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The hedonic approach is currently seen as the most promising 
method for constructing quality-adjusted price indices. Building upon 
a novel axiomatic framework, the current piece of work tackles the 
fundamental question of what hedonic elementary price indices 
actually measure. They reflect the average price change over time for 
a set of products of constant quality. Furthermore, they are latent 
economic parameters that require a precise definition before being 
estimated from empirical data.

Once the set of suitable definitions is specified, it turns out that most 
of the well-known index formulae are natural estimators of particular 
hedonic elementary price indices. They are all based on estimates of 
the hedonic function relating the characteristics (and thus the qual-
ity) of a product to its price. Adapted bootstrap resampling methods 
may be used to explore the stochastic nature of such estimators of 
‘pure’ inflation.

The concepts presented in this study are illustrated by an empirical 
analysis of the market of used cars in Switzerland.
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CHAPTER 1

Introduction

Consumer price indices

and quality change

Price indices play an important role in the economic 1

theory and practice. They provide a measure of the
average proportionate change in the prices of a spec-
ified set of goods over time (see ILO et al., 2004,

para. 1.1; United Nations, 1993, para. 16.14). The aim of a consumer
price index (CPI) in particular is to measure the price evolution of goods
and services that households consume.

Consumer price indices may be viewed from an economic standpoint as a
measure of the evolution of the cost of living that households are confronted
with. They are then defined ‘as the ratio of the minimum expenditures
needed to attain the given level of utility, or welfare, under two different price
regimes’ (ILO et al., 2004, para. 1.85). It is this interpretation of a CPI that
is applied for indexing salaries, rents, pensions or social security benefits in
order to reflect changes in the purchasing power of money. Furthermore,
consumer price indices are commonly used as a proxy for the general rate
of inflation, although they only take account of goods and services that
households consume. In some countries, CPIs are used to set inflation targets
for purposes of monetary policy (ILO et al., 2004, para. 1.11).

This wide domain of application of CPIs requires careful consideration
with regard to their construction. It is important to recognise that small
differences in the movements of a CPI may have considerable financial im-
plications. In consideration of the different purposes and interpretations
that such an index is going to have, it might even be necessary to calculate



2 and publish different CPIs for different uses (ILO et al., 2004, para. 1.12;
Brachinger et al., 1999, pp. 33–43).

It is not the aim of this thesis to give an overview of the various approaches
to consumer price indices that can be found in the literature. Neither is it to
discuss the question of whether it is more appropriate in practice to try and
estimate a cost of living index (COLI) as opposed to a cost of goods index
(COGI) on a fixed basket of consumer goods. Some of these aspects may,
however, reappear punctually in later sections. An all-embracing source of
information on consumer price indices in general, including a huge number
of detailed reflections in this context, is the Consumer Price Index Manual
published by the International Labour Office (ILO et al., 2004).

This thesis is going to step into some fundamental aspects of a problem
which is seen as one of the most difficult to handle when compiling price
indices. The universe of products that households consume is continually
changing. New products appear on the market while existing products dis-
appear. It is then necessary to link price observations for a former item to
those of a new item in order to measure the continuing price change (ILO
et al., 2004, para. 1.226 ff.). If the quality of products change over time,
however, it is necessary to estimate the contribution of the quality change
to the observed price change in order not to confuse two different sources of
variation. A CPI is meant to measure the overall price change of a set of
consumer goods having constant quality.

The famous report of the Boskin Commission estimated the bias in the
‘CPI-based measure of the cost of living’ due to the ‘difficulty of adjusting
fully for quality change and the introduction of new products’ (Boskin et al.,
1998, p. 10) at about 0.6 percentage points per annum. This represents
slightly more than half of the total bias of 1.1 percentage points identified
therein. In view of the ‘extremely large sums of money’ (ILO et al., 2004,
para. 1.12) concerned by the movements of the CPI, tackling the problem of
quality change may thus have a significant impact on the state of finances
of households and institutions.

