of defence responses linked 

to cuticular defects. In addition, the two mutants wax2 (Chen et al., 2003) and adhesion of calyx 

edges/hothead (Kurdyukov et al., 2006), although they displayed typical phenotypes for 

cuticular defects, were as susceptible as WT plants to B. cinerea. 

Arabidopsis plants with cuticular defects induce changes leading to complete resistance 

to B. cinerea. Modification of the cuticle can activate a multi-layered defence syndrome, 

comprising a diffusible fungitoxic activity and the potentiated induction of genes upon 

inoculation with the fungus. Thus, the cuticle serves also a source of signals for plants. The 

perception of cuticular defects might sensitize the plant for further attack and thus induce the 

priming of defence responses upon pathogen challenge. On the other hand, even though a 

defective cuticle fails in protecting the plant against pathogen attack, plants with cuticular 

defects exploit this adverse situation to their benefit. The increased cuticular permeability of 

CUTE plants and the different mutants might help the diffusion of fungal elicitors towards the 

epidermal cells and allow the earlier perception of the invader. In addition, permeable cuticle 

might facilitate the leaking of apoplastic compounds with fungitoxic activity. 

Besides degradation of the cuticle by the expression of a fungal cutinase in transgenic 

Arabidopsis plants, disruption of the leaf integrity was also performed by wounding. Wounding 

of the leaf surface with forceps or with a syringe needle induced full resistance to B. cinerea at 

the wound site. Again, this observation was surprising, since wounding usually provokes entry 

points for invading microorganisms. Moreover, B. cinerea is a necrotrophic fungus that is able to 

live on dead plant tissues. It was shown that the fungus uses hypersensitive cell death to its 

advantage for a better colonization of the host (Govrin and Levine, 2000; van Baarlen et al., 

2004). However, puncturing the leaf surface with some holes only was sufficient to trigger full 

immunity against the necrotrophic fungus. The wound-induced resistance of Arabidopsis WT 

plants to B. cinerea was demonstrated to be independent of the SA-, ET- and JA-signalling 

pathways. 

Wounding induced a priming of camalexin accumulation; it confirmed the implication of 

this fungitoxic phytoalexin in the wound-induced resistance to B. cinerea, since Arabidopsis 

mutants deficient in camalexin production were less protected by wounding than WT plants. The 

antioxidant compound glutathione was also found to be required for the resistance, as shown by 

the susceptibility of mutants deficient in the γ-glutamylcysteine synthetase after wounding and 

inoculation with B. cinerea. WT basal levels of glutathione were shown to be required for full 

protection induced by wounding. In addition, the wound-induced resistance was accompanied 

by the primed expression of a gene coding for a glutathione-S-transferase 1. Even although 

other yet undiscovered elements play a role in this wound-induced protection, these results 

demonstrate how an abiotic stress can trigger full immunity to the virulent fungus B. cinerea. 
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Wounds are usually caused by insects chewing plants. Activation of wound responses by 

insect damage is directed to healing of injured tissues, as well as activation of defences to 

prevent further insect damage. Insect feeding regulates expression of defence genes that 

contribute to induced resistance against herbivores (Bergey et al., 1996). Resistance against 

herbivorous insects and some fungal pathogens was found to depend on wound-response 

signaling via JA and ethylene (Maleck and Dietrich, 1999). Mechanical wounding of first leaves 

of broad bean was also shown to significantly reduce rust infection caused by Uromyces fabae 

in the wounded first leaf as well as the unwounded second leaf of Vicia faba and to follow 

changes in oxylipins (Walters et al., 2006). Resistance to B. cinerea induced by wounding was 

investigated in one study, showing that green leafy volatiles or isoprenoids produced after 

mechanical wounding or pathogen/herbivore attack retarded the disease development of the 

fungus in Arabidopsis plants (Kishimoto et al., 2005). The present work reports for the first time 

a full resistance to B. cinerea mounted very rapidly at a wound site. Therefore, the wound-

induced responses taking place in plants are also effective against this fungus. 

