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Abstract

Minority games where groups of agents remember, react or incorporate information with different timescales are

investigated. We support our findings by analytical arguments whenever possible.
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1. Introduction

Heterogeneity is gradually being recognized as one of the most important ingredients for the modeling of
financial markets. Among the many types of heterogeneities, timescales are difficult to understand analytically,
because they increase usually much the complexity of the equations to solve. However, as argued very early [1],
financial market participants have very discernably different timescales, which deserve therefore a detailled
study. Among recent works on the topic, two models of stochastic volatility have explicitly included an infinite
number of timescales [2,3].

Here we investigate several types of timescale heterogeneities in the minority game model (MG) framework:
strategy change frequency, strategy–strategy correlation, reaction rates and score memory. We are able to
provide analytical support for our finding in the last three cases. Previous work addressed the effects of trading
frequency [4,5] analytically.

2. Canonical MG

The minority game is easily defined: at each time step, all the players have to choose between two
alternatives; those who happen to be in the minority win. This is variant of Arthur’s El Farol bar [6] problem
where the resource level is set to satisfy half of the people. The MG is exactly solvable which makes it an ideal
model to study and understand various aspects of the dynamics of competition.
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Mathematically, agent i ¼ 1; . . . ;N takes action aiðtÞ 2 f�1;þ1g at time t and receives a payoff �aiðtÞAðtÞ,
where AðtÞ is the aggregated outcome AðtÞ ¼PN

i¼1 aiðtÞ. The agents base their decisions on public information
which is encoded in an integer number mðtÞ drawn uniformly from 1; . . . ;P. In order to process this
information they are endowed with S strategies, which are fixed maps, or look-up tables, from the current
public information mðtÞ to an action. At time t, agent i decides to trust his best strategy
siðtÞ ¼ argmaxs¼1;...;Syi;sðtÞ, where yi;sðtÞ is the score of strategy s of agent i, which evolves according to

yi;sðtþ 1Þ ¼ yi;sðtÞ � a
mðtÞ
i;s AðtÞ. (1)

2.1. Strategy change frequency

The above definition of the MG assumes implicitly that all the agents may change the strategy that they use
ðsiðtÞÞ at each time step. Variants of the game where all the agents update synchronously their siðtÞ every T time
steps have been studied in the literature [7–10], and are exactly solvable in the limit T ! 1, in which case they
are called batch games. This part of the paper separates the populations into two groups. Fast agents behave
as usual, whereas slow agents update their strategies synchronously every T time steps. This introduces a
heterogeneity of time scales. In essence, it is similar to giving a longer history memory in games where the state
mðtÞ is the binary encoding of the last M winning choice, also known as games with real histories. Giving a
larger M to a set of agents is already found in the very first paper on the MG, and was analysed further in
Refs. [11,12]. Such agents do surprisingly worse than their colleagues as long as the system is not deep into the
symmetric phase, which is characterized by alternating winning sides; Metzler [13] showed that agents with a
larger M need a large alternating probability in order to be able to profit from it. The case we study here is
much simpler as it does not require real histories and is a priori more suitable to mathematical understanding.
Unfortunately, since the exact analytical solution does not exist for games where all the agents update
synchronously their strategies every T time steps, we cannot solve the mixed case either and must resort to
numerical simulations.

The relative composition of the population is tuned by a parameter f: if N is the total number of agents, fN
of them are ordinary MG agents, i.e., fast, whereas ð1� fÞN update their strategy choice variable siðtÞ every T

time steps, that is, their scores evolve following:

ysi ðtþ 1Þ ¼ ysi ðtÞ �
Pt

t0¼t�Tþ1

a
mðt0Þ
i;s Aðt0Þ if t MOD T ¼ 0;

ysi ðtþ 1Þ ¼ ysi ðtÞ otherwise:
(2)

As usual, we shall focus on the predictability

H ¼ 1

P

XP
n¼1

hAjni2, (3)

where hAjni is the temporal average of A conditional to mðtÞ ¼ n. If H40, knowing m makes it possible to
predict statistically the next outcome. H measures the amount of information left by the agents in the game.
The fluctuations s2 ¼ hA2i play a special role as they quantify the quality of resource sharing achieved by the
population, which is usually benchmarked against the fluctuations produced by random choice s2=N ¼ 1. It is
easy to see indeed that the s2 is nothing else than the average total loss per time step of the population. Of
particular interest in the case of competing populations are their respective average gains per time step.