Hedonic elementary

price indices

The prevalent CPI concepts used in practice usually
structure the basket of consumer goods in a hierarchical
manner. Individual price observations are transformed

into a final index value through a sequence of aggregation steps. In the
first stage, the price evolution is individually observed for restricted groups
of homogeneous products, the so-called elementary expenditure aggregates.
These aggregates usually serve as strata for data collection. A price index
for an elementary expenditure aggregate is called an elementary price in-



3dex. In a second stage, these elementary price indices are weighted by their
quantitative relevance on the market and then averaged, or aggregated, to
a higher-level price index (see ILO et al., 2004, para. 9.6 ff.; Brachinger
et al., 1999, pp. 72–9).

The issue of adjusting the price measurements for quality change, as in-
troduced above, appears on the base level of the aggregation structure of a
CPI. The quality equivalence of two items is important when their prices
are directly compared. Such a comparison, however, is the main aim of an
elementary price index. Higher-level indices take exclusively the elemen-
tary price indices as inputs, along with ‘weights derived from the values
of elementary aggregates in some earlier year or years’ (ILO et al., 2004,
para. 9.77). There is thus neither a possibility nor a need for adjusting
higher-level price indices for quality change. Quality adjustment is an issue
of elementary price indices.

One possible manner of tackling the problems mentioned above, namely
the handling of differences and changes in quality of the items within an ele-
mentary expenditure aggregate, is based on the so-called hedonic approach.
Its main idea is to identify the quality of a product—or, in other words, its
‘potential contribution . . . to the welfare and happiness of its purchasers
and the community’ (Court, 1939, p. 107)—with a vector of product char-
acteristics. A regression equation is then estimated relating the latter to
the price of the product. Once such a relationship between characteristics
and price of a product is established, the price of any similar item can be
predicted by introducing its characteristics into the estimated hedonic (re-
gression) function.

With regard to price index estimation, this technique allows to impute
prices of items for which an observed price is not available in some of the
considered time periods. If, for example, a specific product disappears from
the market, it is usually possible to estimate its hypothetical price based
on observations of similar products which are still available. The same is
true for new items and their imputed prices in previous periods. More
generally, the hedonic approach allows to control for quality differences over
time within the framework of elementary price indices.

Hedonic elementary price indices, i.e. elementary price indices where the
quality adjustments are based on the hedonic approach, have been developed
as an alternative to conventional quality adjustment methods that are still
widely used in practice. (See e.g. ILO et al., 2004, Chap. 7 or Triplett,
2004, Chap. II for a comprehensive overview on the conventional methods,
and Brachinger et al., 1999 or Bundesamt für Statistik, 2006 for de-
tails regarding their application in the Swiss CPI.) Early applications of



4 hedonic elementary price indices date back to the 1920s and 1930s and have
been studied with rapidly increasing interest since then. An overview on the
development of literature and research is given by Triplett (2004, App. A
to Chap. III) or White et al. (2004, p. 3), for example. Nowadays, the hedo-
nic index approach is frequently seen as the ‘most intellectually satisfying of
the various quality-adjustment methods because it appeals to an underlying
economic structure rather than to opportunistic proxies’ (Hulten, 2003,
p. 9).

Aim and structure

of the thesis

The aim of this research project is, first, to develop an
axiomatic framework for hedonic elementary price indices
and, secondly, to study techniques for their estimation.

In contrast to standard reference works on hedonic indices, such as the one
by Triplett (2004), we try to follow a normative rather than a historical
or explorative approach. Therefore, this thesis does not intend to give a
complete overview neither on the hedonic elementary price index literature
nor on the current practice of national statistical institutes. We will see,
however, that many of the concepts currently in use nicely fit into the general
framework developed in the following chapters.

