
ht
tp

://
do

c.
re

ro
.c

h

Decoding information from noisy, redundant, and
intentionally distorted sources

Yi-Kuo Yua, Yi-Cheng Zhangb, Paolo Lauretib, Lionel Moretb,�

aNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
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Abstract

Advances in information technology reduce barriers to information propagation, but at the same time they also induce

the information overload problem. For the making of various decisions, mere digestion of the relevant information has

become a daunting task due to the massive amount of information available. This information, such as that generated by

evaluation systems developed by various web sites, is in general useful but may be noisy and may also contain biased

entries. In this study, we establish a framework to systematically tackle the challenging problem of information decoding in

the presence of massive and redundant data. When applied to a voting system, our method simultaneously ranks the raters

and the ratees using only the evaluation data, consisting of an array of scores each of which represents the rating of a ratee

by a rater. Not only is our approach effective in decoding information, it is also shown to be robust against various

hypothetical types of noise as well as intentional abuses.
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1. Introduction and model

With the rapid advances in information technology, and especially the advent of the internet, information
overload is becoming a growing challenge for our society. In fact, daily life and professional activities call for
reliable information on a myriad of things, and no individual is capable of knowing it all. We can, at best, rely
on other people’s evaluations to indirectly form an assessment on a subject or item that happens to catch our
interest. Numerous web sites have already constructed evaluation systems which allow new users to benefit
from the feedback of previous users [1,2]. However, even though many opinions can be found about any single
object (be it a book, a product, an idea), they are frequently far from being consistent with each other, perhaps
because people are of different expertise and/or have different levels of discernment. More often than not we
are left without a clear, definite answer. This situation calls for automated methods of collaborative
information filtering and ranking [3].
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Many web sites, which provide information filtering and evaluation for the general public, are
themselves evaluated and ranked by all the individuals via perhaps other web sites. This self-organized

selection has become increasingly popular among internet users and may play an important role in shaping
the upcoming information-technology-mediated economics framework. Examples may be found through web
sites such asdel.icio.us, www.digg.com,www.reddit.com,www.tailrank.com etc. In a way, these sites all probe
various selection and filtering mechanisms with varying degrees of success. We believe that it is time to
examine the phenomena systematically in order to understand the theoretical foundation of information
filtering.

In this work we formulate a prototype model to cope with such a challenge. Suppose N users (raters) rate M
objects (ratees) in a given category. Each user has an idiosyncratic rating capability (1=si for rater i); each
object has an intrinsic quality (Ql for object l). Both the rating capabilities and intrinsic qualities are assumed
given and hidden. We wish to find estimates, ql and Vi, as close as possible to the hidden values, Ql and s2i .
Further information being absent, people often use the simple arithmetical average ql �

PN
i¼1xil=N as an

estimate for Ql , where xil is the rating assigned by user i to object l. With our additional assumption that users
are of different rating capabilities, we may regard the rating xil as the sum of Ql and a stochastic component of
typical size si. Though many users report ratings on a given object, these signals can be termed noisy since
there is no sure way to tell which evaluation is more reliable than the other. To make sense of these noisy
signals our only hope is to leverage the information redundancy and find the best possible approximation to
the hidden attributes.

As we will show below, the correctness of ranking can be distorted when the true quality of each
object is estimated by the naı̈ve simple average of that object’s ratings. This effect is amplified
especially when the typical si’s vary significantly so that the simple average may be biased by raters with
large s’s. Our method, termed iterative refinement, can nevertheless minimize the occurrence of this
undesirable scenario.

2. Method

Our task is to simultaneously obtain good estimates fqlg and fVig, respectively, for fQlg and fs2i g using only
the ratings fxilg. Knowledge of fs2i g being absent, the simplest solution would be the naı̈ve arithematical
average ql ¼ ð1=NÞPN

i¼1xil . Though it conforms to the principle of ‘one person one vote’, such a naı̈ve average
is often said to suffer from the ‘tyranny of the majority’, especially when the majority is poorly informed.
When one knows fs2i g, one can improve the accuracy of the prediction by giving more weight to experts with
smaller si’s

ql ¼
XN
i¼1

wixil , (1)

where wi ¼ wðsiÞ is a decreasing function of si and with the normalization condition
P

iwi ¼ 1. In fact,
if the wi are properly chosen so that Lindeberg’s condition [4] holds, ql �Ql becomes a zero-mean
Gaussian random variable with variance / 1=N when N ! 1, thanks to the Lindeberg–Feller
theorem [4,5]. Further, knowledge of fs2i g actually allows the determination of optimal choice [6] for the
weight wi / 1=s2i .