In summary, this study reports two unexpected observations showing that the disruption 

of the plant surface leads to full immunity to the necrotrophic fungus B. cinerea. Botrytis 

diseases are probably the most common and most widely distributed diseases of vegetables, 

ornamentals, fruits, and even some field crops throughout the world, and in greenhouse-grown 

crops (Agrios, 2005). Some of the most serious diseases caused by Botrytis include grey mold 

of strawberry, grapes and many vegetables and ornamentals (Agrios, 2005). It can also provoke 

important damages to foodstuffs during transport and cold storage. Infections are particularly 

devastating in humid conditions. The resistance syndromes described in this report are rare 

examples presenting a complete absence of symptoms in Arabidopsis plants, usually highly 

susceptible to this fungus. Whereas defence against B. cinerea was previously mostly 

associated with the JA- and ET-pathway (Penninckx et al., 1996; Penninckx et al., 1998), the 

immunity conferred by cutinase expression or by wounding is independent of this defence 

pathway. Recent work on mutants with altered response to B. cinerea attribute growing 

importance of camalexin in plant defence, as observed in the wound-induced resistance (Ferrari 

et al., 2003; Denby et al., 2004). Thus, the results presented here highlight novel mechanisms 

that might possibly be exploited to protect plants against this ubiquitous fungal pathogen. 

Arabidopsis plants can perceive defects in their cuticular layer and induce a strong 

resistance to B. cinerea, correlated with a priming of the expression of different defence-related 

genes. These genes were also induced in inoculated susceptible WT plants, but to a lower 

level. B. cinerea is a very virulent pathogen causing extended soft rot symptoms in three days 

and achieving its life cycle in less than a week under our laboratory conditions. In natural 

conditions, defence responses induced by cuticular defects might be effective when infections 

are slower. Under variable environmental conditions, degradation of the cuticle by fungal 
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cutinolytic enzymes might take some time and the plant defences activated by the perception of 

the cuticular defects may thus be play a significant role. In addition, the resistance induced by 

cuticular defects might be involved in the resistance against other pathogens penetrating 

through the cuticle that were not yet tested on Arabidopsis plants with defective cuticles. 

The overexpression of LTP, PER and PI genes, the expression of which was primed in 

CUTE plants upon inoculation with B. cinerea, led to increased resistance to the fungus in WT 

plants. These genes may be potentially interesting candidates for transformation of 

economically important plants with the aim of improving the resistance to Botrytis diseases. For 

example, transgenic strawberry plants were generated that express the ch5B gene coding for a 

chitinase from Phaseolus vulgaris; the transformed plants displayed high levels of resistance to 

B. cinerea, correlating with an increase of chitinolytic activity in leaves (Vellicce et al., 2006). 

The stilbene synthase gene isolated from grapevine was expressed in tobacco plants and led to 

increased resistance to infection by B. cinerea (Hain et al., 1993). Likewise, transgenic 

grapevine plants expressing high level of resveratrol under the control of a pathogen-inducible 

promoter showed an increased tolerance to B. cinerea (Coutos-Thevenot et al., 2001). From a 

biological point of view, the benefits of genetically modified plants for commercial production 

would be to increase the yield and the resistance against diseases without the need of 

fungicides. However, the development of such genetically modified plants is not automatically 

accepted by consumers and farmers in European countries. 

Resistance to B. cinerea could be induced by external application of purified cutinase 

from F. solani on Arabidopsis WT plants, thus mimicking transgenic cutinase-expressing plants. 

Cutinase can be produced in yeast and purified. As an alternative to the generation of 

transgenic plants with increased resistance, one could imagine treating plant leaves to induce 

defence responses against B. cinerea diseases, or to apply cutinase on fruits to protect them 

from infection during storage. Moreover, the powerful fungitoxic activity isolated from leaf 

diffusates of Arabidopsis plants could be used as a natural fungicide against B. cinerea. 

Interestingly, the fungitoxic activity was found to completely inhibit the development of 

symptoms on Arabidopsis and tomato leaves, suggesting a possible use as external treatment 

on plants. In the future, the active compound(s) should be chemically characterised, and the 

activity of the purified compound(s) should be confirmed. A method for purification of important 

amounts of the fungistatic compound(s) or for in-vitro synthesis should be developed, in order to 

allow large scale tests on different crops. The active diffusates were also shown to display 

fungistatic activity against the fungus Monilinia, which provokes brown rot of stone fruits like 

peaches, cherries, plums, apricots and almonds. Losses result primarily from fruits rotting in the 

orchard, but serious losses may also appear during transit and marketing of the fruit (Agrios, 

2005), strengthening the interest of this natural fungitoxic compound. 
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