In Part I of the thesis, a precise definition of what could be regarded as
an ideal type of a hedonic elementary price index is established and dis-
cussed from an axiomatic point of view. Our interest lies predominantly in
a stochastic approach where a hedonic index is interpreted as a relationship
between several probability distributions. Chapter 2 deals with the formal
definition of characteristics and elementary aggregates. The intention here is
to characterise the key elements of hedonic functions. Chapter 3 introduces
the time dimension and makes the step towards quality-adjusted elemen-
tary price indices. The hedonic idea is brought into the framework, and
two alternative universal formulae of hedonic elementary price indices are
established. Chapter 4, finally, qualifies and further specifies these general
formulae based on a list of axioms describing the characteristics an ideal he-
donic index should have. Sufficient conditions for indices satisfying specific
axioms are worked out.

In Part II, several techniques for estimating hedonic functions and hedonic
elementary price indices are investigated from a theoretic point of view.
Chapter 5 deals with the task of estimating the hedonic function from a
random sample of items of the elementary aggregate concerned. Linear and
partial least squares regression models are described, and a criterion for
assessing the predictive power of a model is introduced. The main interest
in this second part, however, lies in the bilateral hedonic elementary price



5index estimators which are treated in Chapter 6. Starting from the universal
formulae developed in the first part, several alternative implementations of
estimators are discussed. Moreover, three bootstrap resampling methods
are introduced with the aim of estimating confidence intervals for hedonic
elementary price indices.

Part III, finally, takes the market of used cars in Switzerland as an example
for implementing the concepts discussed in the previous chapters. Chapter 7
describes the data and the steps that were necessary for transforming the
raw data into a form that is suitable for estimating hedonic functions and
indices. Furthermore, the conceptual limitations of this specific data set
are discussed. Chapter 8 tackles the problem of an empirical estimation
of the hedonic models introduced in Part II. Several implementations are
compared and discussed. In Chapter 9, these hedonic models are then used
to estimate bilateral hedonic elementary price indices for used cars as well as
appropriate confidence intervals for the period of October 2004 until March
2006.

The thesis ends with a list of summarising conclusions and recommenda-
tions as well as some open questions for further research.





PART I

An Axiomatic Framework for

Hedonic Elementary Price Indices





CHAPTER 2

Elementary Aggregates and

the Hedonic Hypothesis

2.1 Goods and elementary aggregates

The general aim of a consumer price index is to measure ‘changes in the 9

prices of consumption goods and services’ (ILO et al., 2004, para. 3.1 ff.).
Here, the primary emphasis lies on ‘consumption’, and a consumption good
or service is defined as ‘one that members of households use, directly or
indirectly, to satisfy their own personal needs and wants.’ In order to build
a formal framework for price indices, however, it is first necessary to discuss
how the term ‘goods and services’ has to be interpreted in this context.

The notion of a good has a long history in the economic literature. Ac-
cording to Milgate (1987), the plural term goods appeared in the English
language with the meaning of ‘objects or things which confer some advantage
or produce some desirable effect upon their owner’. Later, it was confronted
with commodities which was less tightly attached to the concept of provid-
ing utility than goods originally was, but rather to exchangeable value in a
more general sense. Only recently, and largely influenced by the German
tradition, has the noun good in singular form entered the formal language
of English economics.

For the purpose of price index research, it is sufficient to follow the prac-
tice of, e.g., Hirshleifer (1980, p. 17), who introduces the notion of com-
modities as a synonym of goods and services. ‘Goods’, he writes, ‘as dis-
tinguished from services are physical things (wares or merchandise)’ while



10 ‘services represent a flow of benefits over a period of time’. He then admits
that commodities and goods can also be thought of as ‘synonymous words
covering also desired consumption services.’

The approach we are going to adopt here follows the observation of Lan-
caster (1971) that ‘the “goods” of traditional theory are typically such ag-
gregates as “automobiles,” “food,” “clothing,” rather than individual goods
as strictly defined.’ We already discussed in the introduction that a consumer
price index is usually built upon elementary indices for a list of elementary
expenditure aggregates. These are defined in function of the applied aggrega-
tion structure such as COICOP (Classification of Individual Consumption
according to Purpose, see ILO et al., 2004, paras. 3.162–8). An elementary
aggregate, in this context, consists of ‘a small and relatively homogeneous set
of products defined within the consumption classification used in the CPI’
(ILO et al., 2004, para. 1.120). The notions of a good and an elementary
aggregate are thus often interchangeable.

