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Tunneling conductance of a mesoscopic ring with spin-orbit coupling

and Tomonaga-Luttinger interaction
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We study the tunneling current through a mesoscopic two-terminal ring with spin-orbit coupling, which is
threaded by a magnetic flux. The electron-electron interaction in the ring is described in terms of a Tomonaga-
Luttinger model which also allows us to account for a capacitive coupling between the ring and the gate
electrode. In the regime of weak tunneling, we describe how, at temperatures lower than the mean level
spacing, the peak positions of the conductance depend on magnetic flux, spin-orbit coupling strength, gate
voltage, charging energy, and interaction parameters �charge and spin velocity and stiffness�.

I. INTRODUCTION

Mesoscopic rings represent an important tool for experi-
mental and theoretical studies of various phenomena which
take place on a submicrometer scale. The ring geometry al-
lows one to probe many interesting theoretical predictions.
One of the most exciting phenomena is the generation of
geometric phases which are manifested in the interference
patterns of wave packets propagating in the ring. Along with
the well-known Aharonov-Bohm �AB� effect1 which takes
place for both spinless and spinful particles, the generation
of a spin-dependent phase is also possible. This effect, some-
times called the Aharonov-Casher �AC� effect,2 may occur in
the transport of electrons when they are subject to suffi-
ciently strong spin-orbit �SO� coupling. The recent fabrica-
tion of HgTe rings3 made it possible to directly observe the
AC phase. In earlier experiments with other compounds4–6

the signatures of this effect have been also detected.
In order to probe the AC phase it is necessary to have a

tool for manipulating the strength of the spin-orbit coupling.
This is provided by the gate-voltage dependence7 of the
Rashba SO coupling,8 which serves as a basis for a construc-
tion of a spin field-effect transistor.9 Changing the magne-
totransport properties of the ring in this way, the experimen-
talists are now able to study the AC effect.3,4

Usually the current through a mesoscopic noninteracting
ballistic ring is described theoretically by means of the
Landauer-Büttiker scattering matrix theory.10 Geometric
phases arising due to both magnetic flux and SO coupling
can be naturally incorporated in this formalism.11–15 Effects
of electron-electron interaction and charging energy are not
taken into account in such a consideration. However, they
might be important, for example, in small quasi-one-
dimensional �quasi-1D� rings or in arrays of such rings fab-
ricated in very recent experiments.4–6

In the present paper we calculate the linear tunneling con-
ductance of the quasi-1D two-terminal ballistic ring with
Rashba SO coupling threaded by a magnetic flux. The setup
is schematically shown in Fig. 1. The spectrum of electrons
in the ring is SO-split into two subbands. We will assume
electron densities at which only the lowest radial band is

occupied. The electron-electron interaction inside the ring is
modeled by the parameters of the Tomonaga-Luttinger liquid
�TLL�, the leads being noninteracting. Assuming a weak tun-
neling between the leads and the ring, we compute the lead-
ing term of the Kubo conductance perturbatively expanded
in a series of tunneling elements. We mostly follow the ap-
proach of Ref. 16 where a similar problem for spinless fer-
mions was considered. We also make use of the bosonization
in order to calculate the required TLL correlation functions.
However, instead of the Matsubara formalism, we apply the
Keldysh real-time approach to this quasiequilibrium problem
�cf. Ref. 17�. Such a combination of the Keldysh technique
and bosonization appears more efficient for a derivation of
asymptotic results at temperatures lower than the mean level
spacing of the ring’s spectrum.

After Ref. 18 it is known that an electron-electron inter-
action strongly renormalizes the height of tunneling barriers
between the leads and TLL, and therefore at T=0 electron
transport is suppressed. At finite temperatures T�0 the lin-
ear conductance vanishes as a power law of T, while the
effective width of a conductance peak grows with T→0. In
order to ensure the validity of the weak-tunneling approxi-
mation, in our studies we assume a temperature range where
the renormalized tunneling rates are smaller than the tem-

perature, �̃l,r�T. On the other hand, finite-size effects re-
main important at T��0, the single-particle level spacing
near the Fermi level.

In the temperature regime �̃l,r�T��0 the linear conduc-
tance is represented by a sequence of resonance peaks when

FIG. 1. The ring threaded by a magnetic flux � is weakly
coupled to the leads through the tunneling barriers tl and tr and
capacitively coupled to the gate electrode �Vg�.
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plotted as a function of gate voltage and/or magnetic flux. In
our paper we focus on the problem of how the distribution of
the conductance peaks depends on the external parameters
�magnetic flux, SO coupling, gate voltage, charging energy�
as well as on the parameters of the Tomonaga-Luttinger in-
teraction. The perturbative expansion of the linear conduc-
tance in tunneling elements is known to break down in the
resonance positions. Finding the poles of the leading term we
can establish where the conductance peaks are centered.
Thus, the study of electron transport in the TLL ring provides
an effective tool of spectroscopy of its many-body states.
Conceptually this is analogous to the study of the tunneling
conductance between the two parallel quantum wires19

which has been realized experimentally.20 We note that a
description of a shape of a particular peak is, however, a
different problem which is usually tackled in a somewhat
different manner �cf., e.g., Refs. 21–23�, and it will not be
addressed in the present context.

In our paper we extensively discuss the importance of the
so-called Klein factors and zero modes �topological excita-
tions� of the bosonized Hamiltonian24 for the description of
distribution of conductance peaks. An accurate account of
the Klein factors is necessary due to the presence of spin-
orbit coupling in the system. The zero-mode sector of TLL
decouples from its “continuous” �bosonic� sector and con-
tains the whole dependence on external parameters.16,25 The
latter appear in the topological sector after imposing bound-
ary conditions. We elaborate on the procedure of averaging
the conductance over zero modes in the presence of spin-
orbit coupling and obtain analytically asymptotic results for
the peak positions at temperatures lower than the mean level
spacing. We also reexamine the case of spinless fermions
reproducing the result of Ref. 16 and discuss it in further
detail.

It is worthwhile to note that the relevance of the topologi-
cal modes for a description of mesoscopic phenomena in the
TLL rings has been already appreciated in various contexts,
including studies of persistent26 and Josephson currents25 and
the study of the AB phase in chiral Luttinger liquids.27 The
structure of the topological sector in the presence of SO cou-
pling has been recently discussed as well in applications to
persistent28,29 and Josephson30 currents.