Fig. 1 reports the behaviour ofH and s2 as a function of a ¼ P=N, for a fixed f and different values of T. In
the predictable, asymmetric phase ðH40Þ, the slow agents do not change the unique stationary state; as a
result, H does not depend on T, but s2 is slightly lowered as T increases, because strategy switching occurs less
often. On the other hand, in the unpredictable, symmetric phase ðH ¼ 0Þ, multiple stationary states exist as a
result of broken ergodicity [7,14], and any modification to the system will accordingly change the final values
of s. This is the case here: the introduction of a small amount of slow agents reduces the total amount of
fluctuations because they damp the overreaction of the fast players without contributing too much to the
global outcome A.
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What is more surprising is the behaviour of s2 in the symmetric phase when one varies f, as shown in Fig. 2:
at fixed a ¼ 0:2, slow agents ðf ¼ 0Þ produce larger fluctuations than fast ones ðf ¼ 1Þ; increasing the fraction
of fast agents f decreases the fluctuations which reaches a minimum below 1, the random choice benchmark,
and then increase again to reach the standard MG value, slightly above 1. This means that the two groups live
in symbiosis, and that there is a non-trivial optimal composition of the population. Other known examples of
symbiosis in MGs include speculators and producers [11].

In such cases, it is natural to characterize the information ecology of the model (see [11,15]), that is, who
exploits who. To this end, Fig. 3 reports the average gain per time step of fast agents gf , which decreases
monotonically as their concentration f increases, but stays roughly constant as long as fo0:4. In this region,
the slow agents provide information that the fast agents exploit. The losses of the latter are greatly reduced
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Fig. 1. Variance s2=N (top) and predictability H=N (bottom) as a function of a for f ¼ 0:7 and several values of T. Simulations with

P ¼ 64, averages over 200 samples.
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Fig. 2. Volatility s2=N as a function of f for a ¼ 0:2 fixed ðP ¼ 32, N ¼ 160Þ.
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compared to f ¼ 1, but they seem not to be able to achieve positive gain on average. Similarly, when the slow
agents are few ðf40:8Þ, they profit from overreacting fast agents.

2.2. Strategy correlation

In the standard MG, all the a
m
i;s are random variables, drawn completely independently from each other.

Take an agent with two strategies; they will stipulate the same action a fraction c ¼ 1
2
of the ms on average. In

other words, the standard-MG agents behave in the same way irrespectively on their strategy choice for half of
the market states m. [16,17] MG with tunable c where introduced in Ref. [11] and also studied later in Refs.
[8,18]. The parameter c induces a reaction time scale �1=ð1� cÞ: the smaller c, the more adaptive an agent is;
on the other end, people with c ¼ 1 are not adaptive: they inject predictability and are ideal candidates for
exploitation. The latter were introduced as producers, that is, people who do not care much about timing in
market, but use the market as a tool for exchanging goods [15]; producers (c ¼ 1) and speculators (co1) live in
symbiosis [11], that is, the gain of a given group increases then the other group is also present.

