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Abstract

In this work we present a study of the aggregation and sol-gel transition of

colloidal suspensions using a wide range of experimental techniques, where

some of them were modified or developed especially for this purpose. Cov-

ering all relevant time and length scales, we investigate in the first part of

this work a model system which undergoes a sol-gel transition in the hope

to gain further insight into the fundamental process of gelation. Therefore, a

colloidal suspension of nano particles (polystyrene spheres) in water is desta-

bilised to induce aggregation of fractal clusters. The clusters will grow until

they finally all connect and form a volume filling network, i.e. a gel. Com-

bining neutron and light scattering, we are able to measure simultaneously

and time resolved the static and dynamic properties of the same sample in

the length scale of a few Angstroms to several hundred nanometers, which

allows us to test well-known theories and to compare our data with recent

results of other research groups. Our measurements demonstrate a deviation

from classical theories in the critical behavior just before the volume span-

ning network is formed, which we interpret with the obvervation of a glassy

cluster phase. In order to investigate this effect, a novel technique is used to

gain access to very slow dynamic processes, revealing data which seems to

proof our hypothesis of a glassy phase in the gelation process.

The second part of this work describes an experimental setup which is

based on a light scattering technique introduced in the last ten years and

which allows us to measure faster and with higher precision. By measur-

ing simultaneously at four different angles instead of only one, a factor of
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four in acquisition time is gained in comparison to traditional setups. More-

over, dynamic measurements can be analysed angle dependent and therefore

improved in precision. As the chosen technique is based on a multiple scat-

tering suppression scheme, even relatively turbid samples can be analysed

using the well established single scattering theory. Therefore the developed

setup is an ideal tool to investigate the sol-gel transition under conditions

hardly accessible otherwise.

10



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Aggregation und dem Sol-Gel

Übergang in kolloidalen Suspensionen und der Entwicklung neuer Methoden,

die es erlauben, diese Systeme auf allen relevanten Zeit- und Längenskalen zu

charakterisieren. In einem ersten Teil der Arbeit wird eine kolloidale Suspen-

sion als Modellsystem eingesetzt, um grundsätzliche Erkenntnisse über den

Sol-Gel-Übergang zu gewinnen. Dabei wird eine Suspension von Nanopar-

tikeln (Polystyrenkügelchen) in Wasser destabilisiert, bis sich die Teilchen

miteinander zu fraktalen Aggregaten verbinden, welche sich wiederum zusam-

menschliessen bis ein raumfüllendes Netzwerk an Teilchen - also ein Gel -

entsteht. Anhand von Versuchen mit kombinierter Licht- und Neutronen-

streuung, welche zeitaufgelöst und simultan die Dynamik und die Struktur

von derselben Probe im Grössenbereich von wenigen Angstrom bis einigen

hundert Nanometern zu messen vermögen, werden bereits postulierte The-

orien getestet und nach Übereinstimmung mit neuesten Ergebnissen und

Ideen anderer Forschungsgruppen gesucht. Dabei weist die Kinetik unseres

gemessenen Gelationprozesses Abweichungen von den klassischen Theorien

auf, indem sich zwischen der Phase des Wachstums der Aggregate und der

Bildung des Netzwerks eine Übergangsphase manifestiert, welche wir als

glasartigen Zustand interpretieren. Hierzu wird noch eine weitere Messung

mit einer neuartigen Methode durchgeführt, welche es erlaubt, innert kürzester

Zeit Informationen über extrem langsame dynamische Prozesse zu gewinnen.

Auch dieser Versuch stützt unsere Annahme, eine glasartige Phase innerhalb

des Gelationsprozesse vorzufinden.
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In einem zweiten Teil wird ein experimenteller Aufbau beschrieben, der

eine in den letzten 10 Jahren eingeführte Lichtstreumethode weiter entwick-

elt und dadurch erlaubt, Messungen schneller und genauer durchzuführen.

Dabei werden statt wie sonst üblich bei nur einem Streuwinkel gleichzeitig

an vier verschiedenen Winkeln die Probensignale erfasst und ausgewertet.

Dies verschnellert nicht nur die Messdauer einer winkelabhängigen (statis-

chen) Analyse um den Faktor vier, sondern erlaubt auch eine genauere Mes-

sung der Dynamik indem man die gleichzeitig gewonnenen dynamischen

Daten auch winkelabhängig analysiert. Da es sich bei der gewählten Licht-

streumethode um eine Technik handelt, welche vielfach gestreutes Licht zu

unterdrücken vermag, hat dieser Aufbau auch den grossen Vorteil, Proben bis

zu einer gewissen Trübheit mit den erfolgreichen Methoden der Einzelstreu-

ung charakterisieren zu können. Ein wichtiger Bestandteil der Gesamtar-

beit ist die Entwicklung und Realisierung dieses Aufbaus, der für zusätzliche

präzise Messung des Sol-Gel-Übergangs in einem schwer zugänglichen (er-

fassbaren) Messbereich prädestiniert ist.
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Part I

Simultaneous time-resolved

Neutron scattering/DWS/DLS:

gelation of colloidal suspensions
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Our aim in this part is to study time resolved gelation processes of col-

loidal suspensions. This is done by a combination of two non invasive com-

plementary techniques: a specially designed setup includes light and neutron

scattering for simultaneous measurements of dynamical and structural prop-

erties of destabilized nanoparticle suspensions and gels. We will describe the

temporal evolution of the structure and dynamic properties of destabilized

particle suspensions over a large range of length and time scales. We moni-

tor the initial cluster growth, the crossover from diffusive motion to network

fluctuations at the gel point and the subsequent evolution of the network

properties with time.
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Chapter 1

Theory

1.1 Colloidal suspensions and gels

Gels are very well known in every day life applications and they play an

important role in industrial and biological processes. Soft cheese and yoghurt

are two examples of products which underlie the same mechanisms like the

production of ceramics via modern sol-gel processing or blood coagulation.

A gel is best described by a network of particles suspended in a liquid

medium. This network spans the whole sample volume and, due to its at-

tractive inter-particle forces, results in an elastic, solid-like behavior of the

sample, even when small forces are applied. Depending on the aggregation

mechanism, gel formation can occur even at very low volume fractions, lead-

ing to a soft solid with measurable elasticity.

A particle gel is formed, when colloidal particles suspended in a liquid

medium connect to each other and build a network. Frequently, gel for-

mation occurs via the formation of open fractal clusters due to irreversible

aggregation of the individual particles. The clusters grow and eventually

become space filling at the so-called gel point.

In the following two subsections I will briefly review the most important

theoretical concepts used to describe the properties of colloidal suspensions

and gels.
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1.1.1 Colloidal suspensions

A colloidal suspension consists of a small solid particles suspended in a liquid

medium, further on referred to as solvent. The solid particles are called

colloids and are of the size of between 1nm and 1µm. Lyophilic colloids

like proteins are thermodynamically stable suspensions whereas lyophobic

colloids like organic or inorganic particles such as latex (polystyrene, PS) or

Titanium dioxide (TiO2) are thermodynamically unstable. In the lyophobic

case, kinetically “trapped” suspensions can only exist due to a stabilisation

mechanism. Typical examples are charge-stabilised particles or colloids with

an attached polymer layer that provides a so-called steric stabilisation. A

classical example of colloidal suspensions are small gold particles suspended

in water which Michael Faraday prepared in 1857 and which are still stable.

Sub micron sized particles in a colloidal suspension do not sediment or

fall out because of their small size. They are small enough to undergo Brow-

nian motion, and the thermal energy overcomes gravitational forces. As

they move in a random way, particle collisions are inevitable. In the pres-

ence of attractive interparticle interactions such as due to van der Waals or

hydrophobic forces, particles would stick together and aggregate to bigger

clusters, and the suspension would be unstable and the particles would all

sediment out with time. For this reason, all particles in a stable colloidal

suspension have to be stabilised by repulsive interactions. There are two

main mechanisms to avoid aggregation: steric and charge stabilisation. In

the case of steric stabilisation, polymers are adsorbed at the surface of the

particles. These polymers build a hairy layer around the particle and repel

other hairy particles because a penetration of the polymer layers constrains

the number of possible polymer configurations. This leads to a rise of the

entropy and therefore to a repulsion of the particles. In our work, we have

mainly focussed on the second mechanism, charge stabilisation. For charged

colloids, the interparticle potential is often modeled with a so-called DLVO

(Derjaguin-Landau-Verwey-Overbeek) potential

V (s) = VC(s) + VV dW (1.1)

18



where the repulsive screened Coulomb potential VC(s) is combined with the

attractive long-range van der Waals potential VV dW . s stands for the surface

to surface distance between the particles and a for the particle radius. As

ionisable groups contained in the particle dissociate in polar solvent, a diffuse

layer of counterions is formed around the particle. In the case of s � a, the

resulting Coulomb potential can be simplified to

VC(s) = 2πεaζ2 · ln(1 + e−κ·s) (1.2)

with ζ being the Zeta-potential of the particles (which is the interaction

potential of the particles observed by hydrodynamic measurements), ε the

dielectric constant of the solvent and κ the inverse of the screening length.

κ is given by κ =
√

4πe2/(εkBT ) · ρ|Z| where ρ is the number density of the

particles and |Z| = Q/e is the valency of the particles. By adding further

electrolytes with a number density ρI and valency |ZI | to the suspension, κ

can be calculated by

κ =

√
4πe2

εkBT
(ρ|Z|+ 2ρI |ZI |) (1.3)

For larger distances s, the screened Coulomb potential can be calculated in a

more general approach which leads to the so-called Yukawa potential VY (s)

VY (s) =
Q2

ε
(
1 + κa

2

)2 exp−κ(r−a)

r
∼ 1

r
exp−κr; r > a (1.4)

where r stands for the distance between the centers of the particles.

The Van der Waals potential for spherical particles is given by

VV dW = −A

6
·
(

2a2

s2 + 4as
+

2a2

s2 + 4as + 4a2
+ ln

(
s2 + 4as

s2 + 4as + 4a2

))
(1.5)

where A is the Hamaker constant. The Hamaker constant A describes the

strength of the attractive Van der Waals potential and depends on the di-

electric functions of the particles and the solvent.

Due to the DLVO potential, particles with high surface charge densities or
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weakly screened charges feature a potential barrier which keeps them sepa-

rated, illustrated in figure 1.1. A secondary minimum can also be present,

but it becomes only significant if particles of different radii interact (partic-

ularly when a1/a2 > 10) or if the radius of the particles of a monodisperse

suspension is large (a > 50nm for particles with surface charge densities of

1.8µC/cm2 in a suspension containing 50 mM ions). A detailed discussion

of the lower inset follows in the next chapter.

1.1.2 Aggregation and gelation

In order to form a gel, the particles of a colloidal suspension have to aggregate

i.e. to stick together and eventually connect to a network spanning the whole

sample volume. Therefore the stabilisation mechanism mentioned before has

to be overcome. In the case of charge stabilisation, the Coulomb potential

can easily be modified through the addition of salt. By adding ions to the

suspension, the particle charges are screened (particle charges are neutralised

by a double layer of counter-ions). On account of this, the Coulomb potential

weakens and becomes more and more short ranged; the resulting DLVO

potential is shown in the lower inset of figure 1.1. The high interaction

energy barrier of strongly repelling particles a) will decrease in height and

shorten in range (b), c)). Below a certain barrier height, the thermal energy

kBT starts to be sufficiently high for a certain percentage of the particles to

overcome the barrier, and particles start to aggregate at a slow rate. Once

the screening is strong enough to suppress the energy barrier completely, the

so-called “critical coagulation concentration” (ccc) is reached (d)). From this

point on, the particles aggregate immediately upon contact, resulting in a

fast aggregation rate.

The quantity to describe the stability of a colloidal system is the stability

ratio W which is defined as W = kr/k where kr and k are the rate constants

1This figure was published in Intermolecular and Surface Forces With Applications to

Colloidal and Biological Systems, 2nd Edition, Jacob Israelachvili, Page 248, Copyright

Academic Press (1991).
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Figure 1.1: DLVO as described by Israelachvili1. The total potential (interac-

tion energy W) is the sum of the Coulombx repulsion (double layer repulsion)

and the Van der Waals attraction. a) particle surfaces repel strongly; the col-

loidal suspension is stabilised. b) and c): the energy barrier gets lower and

more short-ranged due to screening, colloids coagulate slowly (RLCA). d)

the “critical coagulation concentration” (ccc) is reached; the energy barrier

vanished completely, colloids start to coagulate rapidly (DLCA). e) no charge

repulsion anymore, rapid aggregation.
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Figure 1.2: Stability ratio W of polystyrene latex spheres.2 The slope of the

slow aggregation at low electrolyte concentration M changes at the critical

coagulation point ccc to the plateau of the fast aggregation regime.

for the rapid resp. measured aggregation. Figure 1.2 shows the stability ratio

W against salt concentration [1]. At low salt concentrations, the aggregation

is slow and the aggregation rate depends on the salt concentration. The de-

pendance between logW and log electrolyte concentration is close to linear

in this regime. At the critical coagulation concentration ccc, the curve turns

parallel to the concentration axis. From this point on, fast aggregation takes

place. The fast aggregation does not depend on the salt concentration any-

more; the charges of the particles are totally screened and the particles will

connect irreversibly immediately upon contact.

There is a model with two basic mechanisms describing the formation

and growth of clusters: Diffusion Limited Cluster Aggregation (DLCA) and

Reaction Limited Cluster Aggregation (RLCA). For DLCA the particles will

create a bond immediately upon each contact (sticking probability = 1),

2Reprinted with permission from H. Holthoff, S. U. Egelhaaf, M. Borkovec, P. Schurten-

berger, H. Sticher, Langmuir 12(23), 5541-5549 (1996). Copyright (1996) American Chem-

ical Society.
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Figure 1.3: TEM pictures of aqueous gold colloids3 with a very uniform

particle radius of a=7.5nm. a) fractal DLCA structure b) more compact,

fractal RLCA structure

forming very loose fractal clusters. This mechanism sets in after the salt

concentration in the suspension reached the ccc point. In the case of RLCA,

the salt concentration is lower than the ccc and several contacts are needed

until the particles stick together (sticking probability � 1). The particles

therefore can penetrate further into a cluster, and as a consequence the RLCA

structures are more dense and compact (see figure 1.3).

Both DLCA and RLCA cluster structures are irregular, but can success-

fully be interpreted using fractal geometry [2, 3]. Fractals [4] are self-similar

structures with a non-integer fractal dimension df that links the cluster ra-

dius Rc and cluster mass M via M ∝ R
df

c . The theoretically predicted fractal

dimension for DLCA is df ≈ 1.8 and for RLCA df ≈ 2.1. The cluster radius

shows for DLCA a power-law growth with time t

Rc ∝ t
1

df (1.6)

3Reprinted figure with permission from D. A. Weitz, J. S. Huang, M. Y. Lin, and J.

Sung, Phys. Rev. Lett. 54, 1416 - 1419 (1985). Copyright (1985) by the American

Physical Society.
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Figure 1.4: Stages of a gelation process: a) stable suspension with particles

in brownian motion; b) destabilised suspension with aggregating particles

and growing clusters, all still undergoing brownian motion; c) one big space

filling cluster with particles bound to the network, only able to wiggle around

its average position in the network.

whereas the cluster grow in an exponential way in the RLCA regime

Rc ∝ eαt (1.7)

The sequence of particle destabilisation and subsequent cluster formation

and finally sol-gel transition is shown schematically in figure 1.4. The stable

suspension of charged colloids is illustrated in a). The particles are under-

going Brownian motion. By screening the particle charges, the potential

barrier vanishes and the destabilised suspension starts to build aggregates.

The aggregates steadily grow but are still small enough do diffuse freely in

the suspension (part b)). When the clusters finally grow and interconnect

to one space filling cluster as in c), a network is spanned through the whole

sample. The particles then are trapped in the network and cannot explore

the whole phase space but can only wiggle around an average position in the

network. Such a system then shows elastic behavior. The addition of salt

to a charged colloidal suspension is a simple way to induce aggregation and

gelation. Some technical problems of this simple approach will be discussed

in section (2.2).

The critical cluster radius Rc,critical for gel formation, i.e. the point where
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the suspension of clusters becomes space filling and a gel is formed, can be

estimated with

Rc,critical ≈ aΦ−1/(3−df ) (1.8)

where a is the radius of one single colloidal particle and Φ the volume fraction.

Usually, an experimentally estimated pre-factor is added to this rough esti-

mate. As an example, Weitz et al. found in the case of 1 ·10−4 6 Φ 6 5 ·10−3

and for df ≈ 2.1 a pre-factor of a = 0.3 for charged polystyrene spheres with

a radius of 9.5nm [5]. It is important to realise that the fractal regime in

particle gels has lower and upper limits, here the particle and the critical

radius of the clusters at the point when they interconnect, Rc,critical. Particle

gels will then exhibit fractal properties only in the regime a � ξ � Rc,critical,

whereas at length scales ξ > Rc,critical they are homogeneous and non-fractal

(ξ stands for the correlation length).

1.2 Methods to characterise gels

Scattering experiments are widely used to characterise materials and are per-

fectly suited for soft condensed matter [6]. When an incident beam of light,

x-rays or neutrons hits a sample, it can either pass trough the sample, be

absorbed or be scattered. By measuring the scattered intensities it is possi-

ble to obtain information on different properties; on the one hand, the time

averaged intensity as a function of the scattering angle (so-called static scat-

tering) is a fingerprint of the structure and osmotic compressibility of the

sample. When the length of the scattering vector ~q (definition see equation

(1.11)) is extrapolated to zero, the mass of a particle resp. the osmotic com-

pressibility of the sample can be obtained from static scattering. The radius

of gyration Rg, the form factor P (q) and the structure factor S(q) (explained

in the following subsections) can be extracted from the q-dependance of the

static scattering experiment, where P (q) describes the shape of an individual

particle and its internal mass distribution and S(q) the spatial correlations

between the particles. On the other hand, the time dependent fluctuations
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of the scattered intensity can be evaluated (so-called dynamic scattering) in

order to learn about the dynamics of the scatterers i.e. the motion of the

particles. Here, we will focus on light and neutron scattering, as these apply

best for our chosen system.

1.2.1 General description of scattering experiments

The following concepts are based on several assumptions: First of all, the

scattering process is supposed to be quasi-elastic, neglecting any absorption

or inelastic scattering with significant energy transfer. Additionally, the in-

cident beam should not be distorted significantly by the medium in order to

satisfy the Born approximation of the first order. Furthermore, the incident

beam is regarded as a plane wave and the scattered beam as a spherical wave.

Moreover, the scattering centers are small compared to the wavelength of the

scattered beam. And finally, the distance between detector and scattering

center is meant to be sufficiently large (detection in the far field).

Single point scatterer

Under the assumptions mentioned above, the amplitude of the spherical wave

scattered by one scattering center at rest can be described as

As( ~R′) = A0b
ei ~ks

~R′

| ~R′|
(1.9)

where R′ is the distance between the scattering center and the detector and ~ks

the scattered wave vector (see left side of figure 1.5). The scattered amplitude

As is then composed of the amplitude of the incident beam A0, the so-

called scattering length b and a term representing a spherical wave. The

scattering length b describes the interaction between the incident beam and

the scattering center.
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Figure 1.5: Left: single point scatterer, right: two point scatterers. The

distance between scattering center and detector is R′. Inset: definition of

the scattering vector ~q.