The problem, however, is that we neither know which are the best objects nor who are the best raters.
Nevertheless, since a better estimate of fs2i g will improve our estimate of fQlg, we have devised an iterative
refinement method to simultaneously extract the raters’ rating capabilities and the objects’ intrinsic qualities.
In particular, the rating capability of rater i is estimated by

s2i � Vi �
1

M

XM
l¼1

ðxil � qlÞ2. (2)

It is worth pointing out that due to error propagation (e.g. estimating Ql by ql), Eq. (2) is not the best possible
estimator of s2i . Although it is possible to systematically compute all the correction terms by creating effective
Gaussian variables through recombining random variables, we will not execute such a technique here to avoid
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unnecessary complications. The more technical optimization of the method proposed will be discussed in a
forthcoming publication.

Assuming the weights to be of power-law type

wi ¼
1=Vb

iP
j1=V

b
j

¼)ql!Ql 1=s2biP
j1=s

2b
j

, (3)

Eqs. (1) and (2) can be cast into a more suggestive form

XN
i¼1

1

V
b
i

ðxil � qlÞ ¼ 0; l ¼ 1; 2; . . . ;M, (4)

XM
l¼1

ðxil � qlÞ2
Vi

¼ M; i ¼ 1; 2; . . . ;N. (5)

The above construction is intuitively appealing especially when b ¼ 1
2
. Assuming that the ratings fluctuate

around the hidden qualities Ql with varying widths si, the first equation is the sum of stochastic variables with
a unique, normalized width, and the second sum defines the widths. On the other hand, the case b ¼ 1
intimately mimics the optimal weighting choice [6].

To solve for the N þM unknowns using as many (nonlinear) equations is usually achieved by casting the
problem as a minimization [7]. This route is, in general, difficult for a nonlinear system because of the existence
of multiple local minima that hinder the finding of the global one. When the equations are such that local
minima rarely occur, finding the solution becomes a relatively straightforward numerical task. Fortunately,
this is where our problem belongs. Our iterative refinement method starts with uniform weighting, then
iterates Eqs. (4) and (5) till convergence to the final solution with specified fql � Qlg and fVi � s2i g. Thus, we
find simultaneously qualities of the ratees and raters.

As a cautionary note, we must comment that Eq. (4) with b ¼ 1
2
takes a more gentle weight than suggested

by the optimal weighting [6], which would recommend b ¼ 1. We choose a softer weighting scheme to start
because it enjoys a better numerical stability, as well as translational and scale invariance— the equations
remain the same upon changing ql ! c½ql � g� and xil ! c½xil � g�. The better numerical stability for b ¼ 1

2

may be due to the fact that Lindeberg’s condition [4] is always satisfied there. Once the iterative procedure
starts, the weighting scheme is then shifted from 1=s towards 1=s2 as the iterations progress. If the Lindeberg’s
condition is satisfied for 1

2
obp1, this construction guarantees the convergence of q towards Q when each

individual distribution function for xil is distinct but with a finite second moment, thanks to the
Lindeberg–Feller theorem [4,5]. As will be shown, the correct convergence is obtained even when the
requirements leading to the general form of law of large numbers are not satisfied, making our proposal far
more general than the traditional proven domain.