Here, we consider the case where the two groups s and f have 0pcgo1, g ¼ s; f . The apparent similarity
of this setup with the case previously studied [11] is deceptive, as we shall see. The strategies are drawn
according to

Pf ðami;1 ¼ a
m
i;2Þ ¼ cf , ð4Þ

Psðami;1 ¼ a
m
i;2Þ ¼ cs. ð5Þ

When cfocs, group f is the fast one, and group s is the slow one. The asymmetric phase of the model for an
arbitrary number of groups is exactly solvable in the limit N ! 1 with replica trick [11,14,19]. The solution
gives

H

N
¼ fcf þ ð1� fÞcs þ fð1� cf ÞQf þ ð1� fÞð1� csÞQs

ð1þ fwf þ ð1� fÞwsÞ2
, (6)

where Qg ¼
P

i2Ng
hsiðtÞi2 (g ¼ f ; s); wf and ws are the integrated response functions [7]. These four quantities

all depend on two variables zf and zs which are the solutions of two coupled non-linear equations (see
appendix). Eq. (6) shows that in this case the stationary state of the asymmetric phase depends on the
composition of the population, which is also true of the location of the critical point.

The respective gains of the two groups can also be computed exactly. Starting from the total losses

s2

N
¼ H

N
þ fð1� cf Þð1�Qf Þ þ ð1� fÞð1� csÞð1�QsÞ (7)
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Fig. 3. Average gain of fast (left) and slow (right) agents as a function of f for several T. Simulations with N ¼ 300;P ¼ 64, averages over

200 samples.
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and observing that if s2l ¼
PP

m¼1 hðAfast þ lAslowÞ2jmi=P, the gains of the agents are nothing else than

gs ¼ �hAslowAi ¼ � 1

2

qs2l
ql

����
l¼1

, (8)

gf ¼ �s2 � gs. (9)

From the replica calculus, we find

gs
Ns

¼ H

N
ws �

cs þ ð1� csÞQs

1þ fwf þ ð1� fÞws
� ð1� csÞð1�QsÞ, (10)

gf
Nf

¼ � 1

f
s2

N
� 1� f

f
gs
Ns

. (11)

The behaviour of the game is nontrivial, which is already clear in Fig. 4, where the fluctuations, or average
losses of the players per time-step, are plotted against cs, showing a maximum. In this kind of plot, one should
be careful to stay in the asymmetric phase, because the critical point ac depends on cs, cf , and f. Taking a41
solves this problem since acp1. The minimum of s2=N is surprising at first. Fig. 5 gives a deeper
understanding of this peculiar phenomenon by plotting the gains of the two groups. The minimum of the
losses can be attributed entirely the slow agents only, who profit quite remarkably from the fast agents (cf ¼ 0)
unless they are very slow. This shows a competition between two effects: being slower means that one
overreact less, in particular with respect to local fluctuations; inversely, being too slow makes it too difficult to
react to being exploited. Interestingly, increasing cs increases monotonically the gains of group f.

The relative fraction of each type of agent is a crucial parameter, as illustrated by Fig. 5, in particular when
one group of agents has a large strategy correlation. In order to shed more light on the matter, we produced
plots of the regions where one group has an advantage over the other. When f ¼ 0:5, Fig. 6 contains four
regions of interest. When cgoc� ’ 0:61, group g on average wins more than the other group g0 as long as
cg4c0g, which means that as long as both groups have sufficiently low cs, the slower the better. On the other
hand, when cg4cðmÞ ’ 0:98, group g0 always exploits group g. For intermediate values of cg, the outcome
depends on the precise value of both cg and c0g. While changing f leaves unaffected the diagonal boundary, it
has two remarkable effects: first it changes the non-linear boundary between the gfogs and gsogs regions by
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Fig. 4. Fluctuations s2=N versus the strategy correlation parameter cs of the slow agents (f ¼ 0:5, cf ¼ 0). Simulations with P ¼ 64,

a ¼ 2, averages over 200 samples.

5



ht
tp

://
do

c.
re

ro
.c

h

roughly rotating it clockwise. A new region also appears for a and f small enough where the gain of group in
relative sparseness is positive; it is however very small, and only appears when the largest group has a very
large c. In this case, one needs to be few and react fast in order to be able to exploit very slow agents so much
that one’s gain is positive.