The paper is organized as follows. In Sec. II we briefly
outline the construction of the spectrum of the ring with SO
coupling. In Sec. III we summarize the results emerging
from an application of the Landauer-Büttiker formalism to
this system. They will be further used as a reference in the
noninteracting limit. In Sec. IV we present a derivation of the
Kubo formula in the real-time approach. Briefly reviewing
the bosonization formalism in Sec. V, we derive an expres-
sion for the dc conductance to be averaged over zero modes.
The procedure of averaging is performed in Sec. VI. We
discuss the interplay of the externally tuned and interaction
parameters in the distribution of the conductance peaks, es-
pecially focusing on the modification of the Coulomb block-
ade due to SO coupling.

II. MESOSCOPIC RINGS WITH RASHBA COUPLING:
DISPERSION RELATIONS

The two-dimensional electron gas with Rashba spin-orbit
coupling is described by the Hamiltonian

H =
1

2m* �px
2 + py

2� + �R��xpy − �ypx� + V�r� , �1�

where r=�x2+y2. The magnetic field B is introduced in the
kinetic momentum p→p+ e

cA via the gauge potential A
= B

2 �−y ,x ,0�. The radial potential V�r� confining an electron
to the ring geometry can be modeled, for example, either by
singular isotropic harmonic oscillator or by concentric hard
walls.29 For these or any other types of the radial confine-
ment the resulting quasi-one-dimensional spectrum �n��k� is
labeled by the radial band index n=0,1 , . . ., by the angular
momentum 	k= . . . ,−	 ,0 ,	 , . . ., and by the subband index
�chirality� �=±. From now on we will put 	=1.

If the effective ring’s width is much smaller than the
ring’s radius, we can neglect the hybridization between the
radial bands. We also assume electron densities at which
only the lowest radial band �n=0� is occupied. Thus, we
effectively consider the strictly one-dimensional spectrum
�see Fig. 2� which has a parabolic shape and is SO-split into
two subbands:29

���k� � �0��k� =
2
2

m*L2 �k − k� − �kR�2. �2�

Here L is the ring’s perimeter, k�=� /�0 is a number of flux
quanta �0 threading the ring, and the parameter

kR =�1

4
+ ��Rm*L

2

�2

−
1

2
�3�

depends on the Rashba coupling �R.
Linearizing the spectrum �2� near the Fermi energy, we

obtain the four branches

����k� = �0�k − k��
0 � � �0�k − �kF − k� − �kR� , �4�

specified by �=± �or �=R ,L� and �=±. The Fermi angular
velocity �0= � 2


L
�2 kF

m* defines the level spacing of the spec-
trum �4�, and kF is the Fermi angular momentum in absence
of a magnetic field and SO coupling.

III. CONDUCTANCE OF THE MESOSCOPIC RING:
NONINTERACTING ELECTRONS

Let us consider the conductance of the ring attached to the
semi-infinite leads �Fig. 1�. For noninteracting electrons it
can be easily found in the framework of the scattering matrix
theory.10

It is instructive to consider first the case of spinless fer-
mions with the two linearization points kR/L

0 . One finds that in

FIG. 2. The lowest radial band of the quasi-1D mesoscopic ring
SO-split into two subbands.
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the zero-temperature limit and for the angle 
 between the junctions to the leads the dc conductance reads10

G�kF,k�� =
e2

2


16�l�r sin2 kF
 cos2 k�


�− 2�l�r + �1 + 
l
r�cos 2
kF − 2�l�r cos 2
k�	2 + �1 − 
l
r�2 sin2 2
kF
, �5�

where �l/r, 
l/r=−�1−2�l/r, �l/r=− 1
2 �1+
l/r�, and �l/r= 1

2 �1
−
l/r� are the phenomenological parameters describing scat-
tering in a T-shaped �left l or right r� junction. The number of
flux quanta is given by k�= 1

2 �kR
0 −kL

0�, while the quantity
kF= 1

2 �kR
0 +kL

0� corresponds to the Fermi momentum at zero
flux. It can be replaced by kF→N0+ ��

�0
, where �� is a dif-

ference between the chemical potential of the leads and the
Fermi energy of the ring, and the integer N0 is related to the
number 2N0+1 of electrons in the ring at ��=0. Since the
expression �5� is periodic in kF, the integer part of kF can be
discarded. Thus, the conductance �5� actually depends on the
fractional part of ��

�0
. For future references we introduce the

parameter k�= ��
�0

− 1
2 .

In the weak-tunneling limit �l/r�1 the conductance �5�
approximately equals

G 

e2

2


4�l�r sin2 kF
 cos2 k�


�cos 2
kF − cos 2
k��2 +
1

4
��l + �r�2 sin2 2
kF

.

�6�

As a function k� and k�, it represents a sequence of Breit-
Wigner resonances. The conductance peaks occur when the
resonance condition cos 2
kF=cos 2
k� is fulfilled—i.e., at
the values of the parameters

kF + k� = nR, kF − k� = nL, �7�

where nR and nL are arbitrary integers. We note that in the
weak-tunneling limit the resonance condition �7� remains
valid for arbitrary angle xl−xr between the junctions, while
the shape of Breit-Wigner resonances is quite sensitive to the
value of xl−xr.

It has been demonstrated in Ref. 12 that for electrons with
nonzero SO coupling and negligible Zeeman splitting the
conductance of the mesoscopic ring is given by the sum of
the two contributions: G�kF ,k�+kR� and G�kF ,k�−kR�. In
other words, the net effect of the SO coupling for noninter-
acting electrons is the generation of the different effective
flux values for the different channels. Therefore, the pattern
of the conductance maxima at kR�0 is determined by the
resonance conditions

kF + �k� ± kR� = nR±, kF − �k� ± kR� = nL±, �8�

where nR± and nL± are arbitrary integers. Recalling that
effectively k�=kF− 1

2 , we show in Fig. 3 how the arrange-
ment of the conductance peaks is modified by SO coupling.