3. Tests, results, and analysis

Before any rating system can be put into real use, it must at least pass theoretical quality control.
The goal for a rating system is to produce the best approximation achievable, and to be robust against
abuses and gaming attempts. Any proposed decoding scheme should undergo testing under controlled
conditions (i.e., where fQlg is known), whereas adaptation of a decoding method to realistic applications
usually requires a leap of faith since fQlg is unknown. In fact, we would never know what the hidden, intrinsic
attributes are or their underlying distribution. A decoding method has a higher chance of success in the real
world if it can consistently find the approximate hidden attributes with a high precision under a wide variety of
controlled conditions. We try to choose, among infinite possibilities, a number of case studies we deem most
significant.

We assume the intrinsic qualities (Ql for object l) to be uniformly distributed and the ratings xil to be drawn
from various individual distribution functions PV ðxilÞ, centered around Ql and characterized by different
widths si. This implies that the ratings from different users are assumed uncorrelated. Although we do not

3



ht
tp

://
do

c.
re

ro
.c

h

plan to deal with this effect explicitly in this paper, we would like to point out that the correlation effect is
automatically damped down when using our iterative refinement. Because we downweight users with weaker
rating capabilities, sets of users with poorer rating capabilities but having correlated ratings will have their
votes downweighted and therefore would not be able to bias the result much.1 For users with excellent rating
capabilities but having correlated ratings, keeping or removing the redundancy does not produce much effect
on the final result either. The correlation between users, therefore, does not have a prominent effect. We will
thus present the study of the correlation effect in a separate publication, and in the meantime return to the case
of uncorrelated users.

To be specific, we shall employ the following voting distributions:

PV ðxilÞ ¼
1ffiffiffi
2

p
si

e�
ffiffi
2

p
jxil�Ql j=si , (6)

PV ðxilÞ ¼
ðf � 1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cf s2i =2

q jxil �Ql jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cf s2i =2

q þ 1

0
B@

1
CA

�f

, (7)

where Cf ¼ ðf � 2Þðf � 3Þ for f43. In this case both distributions have finite second moments given byR
PV ðxilÞ½xil �Ql �2 dxil ¼ s2i . We may extend the exponent f to be in the range 1ofp3 at the expense of a

divergent second moment, and set Cfp3 ¼ 2. The resulting distribution (7), falling outside the realm of the
central limit theorem, will also be considered. Finally, the distribution widths si are also randomly drawn from
a distribution function p. The broader the distribution function, i.e., the greater the inhomogeneity in rating
capabilities, the harder it is to have resulting ql ’s close to the intrinsic Ql ’s.

As a quantitative measure of the accuracy of any estimation method, we use a Euclidean-like distance
between the estimated solution fqlg and the intrinsic values fQlg

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
l¼1

ðql �QlÞ2
vuut . (8)

Since in many applications it is required to rank the M objects in order of decreasing quality, it is useful to
compare the estimated ranked list LE with the intrinsic one LI . A measure IðpÞ is introduced to examine the
ranking integrity within the top p proportion of the object’s quality list

IðpÞ � 1

½pM�
X½pM�

R¼1

nðRÞ
R

, (9)

where ½x� indicates the maximum integer that is smaller than or equal to x. Here nðRÞ denotes the
number of objects, among the top R ones in the estimated ranking list LE , whose intrinsic qualities
rank among the top R in the intrinsic list LI . The higher the quantity IðpÞ, the better the overlap between
the estimated ranking and the intrinsic one. For illustrative purposes, we shall consider p ¼ 0:5 in this study.
It is worth pointing out that the expectation value of IðpÞ from random sampling can be calculated
(see Appendix for the complete proof)

hIðpÞi0 ¼
½pM� þ 1

2M
�!Mb1

p=2. (10)

In order to have a more precise measure of the variation of D and IðpÞ around their respective means, we
calculate the ‘up’ variance hðD� hDiÞ2iD4hDi and ‘down’ variance hðD� hDiÞ2iDohDi (identically in IðpÞ case)
and report their square roots as asymmetric error bars in Figs. 1, 3 and 5.

1This is assuming that the ratings of users are not all biased in the same direction for every object. If all the ratings are biased in the same

direction, then a new consensus is formed and there is nothing one can do to retrieve the correct attributes based only on the ratings given.
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3.1. Effect of the number of objects and raters

Both the distance measure D in Eq. (8) and the ranking-integrity measure IðpÞ in Eq. (9) are functions of M
and implicitly of N. For simplicity we will assume M ¼ N and measure both D and Iðp ¼ 0:5Þ for various N
and different stochastic distribution functions PV ðxÞ.