Two and more point scatterers

When an incident beam hits two scattering particles at rest (see right side of

figure 1.5), interference effects will appear. The scattered amplitude is then

given by

As( ~R′) =
2∑

j=1

A j
s ' A0

R′ e
i ~ks· ~R′

2∑
j=1

bje
i∆ϕj (1.10)

The right part of the equation is only valid when the distance R′ is much

bigger than the distance r between both scattering centers (this is the so-

called far field approximation). If one point scatterer is positioned in the

center of a coordinate system, one phase shift factor zeroes out (∆ϕ1 = 0),

and only ∆ϕ2 remains. The latter then depends only on the path length

∆s between both scattering centers. By introducing the so-called scattering

vector

~q = ~ks − ~k0 (1.11)

which is the difference between the scattered and incident wave vectors ~ks

and ~k0 (see inset in figure 1.5), ∆ϕ2 can be rewritten as

∆ϕ2 =
2π

λ
∆s = ~q · ~r (1.12)

For elastic scattering (|~ks| = |~k0|), the scattering vector can be expressed as

q = |~q| =
4π sin( θ

2
)

λ
(1.13)
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where θ designates the scattering angle and λ the wavelength of the incident

beam for this medium. Using this nomenclature, equation (1.10) then looks

as follows

As( ~R′) =
A0

R′ e
i ~ks· ~R′

2∑
j=1

bje
i~q ~rj (1.14)

and is easily generalised from two to N particles:

As( ~R′) =
A0

R′ e
i ~ks· ~R′

N∑
j=1

bje
i~q ~rj (1.15)

Scattering intensity, differential cross section and scattering length

Detectors in experimental setups are not sensitive to scattered amplitudes

but measure the scattered intensity. The latter can be expressed by〈
Is( ~R′)

〉
e
=
〈
As( ~R′) · A ∗

s ( ~R′)
〉

e
=

A 2
0

R′2

N∑
j,k=1

〈
bjbke

i~q(~rj− ~rk)
〉

e
(1.16)

where 〈〉e stands for the average over the full ensemble. To normalise for

detector distance R′ and the incident intensity I0, the so-called differential

scattering cross section dσ
dΩ

is defined by

dσ

dΩ
(~q) =

〈
Is( ~R′)

〉
e

I0

R′2 = b2

N∑
j,k=1

〈
ei~q(~rj− ~rk)

〉
e

(1.17)

assuming in the second step that all particles are equal (bj = bk = b). In

the case of colloids, the background scattering of the solvent (with intensity

Is,solv) has to be substracted, and the equation above is slightly modified to

dσ

dΩ
(~q) =

〈
Is( ~R′)

〉
e
−
〈
Is,solv( ~R′)

〉
e

I0

R′2 ≈ ∆b2

N∑
j,k=1

〈
ei~q(~rj− ~rk)

〉
e

(1.18)

where ∆b = b − bsolv designates the so-called excess scattering length, with

bsolv as the scattering length of a molecule of the solvent. Such a simple sub-

traction of the background is strictly valid only in the case of incompressible

suspensions.

28



Figure 1.6: Schematic representation of two point scatterers which are part

of a single particle (grey sphere).

The scattering length b of a point scatterer is related to the differential scat-

tering cross section by

b2 =
dσ

dΩ
(~q) (1.19)

and can have a positive or negative value. A negative value signifies a phase

change of the scattered wave (the scattered wave is shifted half a wave length

in comparison to the incident wave). As the scattering length defines the

interaction between scattering center and the incident wave, it varies for

different probing beams (here light and neutrons) and will be treated in the

corresponding subsections.

Usually, the scattering lengths b of all nuclei bj in a volume V0 are summed

to the average scattering length density

ρ =
1

V0

∑
j

bj (1.20)

respectively the background-corrected excess scattering length density

∆ρ =
1

V0

∑
j

∆bj (1.21)
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Scattering from a single particle at rest

A particle can be regarded as an arrangement of many point scatterers (see

figure 1.6). The scattered intensity is the sum of the spherical waves emitted

by all the point scatterers, and as these waves can interfere, characteristic

scattering patterns can be observed for particles of different sizes and shapes.

In the case of a dilute non-interacting suspension, the correlation between the

individual single particles can be neglected. Assuming N identical particles,

the total scattered intensity can then simply be expressed as the sum of the

intensities Ip(q) of the single particles

IS(q) = N · Ip(q) (1.22)

This can also be written in the following form

IS(q) = N · Ip(0)P (q) with P (q) =
Ip(q)

Ip(0)
(1.23)

where the form factor P(q) is introduced. The form factor tends by definition

to 1 when ~q → 0 and describes the q-dependence of the scattering from one

particle due to intraparticle interference effects. In the case of a homogeneous

sphere, the RGD form factor (in the Rayleigh-Gans-Debye limit) is easily

caculated:

P (q) =

(
3(sin qa− qa cos qa)

(qa)3

)2

(1.24)

where the form factor P(q) of a homogeneous sphere has minima around

qa=4.49, 7.73, ... (see figure 1.7). The RGD regime is a special case of very

weakly scattering and/or small particles where the condition 2k0a|np/ns −
1| � 1 (where a is the particle radius) is fulfilled. While for neutron scat-

tering the RGD limit is always observed, for light scattering the mismatch

between the index of refraction of the particle np and of the solvent ns can be

substantial, and we have to consider other scattering regimes. Light scatter-

ing beyond this limit is described by Mie theory [7, 8]. For very big particles

(above several micrometers), the electromagnetic wave cannot penetrate into
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Figure 1.7: RGD form factor in a log-lin plot against qR; the minima at 4.49

and 7.73 are well visible.

the particle and the scattering process can be approximated by the interac-

tion of a planar wave with the cross section of the particle. This limiting

case is known as Fraunhofer scattering.

The expansion of the form factor given in the equation above to a power

series in the limit of small values of qa results in the so-called Guinier ap-

proximation

P (q) ∼= 1− 1

3
q2R 2

G + O(q4) (1.25)

Using this approximation, the radius of gyration RG of any object (particles

of any form and structure) can be measured at low q ((qRG)2 � 1). RG is

the radius of gyration of the object, defined by the root-mean square distance

of the mass elements from their centre of mass.

Scattering from many particles at rest

Considering a concentrated system or particles with long-range interactions,

we cannot longer neglect the inter-particle interaction. Assuming the N par-

ticles with centres of mass at position ~Rj(t) to be identical homogeneous
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spheres, we can write the total scattered intensity (using equation (1.23)) as

IS(q) = N · Ip(0)P (q)
N∑

j,k=1

〈
e−i~q·( ~Rj− ~Rk)

〉
= N · Ip(q)P (q)S(q) (1.26)

introducing the structure factor S(q)

S(q) =
1

N

N∑
j,k=1

〈
e−i~q·( ~Rj− ~Rk)

〉
(1.27)

The scattered intensity of the N individual particles without correlation be-

tween them is already given in equation (1.23). Therefore, all correlation

effects caused by the spatial arrangement of the particles are incorporated

in the structure factor S(q). In the case of a dilute system where the in-

teractions are negligible, the structure factor becomes 1. The particle pair

correlation function g(r) (radial distribution function) describes the arrange-

ment of particles in real space. It is related to the structure factor through

Fourier inversion

g(r) = 1 +
1

2π2

(
N

V

)∫ ∞

0

(S(q)− 1)q2 sin(qr)

qr
dq (1.28)

Three examples of different structures with corresponding S(q) and g(r) are

shown in figure 1.8.

In our case, two structures need to be considered. In the initial charge

stabilised colloidal suspension, the long range and weakly screened Coulomb

repulsion leads to very strong positional correlations between the particles

and a structure factor that closely resembles that from a super-cooled liquid.

This structure factor features a peak at q∗ which is linked to the average

distance 〈d〉 between particles by q∗ ≈ 2π/〈d〉 and scales with φ−1/3 (as the

interparticle distance can be calculated from the particle volume fraction

φ using 〈d〉 = 3
√

Vp/φ where Vp is the particle volume). Upon increasing

the salt concentration, the degree of correlation will decrease, the structure

4Reprinted figure with permission from C. Urban, PhD thesis, Swiss Federal Institute

of Technology Zurich, 1999 (ISBN-13: 978-3-89675-622-0). Copyright (1999) by Herbert

Utz Verlag GmbH.
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Figure 1.8: Structure factors S(q) and pair correlation functions g(r) of three

different particle arrangements: A) crystal like, B) hard sphere suspension

and C) charge stabilised suspension with long range interactions.4
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factor peak disappear and the forward scattering increase. As soon as the

particles start to aggregate, this leads to enhanced forward scattering and to a

qualitative change in S(q) due to the existence of large clusters with fractal

structure. As mentioned in (1.1.2), the characteristic feature of a fractal

structure is its self-similarity. This is reflected in a power law dependence of

the scattered intensity with the scattering vector

I ∝ q−df (1.29)

In the final stage when the gel is formed by the space filling network, the

structure factor shows both the fractal structure of the network caused by the

aggregated particles but also the finite size of the critical cluster size Rc,critical

when the cluster connect to a space filling network. The finite cluster size is

reflected in the Guinier approximation (eqation (1.25)) with which the size

of any scattering object can be measured at low q. At q close to or bigger

as 1/RG, the Guinier approximation is not applicable anymore due to the

fact that the measurement then resolves the internal, fractal structure of the

cluster. The Fisher-Burford structure factor combines fractal structure and

Guinier approxomation to

S(q) =

(
1 +

(
2

3df

)
q2R 2

c,critical

)−df
2

(1.30)

The equation above takes into account that the gel network consists of a

homogeneous closed packed array of fractal blobs i.e. is homogeneous on

length scales 1/q > Rc,critical, but fractal on the length scale 1/q < Rc,critical.

In figure 1.9, the structure factors S(q) during aggregation and gelation of

a DLCA particle gel with volume fraction Φ = 0.02 are shown (calculated

using Monte Carlo Simulations by Rottereau et al. [9]). With increasing gel

time tg, the fractal clusters grow and scatter with rising intensity in the small

q range. The growing size and fractal structure of the clusters is reflected in

the increasing length of the slope which corresponds to the fractal dimension

df = 1.8 (straight dashed line) at lower q values. At high q values, the

structure factor shows a damped oscillation which is a consequence of the
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Fig. 11. Structure factors obtained from off-lattice simulations
of the initial system at different volume fractions. The corre-
sponding pair correlation functions are shown in Figure 3. The
solid lines represent the theoretical results for random hard
spheres using the Ornstein-Zernike equation with the Percus-
Yevick closure.

Fig. 12. Structure factors obtained from off-lattice simula-
tions of the final system at different volume fractions. The cor-
responding pair correlation functions are shown in Figure 4.
The dashed line has slope −1.8. The solid lines represent the
theoretical results for random hard spheres using the Ornstein-
Zernike equation with the Percus-Yevick closure for φ = 40%.

correlation length of the system: qmax ≈ 2/ξ. The height
of this maximum decreases with increasing volume frac-
tion and the maximum disappears for φ ≥ 20%. At low
concentrations we observe a power law decay at q > 2qmax

with exponent −1.8, followed by damped oscillations that
are a consequence of the structure of the first and sec-
ond shell around a given particle. The oscillations of S(q)

Fig. 13. Structure factors at different times during the aggre-
gation process obtained from off-lattice simulations at φ = 2%.
The corresponding pair correlation functions are shown in Fig-
ure 6. The dashed line has slope −1.8. The solid lines repre-
sent the theoretical results for random hard spheres using the
Ornstein-Zernike equation with the Percus-Yevick closure for
φ = 2%.

for q > 10 are the same at all concentrations and are
caused by the delta-function at r = 1 in the pair correla-
tion function. Figure 12 shows that the deviation from the
power law dependence at low q-values becomes important
for q < 2qmax. Only in the range 1.5 < q < 2qmax can
the exponent and thus df be accurately determined from
S(q). As for the pair correlation function, no power law
dependence of S(q) on q can be observed for φ > 2%.

For φ > 20%, the correlation between the particles at
the initial state influences the structure factor in the final
state. For φ = 40% the structure factor of the final state
is very close to that of the initial state for q < 8, see the
solid line in Figure 12. This is expected since we found
that g(r) was only modified for r very close to 1.

An example of the development of the structure factor
with aggregation time is shown in Figure 13 for φ = 2%.
The oscillations at large q-values, that are caused by the
delta peak at r = 1 in g(r), appear as soon as the first
bonds are being formed. At smaller q-values S(q) evolves
progressively as the aggregates grow. The time depen-
dence of qmax mirrors that of rmin shown in Figure 6.

3 Summary

Diffusion-limited aggregation of particles leads to gelation
at any concentration. At low concentrations the pair corre-
lation function of the gels has a power law decay for r > 3
with an exponent that is independent of both the con-
centration and the aggregation time. The cut-off function
of g(r) at the correlation length of the system has a weak
minimum. The cut-off function depends weakly on the ag-
gregation time but is independent of the concentration at

Figure 1.9: Time resolved structure factors S(q) for a DLCA particle gel

(Φ=0.02), calculated using Monte Carlo Simulations5. tg is the “gel time”

where the whole sample volume is filled with one cluster. The dashed line

has a slope of -1.8, the expected value for the fractal dimension of a DLCA

gel. The solid line represents the theoretical result for hard spheres.

structure of the first and second shell around a particle. The structure factor

of the gel therefore sinks below the value of the structure factor of random

hard spheres (solid line) at certain q values behind the fractal slope.

As a general remark, it is important to mention that the scattered inten-

sity measured at a scattering vector q is maximal when the phase difference

~q · ~r between scatterers is a multiple of 2π (due to constructive interference

similar to Bragg peaks). For a given value of q, the scattered intensity is

therefore governed by the intensity scattered from scatterers which are sepa-

5Reprinted figure with permission from M. Rottereau, J. C. Gimel, T. Nicolai, and

D. Durand, European Physical Journal E, 15:141148, 2004. Copyright (2004) by EDP

Sciences.
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rated by a distance of r = 2π/λ. As a rule of thumb, scattering experiments

executed at the scattering vector q probe the sample with a spatial reso-

lution of 2π/λ. At small angles and therefore small q, the probed length

scale is large and whole particles or even macroscopic structures can be mea-

sured. Experiments at high q reflect the arrangement of scatterers at short

length scales and are able to resolve the inner structure of particles. Special

emphasis should be placed on the fact that the measured intensity in all scat-

tering experiments represents the Fourier transform of the spatial correlation

function of the scattering length densities i.e. we investigate the sample in

reciprocal space.

1.2.2 Light scattering

The light scattering techniques which are traditionally most used are based

on the principle of single light scattering (static and dynamic light scattering,

explained in the next two paragraphs). The single light scattering condition

is fulfilled when a system scatters so weakly that the probability of a photon

being scattered twice or more is negligible. This is ensured by diluting the

sample or by using systems with small scattering contrast. Furthermore, we

shall consider mostly conditions where the incident beam is not distorted

significantly by the medium i.e. when the Raleigh-Gans-Debye (RGD) con-

dition 2k0a|np/ns− 1| � 1 is fulfilled (a is the particle radius, np and ns the

refractive indices of particle and solvent and k0 the wave number k0 = 2π/λ).

Under these circumstances, static and dynamic scattering can be described

by relatively simple and quantitative expressions.

Light scattering arises from the variation of the dielectric properties, i.e.

the refractive index. This is best explained by taking a look at a scheme of

a typical single scattering event, shown in figure 1.6. The incident light with

wave vector ~k0 is vertically polarised with respect to the scattering plane

(which is in this figure the plane of the paper).

Applying Maxwell’s equations to the vertically polarised electromagnetic

wave propagating through a medium with the dielectric constant ε(~r, t), the
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amplitude of the electric field ES( ~R′, t) scattered in the scattering plane in

direction of ~R′ is given by [10]

ES( ~R′, t) = −k2E0

4π

exp[i(kR′ − ωt)]

R′

∫
V

[
ε(~r, t)− ε0

ε0

]
exp(−i~q · ~r)d3~r (1.31)

where V is the scattering volume, ε0 the average dielectric constant of the

medium and ε(~r, t) the dielectric constant of the medium at a certain position

~r (relative to an arbitrary chosen point 0) at the time t. Equation (1.31)

can be interpreted as the sum of the radiation of oscillating point dipoles.

These dipole moments are induced in small volume elements by the incident

electromagnetic field. The oscillation generates isotropically distributed light

of the same frequency f = c/λ as the incoming beam in form of a sphere

like wave. Scattering thus is caused by fluctuations of the dielectric constant,

because if ε(~r, t) = ε0, the amplitude of the scattered electric field is zero. A

completely homogeneous medium does not scatter at all.

Static Light Scattering (SLS)

In static light scattering (SLS), the time averaged intensities are measured

in the far field at different scattering angles θ. The intensity is then plotted

against the scattering vector ~q to normalise for different wavelengths and

refractive indices of solvent.

Being interested in colloidal suspensions and the gelation process, SLS

can be treated for the special case of discrete scatterers. Equation (1.31)

can be developed [11] for N particles with centres of mass at position ~Rj(t),

where ~rj(t) still describes a small volume element (interpreted as a dipole)

in the particle j relative to its centre of mass

ES( ~R′, t) = −E0
exp[i(kR′ − ωt)]

R′

N∑
j=1

∆bj(~q, t) exp[−i~q · ~Rj(t)] (1.32)

The excess scattering length ∆bj(~q, t) of particle j is calculated by weighing

the phase shifts of all the small scattering volumes of particle j with their ex-

cess scattering length density ∆ρ(~rj, t) and integrating them over the volume
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Vj of the particle j.

∆bj(~q, t) =

∫
Vj

∆ρ(~rj, t) exp(−i~q · ~rj)d
3rj (1.33)

The excess scattering length density ∆ρ(~rj, t), which can be regarded as the

local excess density of the scattering material, is defined by

∆ρ(~rj, t) =
k2

4π

[
εp(~rj, t)− εs

ε0

]
(1.34)

where εp(~rj, t) is the local dielectric constant of the particle, εs the dielectric

constant of the solvent and ε0 the average dielectric constant of the whole

suspension. It is noteworthy that the excess scattering length ∆bj(~q, t) is for

identical particles related to the particle form factor P (q) through

P (q) =
〈|∆bj(~q, t)|2〉
〈|∆bj(0, t)|2〉

(1.35)

where 〈〉 stands for the ensemble average.

Equation (1.32) consists like equation (1.31) of two terms: the first term

corresponds to a spherical wave as a result of the superposition of individual

spherical waves emitted by all scattering centers in the system. The second

term contains the phase shift due to the interference between the scattering

particles at positions ~Rj(t) in the sample.

However, the electric field is experimentally not easily accessible, but the

scattered light intensity can be directly measured. Since the intensity is

related to the field through I(~q, t) = |E(~q, t)|2, it is possible to calculate from

equation (1.32) the ensemble averaged scattered light intensity

〈IS(q)〉 =
E 2

0

R′2

〈
N∑

j=1

N∑
k=1

∆bj(~q)b
∗

k (~q) exp
[
−i~q · ( ~Rj − ~Rk)

]〉
e

(1.36)

Please note that 〈〉e stands for the ensemble average, and all further angle

brackets will denote ensemble averages unless noted otherwise. It is impor-

tant to realise that in the case of a so-called ergodic system, the ensemble

equals the time average, and in a static and dynamic light scattering ex-

periment one normally measures the time rather than the ensemble average.
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Exceptions are treated in chapter (1.2.2).

From now on, scattered fields and intensities will be regarded as a function

of the scattering vector ~q instead of the position of the detector ~R′. The two

are equivalent because ~R′ is in the direction of ~ks and the latter is related to

~q by (1.13).

In the case of a dilute non-interacting system, the particles are uncorrelated,

i.e. they behave like and ideal gas of colloidal particles. Equation (1.36) can

then be rewritten as

dσ

dΩ
(~q) =

N∑
j=1

〈
|bj(~q)|2

〉
+

+
N∑
j 6=

N∑
k=1

〈
bj(~q) exp(−i~q · ~Rj)

〉〈
b ∗
k (~q) exp(i~q · ~Rk)

〉 (1.37)

where the second term is equal to zero because the particles are free to

randomly explore the whole space over time, thus the exponential terms are

distributed around 0 and cancel. This step explains why the time averaged

intensity for non-interacting particles measured in SLS is the sum of the

intensities scattered by each particle and contains information about size,

structure and shape averaged for all particles.