Finally, a precise definition of the notion of a good with regard to hedo-
nic indices is given by Brachinger (2002). He describes a good as being
‘characterized by the set of all those models or variants . . . which fit under
one and the same hedonic equation’. This definition, however, requires a
general acceptance of the hedonic hypothesis (see later) for any object even
before the notion of a good or an elementary aggregate can be introduced.

From a general point of view, a good can be viewed as a set of objects being
very similar in some fundamental properties or serving the same purpose.
This idea will serve as a basis for the definition of an elementary aggregate
below. It will be specified as a set of objects that share the same well-defined
set of characteristics. This concept is now going to be formalised.

2.2 Objects and characteristics

Let O denote the set of all objects supplied on a market. Here, the notion
of an object means physically tangible items as well as services and other
immaterial entities to which a price can be assigned. Each of these objects
exhibits a set of characteristics. Examples of such characteristics might be
the volume or the physical mass of the object. Others might comprise the
location of sale or any after-sales services. In general, the nature and level
of measurement of characteristics can be very diverse.

It is obvious that not every characteristic can be observed for any given
object o ∈ O. Processor speed, for example, is a characteristic of computers
but not of clothes or bicycles. In general, each characteristic m is only



11defined on a specific subset Om of O. As a rule, it should be possible to
quantify the values of any characteristic such that they form a subset of the
Euclidean real number space. This leads to the following definition.

Definition 2.1. A characteristic m is a real-valued function m : Om −→ R

defined on a non-empty subset Om of O. The set Om is called the domain

of m and, for each o ∈ Om, m(o) will be called the m-value of o. ⋄

For the sake of simplicity, the m-value of o may also be called its m-char-
acteristic, or just characteristic if it is clear which characteristic is meant.

Notation. The set of all characteristics as defined in Def. 2.1 will be denoted
by M := {m : Om −→ R | Om ⊂ O,Om 6= ∅}.

Having established the notion of a characteristic, it is now possible to
specify the notion of an elementary aggregate.

Definition 2.2. An elementary aggregate G is a set of objects in O having
the following properties:

1. The set MG of the characteristics defined for all elements of G is not
empty, i.e.

MG := {m ∈ M|Om ⊃ G} 6= ∅ .

2. The intersection of the domains of all characteristics contained in MG

is a subset of G, i.e. ⋂

m∈MG

Om ⊂ G .

Each object o ∈ G will be called an item of the elementary aggregate G. The
elements of MG are called distinguishing characteristics of G. ⋄

As a result of property 1, two objects supplied on the market will only
be classified as items of one elementary aggregate if they share at least one
common characteristic. Conversely, if two objects do not belong to the same
elementary aggregate, there must be a characteristic that is observable for
one of these objects but not for the other. Moreover, the second prop-
erty ensures that an elementary aggregate embraces each object carrying all
characteristics of MG .

The following proposition shows that each elementary aggregate has some
kind of maximality property in the sense that its distinguishing characteris-
tics fully determine the items of the aggregate. In other words, there is no



12 item of an elementary aggregate that is not contained in the intersection of
the domains of all distinguishing characteristics.

Proposition 2.3. Each elementary aggregate G equals the intersection of the
domains of its distinguishing characteristics, i.e.

⋂

m∈MG

Om = G . ⋄

Proof. We have G ⊂ Om for all m ∈ MG . Therefore, G ⊂
⋂

m∈MG
Om. The

inclusion in the other direction is given by property 2 of Def. 2.2 and hence equality
holds. �

It should be noted that an elementary aggregate in the sense of Def. 2.2
may still comprise a lot of different items. Thus we define the term ‘elemen-
tary aggregate’ in a more general sense than it is usually used in practice.
However, it follows from Proposition 2.3 that supplementing the set MG

of distinguishing characteristics of an elementary aggregate with additional
characteristics leads to a reduction of G. The elementary expenditure ag-
gregates known in price statistics (see ILO et al., 2004, para. 9.7) are thus
embraced by the current definition.