3. Games with no public information

The case where P ¼ 1, that is, when there is no public information available corresponds to the limit a ¼ 0
of the previous section and is particularly simple to understand analytically [20,21]; as a result explicit
formulae for the fluctuations and gains can be obtained. Given AðtÞ, each agent i receives a payoff �aiðtÞAðtÞ,
which is stored in the score

Diðtþ 1Þ ¼ DiðtÞ �
AðtÞ
N

(12)
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Fig. 5. The average gains gf =Nf ; gs=Ns for fast and slow agents respectively (f ¼ 0:5; cf ¼ 0). Lines are theoretical predictions from

Eq. (9). Simulations with N ¼ 32;P ¼ 64, averages over 200 samples.
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and

P½aiðtþ 1Þ ¼ 1� ¼ 1þ tanhðGiDiðtÞÞ
2

. (13)

Gi is a reaction rate: it specifies the difference of behaviour to a change of Di. Because of Eq. (12) it is also
timescale.

Linking the above model with financial markets is straightforward if one assumes that the log-price evolves
according to

pðtþ 1Þ ¼ pðtÞ þ A

N
. (14)

This allows us to propose a new interpretation of this case: rewriting DiðtÞ ¼ �Pt
t0¼0AðtÞ=N þ Dið0Þ, where

Dið0Þ is the initial condition of agent i, one sees immediately that

DiðtÞ ¼ �pðtÞ þ Dið0Þ. (15)

Dið0Þ is nothing else than the asset reference price, or value, of agent i. Hence, this equation describes a model
of N investors having each a value in mind for the price, and acting accordingly [21–25]. The agents are
therefore fundamentalists [21] who compare the current price with a reference price fi, and Gi tunes the price
excursion from its supposed fundamental value Dið0Þ tolerated by agent i.

If Dið0Þ ¼ 0, all the Dis are the same and can be replaced by D. Eq. (12) becomes

Dðtþ 1Þ ¼ DðtÞ � tanhðGDðtÞÞ þ nðtÞ, (16)

where nðtÞ is a noise term with zero average hnðtÞi ¼ 0 and hnðtÞnðt0Þi ¼ dt;t0 ½1� tanhðGDðtÞÞ2�=N; it vanishes
therefore in the N ! 1 limit. It is easy to find that the fixed point Dð0Þ ¼ 0 is stable if GoG� ¼ 2 and
hA2i / N, and unstable otherwise; in the latter case, a period 2 dynamics emerges, with the stable points
determined by Ref. [20]

Dð1Þ ¼ tanhðGDð1ÞÞ=2 (17)

and hA2i / N2. A Taylor expansion of Eq. (17) gives D1 ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ðG� 2ÞÞ=G3

q
for G close to 2; on the other

hand, A=2� D1 / expð�GÞ for large G. A way to check numerically the value of G� is to observe the onset of
the change of hD2i from OðN�1Þ to Oð1Þ as a function of G. Heterogeneous initial conditions Dið0Þa0 help to
stabilize the fixed point by raising G� [21].

We shall be particularly interested in the gains of the agents. The knowledge of PðDÞ allows us to compute
the average gain hgi ¼ �hA2i=N, i.e., the fluctuations themselves

hA2i
N

¼ 1

N

Z
dDPðDÞhA2jDi ¼ 1

N

Z
dDPðDÞ½hðdAÞ2jDi þ hAjDi2� ð18Þ

¼ 1þ ðN � 1Þ
Z

dDPðDÞ tanhðGDÞ2. ð19Þ

If G4G� and N ! 1, we can simply write

hA2i
N2

! 4D2
1 (20)

which is about ð12ðG� 2ÞÞ=G3 for G close to 2. For Go2, one must first keep N finite and derive PðDÞ. The
dynamical equation for D can be rewritten as a Fokker–Planck equation, which reads

qPðDÞ
qt

¼ q2

2qD2

1� ðN � 1Þ tanhðGDÞ2
N

PðDÞ
� �

þ q
qD

½tanhðGDÞPðDÞ�. (21)