IV. KUBO FORMULA

In order to take into account effects of the electron-
electron interaction on the distribution of conductance peaks,
we discuss in this section the Kubo formula for the linear
conductance. Although this expression is very standard, we
rederive it using the Keldysh formalism. In doing this, we
pursue two objectives. First, we would like to have better
control of the approximations used �similar to those made in
Ref. 16�. Second, we would like to deduce an expression for
the conductance in a real-time representation. Its advantage
for the ring geometry will be discussed in the next section
where the calculation of time-dependent finite-size TLL cor-
relation functions is concerned.

In the second-quantized formulation the mesoscopic ring
attached to the leads is described by the Hamiltonian

H = Hl + Hr + Hc + HT. �9�

The left/right lead is described by a Fermi-liquid Hamil-
tonian Hl/r=�dxcl/r

† �x�� p2

2m* −��cl/r�x�, and the tunneling term
is HT=�l,r�tl/rcl/r

† �xl/r���xl/r�+H.c.	. Here cl/r and � are the
field operators in the leads and in the ring, respectively.

The Hamiltonian of the central part �ring� Hc��† ,�	 can
have any interaction term in addition to the kinetic term. In
our consideration we will model the electron-electron inter-
action in the ring by the Tomonaga-Luttinger liquid which
includes only forward-scattering processes �“density-
density”-type interaction�. In the framework of this model it
is also possible to take into account the charging effects.
They originate from a capacitive coupling of the ring to the
gate electrode and are described by the Hamiltonian

Ec
�N̂ring− 1

e CgVg
�2

, with the charging energy Ec=e2 /2Cg.

Here Cg is the gate capacitance and N̂ring is the number op-
erator of electrons in the ring.

The linear response of the system to an applied time-
dependent bias voltage is described by the Kubo formula for
the ac conductance:31

FIG. 3. Splitting of the conductance peaks �solid lines� due to
SO coupling. The dashed lines correspond to kR=0.
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G��� = −
1

�



−�

t

dt�e−i��t�−t���Îl�t�, Îr�t��	� , �10�

where Îl/r�t�= ie�tl/rĉl/r
† �xl/r , t��̂�xl/r , t�−H.c.	 is a current op-

erator in the left/right junction written in the Heisenberg rep-
resentation.

In the weak-tunneling limit the expression �10� can be
expanded in a series of HT. We make use of the real-time
Keldysh diagrammatic technique, and for t� t� we replace

��Îl�t� , Îr�t��	� by

�TtÎl�t�Îr�t��� − �T̃tÎl�t�Îr�t��� � 2i Im�TtÎl�t�Îr�t��� . �11�

When expressed on the Keldysh contour, it reads

�TtÎl�t�, Îr�t��� =�T̃t exp�i

−�

t

HT�t��dt��Il�t�

�Tt exp�− i

−�

t

HT�t��dt��
�T̃t exp�i


−�

t�
HT�t��dt��Ir�t��

�Tt exp�− i

−�

t�
HT�t��dt��� , �12�

where the operators without carets refer to the interaction
�HT� representation.

Expanding �11� to the second order in HT, we obtain



−�

t

dt1

−�

t�
dt1����Il�t�,HT�t1�	,�HT�t1��,Ir�t��		�

− 

−�

t

dt1

−�

t1

dt2����Il�t�,HT�t1�	,HT�t2�	,Ir�t��	�

− 

−�

t�
dt1�


−�

t1�
dt2���Il�t�,�HT�t2��,�HT�t1��,Ir�t��			� .

The next step is to perform averaging over the leads’
states. While doing this, we meet the following combina-
tions: �a� �Gl

R−Gl
A��Gr

R−Gr
A�, �b� Gl

K�Gr
R−Gr

A�, �c� �Gl
R

−Gl
A�Gr

K, and �d� Gl
KGr

K. Here Gl/r
R,A and Gl/r

K are the
momentum-averaged retarded, advanced, and Keldysh func-
tions of the leads in the real-time representation

�GR − GA�l/r�t� = − i��cl/r�t�,cl/r
† �0��� = − 2
i��t�

�l/r

Vl/r
,

Gl/r
K �t� = − i��cl/r�t�,cl/r

† �0�	� = −
2


� sinh�
t/��
�l/r

Vl/r
,

and �l/r is the density of states in the left/right lead at the
Fermi level.

One can straightforwardly prove that the combinations �a�
and �b� vanish identically. The combination �c� gives the
following contribution to the conductance:

G�c���� = e2�l�rL
2


−�

0 

−�

0

dt1dt2
e−i�t1�1 − e−i�t2�

2i�� sinh�
t2/�	

� Re�����l�0�,�l
†�0�	,�r�t1�	,�r

†�t1 + t2��� ,

�13�

where �l/r=2
�l/r�tl/r�2 / �Vl/rL� and Vl/r is the volume of the
left/right lead.

From Eq. �13� we derive an expression for the dc conduc-
tance ��=0� at zero temperature:

G�c� =
e2

2

�l�rL

2

−�

0 

−�

0

dt1dt2

� Re�����l�0�,�l
†�0�	,�r�t1�	,�r

†�t1 + t2��� . �14�

Using the operator identities

��C,A	,B� + ��C,B	,A� = �C,�A,B�	 , �15�

�C,�A,B�� − �A,�C,B�� = ��C,A	,B	 , �16�

we rewrite Eq. �14�,

G�c� =
e2

4

�l�rL

2

−�

0 

−�

0

dt1dt2

� �Re�����l�0�,�l
†�0�	,�r�t1�	,�r

†�t2���

+ Re����l�0�,�l
†�0�	,��r�t1�,�r

†�t2��	�� , �17�

and further express

�����l�0�,�l
†�0�	,�r�t1�	,�r

†�t2���

= ����l�0�,�r
†�t2��,��r�t1�,�l

†�0����

+ ����r
†�t2�,��l

†�0�,�r�t1��	,�l�0�	�

− ����l
†�0�,��l�0�,�r�t1���,�r

†�t2��� . �18�

It is obvious that in the noninteracting limit the only term
����l�0� ,�r

†�t2�� , ��r�t1� ,�l
†�0���� survives, since the other

terms vanish due to the fermionic commutation relations. We
approximate the dc conductance in the interacting case by
this dominant contribution:

G 

e2

4

�l�rL

2

−�

0 

−�

0

dt1dt2

� Re����l�0�,�r
†�t2��,��r�t1�,�l

†�0���� . �19�

Splitting the four-particle correlator, one can recover the for-
mula G
�e2 /2
��l�rL

2�GR��=0,xl−xr��2 from Ref. 16,
where GR��=0,xl−xr� is a zero-frequency retarded Green’s
function for interacting electrons in the ring. This approxi-
mation physically means that one scattering event is com-
pleted before another takes place. In general, the TLL corre-
lation functions of any order can be calculated within the
bosonization approach, and this approximation can be re-
laxed.
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The combination �d� with Gl

KGr
K also gives a finite contri-

bution to the conductance, which, however, vanishes in the
noninteracting limit as well. Therefore, we will neglect it on
the same ground as we have just neglected the subdominant
terms in Eqs. �17� and �18�.