As shown in Fig. 1(a), using the iterative refinement method the difference between the q’s and
the Q’s becomes smaller steadily with increasing N. When using the exponential distribution (6) for voting,
within numerical errors the downward slope equals �1

2
as expected from the law of large numbers. When the

voting distribution function has a power-law tail that prevents a finite second moment, the proposed method
still shows steady improvement with increasing N. In Fig. 1(a) we also show, as a comparison, the
simple average with equal weights: the difference D is much larger and its convergence to zero is not
guaranteed. Moreover, the precision for a moderately large set of data is strengthened by the rapid decrease of
the error bars.

In Fig. 1(b) we show how the ranking integrity changes with size. There is a clear separation between the
naı̈ve arithematical average and the iterative refinement method. The increase of the ranking integrity with N

confirms that the robustness of our method increases steadily with the system size. When using the naive
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Fig. 1. The dependence of D, from Eq. (8), and of Iðp ¼ 0:5Þ, from Eq. (9), on the system size N is shown in (a) and (b), respectively. The

intrinsic quality of each object is randomly uniformly drawn from the interval ð0; 10Þ. A small finite constant � ¼ 0:001 is introduced so

that the judging width is always bounded by const=� to avoid the potential artifact of infinite width. For the power-law case (Eq. (7)), we

picked f ¼ 2:5, so that the second moment of V diverges, to test the robustness of our method. Indeed, the deviations D still decrease

steadily with size, although not as fast as for the exponential voting distribution (Eq. (6)), while the ranking integrity grows. The solid

(dashed) line passing through the exponential (power-law) voting distribution in graph (a) has slope �0:50� 0:01 (�0:42� 0:01). The
dashed line in graph (b) is the result for the random case (Eq. (10)). Error bars have been estimated from the standard deviation of 100

realizations of different initial configurations.
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averages, on the other hand, it seems to change only slightly or not at all, within the precision of the indicated
error bars.

3.2. Self-evaluating community

Our method can be easily applied to another context: a self-evaluating community. Suppose a
community of experts tries to find the intrinsic ranking of its own membership. Each expert has an
opinion on every other member in this community and opinions are uncorrelated. In this case we have N ¼ M

and the asymmetrical matrix element fxijg denotes ith member’s rating on jth member. Thus, each member has
a given attribute we call quality as well as a given rating capability. With minor modifications, (4) and (5)
become

X
iaj

1

V
b
i

ðxij � qjÞ ¼ 0; j ¼ 1; 2; . . . ;N, (11)

X
jai

ðxij � qjÞ2
Vi

¼ N ; i ¼ 1; 2; . . . ;N. (12)

Our iterative approach can be readily used to find the solutions for the q’s and the V’s (estimated for Q’s and
s2’s). There are members who are judged by others as higher quality authorities and some members turn out to
excel at rating fellow members. Still others are good at both.

For the self-evaluating community, the simulation results on D and Iðp ¼ 0:5Þ largely agree with those
presented in Fig. 1. Apparently, one may wishfully believe that there exist correlations between the qualities of
being good experts and being good raters. For example, in the real world people often assume that being a
good expert automatically implies being a good rater. However, we should be cautious in this regard: though
very likely the two types of quality are somewhat correlated, we should let the data itself bring out evidence
which may support or undermine such a hypothesis. To demonstrate this possibility, we have run a simulation
where everyone has the same rating capability and another where the rating capability 1=si of user i is directly
proportional to his quality Qi of being a good expert. Although no information about the correlations between

-2 0 2 4 6 8 10 12
q

0.00

0.10

0.20

0.30

0.40

1/
σ

constant width
width = const/q
width = const/q with center drift

Fig. 2. Experts’ estimated rating capability versus estimated quality. UsingN ¼ 400, data is taken from the outcome of a typical single run

with, respectively, si ¼ const: (circles), si ¼ const:=Qi with a random center-drift uniformly distributed between ½�5; 5� (x signs) and

without drift (diamonds).
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Qi and si is fed into our iterative refinement method, the result shown in Fig. 2—plotting 1=V1=2 versus q—
reflects strongly the respective underlying correlations.