Solving this equation in the stationary states gives

PðDÞ ¼ 1

Z
½2þNðcoshð2GDÞ � 1ÞÞ��ð1þGÞ

G coshðGDÞ2, (22)
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where Z is the normalisation factor. When G is small, P can be approximated by a Gaussian with zero average
and hD2i ¼ 1=½2G½ðNðGþ 1Þ � G�. Therefore

hA2i
N

’ 1þ ðN � 1Þ G
2½NðGþ 1Þ � G� ! 1þ G

2ðGþ 1Þ ’ 1þ G
2

N ! 1; G51. (23)

Fig. 7 shows that the Fokker–Planck equation provides a good description of the stationary state for Gp1,
whereas for larger G the hypothesis of small jumps in D is clearly wrong; this is due to the fact that with G41,
the drift term makes D change sign on average at each time step. The Gaussian approximation bends in the
wrong way as G increases and should not be used for G40:01. For G42, PðDÞ separates into two symmetric
peaks, centered roughly at �D1; it can therefore be approximated by

PðDÞ ’ 1

2Z
½2þNðcoshð2GðD� D1Þ � 1ÞÞ��ð1þGÞ

G coshðGðD� D1ÞÞ2

þ 1

2Z
½2þNðcoshð2GðDþ D1ÞÞ � 1ÞÞ��ð1þGÞ

G coshðGðDþ D1ÞÞ2. ð24Þ

3.1. Heterogeneous learning rates

Let us consider G groups of respectively fgN agents, g ¼ 1; . . . ;G; all the agents belonging to group g have
Gg. Using the notation f ðxgÞ ¼

P
g fg f ðxgÞ for any function f of variables xg, the dynamical equation for D

reads now

Dðtþ 1Þ ¼ DðtÞ � tanh½GgDðtÞ� þ ZðtÞ, (25)

where ZgðtÞ are Gaussian noises with zero average and variance hZðtÞZðt0Þi ¼ dt;t0
ð1�tanhðGgDÞ2

N
. Linear stability

shows that Dð0Þ is a stable fixed point as long as

Ggo2. (26)

When this point is unstable, it replaced by a period-two dynamics with stable point

Dð1Þ ¼ tanhðGgDð1ÞÞ
2

. (27)
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Fig. 7. Fluctuations versus G from numerical simulations (thick line; N ¼ 100, 106 iterations per point), from the Fokker–Plank equation

(thin line, Go2), the Gaussian approximation (dashed red line), and Eq. (24) (dash–dotted line, G42).
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Going through the same procedure as before, one finds that PðDÞ is determined by

dP

P
¼ �2NtanhðGgDÞ½1þ Ggð1� tanhðGgDÞ2� � 2Gg tanhðGgDÞ½1� tanhðGgDÞ2�

NtanhðGgDÞ2 þ 1� tanhðGgDÞ2
. (28)

This cannot be integrated any more. The Gaussian approximation consists in keeping only the terms linear in
D in this equation, and results in D being of average 0 and variance hD2i ¼ 1=ð2½NGgð1þ GgÞ � G2

g�Þ for small
G.

The average gain per player of group g at fixed D is equal to

hggjDi
Ng

¼ �hA2
gjDi þ

P
g0aghAgA

0
gjDi

Ng

¼ �1� ðNg � 1Þ tanhðGgDÞ2 � tanhðGgDÞ
X
g0

N 0
g tanhðG0

gDÞ. (29)

Assuming that the Gaussian approximation is valid, i.e., if all the Gg are small,

hggi
Ng

’ �1� GghD2i½�Gg þNGg� ! �1� Gg

2½1þ Gg�
(30)

for infinite N. The gain of an agent of group g can be compared to the average gain, which yields

hggi � hggi !
Gg � Gg

2ð1þ GgÞ
. (31)

In other words, the smaller Gg, the smaller the losses of that group. This is intuitive: at a given time, i.e., at a
given D, the fraction of players whose action is opposite to the sign of D is larger for smaller G.