V. BOSONIZATION

A. Spinless case

In order to compute the four-particle correlator �19�, we
will make use of the bosonization technique.24

Let us consider for simplicity the spinless case. We intro-
duce the shorthand notations for the fermionic fields �l
���xl� and �r���xr�, where xl and xr are the angle coordi-
nates of the left and right junctions. In the following we
assume that xl=0 and xr=
.

In the bosonization the fields �l/r are represented as a sum
of the right- ��=+, or R� and left- ��=−, or L� moving com-
ponents,

�l/r = �l/r,R + �l/r,L = Fl/r,R�l/r,R
b + Fl/r,L�l/r,L

b , �20�

and each of �l/r,� consists of a topological part Fl/r,� and
a bosonic part �l/r,�

b commuting with each other: �F ,�b	=0.
The bosonic part is given by

��
b�x� =

1
�L�̃

e−i�2
���x�,

���x� = i�
k=1

�
e−�̃k/2

�2
k
�ei�kxb�k − e−i�kxb�k

† � , �21�

where �̃= 2
�
L is a small dimensionless cutoff parameter and

the operators b�k, b�k
† satisfy the bosonic commutation rela-

tion �b�k ,b��k�
† 	=�����kk�.

The topological part is important for the finite-size TLL
with periodic boundary conditions. It includes Klein factors
F�, zero-mode operators N�, and the linearization points k�

0

�see Fig. 2 assuming kR=0�:

Fl/r,� = F�ei��N�−k�
0 �xl/r. �22�

The zero-mode operators N�=N�
† take integer values, and the

following relations are satisfied:24

�F�,N��	 = F�����, �23�

�F�,F��
† � = 2����, �24�

�F�,F��� = �F�
† ,F��

† � = 0 for � � ��. �25�

The bosonized TLL Hamiltonian HTLL�Hc=Hb+H0 con-
sists of a “continuous” �bosonic� Hb part and a topological
H0 part which are decoupled from each other. Therefore, the
factorization of �l/r,� into Fl/r,� and �l/r,�

b takes place at any
time instant:

�l/r�t� = Fl/r,R�t��l/r,R
b �t� + Fl/r,L�t��l/r,L

b �t� , �26�

where the time evolutions of �l/r,�
b �t� and Fl/r,��t� are gov-

erned by Hb and H0, respectively. By the same reason the

statistical averagings in both bosonic and topological sectors
are independent of each other.

The bosonic part of the TLL Hamiltonian is given by

Hb =
2
v

L
�

a=1,2
�
k=1

�

kdak
† dak, �27�

where v is the so-called charge velocity �the renormalization
of the Fermi velocity v0�

L�0

2
 �. The operators dak, dak
† �a

=1,2� are obtained from b�k, b�k
† by the canonical transfor-

mation �A1�. The latter depends on the interaction parameter

= 1

2
� 1

K +K�, where K is the so-called charge stiffness. For
repulsive interactions K�1, while in the noninteracting limit
K=
=1 and v=v0.

The topological part of the TLL Hamiltonian is

H0 = �
�

�a0Ñ�
2 + a1Ñ�Ñ−�� , �28�

where a0,1=
�0

4 ��̃±�� and

�̃ = � +
4Ec

�0
, � =

v
Kv0

, � =
vK

v0
. �29�

The topological numbers Ñ�=N�−k� are shifted by k�=k�
0

+�k�, where

�k� =

4Ec�1

e
CgVg − 2N0� + 2�� − �0

2�̃�0

�30�

redefines the linearization points k�
0 in order to include the

dependence on �� and the gate voltage Vg. In the basis N
=NR+NL, J=NR−NL, the Hamiltonian H0 acquires the diag-
onal form

H0 =
�0

4
��̃Ñ2 + �J̃2	 , �31�

where Ñ=N−2k�, J̃=J−2k�, and k�=N0+�k�. One can ob-
serve that the whole dependence on ��, Vg, and � is in-
cluded in the topological sector.

Using the commutation relations �23� we find the time
evolution of the Klein factors:

F��t� = eiH0tF�e−iH0t = F�e−itP�+ita0, �32�

where

P� = 2a0Ñ� + 2a1Ñ−� =
�0

2
��̃Ñ ± �J̃	 . �33�

The details of the time evolution of the bosonic fields are
presented in Appendix A. In fact, they are not very important
for our purpose. We will only exploit the fact that the aver-
age of the bosonic fields,

gb�t;
� = ��lR
b �t��rR

b†�0�� � ��lL
b �t��rL

b†�0�� , �34�

is a periodic function of time which can be expanded in a
Fourier series,

5
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gb�t;
� = �
p=0

�

gp�
�e−ip�t, �35�

with frequency �= 2
v
L and real-valued coefficients gp�
�.

Note that the summation in Eq. �35� is performed only over
non-negative integers.

The real-time periodicity of gb�t ;
� is inherited from the
spatial periodic boundary conditions. The occurrence of the
Fourier series �35� allows us to perform all time integrals
explicitly. The analysis of the remaining series is a much
simpler task.

Let us make yet another approximation in the spirit of
Ref. 16. In particular, we split the four-particle bosonic cor-
relator in �19�, neglecting the anomalous averages �e.g.,
��b�b��, the left-right mixing �e.g., ��L

b�R
b†��, and the vertex

corrections �averages of operators at the same spatial point,
e.g., ��r

b�r
b†�� in the bosonic �continuous� sector. At the same

time, we do not split the topological part of the four-particle
correlator �unlike has been done in Ref. 16� and perform a
single averaging of the whole over zero modes.