3.3. Individualized biases of the target Ql

One may object to the fact that each rater’s distribution is symmetrical around the intrinsic attribute. To
subject our method to more severe tests, we now relax this condition: we allow each rater to have an individual
distribution function not only with a specific width, but also an object-dependent individualized biased center.
Thus, xil is drawn around Ql þ DQil , where the center drift DQil represents the individual bias.

For testing purposes, the quantity DQil was drawn from a uniform distribution inside ½�5; 5�,
while the intrinsic qualities Ql are within the range ½0; 10�. Despite the fact that DQ has a rather
large range, the convergence of q to Q is almost as good as in the unbiased case. There is only a small increase
in D and a negligible decrease in Iðp ¼ 0:5Þ. Even in the case of the self-evaluating system, the modification
does not spoil the underlying characteristics. As shown in Fig. 2, when the rating capability is directly
proportional to the expert quality, the linear relationship found between 1=V1=2 and q still holds, except with a
smaller slope.

We may conclude that the proposed method is quite effective in decoding the hidden attributes in the
controlled numerical experiments. However, before proposing it for real applications we must face another
type of challenge: members may harbor private agendas and may willfully distort information. So far we have
dealt with random, neutral noise, which we shall call the first kind. The second kind of noise, is unique for
intended human actions. Comparing with the information theory of Shannon for transmitting signals via a
noisy channel [8], which by definition deals with noise of the first kind, we must be wary that our method
should be relatively robust against willful distortion as well. As people often observe in real life information
collection and evaluation, gaming the system is often hard to detect, and still harder to stop. We now turn to
this case.

3.4. Intentional distortion

Consider the context of a mutually evaluating community. Since friendships and rivalries are as ancient as
civilization in any human grouping, we must expect that some will give a more favorable evaluation for their
friends, with upward deviations often larger than what their rating capability would warrant. Likewise they
may rate down their enemies. For this reason we shall extend the proposed model to include some
friendship–enemy pairs among the members of the community. A simple way to implement this is to pick in
turn every member, sending out a fixed number of friendly links landing randomly on fellow members, and the
same number of enemy links. As a result of this procedure, any member can receive more or less friendly or
hostile links. When two members are linked by a friendly link, they trade favors by up-rating each other by a
upwards bias. Likewise, two enemies will rate down each other by a downward bias. To simulate this effect,
when a member i votes on his friend (enemy) j, we increase (decrease) the vote xij by 2si. As a control
parameter we denote by g the percentage of friendly and hostile links. For instance, at g ¼ 30% each member
has 30% out of the total fellow members as friends, and as many enemies. Thus, the remaining 40% are
neutral ones to him.

In Fig. 3 we see that, as the percentage g increases, i.e., the community becomes more and more corrupted
and ratings become less and less fair, the decoding efficiency deteriorates. Specifically, one should note the
increase of D and the decrease of Iðp ¼ 0:5Þ as g increases. However, the overall efficiency holds remarkably
well in the face of the massive information corruption. Even when the majority of fellow members are either
friends or enemies, the solution q still remains very close to Q. As a comparison, we see that the ranking
integrity from the simple average quickly worsens and comes close to the expectation value from
informationless random sampling.

When a member rates another member far away from the intrinsic attribute, the mischief
costs him somewhat in credibility 1=V1=2, which is the estimate of his rating capability 1=s. If
there are a high fraction of friends and enemies, then all are adversely affected in their rating capabilities;
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this is best seen from Fig. 3(b), which shows how the ranking integrity worsens as the friend/enemy fraction g
increases.