Fig. 8 compares hgi from numerical simulations and from Eq. (30). As before, the approximations made are
valid for small G. This figure also indicates that the transition at G� is smooth.

3.2. Heterogenous score memory l

Another way of having heterogeneous time scales is to differ in one’s score memory. Before studying groups,
let us again characterise first the homogeneous case. For the sake of simplicity, we consider exponential
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Fig. 8. Average gain versus Gf from numerical simulations (circles: fast agents with Gf , slow agents with Gs ¼ 0:001) and Eq. (30) (dashed

lines); average over 10 0000 time steps, after 10=Gs time steps, average over 20 samples.
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moving averages. There are two ways of implementing them:

Dðtþ 1Þ ¼ DðtÞð1� lÞ � AðtÞ
N

(32)

and

D0ðtþ 1Þ ¼ D0ðtÞð1� lÞ � l
A0ðtÞ
N

. (33)

The length of score memory is 1=j lnð1� lÞj / 1=l for small l. One can transform Eq. (32) into (33) by setting
D0 ¼ Dl and G0 ¼ G=l. The same stability analysis as above gives for a homogeneous population

Gþ lo2 (34)

and

lðG0 þ 1Þo2. (35)

Increasing l at fixed G and G0 has therefore opposite effects for the two kinds of dynamics: a small l stabilises
Eq. (32) and destabilises Eq. (33). Since there is a one-to-one correspondence between all the results of Eqs.
(32) and (33), we shall focus on Eq. (32). The period-two fixed point for Gþ l42 is now determined by
Dð1Þ ¼ 1=ð2� lÞ tanhðGDð1ÞÞ. Assuming that Dð0Þ ¼ 0 is stable, the same procedure as before yields

dP

P
¼ �2N

½lDþ tanhðGDÞ�ð1þ lþ G½1� tanhðGDÞ�Þ þ G tanhðGDÞ½1� tanhðGDÞ2�
NðlDþ tanhðGDÞÞ2 þ 1� tanhðGDÞ2 . (36)

In the Gaussian approximation, one finds

hD2i ¼ 1

2½ðGþ lÞð1þ lþ GÞN � G2� . (37)

As consequence, for small G, l40 decreases the fluctuations. The Fokker–Planck equation holds if lþ Go1;
otherwise, the change of sign of D at each time step (neglecting the noise) causes more fluctuations. Therefore,
s2=N has a minimum at lþ G ¼ 1 when l increases, as illustrated by Fig. 9. The Gaussian approximation is
very good for small G and l.

Generalizing these results to groups of agents is more complicated than for heterogeneous G because of the
role of l in Eq. (32): each group g with a given lg has its own Dg

Dgðtþ 1Þ ¼ DgðtÞð1� lgÞ � tanhðGDg0 Þ þ ZðtÞ ¼ f gðfDg0 gÞ þ ZðtÞ, (38)

where hZðtÞZðt0Þi ¼ dt;t0 ð1� tanhðGDg0 Þ2Þ=N. For infinite N, the linear stability conditions of the fixed point
Dg ¼ 0 for all g are

P
g0 jqf g=qDg0 jo1, that is,

j1� lg � fgGgj þ
X
g0ag

fg0 tanhðGg0Dg0 Þo1 (39)

for all g. When lg þ fgGgo1, i.e., both lg and G are small, the stability condition is Gg0olg þ 2fgGg; for
instance if Gg ¼ G for all g, and fg ¼ 1=G, then the condition is Gð1� 2=GÞolg. The other case is obtained
when Gg�1=fg and gives lg þ Gg0o2, which is the same as before. Interestingly, some unstable Dð0Þ

g can coexist
with stable ones, for instance when Gg ¼ G ¼ 2� �, 0o�51, f ¼ 1=G and lg ¼ 2�g=G, where the dynamics of
Dg is stable for goG=2 and unstable otherwise. This is clearly a source of losses for fast-forgetting players.
Going back to the average gain per player per time step, ones indeed that the gain of group g is intimately
related to the variance of Dg. The multivariate Fokker–Planck equation reads