Dynamic Light Scattering (DLS)

Dynamic light scattering (DLS) is also known as photon correlation spec-

troscopy (PCS). Where SLS uses a time averaged intensity to estimate the

average static properties of the sample, DLS takes into account the temporal

fluctuations of the scattering pattern. In colloidal suspensions, the so-called

speckles move due to the Brownian motion of the particles in the solvent. As

the fluctuations of the interference pattern represent these motions, dynami-

cal properties of the system can be accessed via a time-resolved study of the

scattered intensity. To do so, the same experimental setup as for SLS can

be used, but the measured intensity is processed by calculating the intensity
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auto correlation function

〈I(q, 0)I(q, τ)〉t = lim
T→∞

1

T

∫ T

0

I(t)I(t + τ)dt (1.38)

The angle brackets 〈〉t denote a time average (which is the same as the en-

semble average in case of an ergodic system), and the time difference between

the two multiplied intensities is called lag time τ . For all starting times t and

over all lag times τ , this function estimates the degree of correlation between

two intensities at different values of τ . The first value of an auto correlation

function is given by limτ→0〈I(0)I(τ)〉 = 〈I2〉, and for infinitely long lag times

τ , its value drops to limτ→∞〈I(0)I(τ)〉 = 〈I〉2. The intensity auto correlation

function is normalised to

g2(q, τ) =
〈I(q, 0)I(q, τ)〉
〈I(q, 0)〉2

(1.39)

In order to apply the theoretical model calculated from the Maxwell equa-

tions, we need to convert this into the electric field correlation function. The

normalised field auto correlation function is defined by

g1(q, τ) =
〈E(q, 0)E(q, τ)〉
〈E(q, 0)〉2

(1.40)

and is related - under the assumption of a Gaussian intensity distribution

of the beam profile - to the normalised intensity auto correlation function

g2(q, τ) through the Siegert relation

g1(q, τ) =
√

g2(q, τ)− 1 (1.41)

The normalised field auto correlation function g1(q, τ) approaches one at

very short lag times τ (see figure 1.10), where the scattered field is highly

correlated because the movement of one particle is too slow to cause a big

relative displacement and therefore a big change in the scattered field. On

the other hand, at very long lag times the correlation function must be zero

as the particles are undergoing Brownian motion and their position and in

consequence also their scattered fields are completely random compared to

their initial positions - given a lag time big enough. The form and position
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Figure 1.10: Dynamic Light Scattering on a dilute colloidal suspension of

19nm PS particles in a commercial standard setup. The fluctuations of the

scattered intensity versus time are shown on the left, its normalised field auto

correlation function g1(q, τ) on the right.

of the decay allows for evaluation of the dynamic behavior of the scatterers

in the system. Different quantities such as the particle size, polydispersity

or viscosity of the solvent can be extracted from there. But in order to do

so, a closer look at the calculated electric field is needed. The electric field

is exactly the same as already mentioned for SLS (equation (1.32)). But as

DLS treats normalised values, pre-factors can be omitted and the electric

field can be described as

ES( ~R′, t) =
N∑

j=1

exp[−i~q · ~Rj(t)] (1.42)

The right side of the equation above is essentially a sum of phase factors. As-

suming that the particles are randomly distributed in the sample, the phase

angles (~q · ~Rj(t)) are randomly distributed between 0 and 2π. The sum of

all phase factors then can be regarded as a two-dimensional random walk of

N vectors. The mean is zero because the random walk is symmetrical about

its origin due to the randomly distributed phase angles, and with big N,

ES( ~R′, t) becomes a complex variable with Gaussian probability distribution

(following random walk theory using the Central Limit Theorem). The ac-
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tually measured intensity I(~q, t) = |E(~q, t)|2 is in consequence exponentially

distributed and is visible in form of a speckle pattern, where small intensity

maxima appear in front of mostly dark background. As the particle positions

~Rj(t) change due to Brownian motion, the phase factors change in time and

the speckle pattern fluctuates. The speckle intensities can be measured and

correlated, and through the Siegert relation the calculation of the normalised

field auto correlation function is possible.

The normalised field auto correlation function g1(q, τ) measured for dilute

and identical particles is usually called the “measured intermediate scattering

function” fM(q, τ) = g1(q, τ) and simplifies for identical interacting spheres

(bj(q, t) = b(q)) to

fM(q, τ) = f(q, τ) =
F (q, τ)

S(q)
(1.43)

introducing the intermediate scattering function F (q, τ)

F (q, τ) =
1

N

∑
j

∑
k

〈
exp

{
−i~q ·

[
~Rj(0)− ~Rk(τ)

]}〉
(1.44)

and defining the static structure factor S(q) (see (1.27)) as

S(q) = F (q, 0) (1.45)

For a dilute suspension of identical, non-interacting particles, the intermedi-

ate scattering function is given by

f(q, τ) =
〈
exp

{
−i~q · [~R(0)− ~R(τ)]

}〉
= 〈exp[i~q ·∆~r(τ)]〉 (1.46)

where ∆~r(τ) stands for the displacement of a particle and substitutes (~R(τ)−
~R(0)) in the second part of the equation. Therefore the intermediate scat-

tering function which is measured by DLS contains information about the

average motion of a particle. For an ergodic, dilute suspension of identical,

non-interacting particles the displacement in Brownian motion is described

by a Gaussian probability distribution. The field correlation function calcu-

lated from this results in

f(q, τ) = exp

[
−q2

6

〈
∆r2(τ)

〉]
(1.47)
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with a particle mean square displacement of

〈∆r2(τ)〉 = 6Dτ (1.48)

where the diffusion coefficient D for monodisperse spherical particles in free

diffusion is given by the Stokes-Einstein relation

D0 =
kBT

6πηRH

(1.49)

with kB being the Boltzmann constant, T the temperature, η the viscosity

of the solvent and RH the hydrodynamic radius of the particle. Knowing the

temperature and the viscosity of the solvent, the calculation of the hydrody-

namic radius of the particles is straight forward. The hydrodynamic radius

for ideal spheres is related to the radius of gyration by RG = RH ·
√

0.6.

In more concentrated suspensions, the particles start to interact, and the

diffusion coefficient in equation (1.48) has to take account of this. All direct

interactions between the particles like for example Coulomb repulsion, Van

der Waals attraction and excluded volume effects for hard spheres are already

described in the static structure factor S(~q). Another important effect is the

indirect hydrodynamic interaction H(~q); moving particles cause its surround-

ing liquid to flow, which will interfere with the motion of other particles. The

effective diffusion coefficient for such cases is no longer independent of q and

is given by

Deff (~q) = D0
H(~q)

S(~q)
(1.50)

DLS is mainly used for particle sizing, although there is another popular

field of application; by adding a tracer of known size to a system, the viscosity

can easily be measured with DLS.

The characteristic length scale probed by DLS is the same as the one for

SLS; both methods are based on scattering caused by interference effects of

singly scattered light. Therefore the investigated length scale is in the order

of 2π
q

. But whereas SLS determines the radius of gyration RG via the Guinier

approximation and is limited to RG & 15nm (below this size, the particle

form factor does not change anymore for the accessible q-range), DLS has no
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Figure 1.11: Photon path in a standard DWS transmission experiment. L

is the sample thickness, l the scattering mean free path and l∗ the transport

mean free path.

lower theoretical limit for the measurable hydrodynamic radius RH . Particles

of any size which diffuse over the distance of the probed characteristic length

scale create a constructive interference. Only the technical restriction of the

shortest possible lag time τ and the fact that small particles scatter weakly

set limits to the measurable particle sizes.

Diffusing Wave Spectroscopy (DWS)

In contrast to the single light scattering methods SLS and DLS, where mul-

tiply scattered light corrupts the signal and therefore needs to be avoided at

any cost, Diffusing Wave Spectroscopy (DWS) takes advantage of multiply

scattered light. DWS can only be applied to turbid media, as it depends on

a high amount of scattering events experienced by a photon passing through

a sample. A statistical approach - the diffusion equation - can then be taken

to describe the photon transport in the sample [12]. DWS is the equivalent

of DLS for turbid systems, but as the photon path is completely randomised,

DWS measurements are not scattering angle dependent anymore. There ex-

ist only two different geometries: backscattering and transmission. Here,

only transmission will be used and treated.

The number of scattering events of the photon on its way through the
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sample is a very important factor. For SLS and DLS, single scattering is

required and the mean free path l of a photon should be longer than the

sample thickness L (l > L). The mean free path is the average length between

two scattering events and is given for dilute samples by

l =
1

ρσ
(1.51)

where ρ is the particle concentration and

σ =
8π

3

(
2π

λ

)4

a6

(
m2 − 1

m2 + 2

)2

(1.52)

is the total Rayleigh scattering cross section of the particle. m = np/ns is the

ratio of the index of refraction of the particle np to that of the surrounding

medium ns.

The transport mean free path l∗ on the other hand specifies the length scale

on which a photon will loose any information about its initial direction. For

distances larger than l∗, the light is therefore randomised, and the diffusion

approximation can be applied. l∗ is defined as

l∗ =
l

〈1− cos (θ)〉
, l∗ > l (1.53)

The angle brackets denote an ensemble average over many scattering events,

and θ is the scattering angle. l∗ is the characteristic length scale for dif-

fuse propagation of light, such as l for SLS and DLS. It sets the range of

applicability for DWS which treats systems of high turbidity, starting at

approximately l∗/L ≈ 5 (for a further discussion, see 5.3.3).

A photon passing a turbid sample is scattered many times. All these

scattering events have to be summed up to correctly describe the total scat-

tering. First, the phase shifts of each scattering event are summed up to the

total phase change

∆φp(τ) =
N∑

i=0

~qi∆~ri(τ) (1.54)

where ~qi = ~ki − ~ki+1 are the corresponding scattering vectors. With a high

number N of scattering events, the Central Limit Theorem can be applied
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to the total phase change. It allows us to replace the phase change of each

single scattering event with its average phase change. Assuming that the

scattering events are uncorrelated and weighing the scattering vectors with

the form factor of a single particle, the mean total phase change results in〈
∆φ2

p(τ)
〉

t
=

2

3
k 2

0

〈
∆r2(τ)

〉
t

s

l∗
(1.55)

where 〈〉t stands for a time average and introducing the path length s = Nl.

As the mean total phase change depends only on the length of the scattering

path, the total field correlation function can be calculated by summing up

different paths weighed with the path-length distribution function P(s)

g1(τ) =

∫ ∞

0

P (s) exp

(
−1

3
k 2

0

〈
∆r2(τ)

〉
t

s

l∗

)
ds (1.56)

The path-length distribution function P(s) is calculated using diffusion the-

ory, where photon transport is described by

∂U

∂t
= Dl∇2U (1.57)

Here, Dl = vl∗/3 is the diffusion coefficient of light with v being the speed

of light in the medium and U is the energy density of light. The diffusion

approach allows for the determination of all the different scattering path

lengths and the probability of a photon to take those paths. For the trans-

mission geometry with an expanded incident beam (plane wave illumination)

the field correlation can be calculated as follows [13]

g1(τ) =

(
L
l∗

+ 4
3

)√
6τ
τ0(

1 + 8τ
3τ0

)
sinh

[
L
l∗

√
6τ
τ0

]
+ 4

3

√
6τ
τ0

cosh
[

L
l∗

√
6τ
τ0

] (1.58)

∼=

(
L
l∗

+ 4
3

)√
6τ
τ0

sinh
[(

L
l∗

+ 4
3

)√
6τ
τ0

] (1.59)

with τ0 = 1/(k 2
0 D0). This expression is very close to an exponential function,

and therefore the following simplified expression is sometimes used

g1(τ) = exp

[
−

k 2
0

(
L
l∗

)2
6

〈∆r2(τ)〉

]
(1.60)
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This function looks very similar to the result for DLS (see equation (1.47).

Both field correlation functions feature an exponential decay with 〈∆r2(τ)〉.
But in the case of DWS, the decay depends on the initial wave number k0

and L/l∗ instead of the scattering vector q. This means the scattering angle

is of no importance, but the transport mean free path has to be known. This

is of great importance in particular for time evolving systems. l∗ can be

calculated using Mie theory for example, but it is usually measured to take

into account all experimental conditions. Because the transmission T of a

sample in the limit of strong multiple scattering is given by

T =
5l∗/3L

1 + 4l∗/3L
∼ 1

l∗
(1.61)

it is inversely proportional to l∗. By measuring the transmission of a sample

and comparing it to the value of a system with known l∗ measured under the

same conditions, l∗ can be obtained in a very easy way.

It is important to underline that DWS probes the motion of particles

in the range of ∆r ≈ λ0l
∗/L and therefore is not comparable to DLS; the

distance over which a particle has to diffuse to induce a constructive inter-

ference is noticeably smaller than the wavelength and can be as low as 1nm.

This is caused by the fact that a photon passing the sample is scattered by

a large number of particles, each of whom is in motion and therefore shifting

the phase of the scattered light. As a consequence, the sum of the diffusion

of all particles on the scattering path of the photon have to be in the order

of λ.

Non ergodic Systems

Up to here, only ergodic systems have been discussed. In ergodic systems,

the time average equals the ensemble average, so that a time averaged mea-

surement contains the information about the ensemble average. This is the

case for particles (and clusters) that undergo free diffusion. However, the

situation changes completely for solid-like samples such as glasses or gels.

Once the clusters connect to a space filling network (at the gel point), the
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individual particles are trapped and cannot explore the whole phase space

anymore. Such a system shows non-ergodic behavior with a time average

different from the ensemble average. A time averaged field correlation func-

tion of an ergodic system decays to zero, but the non ergodic decorrelates

to a plateau because the particles cannot escape from their position in the

network and therefore are always correlated to their position therein (see c)

in figure 1.12). Furthermore, a series of time averaged measurements yields a

set of non-reproducible correlation functions depending on the speckle which

is observed (see a) in figure 1.12). The time averaged scattered intensity

〈I〉t varies for each measurement and is not equivalent to 〈I〉e. The non-

fluctuating part of the intensity contributes in DWS only to the background,

therefore all time averaged correlation functions decay to zero. The plateau

height of a non-ergodic system cannot be measured by a simple time aver-

aged correlation function.

Different approaches to calculate the correct ensemble averaged g1 have been

proposed for DLS experiments [14, 15]. Pusey et al. [16] suggest to correct

a time averaged field correlation function with the ensemble averaged inten-

sity 〈I〉E obtained by measuring a rotating sample. Another, less elegant

way is the brute force method, where a statistically significant number of

measurements at different speckles, i.e. different sample positions, is math-

ematically averaged. Other techniques measure the real ensemble average

by translating or rotating the sample slowly during data acquisition, adding

a second, slow decay to the field correlation function. All these approaches

have been developed for single light scattering, and some can be extended

to multiple light scattering. But in each method, the sample needs to be

moved physically, and the measurements are rather long. For these reasons,

the techniques mentioned above are not very well adapted for time resolved

measurements and fragile structures.

A CCD camera is able to measure many correlation functions at the same

time, which than can be averaged in so-called multi speckle correlation mea-

surements. But due to the slow response times of the camera, this method
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Figure 1.12: Illustration of field correlation functions g1 for non ergodic sys-

tems. Five time averaged measurements are shown in a), with the plateau

height interpreted as baseline. Dotted is the corresponding ensemble and

time averaged correlation function. The measured g1 using the double cell

technique is plotted in b); the inset is g1 of the second cell alone. The real

ensemble averaged field correlation function which can be restored from both

measurements a) and b) is shown in c).

is not well suited for our samples neither.

Double cell technique Romer et al. [17] and Scheffold et al. [18] present

another way to measure ensemble averaged field correlation functions. This

method is called double cell technique because attached to the cell with the

investigated sample is another cell containing an ergodic turbid medium (see

figure 1.13). A laser beam passes first through the non ergodic sample and

then through the ergodic medium. The sample features a faster decay which

stops at a certain plateau height. The second, ergodic medium is tuned in

such a way that its dynamics is at least an order of magnitude slower than

the first decay of the non ergodic sample. The second cell then induces a full

(ensemble averaged) decorrelation at high lag times. It is shown in [18] that

the resulting correlation function for weak absorption and L � l∗ is then

given by a simple multiplication rule (for the simplified case of independent

scattering in both cells which means no loop-like photons paths between both
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Figure 1.13: Scheme of the double cell setup. Top: the incident beam passes

first the (non ergodic) sample under study and then a second cell which

contains an ergodic system. The slow motion of the scatterers in the second

cell gently shakes and randomizes the speckle pattern of the non ergodic

medium and ensures proper ensemble averaging of the light scattered by the

first cell. Bottom: the intensity profile of the incident beam is homogeneous,

whereas the non ergodic sample produces a time-independent speckle pattern.

These speckles can be considered as point sources of light which are multiply

scattered by the second cell and therefore washed out. The total transmitted

beam features an averaged intensity of the speckle pattern (indicated by the

two arrows).
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Figure 1.14: Scheme of the Two-cell Echo approach. Besides the rotating

diffuser (4) between laser and sample it is identical to a standard DWS setup

as seen in figure 3.1. Details are given in the text resp. in section 3.1 where

the standard DWS setup is described.

cells)

g2 total − 1 = (g2 sample − 1) · (g2 scndcell − 1) (1.62)

The total field correlation function g2 total thus features a two step decay (see

b) in figure 1.12). Dividing it by the separately measured field correlation

function g2 scndcell of the second cell only (using equation (1.62)), the real

ensemble averaged field correlation function g2 sample of the sample remains.

This method has the advantage to be very simple and fast, and furthermore

the sample doesn’t have to be moved physically. But it can only be applied

to turbid media which means for DWS.

Two-cell Echo approach The so-called Two-cell Echo approach proposed

by Zakharov et al. [19] expands the second cell DWS scheme using the Echo

technique developed by Pham et al. [20] and allows to determine the auto

correlation function for 0.1s < τ < 450s within a measurement of the length

of only 450 seconds. The setup as seen in figure 1.14 is identical to a standard

DWS experiment like in figure 3.1 except for the fact that a rotating ground

glass i.e. diffuser (4) is placed between the incoming laser beam and the

sample. 1, 2 and 3 designate a horizontal polariser, colllimator and single

mode fiber beam splitter respectively. The diffuser rotates at high speed (up

to 75 Hz) and it is therefore possible to measure the “echos” of the correlation

function i.e. the repetition of the correlation peak after one full revolution

of the diffuser (as the diffuser is a static scatterer, the same speckles are
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Figure 1.15: Simulated echos of a fluid (continuous lines) and the predicted

dynamics from its Brownian motion (dashed line) showing that the echoes

follow the dynamics of the sample (the x axis is the lag time τ divided with

the period T of the diffuser).6 The echos of a rigid sample i.e. static scatterer

would show a constant intercept of 2, all echos would have identical heights.

generated after one revolution). These echos of the correlation function follow

the samples properly ensemble averaged dynamics [20] (see figure 1.15), so

the sample dynamics can be obtained by measuring the temporal evolution

of the echos.

Each echo signal is generated by a large number of independent speckles

thus efficient ensemble averaging is performed. The scattered intensity is

measured with a photon counter instead a correlator, saved as a photon trace

and treated afterwards with software which correlates the echo signals. This

method is ideally suited to investigate the expected glass phase in the gelation

process as very slow processes at long lag times τ can be characterised in

6Reused with permission from K. N. Pham, S. U. Egelhaaf, A. Moussad, and P. N.

Pusey, Review of Scientific Instruments, 75, 2419 (2004). Copyright 2004, American In-

stitute of Physics.
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a short measurement time, allowing for time resolved, ensemble averaged

measurements.

Data analysis Once the correct ensemble averaged field correlation func-

tion is acquired, the data can be analysed. Krall and Weitz developed a

theory for the interpretation of 〈∆r2(τ)〉 for fractal particle gels [5, 21]. As

observed by DLS, a gel is regarded as an object assembled from fractal clus-

ters of size Rc,critical, so-called “blob”. These blobs again are assembled from

smaller blobs, and so forth down to the size of a single particle. All blobs and

particles are bound in the network and thus localised, but they still can move

around their average position. The blob’s motion is coupled to the motion

of its smaller blobs, each of them having their own collective motion called

mode. Each mode can be treated as an independent, overdamped harmonic

oscillator characterised by a spring constant and a relaxation time. The mo-

tion of the gel (the biggest blob) is then given by the integral over all modes

for all possible blob sizes, resulting in

〈∆r2(τ)〉 = δ2

[
1− e

−
“

τ
τδ

”p
]

(1.63)

The cross-over time τδ is a parameter representing the characteristic time

scale at which the motion of the particles starts to be limited by the network.

It is related to the characteristic fluctuation of the cluster τc by τδ = 0.35τc.

The plateau height stands for the maximum mean square displacement δ2

of the gel. The motion of a gel is sub-diffusive, which means basically that

the retaining force is not linear but increasing with elongation from the ini-

tial position. This is represented by the exponent p which can be read out

from the initial slope in figure 1.16 on the right side. In a free diffusive

motion, 〈∆r2(τ)〉 follows a power law with exponent one, a gel according to

the Krall/Weitz model exhibits an exponent of 0.7. While equation (1.63)

describes the microscopic state of the system, its parameters are linked to

macroscopic properties of the system through the model of overdamped os-
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Figure 1.16: Schematic representation of the field correlation function g1

obtained for a particle gel (left) and its corresponding mean square displace-

ment 〈∆r2(τ)〉 (right). Dotted line: the ergodic case for comparison. Details

in the text.

cillators. The elastic modulus G0 is then given by

G0 =
6πη · 0.35

τδ

(1.64)

whereas the cluster radius Rc can be calculated with

Rc =
2dfD0

(2 + db)

aτδ

0.35 · δ2
(1.65)

where db is the bond dimension with an estimated value of 1.1 (by computer

simulations) and a the particle radius.