3.5. Stability against worst abuses

It is instructive to examine the maximum ability for a member to willfully distort information about
another. We would like to investigate the effect of a willful distortion on the final rating of the targeted
member as well as on the cheater’s estimated rating capability, which can also be interpreted as his credibility
within the community. For this purpose, the simplest method is to consider a fair community, where only one
member harbors a hidden agenda to distort the rating of another member by a very wide margin. Since all
other raters are fair, the impact of this distortion can be calculated, as well as the repercussion on his own
rating capability, judged by the community. If the cost is high for the cheater compared to the possible impact
the cheating would have, then we may conclude that the method is naturally robust in constraining cheating
behavior; if the cost is low for a similar impact, we should expect that cheating would run rampant and
additional features are called for to prevent it.

It is practical to represent all the members in two rank lists: one for their quality judged by the fellow
members; another for their rating capability as the result of their behavior in judging others. This is similar in
spirit to the notion of authority and hub [9], two qualities that are also central in ranking web pages. Assume
one cheater in an otherwise fair community. Because promotion and demotion have almost identical costs on
the cheater’s rating capability, we need to illustrate in detail only one of the two possible ways of cheating.

0.0 0.1 0.2 0.3 0.4 0.5

10

1

0.1

0.01

Δ

γ

γ

naive average
iterative refinement

0.0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0

I(
p=

0.
5)

naive average
iterative refinement
<Ir(p=0.5)>0

(a)

(b)

Fig. 3. The effect of intentional distortion on D. The abscissa records g, the ratio of friends and enemies to the population in a community;

the ordinate documents the distance D (a) and the rank integrity Iðp ¼ 0:5Þ (b). Using N ¼ 400, the data are obtained from the outcome of

100 simulation runs. The standard deviations from the mean value are shown as a vertical bar around the average value.
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Suppose the cheater promotes a friend beyond the intrinsic merit by a quantity B. We wish to know (i) by how
much this promotion would move his friend up in the attribute rank list, and (ii) by how much this cheating
would move the cheater down on the rating capability rank list. We may further inquire what is the maximum
distortion a member can possibly create. This is interesting since only by knowing the worst case scenario we
can learn how robust this method is.

First we note that there indeed exists an upper bound on the possible cheating. A member launching a
desperate distortion act, not caring about any damage to his own rating capability, could not favor his fellow
indefinitely. Because the rating from cheater I is weighted by 1=V

b41=2
I (see Section 2) and VI ðBb1Þ is related

to VI ðB ¼ 0Þ via the relation2

VI ðBb1Þ � VI ðB ¼ 0Þ ¼ B2

N
½1þ Oð1=BÞ�,

the overall contribution from cheater I on his pal J that he is trying to promote behaves like

� xIJ þ B

½s2I ðB ¼ 0Þ þ B2=N�b

for large B, and it becomes vanishingly small when b41
2
. This indicates that when rating an object way out of

proportion, the net effect is as if the distorted vote never existed and our desperate cheater may not want to
inflict such an egregious distortion lest his credibility drops to the bottom of the list. Such a desperate act in
reality inflicts the maximal damage to his own credibility while achieving little desired result. Therefore, a
rational cheater may then take a more calculated approach to produce a maximal distortion. A highly credible
member can generate a larger distortion than an average member, should he choose to do so; a member on the
bottom of the rating capability rank list has, however, weaker impact on promoting or demoting other
members.

From the system point of view, we do not have to suffer from the maximal distortion. It is easy to detect
such attempts and the cheater’s rating can be simply ignored and, at our discretion, the cheater’s rating
capability can be restored since his contribution evaluating other neutral members is a valuable service we
want to keep. We call this the ‘S’ strategy. The implementation of the ‘S’ strategy is flexible, we can either
choose to inflict a punitive penalty or simply detect cheating and ignore it. Although it should depend on how
reliably we can detect cheating, we currently implement the ‘S’ strategy in two steps: if the rating from voter i

to object l is more than two
ffiffiffiffiffiffi
Vi

p
away from ql , we downweight the rating xil by an additional factor

ð2 ffiffiffiffiffiffi
Vi

p
=jxil � qljÞ1=2 and we totally discard the weight whenever jxil � qlj43

ffiffiffiffiffiffi
Vi

p
.