qPðD; tÞ
qt

¼
X
g

q
qDg

ð½lgDg þ tanhðGDg0 Þ�PÞ þ
1

2

X
g;g0

q
qDg0

ðDg;g0PÞ
" #

(40)

with

Dg;g0 ¼
1� tanhðGg00Dg00 Þ2

N
þ ðlgDg þ tanhðGg00Dg00 ÞÞðlg0Dg0 þ tanhðGg00Dg00 ÞÞ. (41)

10



ht
tp

://
do

c.
re

ro
.c

h

Solving a linearized version of Eq. (40) is done following standard procedure [26] and gives a multivariate
Gaussian solution. For G ¼ 2, we have the resulting equations.

PðDf ;DsÞ ¼
1

2psf ss
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p exp � 1

2ð1� r2Þ
D2
f

s2f
� 2rDfDs

sf ss
þ D2

s

s2s

 !" #
. (42)

The expressions for sf , ss and r are too long to be reported here [27]. Reusing Eq. (29) the respective average
gain is

hgf i ’ � 1� G2ðhD2
f iðNf � 1Þ þNshDfDsiÞ

¼ � 1� G2
f s

2
f ðNf � 1Þ � GfGsNsrsf ss�. ð43Þ

Fig. 10 plots the gains of the two groups and clearly shows that all other things being equal, having
a shorter memory is an advantage. Indeed, when Gf ¼ Gs ¼ G and ff ¼ fs ¼ 1

2
, as in Fig. (10),

0.001 0.01 0.1 1
λF 

-0.00030

-0.00025

-0.00020

-0.00015

-0.00010

-0.00005

<
γ X

 >
 +

 1

Short memory
Long memory

Fig. 10. Average gain per time step versus lf for fast players (circles) and slow players (squares). Continuous lines are from the Gaussian

approximation of Eq. (43). Gf ¼ Gs ¼ 0:001; 107 iterations per point.

0 0.2 0.4 0.6 0.8 1
λ 
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0.2

0.4
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0.8

1

σ2 /N
-1

 

Fig. 9. Fluctuations s2=N � 1 versus l for G ¼ 0:1; 0:5; 0:7 and 0:9 (bottom to top) obtained by numerical simulations. N ¼ 100; 106

iterations per point.
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Eq. (43) leads to

hgf i � hgsi ’
8G2ðlf � lsÞð1þ Gþ lf þ lsÞ½lf ð1þ lf þ G

2
Þ þ lsð1þ ls þ G

2
Þ þ lf ls�

½2lf ls þ Gðlf þ lsÞ�½4G2 þ 2ð2þ 2lf þ lsÞð2þ lf þ 2lsÞ þ 3Gð4þ 3lf þ 3lsÞ�
� 1

2G2 þ Gð2þ 3lf þ 3lsÞ þ 2ðlf þ l2f þ ls þ l2s þ lf lsÞ
ð44Þ

which is of course positive when lf4ls. The above sections suggest that such advantage is menaced by
increasing Gf . Interestingly, increasing ff increases the gains of both groups, as the fast agents suffer less from
the fluctuations caused by their slow colleagues. In the unstable region, the effect is the opposite, that is, fast
forgetting agents fail to smooth out sufficiently slowly large fluctuations, and suffer from larger losses than
slower agents. We performed similar numerical simulations for P41 and G ¼ 1 (standard MG), and found
out similar results: faster agents end up earning less in both phases (we could not find an opposite result),
which can be interpreted by their tendency to switch more often between their strategies.