Implementing this procedure, we obtain

��l�0��r
†�t2��r�t1��l

†�0��


 gb*�t2�gb�t1�

� �
�1,�2

�Fl,�2
�0�Fr,�2

† �t2�Fr,�1
�t1�Fl,�1

† �0��z.m.,

�36�

where �¯�z.m. implies averaging over zero modes to be dis-
cussed later. Collecting all contributions, we find

G 

e2

2

�l�rL

2 �
p1,p2=0

�

gp1
�
�gp2

�
�

−�

0 

−�

0

dt1dt2

� �
�=±

Re ��eit1��p1+a0+P�� − e−it1��p1+a0−P���

� �e−it2��p2+a0+P�� − eit2��p2+a0−P���

+ ei�N�+N−��
�ei�t1��p1+a0+P�� − e−i�t1��p1+a0−P���

� �e−i�t2��p2+a0+P−�� − ei�t2��p2+a0−P−����z.m.. �37�

Introducing

A�
± = �

p=0

�
gp�
�

�p + a0 ± P�

�38�

and A�=A�
+ +A�

−, we can cast Eq. �37� into the form

G 

e2

2

�l�rL

2�AR
2 + AL

2 + 2ARAL cos�ÑR + ÑL + 2�k��
�z.m..

�39�

We remark that the alteration of the angle xl−xr between the
junctions would only modify the Fourier coefficients gp�
� in
Eq. �38� as well as the relative phase of the interference term
�ARAL in Eq. �39�. Meanwhile, the poles of A�

± in Eq. �38�
are not sensitive to the value of xl−xr.

In order to treat further the expression �39� we need to
establish an efficient procedure of averaging over zero
modes. But first we are going to discuss the modification of
the conductance �39� caused by the presence of spin degrees
of freedom and by spin-orbit coupling.

B. Spinful case

Performing a similar bosonization procedure in the spin-
ful case, we obtain the following expression for the dc con-
ductance:

G 

e2

2

�l�rL

2�
�=±

�AR�
2 + AL�

2

+ 2AR�AL� cos�ÑR� + ÑL� + 2�k��
�z.m.. �40�

The zero-mode operators N�� with integer eigenvalues are

shifted to Ñ��=N��−k�� by k��=k��
0 +�k�, where

�k� =

4Ec�1

e
CgVg − 4N0� + 2�� − �0

2�̃c�0

. �41�

The integer N0= 1
4��,�k��

0 is related to the number 4N0+2 of
electrons in the ring when the parameters

k� =
1

4�
�

�kR� − kL�� , �42�

kB,R =
1

4�
�

��kR� ± kL�� �43�

equal zero. The parameter kB vanishes in the absence of a
Zeeman interaction. The parameter

k� =
1

4�
�,�

k�� = N0 + �k� �44�

contains the dependence on �� and Vg.
Like in the spinless case, it is convenient to introduce

�̃c = �c +
8Ec

�0
, �c,s =

vc,s

Kc,sv0
, �c,s =

vc,sKc,s

v0
, �45�

and �c,s=
2
vc,s

L , and 
c,s= 1
2 � 1

Kc,s
+Kc,s�, which are expressed

through the charge and spin velocities vc�vs, the charge and
spin stiffnesses Kc�Ks, and the charging energy Ec.

In Eq. �40� the rates �l and �r remain the same as in the
spinless case, since we assume that the density of states in
the leads is spin independent and equals �l/r for each spin
component. The spin dependence appears in the functions
A��=A��

+ +A��
− ,

A��
± = �

pc,ps=0

� gpc
�1

2

c�gps

�1

2

s�

�cpc + �sps + ā0 ± P��

, �46�
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P�� = 2ā0Ñ�� + 2ā1Ñ−�,� + 2ā2Ñ�,−� + 2ā3Ñ−�,−�. �47�

The coefficients ā0,1=
�0

8 ��̃c±�c+�s±�s� and ā2,3=
�0

8 ��̃c±�c

−�s��s� are the components of the quadratic form of the
zero-mode Hamiltonian

H0 = �
�,�

�ā0Ñ��
2 + ā1Ñ��Ñ−�,� + ā2Ñ��Ñ�,−� + ā3Ñ��Ñ−�,−�� .

�48�

In the basis

Nc,s = �NR+ + NL+� + ��NR− + NL−� , �49�

Jc,s = �NR+ − NL+� + ��NR− − NL−� , �50�

the Hamiltonian �48� becomes diagonal:

H0 =
�0

8
��̃cÑc

2 + �cJ̃c
2 + �sÑs

2 + �sJ̃s
2	 �51�

and

P�� =
�0

4
���̃cÑc + ��cJ̃c� + ���sÑs + ��sJ̃s�	 , �52�

where Ñc,s=Nc,s−4k�,B and J̃c,s=Jc,s−4k�,R.
In Eq. �40� the two components �=± seem to be indepen-

dent of each other. However, this is not the case, and they
are, in fact, entangled due to the nontrivial procedure of av-
eraging over zero modes.

VI. AVERAGING OVER ZERO MODES

A. Spinless case

The typical expression to be averaged over zero modes
before the time integration has the form �cf. Eq. �37�	

�eib1Ñ+ib2J̃�z.m. =
Tr�eib1Ñ+ib2J̃e−�H0�

Tr�e−�H0�
, �53�

where b1,2 depend linearly on the time arguments t1,2. The
trace operation is understood as a summation over all
possible integer values of NL and NR. In the basis �N ,J� we
have to sum over either both even �2m ,2n� or both odd
�2m+1,2n+1� eigenvalues. Thus,

Tr�e−�H0� = �
m,n=−�

�

e−��0��̃�m − k��2+��n − k��2	

+ �
m,n=−�

�

e−��0��̃�m + 1/2 − k��2+��n + 1/2 − k��2	

=



��0
��̃�

��3�
k�,e−
2/��0�̃��3�
k�,e−
2/��0��

+ �4�
k�,e−
2/��0�̃��4�
k�,e−
2/��0��	 , �54�

where �3,4 are the Jacobian theta functions. Some properties
of these functions are reviewed in Appendix B.