A simulation of 400 experts in a self-evaluating community is performed to test the effect of intentional
distortions. In this simulation, we assume that each rater’s rating capability is directly proportional to his
intrinsic quality. Forty realizations of different rating matrices are evaluated with the iterative refinement
approach and the rank changes due to cheating for each rating matrix are averaged. We note that, as
summarized in Fig. 4(a), when the cheater’s intrinsic rating capability ranks high, he can promote others more
than a cheater with mediocre rating capability. The cheater will have to pay a price of moving his rank down
on the rating capability list by about 100 to achieve the maximum distortion of about 10–15. However, once
we turn on the ‘S’ strategy, appreciable distortion can no longer be achieved, as demonstrated in the bottom
two curves of Fig. 4(a). Therefore, it is possible to maintain a high degree of fairness and discourage cheating
when this new method is employed in real society. With more information shared and less cheating allowed,
our society can grow into a happier and healthier whole.

In real life the rating capability and one’s intrinsic quality might not be always correlated, as plausibly
assumed in our simulation. However, without any presumption, working with real data may well reveal any
correlation, since the method we propose does not exclude any specific one. We may propose a combined

quality parameter to represent a member’s overall capability, q=
ffiffiffiffi
V

p
. Any member, found to rank high on this

new combined rank list, will be both judged highly by fellow members and behave well in judging others. The
new rank list would also serve as a deterrent to cheating: any willful distortion attempt would cost a cheater

2This relation stands valid even when B � 1 except that then there are other correction terms of comparable order. A detailed study of

this effect will be presented in a forthcoming publication.
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somewhat in overall quality. The cost-benefit analysis now becomes even simpler: cheating may move up
(down) a friend’s (enemy’s) rating, but the cheater’s own overall rating slips. In the previously mentioned
simulation, we also document the change of this unified rank for both the cheater and the benefited object. In
Fig. 4(b) it appears again that cheating does not pay. Note that the bump in the tail of RV ¼ 10;RO¼100, with
strategy ‘S’ turned on, is not an indication of the malfunction of our method. In fact, there the advance of the
object’s unified rank is due to the fact that the cheater’s unified rank has dropped below that of the object’s.
This nice feature again discourages severe cheating!

Finally, one may also wish to test the method against the possibility of ignorant voters. To model this, we
assume there is only a certain proportion C of the raters voting according to distribution (6), while the rest of
the raters are voting randomly between � and 10þ �. Fig. 5 documents the test using a population of 400
voters in a self-evaluating community. Our method provides appreciable improvement over the simple average

4. Outlook and concluding summary

We have proposed an iterative refinement method to estimate the hidden intrinsic qualities of a set of objects
that have been evaluated by a group of raters. The method consists of aggregating these evaluations in a

0 1 10 100

Cheater’s 1/V1/2 rank worsened 

0

3

6

9

12

15

O
bj

ec
t’s

 q
 r

an
k 

ad
va

nc
ed

RV=10, RO=100

RV=10, RO=100, S on

RV=100, RO=10

RV=100, RO=10, S on

0 1 10 100
Cheater’s unified rank worsened 

0

3

6

9

O
bj

ec
t’s

 u
ni

fie
d 

ra
nk

 a
dv

an
ce

d RV=10, RO=100

RV=10, RO=100, S on

RV=100, RO=10

RV=100, RO=10, S on

(a)

(b)

Fig. 4. The effect of extreme intentional distortion on the object’s rank (a) and on the object’s unified rank (b). RV represents the cheater’s

rank in the intrinsic rating capability list, while RO represents the benefited object’s rank in the intrinsic quality list. By increasing the

amount of intentional distortion B, the 1=
ffiffiffiffi
V

p
rank of the cheater worsens while the q rank of the benefited object also covaries. When the

‘S’ strategy is turned on, we see that the cheater has very little impact on distortion, despite how willing he is to sacrifice himself. See the

text for the explanation of the final bump in the diamond curve of (b).
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weighted sum, with the aim to give more weight to expert raters. Weights and qualities are estimated
iteratively from the same data set. Extensive simulation results show that the proposed method is able to
recover the hidden attributes with remarkably good precision, even when the conditions of the law of large
numbers are not fulfilled. In particular, it overwhelms the performance of the naive simple average in most
circumstances.