As a consequence of Proposition 2.3, it is possible to construct elementary
aggregates from samples of individual objects. Let O∗ ⊂ O be any set of
objects. These might be, e.g., different models of personal computers. Let
MO∗ := {m ∈ M|Om ⊃ O∗} be the set of all common characteristics
of these objects and assume that MO∗ is not empty. Then, it is possible
to specify an elementary aggregate G(O∗) induced by O∗. The induced
aggregate is defined as the intersection of the domains of all characteristics
in MO∗ , i.e.

G(O∗) :=
⋂

m∈MO∗

Om . (2.1)

The set O∗ is thus extended by all those objects on the market that can
be specified by at least the same characteristics as the objects fixed in O∗.
Obviously, by means of (2.1), any given set of characteristics M induces an
elementary aggregate G(M) :=

⋂
m∈M Om.

Moreover, it is important to note that any finite subset {m1, . . . , mK} ⊂
MG of the distinguishing characteristics of an elementary aggregate G can
be assembled to a vector function

m : G −→ R
K

o 7−→ m(o) := (m1(o), . . . , mK(o))′ .



13All the items of G are by these means identified with a K-dimensional vector
of characteristics. The identification of objects with a characteristics vector
leads to an equivalence relation on G defined by

o1 ∼m o2 :⇐⇒ m(o1) = m(o2) .

Two items of an elementary aggregate are thus identified if and only if their
m-values, i.e. their m1- to mK-values coincide. The equivalence classes
respective to the relation ∼m will be called m-equivalence classes. They
partition G into subsets containing items with equal m-values. Finally, the
quotient set induced by this equivalence relation will be denoted by G/∼m.

2.3 Characteristics and prices

In the last section, we identified an object with a list of characteristics and
we showed how objects can be grouped into elementary aggregates accord-
ing to their characteristics. The economic foundation of this approach is the
consumption theory originally introduced by Lancaster (1971). It is based
on the assumption that the behaviour of economic agents towards consump-
tion goods is completely linked to their characteristics. More precisely, it
is assumed that ‘one demands not just physical objects, but the qualities
with which they are endowed’ (Milgate, 1987, p. 546). The consumers’
preferences are therefore originally directed towards the characteristics of
an object, and the latter determine eventually the consumers’ preference
structure between individual items of an elementary aggregate.

One aspect already discussed by Lancaster (1971, p. 140 ff.) himself,
however, is the fact that there are characteristics (such as the serial number
of a car) that are usually irrelevant for a consumer’s decision of purchase.
Irrelevant characteristics are especially those which are invariant, i.e. which
have the same value, for all items of an elementary aggregate. Inversely,
he defines a characteristic as relevant when ignoring it would change the
preference structure between two items.

Lancaster’s approach finally suggests that an object’s price observed
on the market is essentially determined by its relevant characteristics. This
assumption is called hedonic hypothesis in the literature (Triplett, 1987;
United Nations, 1993; Dickie et al., 1997; Brachinger, 2002). The
hedonic hypothesis serves as the general basis for all hedonic elementary
price indices. In order to build up a solid theory of hedonic elementary
price indices, it is necessary to formulate this hypothesis as an econometric
model.