The numerator in Eq. �53� can be equivalently rewritten in
the form

Tr�eib1Ñ+ib2J̃e−�H0� = Tr�e−�H0��exp�−
1

��0
�b1

2

�̃
+

b2
2

�
�� ,

�55�

where H0� is obtained from H0 by replacing

k� → k�� = k� +
ib1

��0�̃
, �56�

k� → k�� = k� +
ib2

��0�
. �57�

At low temperatures �−1��0 ,Ec, the last exponential factor
in Eq. �55� can be discarded. Using Eq. �B5� we derive the
following expression:

�eib1Ñ+ib2J̃�z.m. 
 p1�k�,k��e2ib1f�k��+2ib2f�k��

+ p2�k�,k��e2ib1f�k�+1/2�+2ib2f�k�+1/2�.

�58�

The “sawtooth” function

f�x� = �
n=1

�
�− 1�n


n
sin 2
nx �59�

has the period 1 and equals f�x�=−x for x� �− 1
2 , 1

2
� and

f�± 1
2

�=0. The functions p1,2�k� ,k�� are determined by

p1�k�,k�� =
1

1 +
�4�
k�,e−
2/��0�̃��4�
k�,e−
2/��0��

�3�
k�,e−
2/��0�̃��3�
k�,e−
2/��0��



1

1 + e��0��̃g2�k��+�g2�k��	 , �60�

and p2�k� ,k��= p1�k�+ 1
2 ,k�+ 1

2
�. One can observe that

p1+ p2=1. The function g2�x� is introduced in �B9�.
Let us consider the limit of zero temperature, or �→�.

The expression �58� becomes exact in this limit. Since b1 and
b2 are linear in time, we can perform easily all time integra-
tions. Thus, the averaging over zero modes effectively results

in replacing Ñ→2f�k�+ 1
2��1�2�� and J̃→2f�k�+ 1

2��1�2��,
where ��1=��1=0 and ��2=��2=1, which assumes further
summation over the different topological realizations �1 and
2� of the ground state with the weight factors p1 and p2. For
�−1��0 the latter approximately equal

p1�k�,k�� = �„− �̃g2�k�� − �g2�k��… , �61�

p2�k�,k�� = �„�̃g2�k�� + �g2�k��… , �62�

and play the role of projectors which divide the elementary
cell �k� ,k����− 1

2 , 1
2
	��− 1

2 , 1
2
	 into two areas �topological

sectors�.
Let us analyze such a partition of the elementary cell and

consider the �upper right� quadrant defined by 0�k��
1
2 and

0�k��
1
2 . The function g2�x�=x−1/4 for 0�x�1/2, and

therefore the border between the areas of p1 and p2 is given
by the equation

7
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�̃k� + �k� =
�̃ + �

4
. �63�

For repulsive interactions and, moreover, in the presence of
Ec�0 the relation �̃ /��1 is fulfilled.

We can establish the borders between the topological sec-
tors p1 and p2 in the other quadrants by mirroring Eq. �63�
with respect to the k� axis, k� axis, or both. Thus, we obtain
that the area of the projector p1 is the inner part of the el-
ementary cell bounded by the hexagon �see Fig. 4�. Respec-
tively, the outer part is the area of p2.

Let us now analyze the conductance in the upper right
quadrant. In the inner part p1 only the zero harmonic �p
=0� of AR

+ becomes divergent near the border line �63�. In the
outer part p2 the zero harmonic �p=0� of AR

− is divergent near
the border line �63�. From both sides of the latter the con-
ductance behaves like

G �
1

��̃k� + �k� −
�̃ + �

4
�2 . �64�

This is an expected result as well as the fact that the pole of
the conductance �condition for the resonant tunneling of an
electron� matches with a transition p1→p2 from one topo-
logical sector to another.

In order to identify the positions of the conductance
peaks, it appears sufficient to consider just the zero harmon-
ics p=0 of the functions A�

±, because the higher ones �p
�1� do not have any poles at all.

It is instructive to derive the conductance in the noninter-
acting limit �̃=�=1. Using the identity




sin 
x
= �

p=−�

�
�− 1�p

p + x
, �65�

one can show that

G =
e2

2


�l�r

�0
2 � 


sin���
�0

+ k��
 +



sin���
�0

− k��
�
2

.

�66�

This result can be recovered in the scattering matrix ap-
proach, if the width of the Breit-Wigner resonance in �6� is
neglected. The expression �66� suggests that the resonant
condition can be satisfied at any k� by tuning the magnetic
flux k�.

As was discussed in Ref. 16, the main qualitative feature
imposed by an electron-electron interaction and/or charging
energy is the opening of a window at certain values of k�
inside which the resonant condition is never met. This situ-
ation is shown in Fig. 4, and the corresponding gap value
equals �c= 1

2
�1− �

�̃
�.

B. Spinful case

In order to implement an averaging similar to �53� in the
spinful cases, it is necessary to calculate first the partition
function Tr�e−�H0�. The trace operation is now understood as
a summation over all integer values of NR+, NL+, NR−, and
NL−. However, in this basis the Hamiltonian �48� is not diag-
onal, and we have to use the basis �49� and �50� instead. The
summation rules for the latter have been formulated, for in-
stance, in Refs. 25, 28, and 29. Applying them, one can find
that the partition function is proportional to

�
i=1

16

��3�
k�i,e
−
2/2��0�̃c��3�
k�i,e

−
2/2��0�c�

��3�
kBi,e
−
2/2��0�s��3�
kRi,e

−
2/2��0�s�	 , �67�

where kXi=kX+ 1
4�Xi�X=� ,� ,B ,R� and the summation is

performed over 16 topological sectors. The latter are speci-
fied by �Xi given in Table I.

One can define 16 functions �i=1, . . . ,16�

pi�kX� = p1�kXi� , �68�

where p1�kX� equals to

FIG. 4. Shift of the conductance peaks �solid lines� due to the
charging energy. The dashed lines correspond to the noninteracting
case ��c=0�.