The proposed method is intended to be mainly applied to virtual communities of all kinds, where people are
allowed to express their opinions on a particular subject—which can be a material object, a person or even
another opinion. In addition to the objects’ intrinsic values, the method allows detection of the rating
capabilities of the users. This provides valuable information, since it defines reputations [10] without the need
of any other feedback. It may constitute a strong incentive for users to rate accurately the desired object and a
strong deterrent against cheating.

In fact the proposed method is robust against gaming. It remains effective in decoding the hidden
attributes in the face of two types of noise: random and intentional. Although we fully anticipate this
approach to be effective when working on real data where the intrinsic values fQlg are not known at all,
we are in the process of making more critical assessments by gathering data from existing web sites and by

(a)

(b)

Fig. 5. The effect of ignorance. C represents the proportion of conscious raters who vote according to the exponential distribution (6).

(a) Ranking integrity Iðp ¼ 0:5Þ against C. (b) D against C. We see that Iðp ¼ 0:5Þ (respectively, D) increases (decreases) rapidly, and

becomes much bigger (smaller) than the simple average, when C40:4. s’s of conscious voters are drawn from an exponential distribution

with mean 1.
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even designing special purpose web sites to acquire custom data. With more information shared and less
cheating allowed, we hope our method, once implemented, can help our society to grow into a happier and
healthier whole.
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Appendix A

In this Appendix, we will derive the formula shown in Eq. (10). Consider we have M objects, labeled by
O1;O2; . . . ;OM , and we randomly put them into an ordered array of size M. Apparently, there are M! ways to
do so. The question is then to obtain the probabilities Pðkj‘Þ for k objects out of O1;O2; . . . ;O‘ to be in the top
‘ entries of the array.

When k ¼ ‘ we only have ‘! ways to order these ‘ objects and ðM � ‘Þ! ways to arrange the rest. Therefore,
when k ¼ ‘, we have Pð‘j‘Þ ¼ ðM � ‘Þ!‘!=M!. When ko‘, we have to put ð‘ � kÞ objects in the lower M � ‘
bins and k objects in the top ‘ bins. There are ðM � ‘Þ!=ðM � 2‘ þ kÞ! ways for the former and ‘!=ð‘ � kÞ! ways
for the latter. Further, there are ‘!=k!ð‘ � kÞ! � C‘

k ¼ C‘
‘�k ways to choose which k objects to put in the top ‘

bins. Consequently, we have

Pðkj‘Þ ¼ ðM � ‘Þ!
M!

‘!

ð‘ � kÞ!C
‘
k

ðM � ‘Þ!
ðM � 2‘ þ kÞ!

¼ 1

CM
‘

C‘
kC

M�‘
‘�k . ð13Þ

As a simple check, we can verify that
P‘

k¼0Pðkj‘Þ ¼ 1 because
P‘

k¼0C
‘
kC

M�‘
‘�k ¼ CM

‘ which can be easily
proved by evaluating the coefficient of x‘ in the two equivalent expressions ð1þ xÞM and
ð1þ xÞM�‘ � ð1þ xÞ‘.

It is instructive to compute the expectation value of k=‘ for a given ‘

k

‘

� �
¼

X‘

k¼0

k

‘
C‘

kC
M�‘
‘�k ¼

X‘

k¼1

C‘�1
k�1C

ðM�1Þ�ð‘�1Þ
ð‘�1Þ�ðk�1Þ

¼
X‘�1

k0¼0

C‘�1
k0 C

ðM�1Þ�ð‘�1Þ
k0�ð‘�1Þ ¼ CM�1

‘�1 .

Now the quantity of interest IðpÞ, averaged under a random ensemble, can be expressed as

hIðpÞi0 ¼
1

½pM�
X½pM�

‘¼1

CM�1
‘�1

CM
‘

¼ 1

½pM�
X½pM�

‘¼1

‘

M
¼ ½pM� þ 1

2M
. (14)
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