For the investigation of turbid gels, the Krall/Weitz model can be applied

to DWS theory by combining equations (1.63) and (1.58) to

g1(q, τ) =

(
L
l∗

+ 4
3

)√
k0δ2

(
1− e

−
“

τ
τδ

”p
)

sinh

[(
L
l∗

+ 4
3

)√
k0δ2

(
1− e

−
“

τ
τδ

”p
)] (1.66)

But it remains to be seen that the Krall/Weitz model can be directly applied
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to the interpretation of DWS experiments with such small particles as we

used. This issue will be treated in the forthcoming subsection 5.3.1.

1.2.3 Neutron scattering

The basic principles for neutron scattering are the same as already described

in the preceding chapters. The fundamental difference between neutrons

and photons is that neutrons scatter at the nuclei of atoms and the photons

scatter due to the polarisability of a particle. As neutrons are weakly in-

teracting with matter, problems with multiple scattering are less important

and can be avoided by adjusting the scattering cross section (index matching

or contrast variation, see below). Due to the fundamental difference of the

scattering mechanism, samples appearing completely turbid in visible light

can be transparent for neutrons and vice versa.

The differential cross section for neutron scattering is given by [22]

dσ

dΩ
(~q) = 〈b〉2

N∑
j,k=1

〈
ei~q· ~rjk

〉
+ N

(〈
b2
〉
− 〈b〉2

)
(1.67)

where the first term represents the coherent scattering part and contains all

information about the structure of the particles and their spatial arrange-

ment. Coherent scattering is caused by the interference of the scattering

of all nuclei which all have the same average scattering length 〈b〉, and its

scattering cross section is given by σcoh = 4π〈b〉2. The second term corre-

sponds to the incoherent scattering part, where no interference terms appear.

Hence, this part bears no information about the structure of the sample and

contributes only to a q-independent background intensity. The incoherent

scattering cross section is given by σincoh = 4π(〈b2〉 − 〈b〉2).
The scattering lengths of different nuclei vary strongly and unsystemati-

cally for neutrons. Furthermore, big differences exist between the scattering

lengths of different isotopes (see table 1.1).

This allows for the so-called contrast variation, where the scattering con-

trast i.e. the excess scattering length density ∆ρ of the investigated sample

55



Isotope b [10−15m] σcoh [barn] σincoh [barn]
1H -3.74 1.76 80.27
2H 6.67 5.59 2.05

O 5.803 4.23 0.0008

C 6.65 5.55 0.001

S 2.85 1.02 0.007

Table 1.1: Examples for the coherent scattering length b and the coherent

resp. incoherent cross-sections σcoh and σincoh of several nuclei

can be manipulated. Chemically identical isotopes can be mixed or replaced

without altering the sample characteristics, but changing the neutron con-

trast drastically. By the choice of the appropriate mixture of isotopes, a

contrast can be created (or diminished) between for example particles and

solvent or different parts of particles. For example, the big difference of the

scattering length between bH = −3.74 and bD = 6.67 · 10−15m results in

scattering length densities ρ for H2O and D2O (heavy water) of -0.56 resp.

6.33 ·10−6 Å−2. By the substitution of H with D in the particle or H2O with

D2O in the solvent, the excess scattering length density of the sample can be

varied in a wide range from negative to positive values, including the index

matching point where ∆ρ = 0.

Neutrons have completely different wavelengths than photons; cold neu-

trons typically used in SANS experiments have wavelengths in the order

of 0.3nm < λ < 3nm. The length scales probed in a measurement in single

scattering condition are in the order of 2π
q

= λ
2 sin(θ/2)

, so much smaller wave-

lengths probe much smaller length scales. To resolve large structures, very

small scattering angles have to be chosen for neutrons.
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Chapter 2

System

In previous light and neutron scattering experiments on aggregation and

gelation of colloidal suspensions, different model systems such as polystyrene

spheres, silica, PMMA and gold [2, 21, 23] have been studied. The idea here

is to develop further a work already presented by Romer et al. [23], where

colloidal suspensions of polystyrene have been destabilised by the urea/urease

process (see 2.2) and measured using simultaneous time-resolved DWS and

SANS experiments with an older version of the setup described in chapter

3.3.

2.1 Choice of System

Romer et al. used in their work charge stabilised colloidal suspensions of

polystyrene particles of a diameter of 190 nm. Being interested in the fractal

structure of the clusters and the final gel, small particles seem to be the best

choice as the SANS I instrument at the PSI used for these experiments has

a limited q-range of 6 × 10−3nm−1 < q < 10.5nm−1. Moreover, the fractal

region for a particle gel is limited to the region Rc,critical > 2π
q

> a. The use

of small particles thus allows us to enlarge this fractal regime and to shift it

into the accessible q-window of SANS I, and we can observe important prop-

erties such as Rc,critical, df and local correlation effects between neighbouring
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Figure 2.1: DLVO potentials calculated for a 19nm PS colloidal suspension

in dependance of the amount of added salt.

particles (see figure 1.9). The smallest commercially available polystyrene

((C8H8)x) spheres have a diameter of 19 nm with a polydispersity of 16.3%

(Interfacial Dynamics Corporation, Sulfate White Polystyrene Latex, prod-

uct nr. 1-20). They feature a surface charge density of 1.8µC/cm2, and the

corresponding calculated DLVO potentials in dependance of the amount of

added salt are shown in figure 2.1. Due to the small size of the particles, the

DLVO potential features no visible secondary minimum. The critical coagu-

lation concentration ccc is reached at approximately 150 mM.

At volume fractions of a few percent, the resulting suspensions are nearly

transparent (yellowish suspension, left side of figure 2.2). However, the sam-

ple appearance changes drastically upon aggregation and the resulting sus-

pensions and gels become turbid (l∗ ≈ 400µm for the final gel at φ = 3.8%,

right side of figure 2.2), so DWS measurements become feasible after a min-

imal size of the aggregating clusters.
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Figure 2.2: Colloidal suspension of 19nm PS spheres (diameter) with a

volume fraction of 3.8 volume percent in a buoyancy matched mixture of

H20/D2O. Left: stable suspension, slightly yellowish but transparent. Right:

gelled out sample, turbid. Both cells are 2mm thick.

In order to be able to follow the aggregation and gelation process in a time-

resolved manner, the individual measurements should be significantly shorter

than the gelation process. To reach a statistically significant amount of at

least 100’000 coherently scattered neutrons, a typical SANS measurement

requires around 15 minutes. The aggregation therefore needs to be slow

(around 3 hours to the point where it gets non ergodic), and the PS particles

have to be buoyancy matched in order not to sediment during this long pro-

cess. Buoyancy matching is achieved by mixing H2O and D2O in the ratio

52:48 by volume, as polystyrene has a density of σ = 1.055g/cm3 which lies

between σH2O = 0.998g/cm3 and σD2O = 1.105g/cm3 (all at 20 ◦C). The

dilution of H2O with D2O in the system results also in an advantageous

scattering cross section for neutron scattering which is relatively close to the

contrast match point of polystyrene spheres and thus helps to avoid multiple

scattering effects.
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2.2 Method of destabilisation (urea/urease)

To induce aggregation and gelation in the colloidal suspension mentioned

above, additional ions have to screen the particle charges (see 1.1.2). As we

work at relatively high volume fractions of a few percent (0.01 < φ < 0.18),

the simple addition of salt by mixing with a second solution is not applicable.

The resulting gradients of the ion concentration would disturb noticeably the

aggregation process, causing inhomogeneous cluster growth. Moreover, the

speed of the aggregation process should be tunable to allow for time-resolved

measurements during the gelation. Both problems are overcome by using a

special method: the urea/urease process.

(NH2)2CO + 2H2O
Urease−→ CO −2

3 + 2NH +
4

The hydrolysis of urea is an enzymatic process where urease is the cat-

alyst. This method was developed in material science to enhance ceramic

processing [24]. Urea dissolved in water is hydrolysed to carbonate and am-

monium. This process has the advantage to produce ions homogeneously in

situ. In addition, the kinetics can be easily controlled: the amount of urea

defines the final ion concentration and the amount of urease sets the speed of

the nearly linear ion production. Temperature and pH influence the kinetics

of the reaction as well. In our case, typical values of 4.54 weight percent of

urea (Fluka Urea puriss. p.a. 51459) and 20 units/ml of urease (Roche Diag-

nostics: Urease, Lyo., SQ) have been used. At a temperature of 25 ◦C, this

results in a nearly constant ion production during 280 minutes and a final ion

concentration of 227 mMol/l as shown in figure 2.3. As the ion concentration

increases constantly, the potential barrier of the charged particles decreases

steadily. The particle aggregation therefore starts as a RLCA process with

growing sticking probability until the potential barrier vanishes completely

and DLCA sets in at 125 minutes (the ccc for our conditions is reached at

150 mM). This crossover from reaction to diffusion limited aggregation com-

plicates the quantitative description of the gelation, but the advantages of
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Figure 2.3: Temporal evolution of the ion concentration using the urea/urease

process. 4.54% urea are solved in a buoyancy matched mixture of H2O and

D2O, and 20 u/ml urease are added. The dotted line marks the ccc of 150

mM at 125 minutes.

the urea-urease method outweigh this problem.

Sample preparation is quite easy; first, the correct amount of urea is dissolved

in the sample at the preferred temperature. Then a urease solution solved in

the same solvent as the sample is added (ten percent of the sample volume).

As urease is active at temperatures above 4 ◦C and its lifetime is below 24

hours, it has to be prepared under controlled conditions. Crystalline urease

has to be stored at temperatures between 2-8 ◦C and needs to be dissolved

using an ice bath but then can be frozen for storage. The frozen urease is

molten and added to the sample, where the immediate temperature increase

activates the enzyme.

2.3 Sample preparation for the investigation

of time resolved aggregation and gelation

All data presented in this chapter were measured under the same conditions.

The sample was thermally stabilised at 25 ◦C at ambient pressure. The 19nm
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PS sample was prepared and mixed in a vial before filled into round quartz

cuvettes of 19mm inner diameter and 2mm sample thickness (Hellma 120-

QS). The volume fraction of PS is φ = 0.038, the solvent is a mixture of H2O

and D2O in the volume ratio 52/48 and contains 4.54 weight percent of urea

and 20 u/ml urease.
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Chapter 3

Setup

3.1 DWS

Standard DWS setups are relatively uncomplicated and compact enough to

be mounted within a few hours, including alignment and testing. The scheme

of a simple setup is shown in figure 3.1. A small HeNe laser (Uniphase

1145P, 30mW) provides enough light to probe a sample. The scattered light

is coupled with a collimator (2) (Schäfter+Kirchhoff 60FC-0-M8-33) into

a single mode fiber (3) (Schäfter+Kirchhoff FSB-630-Y). This special fiber

designed and manufactured for our needs by Schäfter+Kirchhoff will further

on be referred to as “single mode fiber beam splitter”. One end features a

common single mode fiber with a standard FC/PC connector, where the light

is coupled in through the collimator. In the middle, a second single mode fiber

is fused to the first one so that the light will be split between the two of them

with a ratio of 50:50. These two fibers then end as well in FC/PC connectors,

which will feed the light into two Avalanche Photo Diodes (APD, Perkin

Elmer SPCM-AQR-13-FC). To filter non-diffuse light, a horizontal polariser

(1) is placed in front of the collimator. Both signals are then cross correlated

with an external USB correlator (correlator.com Flex99R12FCS) and read

out by a laptop PC. The cross correlation of the two detectors measuring

identical light intensities is a technical trick called pseudo cross correlation, it
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Figure 3.1: Scheme of a simple DWS setup in transmission geometry.

reduces signal alterations through detector specific properties (after pulsing).

Using these components, correlation lag times of 12.5ns < τ < 3436s can

be accessed, as the correlator uses a multi-tau scheme. The lag times are

logarithmically distributed, resulting in a heavy ponderation of short lag

times (more points there). To ensure good data quality, time averaging

should be performed over roughly 1000 times the slowest relaxation time or

more. But the measurements should also be short enough to capture the time

evolution of the sample. A good compromise is in our case a measurement

length of 900s.

3.1.1 Non ergodic DWS

The two-cell DWS setup described in chapter 1.2.2 for non ergodic measure-

ments has been further developed. The second cell containing an ergodic

colloidal suspension to achieve a real ensemble average is now replaced by

a moving static scatterer. In a first step, a piece of sandblasted glass was

mounted on a motorised translation stage (Physik Instrumente M-150.10 with

DC motor C-120.80 and motor controller card C-832 with the corresponding

software). This construction is called “translational second cell” see figure

3.2. As the step resolution is very high (0.06 µm) and the travel of the

stage long (50 mm), the slow and consistent translation that results in the

typically needed correlation decay can be carried out for around 15 minutes

before the translation stage reaches its end position. This time is sufficiently

long for a typical DWS measurement. The advantages of this approach are:

the characteristic decay time τchar of the second decay can easily be tuned in
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Figure 3.2: Picture of the “translational second cell”: a static scatterer (a

piece of sandblasted glass) is moved on a high precision translation stage.

the range of 0.001s . τchar . 50s by varying the translation speed instead

of diluting a suspension (or mixing it with a viscous liquid) and the second

cell doesn’t need to be thermally stabilised. Furthermore, the transmission

is higher and the correlation function is smoother i.e. a larger part of the

correlation function can be evaluated after the division by the second decay.

Another advantage is that the second cell is separated by a distance of sev-

eral centimeters from the sample, reducing the possibility of loop like photon

scattering paths. The scattered light from the sample has to be focussed to

the ground glass with a lens to achieve high enough photon count rates.

To improve the second cell further, a high resolution step motor (MAE

HS200-2216-0100-AX08) is used to rotate a sandblasted piece of glass. This

construction is called “rotational second cell” (see figure 3.3). The control

and power unit contains a programmable stand-alone step motor controller

(IMS MX-CS101-400 Microlynx4), the motor can be turned on and off by

switches, and the rotation speed can be selected from three preprogrammed

values. In combination with a gear transmission ratio of 436, each revolution

is split up in 22’323’200 steps which results in a step size of around 10 nm

for a typical measurement. The rotating unit is constructed such that the

rotating ground glass is fixed in the middle of a rotating ring. Depending on
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Figure 3.3: Picture of the most recent version of the second cell: a rotat-

ing piece of ground glass, set in motion by a step motor. The stand-alone

programmable power and control unit is on the right side of the picture.

the distance between collimator and the rotation axis (0 - 40 mm), the speed

of the static scatterers vary and therefore the correlation time. In combina-

tion with the variable rotation speed, a wide range of correlation times can

be easily accessed (0.001s . τchar . 500s). Larger distances from collimator

to rotation axis are preferable because more speckles are passed through per

motor step, resulting in a more continuous and smoother movement. More-

over, a higher total speckle number per revolution ensures better statistical

averaging (as the ground glass is a static scatterer, its speckle pattern repeats

with each revolution). The compact design and the stand-alone controller

(instead of an additional computer for the motor controller card like in the

case of the translation stage) make this second cell setup easy to transport

and to incorporate in other experimental setups, which is required for the

use in the combined SANS/DWS setup. Compared to the translation stage

it provides also a higher step size resolution, a wider range of accessible de-

correlation times and a continuous motion which makes very long acquisition

times possible.

Moreover, the correlation function of the rotational second cell only is for
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Figure 3.4: Normalised auto correlation g2−1 of the two second cells (trans-

lational and rotational). Both measurements were 900s long and have been

done by replacing the sample cell with a static scatterer, so that the resulting

decay shows the de-correlation of the second cell only.

our purposes better than the translational one. Measurements of both sec-

ond cells are shown in figure 3.4; in both cases, the sample cell was replaced

with a static scatterer in order to measure the de-correlation of the second

cell only, and both measurements were 900s long. The speed of the second

cells was adjusted in such a way that the base line length was approximately

three orders of magnitude (the rule of thumb for reasonable data quality). It

is clearly visible that the rotational second cell provides a correlation func-

tion where the de-correlation sets in later and with a steeper decay. The

small peak at the end of the decay of the correlation function for the rota-

tional second cell is perfectly reproducible and is caused by vibrations of the

sample table. As the data of a measurement is first divided by the second

cell and subsequently analysed for the first decay only (which contains all

accessible information about the sample), the file is only analysed up to lag

times around the beginning of the decay of the second cell. The small vibra-

tional peak and baseline fluctuations are out of this range and therefore of

no significance. But due to the later onset of the decay of the rotational cell,

the first decay can be analysed up to five time longer lag times compared the

data measured with the translational cell (up to 0.075s instead of 0.015s in
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Figure 3.5: Scheme of the SANS-I instrument at PSI7.

the case above).

3.2 SANS

Our interest lies in the investigation of colloidal suspensions and gels on a

large range of length and time scales using light and neutron scattering. The

scattering angle for neutrons must be very small to compensate for the short

wavelength of the neutrons in comparison to visible light, so we use Small

Angle Neutron Scattering (SANS). All our experiments have been conducted

at the SANS-I device [25] at the Swiss neutron source at the Paul Scherrer

Institut (Villigen, Switzerland, http://sinq.web.psi.ch).

As illustrated in figure 3.5, the (cold) neutrons from a spallation source

exit the neutron guide and pass a monochromator (a helical slot velocity

selector) which selects the neutron wavelength in the range of 0.45nm <

λ < 4nm with δλ ∼= 10%. A collimator of variable length between 1m

and 18m collimates the neutron beam prior to the sample. The sample

is situated in a variable sample environment (see figure 3.6) where different

devices can be installed. Standard options include automated sample holders

on a xyz-translation table, vacuum chambers, temperature chambers and

electromagnetic cells. The scattered neutrons then enter a vacuum tank

7Copyright (2005) by J. Kohlbrecher, Paul Scherrer Institut, Switzerland
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Figure 3.6: Main components of the SANS-I instrument at PSI8.

in which a 2D 3He detector can be driven to distances between 1m and

20m. The detector consists of a matrix of 128× 128 detectors with a size of

7.5× 7.5mm2 and can also be laterally displaced up to 0.5m. The accessible

q-range is 6 × 10−3nm−1 < q < 10.5nm−1. To enhance intensity, enlarge

the q-range and improve the instrument resolution, biconcave magnesium

flouride (MgF2) lenses can be used to focus the neutrons [26, 27].

3.3 combined setup

The free space on one of the variable sample environments of the SANS in-

strument described in the chapter before was used to mount a light scattering

setup similar to the one described in chapter 3.1. A scheme of the combined

setup is shown in figure 3.7, and two pictures are shown in figure 3.8. This

setup allows for measurements of DLS, DWS and non ergodic DWS simul-

8Copyright (2005) by J. Kohlbrecher, Paul Scherrer Institut, Switzerland
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taneously to the SANS measurements. A thermally stabilised sample holder

with 16 sample chambers on a xyz-translation table was provided by the PSI,

leaving enough free space to mount the components for the light scattering.

To enhance the q-range, 10 biconcave MgF2 lenses focus the neutron beam

to the sample. The vertically polarised laser beam emitted from a HeNe

laser is reflected on a silicon waver. This silicon waver features an aluminum

coated surface which makes it reflective for visible light, but still remains

transparent for neutrons. The single mode fiber beam splitter is mounted

first on a collimator which is aligned for a specific angle and which collimates

the scattered intensity directly from the sample (marked as DLS in figure

3.7). For transparent samples, DLS measurements can be carried out at this

specific angle of 32 ◦ (tests and calibration are done with reference systems).

Once the sample is too turbid for DLS due to multiple scattering, the

single mode fiber beam splitter is mounted on the other collimator which is

coupling in the light from the second cell for non ergodic DWS measurements.

The second cell is a piece of rotating ground glass which accomplishes a true

ensemble average (see chapter 3.1.1) of the scattered light of the sample which

is focussed onto the ground glass through a lens. Both collimators (for SLS

and for DWS) feature a standard FC/PC fiber connection and keep their

aligned position albeit the connection and de-connection of a fiber.

3.3.1 Experimental settings used in the aggregation

and gelation experiments

DLS correlation functions have been measured for 120 seconds at the scat-

tering angle θ = 32◦, accessing lag times in the range of 12.5ns 6 τ 6 114s.