4. Conclusions and remarks

The four types of timescale heterogeneities investigated point to compatible and broad conclusions. First,
agents with a smaller strategy change frequency are similar to agents with larger strategy–strategy correlation,
except that their presence does not change the onset of the critical point, nor H. Accordingly, the gain of fast/
slow agents in both cases show similar behaviour. Although Ref. [4] did not compute the average gain as a
function of playing frequency it did show however that agents that trade less often tend to stick more to one
strategy in the asymmetric phase; since frozen agents have a higher average payoff, this suggests that agents
who play less often win more. We tested this intuition by extensive numerical simulations, and checked that
this conclusion does not depend on the concentration of slower agents. However, the results is the opposite in
the symmetric phase where slower agents are exploited, while all the agents have an equal gain at the critical
point. Overreacting, that is, having a larger reaction rate than the average population is detrimental. Ref. [5]
did not study the gain of agents with heterogeneous reaction rates, therefore we refrain to generalize this
conclusion to P41. Finally, for P ¼ 1, agents with a smaller finite score memory do generally better than
average, unless they have a too large reaction rate.
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Appendix in Replica calculus

The calculus parallels mostly the established procedure [14,11]: the dynamics minimizes H [20] that is akin
to an energy. The stationary state of the system corresponds therefore to the ground state of H. After some
algebraic manipulations it is possible to find relations that link the quantities that we have introduced. The
predictability is given by

Hl

N
¼ fcf þ l2ð1� fÞcs þ fð1� cf ÞQf þ l2ð1� fÞð1� csÞQs

ð1þ fwf þ l2ð1� fÞwsÞ2
, (45)

where the integrated response functions ws and wf are defined as

wf ¼
a� 1� fð Þerf zsffiffi

2
p
� �

erf
zfffiffi
2

p
� � � f

2
4

3
5
�1

;
ws
wf

¼
erf zsffiffi

2
p
� �

erf
zfffiffi
2

p
� � . (46)
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The self-overlap Qg is equal to

Qg ¼ 1�
ffiffiffi
2

p

r
e�z2g=2

zg
� 1� 1

z2g

 !
erf

zgffiffiffi
2

p
� 	

. (47)

All these quantities depend on zs and zf , determined through

zf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að1� cf Þ
fcf þ ð1� fÞcs þ fð1� cf ÞQf þ ð1� fÞð1� csÞQs

s
;

zf
zs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cf

1� cs

s
, (48)

fð1� cf Þ
ffiffiffi
2

p

r
e�z2f =2

zf
þ 1� 1

z2f

 !
erf

zfffiffiffi
2

p
� 	 !

þ að1� cf Þ
z2f

þ ð1� fÞð1� csÞ
ffiffiffi
2

p

r
e�z2s =2

zs
þ 1� 1

z2s

 !
erf

zsffiffiffi
2

p
� 	 !

¼ 1. ð49Þ

Finally, the average gain of slow agents is

gs
Ns

¼ � 1

1� f
1

2

q
ql

s2l
N

����
l¼1

¼ � 1

1� f
lim
b!1

qHlðbÞ
ql

����
l¼1

� ð1� csÞð1�QsÞ (50)

that leads to the expressions (10).

A.1. More than two groups

The results above are readily generalized to G groups denoted by g ¼ 1; . . . ;G: group g comprises Ng ¼
fgN agents equipped with two strategies with correlation cg:

H

N
¼ hcþ 1� cð ÞQi

1þ hwið Þ2 , (51)

s2

N
¼ H

N
þ hð1� cÞð1�QÞi

N
, (52)

gg
Ng

¼ H

N
wg �

cg þ ð1� cgÞQg

1þ hwi � ð1� cgÞð1�QgÞ, (53)

where the average h:i is over the groups.

Qg ¼ 1�
ffiffiffi
2

p

r
e�z2g=2

zg
� 1� 1

z2g

 !
erf

zgffiffiffi
2

p
� 	

, (54)

1 ¼ ð1� cÞ
ffiffiffi
2

p

r
e�z2=2

z
þ 1� 1

z2

� 	
erf

zffiffiffi
2

p
� 	 !* +

þ að1� cgÞ
z2g

, (55)

zg
zg0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cg

1� cg0

s
. (56)
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