TABLE I. The indices defining 16 topological sectors.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

��i 0 2 2 0 2 2 0 0 1 3 3 1 3 3 1 1

��i 0 2 2 0 0 0 2 2 1 3 3 1 1 1 3 3

�Bi 0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1

�Ri 0 2 0 2 0 2 0 2 1 3 1 3 1 3 1 3

8
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1

1 + �
j=2

16
�3�
k�j�
�3�
k��

�3�
k�j�
�3�
k��

�3�
kBj�
�3�
kB�

�3�
kRj�
�3�
kR�



1

1 + �
j=2

16

e2��0Bj�kX�

, �69�

and the functions Bj�kX� are introduced in Appendix B.
The functions �68� satisfy the identity

�
i=1

16

pi�kX� = 1. �70�

At low temperatures �−1��0 we have an approximate rela-
tion

p1�kX� = �
j=2

16

�„− Bj�kX�… , �71�

and the functions pi�kX� become the projectors which divide
the elementary cell kX��− 1

2 , 1
2
	�¯��− 1

2 , 1
2
	 in the four-

dimensional parameter space into 16 topological sectors.
We can now formulate the rule which prescribes how to

evaluate the average over zero modes in �40�: it is necessary
to replace

Ñc → 4f�k�i�, J̃c → 4f�k�i� , �72�

Ñs → 4f�kBi�, J̃s → 4f�kRi� , �73�

and to sum over i=1, . . . ,16 topological realizations of the
ground state with the weight functions pi�kX�.

Once this procedure is implemented, it becomes sufficient
to consider just the zero harmonics �pc= ps=0� of the func-
tions A��

± , Eq. �46�, for establishing the positions of the con-
ductance maxima. In this respect there exists a full analogy
with the spinless case, and we refer to the corresponding
discussion in the previous subsection.

In the framework of the developed formalism it is pos-
sible to study the influence of the TLL interaction on the
distribution of the conductance peaks in the presence of mag-
netic flux and SO coupling. The charging effects are also
naturally incorporated, and the charging energy Ec plays a
role similar to that of the TLL parameter �c. They are both
combined into �̃c �see Eq. �45�	, and therefore the effects
produced by each of them are analogous. Let us then fix �c
=1 and vary Ec. In Fig. 5 we show the elementary cells of
the conductance contour plot in the �k� ,k�� plane for kR

=0.1 and different values of the charging energy. The TLL
parameters are �c,s=�c,s=1. One can see how the separate
effects of SO coupling and charging energy �shown in Figs. 3
and 4, respectively� merge together.

In experiments the usual tuning parameters are � and Vg.
The parameter Vg appears in the theoretical model through
both kR and k�. The Rashba coupling constant depends on an
applied gate voltage,7 which is modeled by �R=�R

0 − 


m*L
 vg,

where vg=
eVg

�0
and  �0 is a dimensionless coefficient. The

degeneracy point in gate voltage at which the Rashba cou-

pling �R vanishes is defined by vg
0�vg��R=0�=

m*L�R
0

 
 . Intro-
ducing the departure from the degeneracy point �vg=vg
−vg

0, we then express

kR��vg� =
1

2
��1 +  2��vg�2 − 1	 �74�

and

k���vg� =
�vg + v�

1 + 8Ec/�0
. �75�

Here v�=vg
0+ ��

�0
+N0− 1

2 determines the shift of the whole
pattern; we may put at will v�=0.

In Fig. 6 we demonstrate the influence of the charging
effects in �k� ,�vg� plane. The values of Ec and �c,s, �c,s are
the same as in Fig. 5. We observe that upon enhancement of
the charging energy the gap opens near �vg=0. Due to the
presence of the gate-dependent SO coupling, the pattern of
conductance maxima is more complicated than that dis-
cussed in Ref. 16.

VII. DISCUSSION AND CONCLUSION

In this work we have studied the tunneling conductance of
a mesoscopic one-dimensional ring attached to two Fermi
reservoirs. The interaction inside the ring is described by the
Tomonaga-Lutinger liquid. The bosonization approach which
is usually adopted for the study of such model allows us to
include the flux and gate-voltage dependence as well as the
influence of SO coupling. It is remarkable that all these ex-
ternally tuned parameters appear in the topological sector of
the bosonized theory. Therefore, the accurate treatment of
zero modes is required in order to describe the mesoscopic
phenomena at low temperatures �−1��0.

FIG. 5. Conductance peaks for kR=0.1 and different values of
the charging energy 8Ec /�0=0.0 �upper left�, 0.5 �upper right�, 1.0
�bottom left�, 3.0 �bottom right�. The TLL parameters are �c,s

=�c,s=1.
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culation of a linear conductance in the limit of weak tunnel-
ing between the leads and the ring. The real-time approach
allows one to obtain asymptotic results for the distribution of
the conductance peaks in the low temperature limit. Al-
though the perturbative expansion of the conductance in the
tunneling strength is not very well suited for a description of
a shape of conductance peaks, it is nevertheless quite effi-
cient for establishing their positions. The topological origin
of the peaks’ distribution alludes to its robustness upon small
modifications of the model.

We have studied the patterns of the conductance maxima
at nonzero spin-orbit coupling as a function of magnetic flux
and gate voltage. The Tomonaga-Luttinger interaction and
the charging energy have been seen to contribute in analo-
gous way. In rings of reduced size the account of charging
effects might appear more experimentally motivated, and
therefore we concentrated on their study. In particular, we
have made a theoretical prediction for the distribution of the
conductance peaks in the presence of both the charging en-
ergy and the spin-orbit coupling. We observed an interesting
interplay between both effects. The SO coupling lifts the
degeneracy of the conduction peaks, and the charging energy
opens a gap centered at the remaining points of the degen-
eracy in question. The value of this gap is proportional to the
charging energy. When the latter becomes very large, the
Rashba effect is less pronounced. The pattern of the conduc-
tance peaks then approaches the form of hexagonal honey-
combs which is typical to spinless fermions.