DWS measurements have been taken during 900 seconds in transmission

geometry using the rotational second cell and a horizontal polariser (pho-

tons scattered once or only a few times basically keep their initial vertical

polarisation and are filtered out). The second cell is rotating during all

measurements, and its slow decay requires the long measurement times of

900s for a good base line quality of the correlation function (lag times of
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Figure 3.7: Scheme of the combined setup for simultaneous neutron and light

scattering. The SANS-I instrument at PSI (blue parts) was extended with

a light scattering setup (red parts) allowing for DWS (both ergodic and non

ergodic) and DLS.

Figure 3.8: Pictures of the setup. Left: top view, right: side view.
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12.5ns 6 τ 6 859s).

The used SANS setting included 10 MgF2 lenses and used a round aper-

ture of 16mm diameter. The monochromator was set to a wavelength of

λ = 12.67nm, the collimator length was 18m and the detector distance 20.3m.

The detector was positioned with a lateral offset of 300mm to increase the

q range to 0.008nm−1 6 q 6 0.215nm−1. A standard measurement took

typically 900 seconds. The raw data has been corrected for suspension and

cell background scattering and normalised with a reference measurement of

H2O (1mm cell thickness).

The sample preparation and the cuvette are described in section 2.3.
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Chapter 4

Aggregation, cluster formation

and sol-gel transition in a

moderately concentrated

colloidal suspension

The aggregation and gelation of colloidal suspensions has already been stud-

ied for a wide range of samples, and our chosen system (see section 2.1)

is not to be examined for the first time. It is a standard model system

chosen for its convenient particle size which allows us to examine a fractal

gel using the previously described techniques DLS, DWS and SANS. The

particularly interesting points in this study are the range of the examined

sample volume fractions, the slow rate of the gelation process due to the

controlled in-situ ion production using urea and urease and the use of a com-

bined DLS/DWS/SANS setup. In combination, these three points allow us

to investigate the aggregation and gelation process of a model system with

a spatial and dynamic resolution that provides new information and insights

into the sol-gel transition in colloidal suspensions.

Dynamic and static properties of gels and the different stages of a suspen-

sion undergoing a gelation process have already been (separately) measured
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for dilute [5] and concentrated [17, 28] samples, however a number of open

questions remained. Using the DWS technique, Bissig [29] investigated the

dynamics of colloidal aggregation and gelation at a moderate volume frac-

tion of φ=0.045 and observed a sol-gel transition which did not exhibit the

standard RLCA/DLCA characteristics everywhere. He speculated on the

existence of a glassy phase just before the space filling network is spanned,

in accordance with a precedent work of Segre et al. [30] who measured static

and dynamic properties of moderately concentrated samples. Time-resolved

measurements of the system investigated by Bissig have not been possible

because the gelation process takes only 7 minutes. The kinetics of the gela-

tion process in our system is chosen such that it takes roughly 350 minutes

which allows us to follow the temporal evolution of the process with suffi-

cient accuracy. The use of parallel dynamic (DLS/DWS) and static (SANS)

measurements delivers complementary data sets measured so far only for

concentrated systems by Romer et al. [23, 31, 32].

4.1 Structure S(q)

The radially averaged data of a sample prepared as described in section 2.3

measured using the settings mentioned in subsection 3.3.1 is shown in figure

4.1. The structure of our sample varies strongly during the aggregation and

gelation process and can be split up in four phases I-IV.

At the starting point (phase I), the suspension was measured in its initial

state before the addition of urease, shown in the lowest curve. The structure

peak of a highly correlated liquid caused by the high particle charge is clearly

visible in this first phase.

The second phase (II) starts with the production of ions, when the screening

of the particle charges sets in. As the potential barrier of the DLVO potential

decreases, the suspension looses its correlation and the corresponding struc-

ture peak disappears, accompanied by an increase of the forward scattering

(increasing intensity in the low q regime). The curve 25 minutes after the
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Figure 4.1: Lower graph: raw SANS data of a time resolved gelation pro-

cess (urea/urease destabilised 19nm PS colloidal suspension with φ = 0.038).

Four different phases (I-IV) can be distinguished (see text). In the upper

graph, the four phases are superposed with the time dependent ion concen-

tration of the corresponding urea/urease process (graph 2.3). The dotted

line marks the critical coagulation concentration ccc.
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start of the gelation process shows this characteristics and is similar to the

form factor of the particle as the suspension can be considered as an effective

hard sphere system and is only weakly correlated at this moment.

In a third phase (III), the particle charges are screened to the extent that the

DLVO potential barrier is low enough to be overcome by the thermal energy

of the particles. This causes the onset of particle aggregation i.e. the forma-

tion and growth of clusters, first following the RLCA and further on (when

the potential barrier vanished) the DLCA mechanism. The increasing mass

of the growing clusters is reflected in the increase of the forward scattering

beyond the intensities of the form factor of the particles (see curves 62min to

348min). Because the clusters grow in a fractal manner, the inner structure

becomes visible as a power law dependence of the scattered intensity from q

(see equation (1.29)) in the corresponding q range. In the double logarith-

mic diagram, this is easily identified as a linear slope growing in length with

time as the fractal part of the structure of the growing cluster extends to

larger length scales. Each of these files can be fitted with the Fisher-Burford

structure factor and therefore the radius of gyration of the clusters can be

extracted for each curve.

The fourth and last phase (IV) is the gel phase just after the sol-gel tran-

sition, where the structure freezes in because the cluster interconnect to a

volume filling network. This point is reached at around 350 minutes, and

subsequent measurements (shown here are only 1403 min and 5118 min)

show no changes in the structure.

4.2 Dynamics

The same sample as measured above with SANS was simultaneously investi-

gated dynamically using light scattering. The DLS data presented in figure

4.2 was taken during the first phases of the aggregation and gelation process,

when the sample is transparent enough to assume that single light scattering

methods are applicable. The first file shows the suspension before urease
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Figure 4.2: DLS data of the same sample as in figure 4.1

was added, representing the highly correlated liquid referred to as phase one

above (a detailed discussion follows in section 5.1). The intensity correlation

function consists of two superposed decays which are better distinguishable

in the second phase (where the screening sets in). At 10 minutes after the

start of the ion production, the second decay features a much lower amplitude

due to the weaker correlation of the liquid. With rising ion concentration,

the amplitude of the second decay decreases but is still quite pronounced

when the sample enters its third phase and starts to aggregate at around

60 minutes. The further measurements show two effects: the second decay

vanishes completely at approximately 90 minutes, and the cluster formation

and growth is reflected by the first decay which shifts slightly to higher lag

times. Although the cluster growth should be reflected in far larger shifts

towards high lag times, the data can be explained by the fact that the appar-

ent hydrodynamic radius Rh of repulsive particles decreases with increasing

volume fraction φ. As the effective volume fraction φeff grows during the
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aggregation process, the resulting decrease of the apparent Rh compensates

to a larger extent the effective increase of the cluster size.

The growing clusters increase the turbidity of the sample to a point, where

DLS is not applicable anymore. The light scattering part of the combined

setup is then switched into DWS mode; the measured data is shown in figure

4.3. The upper graph a) contains the normalised raw data, where the first

three correlation functions (142, 157 and 172 min) decay from 1 to zero,

indicating that the system is still ergodic. Taking a close look at the first

part of the decay, the cluster growth is visible in the shift of the decay to

higher lag times. At 187 minutes, the sample clearly exhibits non ergodic

behavior by the onset of a plateau. The rotational second cell device forces

the correlation functions of the non ergodic sample in a slow second decay

at high lag times to zero in order to measure the correct plateau height. The

plateau height increases with time and indicates that the dynamics of the

sample gets more and more arrested. The correlation function of only the

rotational second cell is measured separately by replacing the sample with a

static scatterer and is plotted in a) for comparison.

Dividing the raw data with the rotational second cell decay, the ensemble

averaged field auto correlation function of the sample only can be calculated

in a simple way. The resulting g1sample are shown in b).

The DWS data of another sample is shown in figure 4.4 for a better

illustration of the cluster growth. The sample is identical to the one above

but features a slower aggregation and gelation kinetics (the sample starts to

show non ergodic behavior at 300 minutes), allowing us to follow the cluster

growth with better resolution in time. The graph shows the evolution of

the DWS auto correlation functions in the time range between 165 and 285

minutes. At 165 minutes, the sample gets turbid enough to apply the DWS

technique. With time, the decay of the correlation functions moves clearly

visibly to higher lag times τ , indicating the growth of the hydrodynamic

radius RH of the clusters. All files up to 285 minutes decay completely from

one to zero, indicating that the suspension is still ergodic.
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Figure 4.3: a) raw DWS data of the same sample as in figures 4.1 and

4.2, exhibiting two decays: the first decay and the developing plateau are

features of the sample, the second decay is caused by the rotational second

cell. The correlation function of the second cell alone is measured separately

and plotted as a black line for comparison. b) shows the ensemble averaged

field correlation function of only the sample which is calculated by dividing

the data of a) by the second cell decay. Nicely visible is the onset of a plateau

which is the hallmark of restricted motion.
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Figure 4.4: DWS raw data of another sample with slower dynamics. The

files show the sample in its ergodic state just before the onset of a plateau

at the time of 300 minutes. The cluster growth is clearly visible through the

shift of the decay to higher lag times.
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Chapter 5

Discussion

5.1 Highly correlated initial suspension

In its stable initial state, the colloidal suspension chosen for our experiments

exhibits a pronounced structure factor in the SANS data (see figure 4.1)

and a second decay in the DLS data (see figure 4.2). These observations

indicate that the relatively high particle charge results in a strong repulsion

and therefore a high positional correlation of the particles. In order to better

understand the initial and intermediate state of the sample, tests with varying

ion concentrations have been carried out using SANS and DLS.

Starting with the measurement of the initial suspension with SANS (un-

der the conditions described in subsection 3.3.1), the same structure factor

peak as already observed before is clearly visible (see figure 5.1 a), sample

volume fraction φ = 0.038). With increasing screening of the particle charge

through the addition of 1, 5 and 10 mM ions of urea (which is already decom-

posed by urease), the peak in S(q) gets less pronounced. At the additional

ion concentration of 10 mM, the scattered intensity resembles the form factor

of the particle at high q and shows the characteristics of only weakly inter-

acting particles. The intensity at low q is still considerably suppressed, but

the peak has almost completely disappeared. Also shown in figure 5.1 a) is

the form factor of the PS particles as broken line. This form factor is a fit of
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Figure 5.1: a) SANS measurement of the stable PS suspension at different

concentrations of added ions (pure suspension, 1, 5 and 10 mM) and the

fitted form factor of a dilute sample. The structure peak is clearly visible.

By adding decomposed urea/urease to it, the structure peak vanishes. b)

The structure factors S(q) calculated by dividing the data of figure a) with

the form factor.
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data acquired from a dilute solution (φ = 0.001) and takes the particle size

polydispersity and apparatus resolution into account. Dividing the scattered

intensities from figure a) by the form factor results in the corresponding ef-

fective structure factors SM(q), shown in figure b). The pronounced peak

is a typical feature of strongly interacting colloidal particles; it corresponds

to a peak in the radial distribution function g(r) (which can be calculated

from S(q) through equation (1.28)) and represents the nearest-neighbour

shell around a particle (see figure 1.8 C). The peak position q∗ = 0.136nm−1

of the initial suspension corresponds approximately to a interparticle distance

of 46 nm which is in good agreement with the theoretical estimate using the

formulas in 1.2.1. S(q) drops below 1 for q < q∗ because of the particle

repulsion; particles closer than the first shell are repelled by the Coulomb

force. The same argument holds for the shown q range at q > q∗ because the

particles of the first shell repel the ones of the second shell. Further maxima

and minima with decreasing amplitudes corresponding to correlations due to

higher order shells are expected to be present, but they all lie outside the

shown q range.

We furthermore used the sample containing 10mM decomposed Urea to test

whether the strong correlation of the sample in its initial state does influence

the gelation process or the static properties of the gel. The strong initial

correlation is mostly compensated by the added 10 mM decomposed Urea,

but aggregation has still not set in by then (the decomposed Urea has been

added 24 hours prior to the measurements and no change in the sample was

visible). The same amount of Urea and Urease as used in the standard gela-

tion experiment was added to the sample and the time resolved SANS data

then compared to the data of a gelation process starting with the strongly

correlated initial suspension. Neither the kinetics nor the structure of the

gelled sample showed measurable differences.

Another set of samples with a volume fraction of φ = 0.038 was in-

vestigated in round quartz cuvettes of 5mm diameter using a commercial

light scattering system (ALV/DLS/SLS-5000F single mode fiber compact
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Figure 5.2: a) DLS measurement of the stable PS suspension at Θ = 15◦. A

second decay is clearly visible. By adding NaCl in concentrations from 1 to

10 mM to it, the second decay diminishes. The calculated ideal correlation

function for particles with a diameter of 19nm fits nicely the first decay of

the measurements. b) The field correlation functions g1(τ) of the data in

figure a) and the fitted theoretical functions according to Pusey et al. (see

text for details).

goniometer system). At low scattering angles, the normalised intensity auto

correlation function exhibits a two step decay (see figure 5.2 a)). The height

of the second decay decreases with increasing ion concentration caused by

the addition of 1 to 10 mM NaCl. The calculated ideal correlation function

for non-interacting spherical particles of 19nm diameter is plotted for com-

parison of the time scales as a dotted line and corresponds to the first decay

of the measured curves. The second decay is a slower process which van-

ishes when the interparticle correlation gets weaker i.e. the structure factor

vanishes. Such a double-decay in DLS can be caused by strongly interacting

colloids which feature a size polydispersity. The first decay still corresponds

to the usual translative collective diffusion where the density fluctuations at

relatively large length scales are probed. The additional second decay may

be caused by local relative fluctuations which can only relax through self dif-
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fusion of the individual particles. This resembles very much the incoherent

part in neutron scattering and can be regarded as a incoherent contribu-

tion for light scattering [33]. The self diffusion is slower than the collective

diffusion and can only be measured if the individual particles are not iden-

tical. Particle size polydispersity and the resulting distribution of scattering

power results in the discernability of the particles and consequently in the

appearance of self diffusion in the correlation function. Besides the discerni-

bility of the particles, two other conditions have to be fulfilled in order to be

able to observe a second decay. First, as the coefficients of both collective

and self diffusion are close to each other if the particle interaction is weak

(resp. equal when there is no interaction at all), a second decay is only ob-

servable for polydisperse systems with relatively strong particle interaction.

Moreover the relative amplitudes of the two contributions are given by the

polydispersity and the structure factor S(0). Therefore only strong inter-

actions combined with a high polydispersity result in a pronounced second

decay.

Pusey et al. [34], [35] calculated the correlation functions including the

polydispersity σ of the particles and found for the simplest approximation,

the so-called scattering power polydispersity model

g1(q, τ) = (1− χ)SI(0) exp
(
−Dcq

2τ
)

+ χ exp
(
−Dsq

2τ
)

(5.1)

where Dc stands for the usual translative collective diffusion coefficient (due

to long wave fluctuations in the total number density) and Ds for the self dif-

fusion coefficient (caused by fluctuations in the local relative concentrations

of the particles that decay via self diffusion). The parameter χ is defined as

[33]

χ = 1− (a3)2

a6
(5.2)

where a is the particle radius and stands for the arithmetic mean value.

The arithmetic value is calculated through v =
∫

f(v)vdv where f(v) is

the probability density function of the variable v. Assuming a Gaussian

distribution of the particle radius, the equation above can then be rewritten
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as

χ = 1−

(∫
1√
2πσ

exp
(
− (a−µ)2

2σ2

)
a3da

)2

∫
1√
2πσ

exp
(
− (a−µ)2

2σ2

)
a6da

(5.3)

With an average radius of µ = 9.5nm and an absolute polydispersity of

σ = 1.55nm (given by the manufacturer IDC), the numerical integration of

both integrals in the range of 0 to 50nm results in χ = 0.185. SI(0) is the

ideal structure factor at q = 0 and can be calculated in the polydisperse case

as

SI(0) =
SM(0)− χ

1− χ
(5.4)

using the measured structure factor SM(0) which is calculated as follows

SM(q) =
IM(q)/φ

IM
ff (q)/φff

(5.5)

IM(q) stands for the measured scattered intensity of the sample and the

subscript ff for the form factor measurement (separate measurement of the

same sample but highly diluted). Figure 5.2 b) shows the field correlation

functions g1(τ) of the data in figure a) and the corresponding fitted functions

according to Pusey et al. (equation (5.1)) where χ is held as a fixed parameter

with the value calculated above and SI(0), Dc and Ds are fitted as free

parameters. Using equation (5.4), SM(0)DLSfit is then calculated from SI(0)

and compared to the SM(0)SANS extracted from the measured SANS data

in figure 5.3. Although a difference of nearly a factor 2 is found at 0, 1 and

5 mM, the dependence on the ion concentration is qualitatively the same:

the more ions are added to the sample, the lower the intercept of the second

decay is in the DLS measurements and the higher the measured SM(0) is

in the SANS data. The data points at 10 mM also follow this trend, but

are slightly off (specially the one of the SANS measurement). We believe

that the discrepancies between both measurements arise from the fact that

different samples and different kinds of ions has been used. Nevertheless, the

experimental data seems to confirm the predictions of the model of Pusey et

al. in a consistent and plausible way. Furthermore, the fitted Dc from the
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Figure 5.3: Comparison of SM(0) from the fitted DLS data in figure 5.2 b)

and the measured SANS data in figure 5.1 b).

DLS measurements correspond well to the expected value for the particles

used and Ds is a factor of 50 smaller than Dc. Pusey et al. [34] reported

a factor 3 between their diffusion coefficients, but used larger particles of

50nm diameter with σ=0.19 and a charge of 1.2 µC/cm2 (details given in

[36]) at a volume fraction of φ=0.0012. As our sample features particles

with 50% higher surface charge density at a 32 times higher volume fraction,

the particle interactions should be comparably much stronger and our result

appears to be reasonable. If the second decay would be an effect caused by

a second population of particles, their radius would correspond roughly to

400 nm and their scattering intensity would have to diminish somehow with

increasing ion concentration of the solvent which is hard to imagine.

Figure 5.4 demonstrates that the second decay is caused by a diffusive

process. Measurements of a sample without added salt demonstrates that

this second decay obeys a q2-dependence. The slope of the second decay in

a log/lin representation of g2(τ)− 1 versus τ remains constant, indicating a

q-independent diffusion coefficient at these characteristic length scales.

Having had so far a look at phase I of the gelation process (see figure 4.1),

where the stable suspension was found to be highly correlated and where the

intensity correlation functions exhibits a double decay most probably due to

high particle repulsion combined with a large particle size distribution, we
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Figure 5.4: Log/lin-plot of the DLS correlation functions of the initial salt-

free 19nm PS suspension. The second decay exhibits for different angles the

same slope i.e. has the same self diffusion coefficient Ds.

will now proceed to phases II and III where the stable suspension looses its

correlation and aggregation occurs because of the addition of ion. We will

start with the evaluation of the SANS data which provides information about

the cluster radius Rc and the fractal dimension df . The approach chosen for

our data set is a scaling method, described in the following chapter.

5.2 S(q) scaling method

The self-similarity of the cluster structure allows us to evaluate the time

resolved SANS data using a scaling method. The corresponding parts of the

structure can be scaled on top of each other by multiplication of the files

with shift factors Ishift and qshift as follows

I ′ = I · Ishift (5.6)

q′ = q · qshift (5.7)

This results in a master curve as illustrated in figure 5.5. The upper graph

a) shows the same data as figure 4.1 but also includes the fitted particle

form factor of a dilute sample of the same particles (thick red line). The
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Figure 5.5: Shifted data from the experiment shown in figure 4.1. All files

are shifted on top of each other by multiplication. Inset: shift factors.
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black vertical line indicates two separate regions: on the left at low q, the

universal fractal cluster behavior is observed in the double logarithmic plot

in form of a linear slope which stretches with increasing cluster size. Another

effect of the growing size of the clusters is the fact that the Guinier regime

moves to lower q. The particle form factor of the monomer is constant in

this region. On the right side of the vertical line, the probed length scale is

below the minimal size for a cluster to exhibit fractal structure, hence local

correlations and the crossover to the particle form factor are probed. Being

mainly interested in the fractal aspects of the sample, only the left part of

the data set was used and shifted on top of each other (see lower graph b)).

Starting with the last file, all precedent files are consequently scaled for best

overlap of fractal slope and bend-over to the Guinier regime. The introduced

scaling factors are interpreted as follows: Ishift shifts the measured files to

the same scattering intensity, the one of the master curve. As the scattered

intensity at low q is proportional to the cluster mass mc and the measured

system is self similar (i.e. their curves have the same shape for the q-range

where the self similar structures are measured), the shift in intensity of the

measured data to the master curve is proportional to the cluster mass i.e.

mc ∝ Ishift (5.8)

qshift on the other hand shifts the bend-over of the files to the bend-over of

the master file in q direction. As the fractal regime bends over to the Guinier

regime at the q-range which is inversely proportional to the corresponding

cluster radius Rc, the cluster radius therefore is proportional to q −1
shift and

hence

Rc ∝
1

qshift

(5.9)

The Fisher-Burford structure factor (formula (1.30)) nicely fits the scaled

data set (dotted line). For the lower graph b), the master curve has been

scaled to the normalised Fisher-Burford structure factor. The rather large

exponent of 2.34 of the slope corresponds to the fractal dimension df . It

is noticeably higher than the theoretical predictions for DLCA (1.8) and
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RLCA (2.1) but in accordance with experimental results of other systems

[37, 38, 39]. Furthermore, recent computer simulations of fractal aggregates

from concentrated colloidal suspensions [40] show for irreversible aggregation

a crossover from DLCA behavior with df=1.75 to a percolation regime with

df=2.5 depending on the interpenetration of the clusters. Whereas our re-

sults cannot be explained by pure DLCA or percolation mechanisms, it could

very well be interpreted as an intermediate behaviour (see also [41]).

A good way to estimate if the scaling method can reasonably be applied is to

investigate the shift factors Ishift and qshift. Their values are not independent

but have to follow the same power law like the raw data. As seen in the inset

of graph b) in figure 5.5, the shift factors clearly show this dependency at

large 1/qshift i.e. where the clusters are large enough to exhibit an internal

structure.

The static data acquired using SANS has shown the decrease of correla-

tion, an onset of destabilisation and cluster growth in agreement with the

fractal aggregation model, and the “freezing in” of the structure at long

times. The initial suspension and early stage of aggregation could be mon-

itored with DLS, but the sample soon becomes too turbid, and we have to

switch to DWS. However, a quantitative analysis of DWS requires additional

input, which we now look at in the next chapter.

5.3 DWS analysis

The analysis of our DWS data is not straight forward. In the following sub-

sections, we will first tackle the question whether the DWS method can be

applied at all to systems with colloidal particles of such a small diameter as

used in this study. Then we will explain how the transport mean free path

l∗ is estimated, before the applicability of the DWS method for systems at

the lower limit of the multiple scattering regime (i.e. at low l∗) is discussed.

Having considered these points, we will then calculate the mean square dis-

placement 〈∆r2〉 from the DWS data and analyse it with an according model.
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5.3.1 DWS applied on small particles

DWS works best in the limit of highly turbid systems where light is scattered

from individual particles with a size comparable or larger than the wave-

length, k0a > 1. For k0a > 1, DWS measures the (average) single particle

mean square displacement while for smaller sizes contributions from collec-

tive modes become increasingly important [13]. No attempt has been made

however, to our knowledge, to analyze the dynamics of systems consisting of

nanosized particles, i.e. where k0a � 1. In a stable suspension such systems

appear almost transparent at all densities and are not accessible to DWS.

However the large clusters and colloidal gels result in an increased turbidity

and hence in principle it should be possible to obtain valuable information

about the local cluster and gel dynamics from DWS. In the following we

will discuss dynamic multiple scattering of light from fractal aggregates and

derive an expression for DWS from colloidal gels.

In a seminal paper Krall and Weitz have developed a simple model to describe

the internal dynamics of fractal colloidal gels. They derive the following ex-

pression for the intermediate scattering function [5, 21]:

F (q, τ) = S(q)e−q2δ2[− exp[−(τ/τδ)p]] (5.10)

In their model δ2(1 − e(τ/τδ)p
) is identified as the mean square displacement

〈∆r2(τ)〉 of a subcluster (equation (1.63)) of typical size ξ ∼= 1/q as long

as 1/q � a (p ≈ 0.7). This means that scattering of visible light probes

the collective motion of particles in the cluster on this length scale9. On

the other hand if the size of the individual particles is comparable to the

wavelength (hence 1/q < a) both DWS and DLS will probe the mean square

displacement of the individual monomer particles in the gel (provided that

the inter scatterer distance l∗ is sufficiently large compared to any dynamic

correlation length in the gel) [17, 18].

9Since DWS detects q-averaged fluctuations one should note that the DWS-signal pre-

dominantly comprises contributions from q ≈ k0 → 2k0 corresponding to scattering angles

θ = 60◦ → 180◦ due to the q3 weighing in the averaging integral (see equation (5.14)).
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We now want to generalise the application of DWS to the case of (nano-

sized) colloidal gels. We start the derivation of the DWS field-autocorrelation

function by considering an individual multiple scattering path with N scat-

tering events (analogous to the method described in [13]). In the case of

multiple scattering of light the contribution to the normalized field autocor-

relation function of a path of length s = Nl is given by

gN
1 (τ) =

[∫ 2k0

0

qP (q)S(q, t)dq

]N

/

[∫ 2k0

0

qP (q)S(q)dq

]N

(5.11)

with the normalised field-autocorrelation function given by

g1(τ) ∝
∞∑

N=1

P (N)gN
1 (τ) (5.12)

Due to the typically large number of scattering events N along a multiple

scattering path, already small values of [1 − S(q, τ)/S(q)] will lead to a full

decay of the DWS correlation function gN
1 (τ), hence δ2(1− e(τ/τδ)p

) � 1 and

therefore

S(q, τ) ∼= S(q)
[
1− q2δ2

(
1− e−(τ/τδ)p)]

(5.13)

hence

gN
1 (τ) =

[
1−

∫ 2k0

0
q3P (q)S(q)

[
δ2
(
1− e−(τ/τδ)p)]

dq∫ 2k0

0
qP (q)S(q)dq

]N

(5.14)

or

gN
1 (τ) = exp

(
−Nδ2

(
1− e−(τ/τδ)p) ∫ 2k0

0
q3P (q)S(q)dq∫ 2k0

0
qP (q)S(q)dq

)
(5.15)

which can be rewritten using the relation

l∗

l
=

1

3
k 2

0

∫ 2k0

0
qP (q)S(q)dq∫ 2k0

0
q3P (q)S(q)dq

(5.16)

to

gN
1 (τ) = exp

(
−Nδ2

(
1− e−(τ/τδ)p) k 2

0 l

3l∗

)
(5.17)
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with N = s/l we obtain for the field auto-correlation function (replacing the

sum by an integral)

g1(τ) =

∫ ∞

0

P (s) exp

(
−1

3
k 2

0

s

l∗
δ2
(
1− e−(τ/τδ)p))

ds (5.18)

Taking relation (1.63) into account, this expression has the same structure as

equation (1.56) and leads to the same functional form of the DWS correlation

function in transmission geometry (equations (1.58) resp. (1.60)). Therefore

the DWS method can be applied to measure (in a fractal gel) the motion

of individual particles which are small compared to the wavelength. But in

order to do so, the transport mean free path l∗ needs to be known. This is

not always a trivial task and will be discussed in the following subsection.

5.3.2 Calculation of l∗ from SANS data for DWS

For the correct estimation of the mean square displacement 〈∆r2(τ)〉 us-

ing DWS in transmission geometry, l∗ needs to be known. This parameter

changes drastically during the gelation process. But it is difficult to measure

the direct transmission of light in this setup, because the transmitted light

beam lies within the neutron beam and is therefore not easily accessible for

detectors. Even if there would be space enough to mount another aluminum

coated silica wafer as a mirror, this would disturb the neutron measurements

too much, and the ambient light would tamper the measured transmission

intensities especially in the important range of high turbidity. Moreover,

comparative measurements with reference samples would be cumbersome.

However, there is another way to estimate l∗ from the measured data: it

is possible to calculate l∗ from the static data by estimating the change of

the structure factor. From theory, l∗ is calculated using following general

equation:

l∗ =
k 4

0

πρ

(∫ 2k0

0

S(q)P (q)
(
1 + cos2(θ)

)
q3dq

)−1

(5.19)

Where S(q)P (q) (1 + cos2(θ)) stands for the total anisotropically scattered

light intensity normalised with the total intensity of the individual parti-
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cles (see equation (1.26)). The additional term (1 + cos2(θ)) can usually be

neglected as it is equal to 1 if the light is scattered in a scattering plane per-

pendicular to the polarisation of the light. But the path of a photon through

a turbid medium is not restricted to the scattering plane and resembles more

a random walk in three dimensions, and therefore the anisotropic nature of

light scattering has to be taken into account.

Comparing the l∗ of an uncorrelated suspension (l∗susp) with the l∗ of a gel

(l∗gel) at a given gel age, constants will cancel. Furthermore, the range of

integration covers a q range where the Fisher-Burford structure factor de-

scribes the scattered intensity sufficiently accurate. In this case, we replace

in equation (5.19) the traditionally used expression S(q)P (q) for colloidal sus-

pension with the intensities I(q)gel and I(q)susp for the q dependent scattering

intensity of the gel and the suspension, resulting in the following equation

l∗gel

l∗susp

=

( ∫ 2k0

0
I(q)gel (1 + cos2(θ)) q3dq∫ 2k0

0
I(q)susp (1 + cos2(θ)) q3dq

)−1

(5.20)

The scattered intensity of the suspension Isusp ∝ S(q)susp (1 + cos2(θ)) is

nearly constant in the range from 0 to 2k0 (the particles are very small, so

the form factor is not varying at those q values, and the structure factor of

an uncorrelated suspension is a constant as well), and therefore the integral

yields a constant value when calculated. Using trigonometric relations and

equation (1.13) it is possible to reformulate cos2(θ) = (1− q2

2k 2
0

)2 and we find:

l∗gel ≈ l∗susp

16
3
k 4

0∫ 2k0

0

I(q)gel

I(q)susp

(
1 + (1− q2

2k 2
0

)2
)

q3dq
(5.21)

l∗susp is determined using a program based on Mie scattering of polydisperse

spheres. With known scattered intensities in the integration range, l∗ can be

deduced. The ratios between structure and form factors in neutron scatter-

ing are equal to the structure and form factor ratios of light scattering for

our system because we work in both cases in the Raleigh-Gans-Debye limit

(2kR|n1/n2 − 1| � 1). For this reason, we can replace
I(q)gel

I(q)susp
in equation

95



Figure 5.6: Selected SANS data from figure 4.1 and according Fisher/Burford

fits for the calculation of l∗. The integration range is q < 2k0 (on the left

side of the dashed vertical line), where the form factor of the suspension is

nearly constant and therefore can be treated as a constant value.

(5.21) with the corresponding values for neutron scattering. As seen in fig-

ure 5.6, the scattered neutron intensity of the uncorrelated suspension (which

corresponds to a RGD fit of the file file at t=43min where the suspension

is decorrelated) is not varying in the integration range 0 < q < 2k0. The

parameters used for the Fisher-Burford structure factors are estimated using

the scaling method described in the section above and checked against the

real data. The extrapolation of these structure factors to q=0 provides the

ratio of
I(q)gel

I(q)susp
over the needed q range.

The l∗ calculated as described above is shown in figure 5.7. Because the

values were found to be relatively high for our samples, we have to estimate

the critical condition below which the DWS approach is justified and data

analysis produces reasonable results. This will be discussed in the following

subsection.
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Figure 5.7: l∗ calculated from the SANS data presented in figure 4.1.

5.3.3 DWS applicability at low L/l∗

As mentioned in chapter 1.2.2, DWS theory can only be applied to turbid

samples. The rule of thumb is that reasonably quantitative results can be

calculated for (L/l∗) > 5. Nevertheless, from a careful analysis information

can be obtained for samples starting at (L/l∗)≈ 2. To show the applicabil-

ity of the DWS method at such low L/l∗, a well defined model system was

diluted from volume fraction φ=0.02 to 0.001. This resulted in a calculated

reduction of L/l∗ from 15 to 0.77. We deduced from the known particle ra-

dius the transport mean free path l∗ using equations (1.60), (1.48) and (1.49).

The system used was a colloidal suspension of charge stabilised polystyrene

spheres with a diameter of 0.78 µm (manufactured at IDC). The measure-

ments were done in transmission geometry with the same detector angle (45◦)

as the combined SANS/DWS setup, the laser wavelength was λ=532nm.

As seen in figure 5.8, the measured L/l∗ starts to deviate from the calculated

one at around the point 2.39 L/l∗. Nicely visible is also the strong increase

of the measured scattered intensity for the scattering angle of 45◦ once the

suspension starts to exhibit increasing multiple scattering (the multiple scat-

tering events increase the number of photons scattered from the direct beam

in direction of the detector). At L/l∗=2.39, the intensity reaches its maxi-

mum and then decreases because the large number of scattering events leads
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Figure 5.8: Comparison of measured (DWS method) and calculated L/l∗ in

a model system: a deviation is visible for L/l∗ < 2.39, as seen in the blow up.

This value corresponds to the point where the scattered intensity (measured

at a scattering angle of 45 ◦) reaches its maximum. To lower values of L/l∗,

the intensity decreases because the incident beam is scattered less by the

sample. It is in this regime where the DWS results vary from the calculated

values because the number of scattering events is too low to justify the use

of the diffusion equation for the photon transport.

to increasing reflection from the sample.

Having shown in the precedent subsections that the application of DWS

to our system is valid in the range above (L/l∗) ≈ 2 and having explained

how the important time dependent parameter l∗ can be deduced from our

static measurements, we can now proceed by evaluating the measured DWS

data.

5.3.4 Mean square displacement 〈∆r2〉

To discuss the DWS data shown in figure 4.3, the mean square displacement

(MSD) 〈∆r2〉 of each file is calculated using an l∗ estimated with the method

described in subsection 5.3.2 and applying equation (1.60). The non ergodic

correlation functions have been divided by the second cell decay prior to the

98



Figure 5.9: Mean square displacement of the correlation data in figure 4.3.

The time increases in direction of the arrow; the short line indicates the point

where the system starts to exhibit non ergodic behavior.

MSD calculation. The time resolved MSD shown in figure 5.9 evolve in time

in direction of the arrow.

The cluster growth is visible in the slow-down of the MSD with time: as

large clusters move over shorter length scales than small ones during the same

time, the MSD for a chosen lag time τ decreases with growing size. The initial

slope p of the MSD decreases from 1 to 0.7, indicating a qualitative change

of the particle motion from diffusive (with the theoretical value of p=1)

to sub-diffusive behavior. Sub-diffusive motion for colloidal gels exhibits a

power-law with exponent p=0.7 (Krall and Weitz [5]), in nice agreement

with our data. Another feature of this data set is the onset of a plateau for

the MSD, a characteristic sign of confined movement. A short line in the

arrow designating the temporal evolution marks the point where the onset
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Figure 5.10: Scaled mean square displacement curves of figure 5.9, starting

with the file at 277 minutes. The dotted line is a guide to the eye and

represents the theoretical curve for a gel according to the Krall/Weitz model.

of a plateau is visible in the DWS raw data. The MSD data doesn’t feature

such a clear distinctive point but a nearly continuous change from diffusive

to constrained movement, therefore the DWS raw data was used to identify

the crossover from ergodic to non ergodic behavior. The decrease of the

initial slope and the development of a plateau in the MSD data represents

particles whose motions are sub-diffuse and restricted to short distances. The

RLCA/DLCA theory explains this through the fact that the particles are

trapped in a network. With time, the network builds up more connections

and gains in rigidity, and the distances which the particles (fixed in the

network positions) can explore become shorter, therefore the MSD plateau

lowers its height. The particles also start to “feel” the restrictions of the

network at shorter time scales, causing the cross-over time τc to move to

shorter lag times τ .

We applied a scaling method similar to the one described in section 5.2 to the

MSD of figure 5.9, starting with the file at 277 minutes. As shown in figure

5.10, they all collapse to a master curve with an initial slope of 0.7 which

represens subdiffusive motion. The dotted line plotted in the same figure

100



represents the theoretical curve of the simple model of Krall and Weitz for

colloidal gels (equation (1.63)). Although the crossover from subdiffusive

to arrested motion found in our data is not as sharp as in the Krall/Weitz

model, the qualitative behavior is nicely reproduced.

5.4 Gelation kinetics

The time-resolved raw data of SANS and DWS discussed separately in section

4.1 and subsection 5.3.4 exhibit quite nicely the behavior expected by theory

and show no unknown features. But when the dynamic and static data

are combined in the same graph, a very interesting development of the gel

kinetics appears. The static cluster radius Rc evaluated using the shifting

method on the SANS data and the initial slope p of the MSD are shown in

figure 5.11 as a function of the time t (t = 0 at the start of the urea/urease

process).

The first measured “cluster” radius Rc = 9.5nm corresponds exactly to

the particle radius given by the manufacturer, and the final value of Rc =

380nm is in reasonable agreement with the estimation of Rc,critical for fractal

systems (equation (1.8)): using a pre-factor of 0.3 (as found by Weitz et

al. [5] for similar conditions), Rc,critical = 404nm for a = 9.5nm, φ = 0.038

and df = 2.34. Following to theory, the development of Rc before the critical

coagulation concentration ccc at 127 minutes should obey an exponential law

as the system is in RLCA conditions (equation (1.7)). After ccc, the cluster

radius is expected to grow following a power law under DLCA conditions

(equation (1.6)).

Shown in figure 5.12 are two fits of Rc below ccc, one for an exponential

function and one for a power law. As there are only few data points and

the difference between both fits is small, it is difficult to make an unambigu-

ous statement about the form of the cluster growth. But the inset on the

left side of the graph shows that the exponential function fits the data most

accurately. The evolution of Rc above ccc is fitted with a power law which
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Figure 5.11: Combined data from static and dynamic measurements: the

static cluster radii from SANS (circles) and the slope p of the mean square

displacement of all DWS files (inverted triangles). The vertical line indicates

the point where the system starts to exhibit non ergodic behavior in the

dynamic data.
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Figure 5.12: Rc from the SANS measurements (crosses) fitted before ccc with

an exponential function and power law. As seen in the inset on the left side,

the exponential law fits the data nicely. After ccc, a power law fit describes

the curve best.

describes well the cluster growth for the steep ascent up to 254 minutes, but

with an exponent of 1.07 it is only slightly different from linear behavior.

According to equation (1.6), the growth should be a lot slower with an ex-

ponent 1/df which equals 0.56 in the case of df = 1.8 (for pure DLCA). It

is important to keep in mind that the ion concentration is continuously in-

creasing during the gelation process which does influence the cluster growth

rate. Moreover, the scaling analysis of the SANS data indicates a higher frac-

tal dimension of approx. 2.34, which is also compatible with the crossover

from DLCA to a percolation regime seen in the computer simulations of irre-

versible aggregation of comparable volume fractions for Rc ∼ 5a− 10a [40].

Percolation would also predict a power law growth of the fractal cluster with

an exponent of 1.7 [42]. The experimentally observed growth kinetics is thus

between the predictions for DLCA and percolation, respectively.

A very interesting point is the fact that the simultaneously measured

DWS data set shows all characteristics of restricted motion after 172 min-

utes (vertical black line in figure 5.11) i.e. becomes non ergodic at this
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Figure 5.13: Gelation process including a glass like state c) between cluster

growth in free diffusion b) and interconnected gel state d).

point. Surprisingly, this is clearly before Rc reaches the plateau with its final

value. This means that Rc continues to increase after the system changes

from ergodic to non ergodic behavior. This behavior is not congruent with

the RLCA/DLCA theory, where the cluster grow until they connect to a

network, forming a gel at this point. The formation of a system spanning

network structure defines in theory the time at which the system changes

from ergodic to non ergodic. But after the formation of such a network,

clusters cannot grow anymore; in contrary, if the measured characteristic

length scale would change, then it would rather decrease due to the increas-

ing number of connections. Therefore the onset of non-ergodicity cannot be

interpreted as the creation of a network in our case, because the clusters still

continue to grow afterwards. Taking a look at the measured exponent p of

the initial MSD slope, the change from p=1 to p=0.7 parallels the evolution

of Rc: first, diffusive cluster aggregation takes place with increasing Rc and

p=1, and in the end when Rc stops to grow, the predicted value of p=0.7 for

subdiffusive motion of particles in a colloidal gel is reached. But the onset

of subdiffusive motion (i.e. p < 1) occurs at a time where Rc is still growing

(and therefore the motion should be freely diffusive according to theory), in

perfect agreement with the transition from ergodic to non ergodic behavior.