In conclusion, we have described the interplay between
Coulomb blockade and Aharonov-Bohm and Aharonov-
Casher effects for the different values of the charging energy,
magnetic flux, and spin-orbit coupling, as is manifested in
the contour plots of the tunneling conductance.
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APPENDIX A: CORRELATION FUNCTIONS OF THE
TOMONAGA-LUTTINGER MODEL

Let us consider for simplicity the spinless case. The ca-
nonical transformation which solves the two-channel TLL
model is

�d1k

d2k
† � = �u+ u−

u− u+
��bRk

bLk
† � , �A1�

where u±=��
±1� /2.
The explicit form of the time evolution of the bosonized

fields reads

��
b�x,t� =

1
�L�̃

e−i�2
���x,t�, �A2�

���x,t� = i�
k=1

�
e−�̃k/2

�2
k
�u�D1k�x − �t� − u−�D2k�x + �t�	 ,

�A3�

where

D1k = eikxd1k − e−ikxd1k
† , �A4�

D2k = eikxd2k
† − e−ikxd2k. �A5�

Let us consider the correlation function

���
b�x,t���

b†� = e−
�����x, t� − ���2�+
����x,t�,��	

= e−u+
2�
D��x−�t�−i!��x−�t�	

� e−u−
2�
D��x+�t�+i!��x+�t�	, �A6�

where

D�x� =
1



�
k=1

�
1 − cos kx

k
� 2

e��k − 1
+ e−�̃k� , �A7�

!�x� = �
k=1

�
sin kx

k
e−�̃k =

1

2i
ln

1 − e−ix−�̃

1 − eix−�̃ �A8�

are the periodic functions of x. Obviously, the function �A6�
is also periodic in real time, and therefore it can be expanded
in a Fourier series with the frequency �.

In the zero-temperature limit �→� the temperature-
dependent part of D�x� can be discarded, and we obtain

D�x� = −
1

2

ln

�1 − e−�̃�2

�1 − e−ix−�̃��1 − eix−�̃�
. �A9�

Hence, the correlation function �A6� is equal to

� 1 − e−�̃

1 − ei��x−�t+i�̃��u+
2� 1 − e−�̃

1 − e−i��x+�t−i�̃��u−
2

. �A10�

FIG. 6. Conductance peaks for  =1 and different values of the
charging energy 8Ec /�0=0.0 �upper left�, 0.5 �upper right�, 1.0
�bottom left�, 3.0 �bottom right�.
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For x=
 we have

���
b�
,t���

b†� =
1

L�̃
� 1 − e−�̃

1 + e−i�t−�̃�
. �A11�

Its Fourier expansion �35� is equivalent to the Taylor expan-
sion of the analytic function �1+z�−
 for �z��1. Therefore
the expansion �35� contains only non-negative Fourier har-
monics �p�0� with the coefficients

gp�
� =
�− 1�p��p + 
�
��
���p + 1�

�1 − e−�̃�


L�̃
e−p�̃ 


�− 1�p��p + 
�
��
���p + 1�

�̃
−1

L
.

�A12�

Computation of a correlation function in the spinful case
is analogous. A new feature arising in this case is the double
time periodicity of correlation functions with frequencies �c
and �s, which are in general incommensurate.

APPENDIX B: JACOBIAN � FUNCTIONS

The Jacobian function �3 is defined by

�3�z,q� = 1 + 2�
n=1

�

qn2
cos 2nz , �B1�

and the Jacobian function �4 can be expressed as

�4�z,q� = �3�z +



2
,q� . �B2�

Both functions are periodic under the shift z→z+
.
Making a Poisson summation, one can prove that

�
k=−�

�

e−a�k + z�2
=�


a
�3�
z,e−
2/a� . �B3�

Using the expression for the ratio of two �3 functions,

ln
�3�z1 + z2,q�
�3�z1 − z2,q�

= 4�
n=1

�
�− 1�n

n

qn

1 − q2n sin 2nz1 sin 2nz2,

�B4�

one can establish that

lim
�→�

�3�
�x +
ib

��0�
�,e−
2/2��0��

�3�
x,e−
2/2��0��
= e4ibf�x�, �B5�

where f�x� is a sawtooth function introduced in �59�, as well
as that

lim
�→�

�3�
�x +
m1

4
�,e−
2/2��0��

�3�
�x +
m2

4
�,e−
2/2��0�� 
 e2��0�gm1m2

�x�, �B6�

where m1 ,m2=0 ,1 ,2 ,3 and

gm1m2
�x� = �

n=1

�
�− 1�n


2n2

� �cos

n

2
�4x + m2� − cos


n

2
�4x + m1�� .

�B7�

In the Fourier series �B7� one can recognize the functions

g1�x� � g10�x� = − g01�x�

= ��1

2
+ x� −

3

4
� +

1

2
�1

2
+ x� −

9

16
,

�B8�

g2�x� � g20�x� = − g02�x�

= − ��x� −
1

2
� +

1

4
, �B9�

g3�x� � g30�x� = − g03�x�

= ��1

2
− x� −

3

4
� +

1

2
�1

2
− x� −

9

16
,

�B10�

where �x���x mod 1� is a fractional part of x. The function
�x� has a period 1 and possesses a property �−x�=1− �x�. One
can notice that g3�x�=g1�−x�.

The other functions gm1m2
are also expressed in terms of

g1, g2, g3:

g12�x� = − g21�x� = g3�x − 1/2� , �B11�

g32�x� = − g23�x� = g1�x + 1/2� , �B12�

g31�x� = − g13�x� = g2�x + 1/4� . �B13�

We also define the following functions:

B2 = �̃cg2�k�� + �cg2�k�� + �sg2�kB� + �sg2�kR� ,

B3 = �̃cg2�k�� + �cg2�k�� ,

B4 = �sg2�kB� + �sg2�kR� ,

B5 = �̃cg2�k�� + �sg2�kB� ,

B6 = �̃cg2�k�� + �sg2�kR� ,

B7 = �cg2�k�� + �sg2�kB� ,

B8 = �cg2�k�� + �sg2�kR� ,

B9 = �̃cg1�k�� + �cg1�k�� + �sg1�kB� + �sg1�kR� ,

B10 = �̃cg3�k�� + �cg3�k�� + �sg3�kB� + �sg3�kR� ,

B11 = �̃cg3�k�� + �cg3�k�� + �sg1�kB� + �sg1�kR� ,

11
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B12 = �̃cg1�k�� + �cg1�k�� + �sg3�kB� + �sg3�kR� ,

B13 = �̃cg3�k�� + �cg1�k�� + �sg3�kB� + �sg1�kR� ,

B14 = �̃cg3�k�� + �cg1�k�� + �sg1�kB� + �sg3�kR� ,

B15 = �̃cg1�k�� + �cg3�k�� + �sg3�kB� + �sg1�kR� ,

B16 = �̃cg1�k�� + �cg3�k�� + �sg1�kB� + �sg3�kR� .
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