This behavior can only be understood by the introduction of an intermediate

stage.
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We thus propose an intermediate state of the system, illustrated in figure

5.13. After the stable colloidal suspension a) and the aggregation stage b)

where clusters still undergo free diffusive Brownian motion, a glass like state

c) is established before the cluster interconnect and build a network d). In

the glass like state, the clusters grew already large enough to hinder each

other to move around freely, but they are still not interconnected (this is

the so-called cage effect). In this trapped state, a two step decay with a

plateau would be expected for the dynamic data, but the cluster would have

still room enough to grow. Such a glass like state before the gel point was

already proposed by Segré et al. [30] and Bissig [29].

5.4.1 Additional Echo DWS measurements

To learn more about the dynamics of such systems at very long correlation

times (i.e. slow processes), the Two-cell Echo approach (see paragraph 1.2.2)

was used. The accessible lag times 0.1s < τ < 450s (for our chosen pa-

rameters) are much larger than the fast decay of the sample, where in the

double cell technique the slow decay of the second cell starts to set in and

therefore covers any information of the sample. Using the Two-cell Echo

approach, the particularly interesting question whether the correlation func-

tion of the sample exhibits a diverging second decay at large τ (as expected

a glass transition) or a plateau at constant height (as expected for a gel) can

be adressed. But as this technique is limited to relatively long lag times, it

can only be used in combination with other methods like for example the

double-cell technique for a full description of the sample dynamics.

The raw data of a measurement using the Two-cell Echo approach is

shown in figure 5.14. The sample is a colloidal suspension of 19nm PS with

a volume fraction of φ = 0.038 undergoing a urea/urease induced gelation

process with same parameters and under the same conditions as described in

section 2.3. The data contains only the second decay, the so-called α decay

in the case of glasses. The first decay (β decay) takes place on shorter time

scales and is therefore not measurable with this method. To find the correct

105



Figure 5.14: Data of the second decay in a time resolved gelation process,

measured with a new DWS technique called Two-cell Echo approach. The

plateau height A(t) increases continuously with time, while the characteris-

tic time τchar(t) first increases, then drops drastically backwards and then

increases again.
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plateau height A(t), the plateau heights of the echo data have been estimated

by scaling the echo plateau height of the gelled echo sample (ca. 24 hours

after the process started) to the plateau height of the DWS measurements

of the sample from section 4.2 at the same gel age. Figure 5.14 can therefore

be regarded as the extension of figure 4.3 b).

Clearly visible is the onset of a plateau at 189 minutes. With time, the

plateau height increases continuously. The signal decorrelates with a char-

acteristic time τchar. In a first stage from 189 to 218 minutes, τchar increases

monotonically. Then the characteristic time drastically decreases (220 and

224 minutes) but continues to grow afterwards again in a second stage after

which it seems to settle around an average value. To investigate this behavior,

the gelation time t of the echo files is scaled to the gelation time of the files

of the sample from section 4.2 through comparison of their plateau heights.

The reproducibility of the gelation process is not perfect (the gelling times

may vary up to a factor of 3 in extreme cases) but qualitatively sufficient to

justify the scaling approach.

The cluster radius Rc from SANS and the corresponding plateau heights

of the simultaneously measured DWS data are shown in figure 5.15 a). The

vertical line indicates the time of the onset of a plateau. The plateau height

increases strongly during the first 100 minutes after the onset, indicating an

increasing nonergodicity or “hardening” of the system. This is mainly due

to the increasing effective volume fraction caused by the cluster growth, and

because of the increasing attraction between the particles (i.e. the smaller

Coulomb repulsion) due to the still rising ion concentration. After the first

100 minutes, the growth of the nonergodicity parameter (the plateau height)

slows down. It is then mainly driven by the increasing rigidity of the network

through the creation of new bonds. By scaling the plateau heights of the

echo measurements to the plateau heights of the SANS/DWS data set, the

equivalent gel age t and cluster radius Rc of the echo measurement relative

to the SANS/DWS data can be estimated. Since l∗ is varying after the onset

of the plateau, the correlation functions have been corrected for the sample
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Figure 5.15: Scaling of the echo data with the SANS and DWS data of

section 4.1. a) the cluster radius Rc from SANS and the corresponding

plateau heights of the simultaneously measured DWS data. The vertical line

indicates the time of the onset of a plateau. b) the same SANS data (Rc)

and the scaled echo data, showing the characteristic time τchar of the second

decay (turbidity corrected).

turbidity by multiplication of the lag time τ with (L/l∗)2. The scaled and

turbidity corrected characteristic times τchar of the echo measurement are

estimated by shifting the files relative to each other (similar to the scaling

method described in section 5.2). In figure 5.15 b), τchar is plotted relative

to Rc. τchar first seems to diverge and then collapses after a first maximum.

The first maximum is indicated by the dotted line and corresponds to a time

where the fast cluster growth is finished. The subsequent increase of τchar

then settles at a certain height, showing no more abrupt changes. In figure

5.16, τchar is plotted against the effective volume fraction

φeff = φ

(
Rc

a

)3−df

(5.22)

φeff is very sensitive with respect to df ; varying df from 2.34 to 2.2 changes

the values of φeff by 35%. Therefore already minor experimental and an-

alytical errors may have a strong influence on the quantitative result. We

interpret the initial increase of τchar as due to the increase in effective volume

fraction owing to the growth of space filling clusters. Similarly to the hard
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Figure 5.16: The characteristic time τchar of the echo measurement (as al-

ready shown in figure 5.15 b)), corrected for turbidity and plotted against

the calculated φeff . The dotted line is an exponential fit of the first 7 data

points and represents the glass divergence.

sphere glass transition we observe an apparent divergence of τchar at some

critical volume fraction. Above that apparent critical point we find that

the correlation function still decays, and that the characteristic decay time

first decreases an then increases again. This decay is most likely related to

the formation of the first percolating paths, where we can expect that large

elastic modes propagate throughout the sample, effectively contributing to

dephase the scattered light. The characteristic cut-off of these modes should

become smaller as the network gradually becomes more connected, leading

to an increase in the characteristic time.

A very successful model for the description of the glass transition is given

by the mode coupling theory (MCT) [43, 44] which is based on the nonlinear

coupling (feedback mechanism) of the microscopic dynamics i.e. different

density fluctuation modes. It predicts for increasing coupling strength a

sharp ergodic to non-ergodic transition where the fluid becomes permanently

frozen. Both α and β relaxation processes close to and beyond this transition
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as well as their time scaling properties can be described using MCT, providing

an accurate qualitative explanation of the cage effect. MCT is a relatively

complex theory and doing quantitative calculations within its framework is

quite complicated but doable. The characteristic time τα of the α decay

follows the power law

τα ∝ (φc − φ)α (5.23)

Where φc is the critical volume fraction at which τα diverges. The glass diver-

gence (dotted line) in figure 5.16 is an actual fit of the data using the equation

above, resulting in fitted parameters of α = 1.54 and φc = 0.38. The param-

eter α is in good agreement with theory, where a value of α > 1.5 is expected

[45]. φc on the other hand cannot be accurately compared to experimental

data from literature (given as φc = 0.56− 0.58 for hard spheres [44, 46]) be-

cause φc varies for different samples and therefore the volume fractions of all

experimental data is usually rescaled using a relation φreduced = (φc−φeff )/φc

as already discussed by Pham et al. [47]. Pham et al. investigated the struc-

ture and dynamics of the simplest model colloid, a suspension of hard spheres

(PMMA). An attractive force was induced by adding a polymer (linear PS),

creating an effective depletion attraction. Among other experiments, echo

measurements of samples with φ varying around the glass transition concen-

tration were carried out. By changing the amount of added polymer (and

therefore changing the strength of the attractive force), the change from a

repulsive glass to a liquid and furthermore to an attractive glass at the same

particle volume fraction could be observed (the so-called re-entrant behav-

ior). As our system shows a divergence of τα between 189 and 218 minutes

(corresponding to 189 resp. 205 mM, which is clearly above ccc'150 mM),

the colloidal particles bear a short range attraction (see figure 2.1) and there-

fore form an attractive glass. The phase diagram of Pham et al. (figure 1

in [47]) shows in addition to the re-entrant behavior the existence of at-

tractive glasses at high polymer concentrations (i.e. strong attractions) for

volume fractions down to φ=0.36. In view of the considerable uncertainty

our measured φeff , its fitted value of 0.38 seems therefore to be in reasonable
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agreement with literature.

In short, the Two-cell Echo approach allows us to measure the correlation

function at long lag times, showing the plateau and the α decay of our sample.

After the onset of a plateau in the correlation function, τchar grows in a first

stage according to a power law. We interpret this as glass like dynamics,

in reasonable accordance with MCT theory. This behavior is shown in a

period of time, where the DWS data of the first decay exhibit a plateau

with increasing height, but the SANS data still reflects substantial growth.

A glassy phase would explain this behavior as the clusters are constrained

in motion by the surrounding clusters but still have a possibility to grow

through a percolation like process, where bonds between clusters are created.

The fact that the α and β decay are quite far apart is probably caused by

the attraction of the particles, linking the cage of the surrounding clusters

stronger together and lowering the probability of an “escape”.
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Chapter 6

Finite gels with varying Φ

So far, we discussed only gels with volume fractions of φ=0.038. We also

performed time-resolved neutron and light scattering on samples at different

φ but found them mostly unsuitable for our aim for the following reasons: at

both high and low volume fractions, DWS is not applicable anymore because

the samples are not turbid enough. In the case of low φ the number of

particles is too low, and for high volume fractions the cluster radii Rc are

too small to scatter light strongly enough. With respect to time-resolved

SANS, the measurement time of 15 minutes per file is not sufficiently long

to provide data with good statistics for samples with low φ, and samples

with high volume fractions gel too fast. Because we were aiming to measure

samples time-resolved and simultaneously with both techniques in order to

get information about structure and dynamics, we restricted our study to

the volume fraction of φ=0.038 (as discussed in the whole work up to now).

Nevertheless, particle gels of different volume fractions were characterised

with SANS. We measured a series of colloidal gels in the range of 0.01 < φ <

0.18 in order to calculate their structure factors. These measurements were

undertaken in view of previous studies that reported a breakdown of the

“fractal” description of the DWS results for samples with volume fractions

above 10%. Romer [48] was the first to observe this effect for colloidal gels by

measuring the dynamics of the gelation process with DWS, and Bissig [29]
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continued her work. He investigated destabilised colloidal systems (PS with

a=85nm, destabilised with Urea/Urease) in the range of 0.01 < φ < 0.25

using DWS and analysed it using equation (1.63). He found that the de-

pendence of τδ and δ2 on φ exhibits deviations from the power law behavior

expected for fractal gels at φ ∼ 0.10. Poulin et al. [49] also reported a devia-

tion from the predicted behavior at high volume fractions. Their experiment

consisted of SLS studies on destabilised concentrated emulsions which showed

at low φ the expected cluster growth but no further change of cluster size

above φ ∼ 0.10.

In order to test our system for this anomaly, the structure of colloidal

gels was measured using SANS. Samples with various volume fractions have

been prepared by dilution and concentration of the 19nm PS suspension

described in chapter 2. The solvent of all samples is identical to the one of

the gelling samples of the previous chapter (52% H20 and 48% D20). The

rather delicate process of concentrating the samples was carried out using a

ultrafiltration unit (Amicon Stirred Cell Model 8010 with polyethersulfone

membrane PBVK02510). The 19nm PS stock solution(with pure H20 as

solvent) was first diluted with D20 and then filled into the ultrafiltration

unit. Inert gas (nitrogen) with a pressure of ca. 3 bar pressed the solvent

through a membrane which held back the colloidal particles. The volume

fraction of the resulting concentrated suspension was estimated by weighing

a part of the suspension and comparing it to the weight of the same part of

the suspension after evaporation of the solvent. Tests showed no difference

in the structure of gels which have been destabilised with different amounts

of urease (from 20 up to 200 u/ml). This allowed us to choose faster ion

production rates to speed up the gelation process. The structure factors

S(q) calculated as described in section 5.1 are shown in figure 6.1. The q

range for which the gel exhibits fractal behavior is easily identified as it is

represented in a log-log plot through a linear shape. At low volume fractions,

where the individual cluster is free to grow over long distances in a fractal

manner before it gets restricted by the presence of other clusters, the fractal
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Figure 6.1: The structure factor of finite gels with varying volume fraction

φ.

range spreads at least over a decade of q. Because at higher φ the growing

clusters will hinder each other at shorter length scales, the fractal range gets

shorter (see also the discussion on page 23) and the turnover to the guinier

regime becomes visible at low q, indicating the growing cluster size. The

“correlation hole” at the right end of the fractal regime where the structure

factor drops below 1 gets deeper with increasing φ as expected. The data

shown in figure 6.1 demonstrates nicely the continuous decrease of the fractal

range (and the continuous cluster growth) as well as the deepening of the

correlation hole as predicted by theory, showing no signs of an anomaly.

Furthermore, we analysed the structure factors of figure 6.1 using the scal-

ing technique described in section 5.2. Figure 6.2 shows the scaled structure

factors which are fitted with the Fisher/Burfod structure factor. We remark

that the fractal dimension df equals -2.38 and is very close to -2.34 which

we found for the time-resolved gelation process of a sample at φ=0.038. df

is therefore considerably higher than predicted in traditional theories such

as DLCA but still below the fractal dimension of percolating systems (see

discussion on page 89). From the shift factors and the Fisher/Burford fit,
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Figure 6.2: Shifted structure factors of finite gels with varying volume frac-

tion φ. The inset shows the resulting cluster radii Rc,cluster.

Rc,critical can be calculated. The shifted data file for φ=0.18 shows a slight

deviation from the Fisher/Burford fit at low q values and was therefore ad-

ditionally analysed with a Guinier plot. The resulting Rc,critical is only 10%

smaller compared to the one from the scaling technique. The inset of figure

6.2 shows the critical cluster radii of the scaled data as well as theoretical

values calculated as described on page 99. The fitted cluster radii seem to

follow a power law with an exponent of -0.72 which would corresponds to a

fractal dimension of df=1.6. We thus find a clear deviation between the slope

of the experimental data and the theoretical slope given by 1/(3 - df) = 0.83

for DLCA and 2 for percolation. It is clear that the experimental structure

factors at particle volume fractions below 0.04 show no clear turnover from

the fractal to the Guinier regime in our measured q range. Therefore the

shift factors cannot be evaluated precisely and our fitted values for the criti-

cal cluster radii Rc,critical thus bear a large error. Another uncertainty arises

from the multiplication factor of 0.3 which was used for the calculation as es-
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timated by Weitz et al. based on measurements with colloidal systems at low

volume fractions. However, while this results in an additional uncertainty for

the absolute values of Rc,critical, it will influence the calculated curve Rc,critical

vs. φ in a double logarithmic representation via a shift factor only, but will

not have any influence on the slope, provided that the prefactor is indeed

concentration independent over the entire concentration range.

It is interesting to compare our values for the critical cluster radius

Rc,critical at different volume fractions with recent Monte Carlo computer

simulations of irreversible (and reversible) aggregation at comparable volume

fractions [40]. These simulations demonstrate the existence of a maximum

cluster radius based on a crossover from percolation clusters (df=2.5) to a ho-

mogeneous system (df=3). The maximum cluster radius shows a dependence

on volume fraction in reasonable agreement with our data (shown as crosses

in the inset). However, it is clear that we lack enough data of sufficient ac-

curacy in the low volume fraction to reach a conclusive statement. It would

certainly be interesting to perform additional light and small-angle light scat-

tering experiments at low volume fractions to investigate the crossover from

a percolation regime to the DLCA regime known to exist at very low volume

fractions. Nevertheless, we have been able to unambiguously demonstrate a

monotonic decrease of Rc,critical for systems up to volume fractions of φ=0.18.

For our system we therefore cannot confirm a cessation of the cluster growth

at a volume fraction of 0.1 as observed for emulsions by Poulin et al., and the

structure of our gels yields no indication of a structural anomaly or transition

which could explain the observations of the dynamics in particle gels made

by Bissig.
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Chapter 7

Conclusion

In this work, we investigated a model system to gain further insight into

the gelation process of systems with high volume fractions. A colloidal sus-

pension of small latex particles was therefore destabilised using the so-called

Urea/Urease process. The controlled and homogeneous in situ production

of ions allowed us to prolong the gelation process to a few hours, offering

us the possibility to follow the gelation kinetics in a series of time resolved

measurements. The symbiotic combination of two non-invasive scattering

techniques (neutron and light scattering) resulted in the simultaneous acqui-

sition of static and dynamic information of the same sample at similar length

scales. Whereas the static neutron scattering can be applied to measure the

samples in all phases of the gelation process, the light scattering methods

have to be adapted due to the strongly changing optical properties of the

sample. In a first stage, the colloidal suspension is nearly transparent due to

the small particle size, and dynamic light scattering (DLS) can be applied.

After the point where the aggregating clusters reach a certain size and the

system becomes sufficiently turbid, diffusing wave spectroscopy (DWS) can

be used for further investigations. The standard DWS scheme had to be

extended with an improved double cell technique for the correct ensemble

averaging when the sample becomes non ergodic, and with a novel DWS

echo technique that gives access to very slow processes.
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Figure 7.1: Overview of different temporal hallmarks of the gelation process

measured with SANS, double cell DWS and two-cell Echo DWS.

An overview of the most important results is shown in figure 7.1. The

static data acquired with SANS was split into four phases: phase I describes

the stable suspension, where SANS as well as DLS show a strong correlation

of our system which can be qualitatively explained by theory. Phase II con-

tains the uncorrelated suspension which lacks a strong structure factor (as

expected). In phase III, aggregation and cluster growth occur and finally the

structure of the sample stops to evolve i.e. the system is found to be fully

gelled in phase IV. At first sight, the sample behavior appears to follow the

theoretical predictions from classical aggregation models such as DLCA. The

cluster growth in phase III is also in good accordance with theory as the radii

from the static measurements initially increase exponentially (like predicted

for RLCA) up to the critical coagulation concentration (ccc), where we ob-

serve a crossover to a power law growth as predicted for DLCA. However,

the simultaneous measurements with double cell DWS revealed a transition

from ergodic to non ergodic behavior at an astonishingly early stage, in the

middle of phase III where fast cluster growth is still visible. Clearly, this

transition cannot be attributed to the formation of a system spanning net-

work of interpenetrating clusters because in this case the characteristic length

scale would not have the possibility to grow. We interpret this dynamical
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Figure 7.2: Schematic gelation process including a cluster glass phase before

the gel.

arrest with the formation of a fractal cluster glass, that then further evolves

through percolation-like formation of bonds into a final gel.

If this early ergodic/non ergodic transition would be the beginning of a

glassy phase, a diverging α decay at long correlation times should be mea-

surable with DWS. However, the double cell technique introduces a forced

second decay of the correlation function that prevents access to any dynamic

process that relaxes more slowly. Therefore we had to reinvestigate this

regime using a newly developed method, the two-cell Echo DWS. This tech-

nique enabled us to measure our system in the relevant time scales for the α

decay. The kinetics of the characteristic decay time of the α process strongly

resembles a glass divergence and occurs during the last part of the fast cluster

growth measured with SANS. We therefore believe that our interpretation is

justified and that the gelation process of our system includes a glassy phase

after DLCA cluster growth and before the formation of the gel network as

shown in figure 7.2.

In conclusion, the combination of SANS and DWS has demonstrated

that there exists an intermediate regime in the sol-gel transition inconsistent

with the simple DLCA model, where the sample becomes non ergodic, but
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where the average cluster size continues to grow until it reaches the final

value of the maximum cluster size in the gel. The DWS echo measurements

have allowed us to identify this intermediate regime as an arrested cluster

glass, where the clusters are only able to perform local motion due to cage

formation, but where the average cluster size continues to grow through

a percolation-like process. This percolation-like process is responsible for

the formation of the final bonds which lead to the gel formation and also

provides an explanation for the high fractal dimension df , in agreement with

recent computer simulations of irreversible aggregation and gel formation of

comparable volume fractions.
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Part II

Multi3D
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A new setup was built applying the so-called 3D scattering technique

[50, 51]. This technique provides an efficient suppression of multiple scat-

tering by performing simultaneously two independent light scattering exper-

iments in the same sample volume and at the same scattering vector. By cross

correlating both signals, only singly scattered light is taken into account for

the correlation function. Using this scheme, the application of dynamic and

static light scattering (DLS and SLS) can be extended to turbid systems.

Being interested in the kinetics of colloidal suspensions undergoing aggrega-

tion, gelation and phase separation, the acquisition time should be as small

as possible, but certainly smaller than the characteristic time scale on which

the system changes its properties. Measuring simultaneously at four different

angles reduces the acquisition time by a factor of four, and DLS measure-

ments can be enhanced in precision by taking into account the weighing of

size distributions at the different measured angles [52, 53]. Considering these

advantages, we have constructed a multi angle 3D cross correlation setup

(Multi3D) to investigate dense nano- and mesostructured complex fluids and

solids.
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Chapter 8

Setup

8.1 Theory 3D DLS and SLS

The well established DLS and SLS techniques (see subsection 1.2.2) provide

valuable dynamic and structural information about a sample, but are based

on single light scattering and therefore limited in their application. Systems

exhibiting single scattering appear to be transparent, a rare condition for a

large number of the samples colloid scientists would like to investigate. To

avoid multiple scattering, different tricks like index matching, sample dilution

and scattering path length reduction have been used. This is of course not

unproblematic as the sample characteristics may be altered. Therefore, dif-

ferent approaches to suppress multiple scattering based on cross correlation

have been developed in the last years [51].

The cross correlation function G12(τ) of the intensities I1 and I2 can be

written as

G12(τ) = 〈I1(t)I2(t + τ)〉 (8.1)

If we simultaneously perform two scattering experiments (with two initial

beams with wave vectors ~k01 and ~k02 and two detectors at final wave vectors

~ks1 and ~ks2) in the same scattering volume with identical scattering vector ~q

but different geometry, we obtain the two intensities I1 and I2. We then find

the following relation between the auto correlation function g1(q, τ), the mea-
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sured intensity auto correlation function G
(1)

11 (τ) and the measured intensity

cross correlation function G
(1)

12 (τ) in the absence of multiple scattering

G
(1)

11 (τ) = I
(1)2

1

(
1 + β11|g1(q, τ)|2

)
(8.2)

G
(1)

12 (τ) = I
(1)

1 I
(1)

2

(
1 + β12|g1(q, τ)|2

)
(8.3)

where (1) denotes singly scattered photons. The intercept β11 of the au-

tocorrelation function depends mainly on the detection optics whereas the

cross correlation intercept β12 is furthermore reduced due to phase mismatch

δq = |~q| (mismatch between ~q1 and ~q2) and misalignment δx = |~x| (spatial

mismatch between both scattering volumes).

β12 = β11e
− δq2R′2

4 e−
δx2

R′2 (8.4)

R′ denotes the distance between the scattering volume and the detector. The

information contained in the auto and cross correlation function is the same

in the case of single scattering. But when multiple scattering occurs, the

auto correlation function will include the contribution of multiply scattered

photons which makes the deduction of g1(q, τ) from G11(τ) very difficult

or even impossible. In the cross correlation experiment on the other hand,

only singly scattered light produces correlated intensity fluctuations on both

detectors - multiply scattered light results in uncorrelated fluctuations that

contributes to the background only due to the fact that it has been scattered

in a succession of different q-vectors. The contributions from multiple scat-

tering to the signal are suppressed by a factor of order (R′δkj)
−1, where δkj

denotes the magnitude of the smallest of the two wave vector combinations

~k02 − ~k01 and ~k02 + ~ks1 [51]. The auto correlation function g1(q, τ) therefore

is related to G12(τ) through

G12(τ) ≈ I1I2 + β12I
(1)

1 I
(1)

2 |g1(q, τ)|2 (8.5)

where Ij is the average total intensity (singly and multiply scattered) mea-

sured at detector j and I
(1)

j is the singly scattered intensity only. Multiple

scattering will therefore only decrease the intercept, but the auto correlation
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Figure 8.1: The 3D cross correlation scheme: two incident beams with wave

vectors ~k01 and ~k02 are out of the scattering plane xy by an angle of δ/2 (but

they lay in plane xz). They cross the scattering plane at exactly the same

volume, the scattering volume (symbolised by the grey sphere). The light

scattered at the scattering volume by the angle θ is also out of the scattering

plane, resulting in wave vectors ~ks2 resp. ~ks1. Both scattering vectors ~q2 resp.

~q1 are identical and parallel to the scattering plane.

function g1(q, τ) can still be measured even for turbid samples using a cross

correlation scheme.

Only two of the proposed and successfully implemented scattering geome-

tries for the cross correlation scheme allow for the variation of the scattering

angle [54]: the two-colour technique (TCDLS) [55] and the 3-D technique

(3DDLS) [56, 57, 58]. In TCDLS, two beams of different wavelength are

scattered and subsequently measured using interference filters. The two in-

dependent scattering experiments can thus be discerned very well, but the

alignment is very difficult (special emphasis should be placed on the fact that

for different wavelengths the same ~q is measured only for different scattering

angles θ, and this difference ∆θ varies with q).

The 3DDLS technique uses another approach to discern the two scattering

experiments: the incoming beams and the detectors are tilted by an angle of

δ/2 with respect to the usual scattering plane, crossing it in the scattering

volume (see figure 8.1). Although the same wavelength is used and therefore

each detector measures the scattered intensity of both incoming beams, the

scattering vectors of the photons from both incoming beams are different and
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the beams can be discerned that way. The additional contribution from the

“wrong” experiment increases the uncorrelated background i.e. reduces the

intercept β, but the advantage of simple and fast scattering angle variation

makes 3DDLS the method of choice.

8.1.1 Intercept β and overlap volume

The intercept β can be regarded as the signal to noise ratio of the dynamic

light scattering experiment. While the theoretical maximum of β11,max for

auto correlation experiments is 1, the theoretical maximum of β12,max for the

3DDLS technique is 0.25 due to the fact that both incoming beams use the

same wavelength and are therefore measured with both detectors. The cross

correlation function can be written as

G12(τ) = 〈I i
1 (0)I i

2 (τ)〉+ 〈I i
1 (0)I ii

2 (τ)〉+

+ 〈I ii
1 (0)I i

2 (τ)〉+ 〈I ii
1 (0)I ii

2 (τ)〉
(8.6)

where 1 and 2 denote the detectors and i and ii the incident beams. Only one

term - the second one - of the four corresponds to the desired combination of

incoming beams and detectors following the 3DDLS scheme. The intensity of

the other three terms is still detected, but they produce different scattering

vectors ~q1 6= ~q2 and are thus uncorrelated.

The theoretically obtainable 3DDLS intercept β12,max = 0.25 can be re-

duced due to misalignment of the instrument and overlap volume effects.

The misalignment (spatial mismatch of the scattering volumes δx and of the

scattering vectors δq) lowers β12 in the following way

β12 = β12,maxe
− δx

R′ e−
δq2R′2

4 (8.7)

In addition to misalignment, the overlap volume effect has to be taken into

account. Figure 8.2 illustrates the overlap volume (i.e. the common volume

of both incident laser beams, marked with thick lines) and the scattering

volume (i.e. the common volume of the incident beams and the detector

beams). As all beams are tilted with respect to the usual scattering plane by
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Figure 8.2: The scattering volume (light grey for a small resp. large θ, dark

grey for θ = 90◦) depends on the scattering angle. The overlap volume (fat

lines) is the volume illuminated by both incident beams.

the angle δ/2, the scattering volume will depend on the scattering angle. At

the scattering angle θ = 90◦, the dark shaded spherical region in figure 8.2

represents the scattering volume (if the detector beams are of the same size as

the incident beams). The scattering volume is fully contained in the overlap

volume. For all other angles, the scattering volume is in first approximation

a factor of 1/ sin(θ) larger (for a small and big scattering angle θ marked

as light grey area). A considerably big part of the scattering volume where

only one incident beam illuminates the sample is outside the common overlap

volume, and therefore the intercept β12 decreases. Due to the overlap volume

effect, β12 has a maximum at θ = 90◦ and decreases continuously for larger

and smaller scattering angles. This effect can be experimentally determined

and has been compared with the corresponding theoretical calculations [59].

8.1.2 SLS on turbid media

The intercept β12 described above can be measured using a highly dilute

sample in which only single light scattering occurs. The resulting β
(1)

12

represents the maximal intercept achievable with the current alignment and

is a standard way to calibrate a 3D instrument. In that case, δx and δq are

experimentally determined and overlap volume effects are taken into account,
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Figure 8.3: Diagram of a 3D cross correlation setup in side view: the incoming

beam (from left) passes a vertical polariser and its intensity is measured

with a diode. It is then split into two parallel beams which are focussed

by a lens into the scattering volume. The scattered photons pass another,

symmetrically positioned lens and are then collimated into single mode fibers.

The sample is contained in a cuvette which is placed in a index matching vat

to reduce refractions on the cuvette and for thermal stabilisation.

therefore any further reduction of the measured intercept β12 is caused only

by multiple scattering. It is thus possible to distinguish between the intensity

caused by single scattering events and the contribution of multiple scattered

light through a comparison of β12 and β
(1)

12 . The singly scattered intensity

(denoted with the superscript (1)) is calculated as follows:

I(1)(q) =

√
I

(1)
1 (q)I

(1)
2 (q) =

√
β12

β
(1)

12

I1(q)I2(q) (8.8)

Due to the distinction between singly and multiply scattered light (which

is a special feature of DLS measurements using a cross correlation setup),

SLS measurements of turbid samples are possible by performing for each

measured scattering angle a short DLS measurement.

8.2 Description setup

The setup was designed and built in-house. Four detector stations are

mounted pairwise on two removable platforms on both sides of the incident
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beam (see figure 8.4 and also picture 8.5). This enables one to align the two

detectors on one platform while the other one is removed. Dowel pins assure

the precise repositioning of the two platforms. While the platforms have

fixed positions, the incident beam can be moved using a goniometer arm.

A HeNe laser provides a beam of the wavelength of λ = 632.8 nm. It is

coupled into a polarisation preserving single mode fiber (Dantec DAN 60x30)

whose end is mounted on a goniometer arm (Newport goniometer 496 with

Newport Motion Controller PMC400). The beam passes a polariser and

glass platelet, where a small fraction of the beam is reflected on a diode

(UDT 10DP 9645-1) to measure its intensity. Afterwards the beam is split

into two beams; a special arrangement of one beam splitter and three prisms

splits the incident beam symmetrically in vertical direction into two beams

which run parallel to the direct beam with a distance of 12.5 mm, both beams

with an intensity of around 45% of the incident beam. The beams pass the

laser lens (1) and are focussed into the sample. The sample is contained in

a round cuvette which is positioned in a index matching vat (Hellma, quartz

glass, round with outer diameter of 85 mm, custom produced). The index

matching fluid used is decalin and it is thermally controlled through a heat

exchanger coil connected to a thermostat. Both vat and cuvette positions

can be adjusted via separate tilting and x/y translation mechanisms.

The scattered light is focussed on each of the four detector stations by

identical detector lenses 2-5 via the built-in collimation lenses into two single

mode fibers (OZ LPC-01-532-3.5) which are connected to photomultipliers

(PM, Hamamatsu H3460-54 photon counting heads). As high precision must

be achieved, all lenses (1-5) are placed in 5 axis holders (Newport M-LP-

2) for easy and reproducible tilting, translation and focussing. The Dan-

tec fiber end where the laser beam emerges is also placed in such a holder,

and each of the eight detection fibers has a separate tilting and translating

holder (a combination of Standa 7T128 x/y translation stages and Newport

U50-A tilting mounts). The signals of the PMs are processed by two am-

plifiers/discriminators (Hamamatsu C3866 photon counting units) and then
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Figure 8.4: Schematic diagram of the Multi3D setup in top view. See text

for details.
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Figure 8.5: The Multi3D instrument: 4 detector stations at different, fixed

angles (1-4), index matching vat and sample holder (5), incoming laser beam,

mounted on a goniometer arm (6)
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Figure 8.6: Screen shots of the Multi3D software: main window on the left,

count rate display on the right.

fed into a digital correlator (correlator.com Flex01/8ch). This correlator is

an eight channel correlator which calculates four cross correlation functions

in parallel using a multiple tau layout with a minimal lag time of 40 ns. A

PC runs a Labview program which reads out the digital correlator through a

USB port. The Labview program also controls the goniometer motion con-

troller via RS-232 and a I/O-PCI-card (National Instruments NI 4350 with

CB-68T Terminal Block) to read out the laser beam intensity from the diode,

the vat temperature trough an immersed Pt100 sensor and the limit switches

for the goniometer movement.

8.3 Software

The software is written in Labview 6.1. Its main tasks are to read out, display

and save the correlator data and to control the goniometer arm; a screen shot

of the main window is shown in figure 8.6 on the left side. A special intensity

count window (count display, shown in the same figure on the right side) helps

to adjust the scattering intensities; too low values result in bad data statistics
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and too high intensities can irreversibly damage the photomultipliers. Limit

switches stop the goniometer movement to avoid possible misalignment, and

temperature and incident laser intensity are measured to allow a correct

data evaluation. The program is divided into different modules which are

then combined in a envelope. This flexible structure allows for easy and

quick modifications or extensions.

8.4 Alignment

The alignment of the instrument is a crucial point and a very demanding task.

The necessary steps described in the following subsections are summarised

in the schematic figure 8.7. As the beam diameter is around 100 µm and will

be focussed into the sample, high precision is necessary to finally be able to

measure two different signals with exactly the same scattering vector. Any

misalignment leads to loss of intercept of the cross correlation function.

8.4.1 Mechanical alignment

First of all, the mechanical components have to be aligned. The index match-

ing vat is aligned by positioning a micrometer on the goniometer arm and

turning it around the vat, measuring and reducing any variation of the rel-

ative height (horizontal alignment) and distance of the inner vat wall (cen-

tering). Both detector platforms have to be removed to maximise the range

of measurement. The sample holder is aligned the same way, but a special

centering tool which is basically a round plate on a rod (see figure 8.8) is in-

serted in place of the sample to allow the micrometer to measure height and

the relative elongation from the goniometer axis. The precision of horizontal

alignment and centering of vat and sample holder has to be below 10 µm.
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Figure 8.7: Schematic overview of the Multi3D alignment process.
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Figure 8.8: Alignment tools for the Multi3D apparatus: left a micrometer

with magnetic foot, in the middle a 100 µm pinhole fitted in a holder of the

dimensions of a standard cuvette (upside down). On the right, upside down

as well, is the special centering tool for the sample holder.
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8.4.2 Optical alignment

The incident laser beam has to be aligned first. The vat has to be filled

already with the index matching fluid (decalin) to include all refractions

which will be present later on. The laser lens (1) and the beamsplitter have

to be removed, but the polariser should stay mounted for the same reasons

as mentioned before. By adjusting the back-reflection of the incident beam

from the vat (for all possible angles), the laser can be aligned normal to the

vat surface. A pinhole (diameter 100 µm) fixed in the sample holder is used

to check the position of the beam (again at all possible angles). Marking

the position of the incident beam, it is possible to insert the laser lens (1)

and adjust it in a way that the incident beam, which is supposed to be in

the middle of the lens, hits the mark of the beam without lens. After this

rough alignment, fine-tuning is done with the pinhole. All three beams (both

parallel beams as well as the direct beam, without beamsplitter) have to pass

through the pinhole. A symmetric refraction pattern has to be achieved, and

stability and symmetric behavior for focussing or x/y translation of the laser

lens (1) must be obtained. The correct and proper alignment of the laser

lens (1) is vital.

To align the detector lenses (2-5), the goniometer arm is moved to the

position in which the beams should directly hit the fibers (transmission ge-

ometry). Before doing so, the detector fibers have to be disconnected from

the detectors to avoid possible damage. One detector platform has to be

mounted on its dowel pins. The pinhole has to be removed from the sample

holder and the beamsplitter from the goniometer arm. The incident beam is

used as the reference to align the detector lens by marking the beam position

without detector lens and adjusting the beam with inserted lens to the same

position. After mounting the beamsplitter again, upper and lower beam have

to be coupled in to the respective fiber. Doing so for both detector stations

on the mounted platform, one half of the instrument is roughly aligned. The

alignment of the other platform follows the same procedure, and once both

platforms are aligned and mounted, fine adjustment can be started.
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The rough optical alignment described above should be precise enough

to generate a visible intercept in the cross correlation function when a sam-

ple is measured. If this is not the case, the rough alignment has to be

repeated. Measuring once a correlation function with an intercept, the latter

is increased by measuring a highly diluted sample which guarantees single

scattering. Adjusting the detector lens and the fiber positions will result in

higher intercept if carefully done. The fibers are extremely sensitive to tilt-

ing, and the translation in horizontal direction changes the scattering angles

i.e. the intercept varies strongly with this parameter. Cyclic repetitions of

this optimisation process should result in intercepts of typically between 0.15

and 0.18 for a scattering angle of 90◦.
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Chapter 9

Test measurement

After successful assembly of the setup and thorough testing of all components

and the software, the instrument was roughly aligned for testing purposes to

half of the maximum possible intercept on two detector stations on the same

detector platform. After removal of the aligned platform, another detector

station on the other platform was roughly aligned. The repositioning of the

first, aligned platform was not very precise but good enough to maintain

a measurable signal intercept. My colleague Dr. Suresh Bhat then over-

took the instrument for the final alignment. He enhanced with some minor

mechanical modifications the vat stability and the platform repositioning

precision. After having reached an intercept of more than 10% on all four

detector stations (measured simultaneously), the argon-ion laser (Coherent

Innova 300-8) broke down. It was replaced with a HeNe laser which caused a

complete realignment of the optical components due to the change of wave-

length from λ=514nm to 632.8nm. When the intercept of all four detector

stations (measured simultaenously) reached values of about 5%, this HeNe

laser broke down as well - just two weeks before the deadline of this work.

Currently, another HeNe laser is used as a coherent light source, and the

alignment of the instrument is under way. Unfortunately, none of the pre-

vious test measurements was saved, as better results have been expected

within a few days and the break-down of two lasers in a row seemed very im-
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probable. Nonetheless, our test measurements demonstrated that the setup

is functional. New calibration measurements are expected to be performed

within few weeks and published in the coming months.
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Chapter 10

Further development/outlook

After having worked intensively on the present Multi 3D set-up and aligning

it several times, it became clear that in a next version a number of design

problems need to be resolved. Here I try to give a brief summary of the

most important modifications that should be considered based on my work.

These should of course include a number of additional options in the con-

trol and data analysis software (analysis and scripting tools for automated

measurements, additional information in the stored data file), but a clear

emphasis should be given to some aspects of the hardware where modifica-

tions would considerably improve the functionality of the instrument. As

the symmetric beamsplitter provides no direct beam, it always has to be re-

moved for lens alignment purposes. It would be much easier to upgrade this

“first generation” beamsplitter to the most recent version also used for the

commercial version of the 3D instrument that provides a low-intensity direct

central beam that is extremely helpful in the alignment procedure. This can

be achieved if the prism deflecting the beam downwards in the beamsplitter

has a limited transmission of around 10%.

But the biggest draw-back is clearly coming from the dowel pin design of

the two platforms. A correct initial alignment of the detector lenses is much

more difficult since the split parallel laser beam cannot be brought in the

“back position”, i.e. the incident laser beams cannot be placed in the po-
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sition of the detection fibers, illuminating the sample through the detector

lens. Therefore the focal length cannot be adjusted. Moreover, a direct beam

would considerably help to arrive at an initial guess of a reasonable alignment

starting position for tilt and translation. Furthermore, the dowel pins don’t

ensure sufficiently precise repositioning (the best results were a loss of half

of the intercept), and the fact that one platform has to be aligned but then

removed again to allow the alignment of the other one makes the alignment

very time-consuming. Different approaches seem to be possible. First of all,

using lenses with a longer focal length would create space enough to place all

detectors on the same side of the direct beam. Therefore it would no longer

be necessary to remove an already aligned detector platform because the laser

can then be brought in direct line to all detectors. This would also allow for

having the detectors mounted on a rotating goniometer arm (or a rotating

platform) with a fixed laser mounted in such a way that all detector lenses

can be brought into the illuminating beam (once the laser lens is removed).

Alternatively the laser could be kept on a moving goniometer arm and the

detectors could be mounted individually such that the arm can drive under-

neath a u-shaped holder. The smallest scattering angle would be aligned

first with the bigger ones following sequentially. In both designs, the laser

could be brought in the “back position” behind the detector lenses as well

as into transmission geometry, facilitating and speeding up the alignment of

the instrument considerably.
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