14 Hedonic econometric model. Let G be an elementary aggregate with distin-
guishing characteristics MG. There exists a finite set of characteristics

Mpr
G = {m1, . . . , mKG

} ⊂ MG

and a function hG : R
KG −→ R≥0, such that the price p(o) of any item o ∈ G

can be written as
p(o) = hG

(
m

pr
G (o)

)
+ ǫ(o) (2.2)

with m
pr
G (o) = (m1(o), . . . , mKG

(o))′. The residual term ǫ(o) is assumed to
be stochastic with expectation

E[o]

(
ǫ(o)

)
= 0 (2.3)

where [o] denotes the m
pr
G -equivalence class to which o belongs, [o] ∈ G/∼m

pr

G
,

and E[o] the expectation built over all items belonging to [o]. Moreover, for
any pair oi, oj ∈ G, it is assumed that their residual terms ǫ(oi) and ǫ(oj)
satisfy

E[oi,oj ]

(
ǫ(oi) ǫ(oj)

)
= 0 (2.4)

where E[oi,oj] denotes the expectation built over all pairs of items (o′i, o
′
j)

with o′i ∈ [oi] and o′j ∈ [oj ].
The set Mpr

G will be called the set of price-relevant characteristics,
and hG is the hedonic function of G. ⋄

This model implements the idea that for an elementary aggregate where
the hedonic hypothesis holds, the set of distinguishing characteristics con-
tains a finite subset of price-relevant characteristics. They determine the
price up to a residual term which covers the quality-independent price com-
ponent. The subset of price-relevant characteristics represents an item’s
quality. Assumption (2.3) implies that the hedonic elementary price of an
item with a certain quality is given by the average price over all items of
the same quality. Assumption (2.4) means that any two residual terms, i.e.
any two quality-independent price components are uncorrelated.

The term ‘quality’ subsumes in this context all characteristics of a prod-
uct which make it distinguishable from other products from an economic
point of view (see e.g. United Nations, 1993, para. 16.105ff.). Quality
differences, however, are not only attributable to differences in the physical
characteristics of the items. Additionally, there are, for instance, differences
in the conditions of sale (guarantee, after-sales service etc.) as well as the
location and the timing of delivery, which may lead to unequal qualities.
The reason for this is that the marginal utility of a particular item for a



15consumer may depend on these circumstances. ‘Transporting a good to a
location in which it is in greater demand is a process of production in its own
right in which the good is transformed into a higher quality good’ (United
Nations, 1993, para. 16.107).

It is obvious that, for example, electricity or transport provided at peak
times represent another quality than the same goods provided at off-peak
times. ‘The fact that peaks exist shows that purchasers or users attach
greater utility to the services at these times, while the marginal costs of
production are usually higher at peak times’ (United Nations, 1993, para.
16.108). Changes in quality are reflected by changes in price for the different
times of delivery. Therefore, ‘time of delivery’ is susceptible to be a price-
relevant characteristic for the respective elementary aggregates.

Conversely, an observed price difference between physically identical prod-
ucts normally reflects a difference in quality in one of the senses described
above. Rationally behaving consumers would not be willing to pay a higher
price for a product otherwise. However, there are essentially three situ-
ations where this statement does not hold (cf. United Nations, 1993,
para. 16.112ff.). First, it is quite common that consumers are not suffi-
ciently informed about the different sales prices of one and the same product
at different outlets. Searching for the lowest price would cost them more
than the expected price reduction. Second, a regime of price discrimination
by the suppliers may lead to a situation where not every consumer is able to
buy the same service (and the same quality) at the same price. A prominent
example of such a regime is price discounts for students or pensioners, e.g.
for cultural manifestations. It is, finally, thinkable that a specific product
might be supplied simultaneously at two different prices but there is insuf-
ficient supply for the lower-priced variant. This situation may occur when
there are parallel markets supplying the product, and one of them is, for
instance, subject to official control. As a summary, the price of an item
should reflect its quality in most of the cases but there may be exceptions to
this rule. These exceptions are modelled by the residual ǫ(o) in the hedonic
econometric model.

It is important to note that the hedonic function implicitly contains in-
formation on the market structure or the competitive situation for a certain
good. The value of a hedonic function is the average price a consumer needs
to pay for an item of a specific quality. In this sense, the hedonic function
hG is defined on the quotient set G/ ∼m

pr

G
and attributes a price to each

of these equivalence classes. The assumption (2.3) is reasonable if all the
equivalence classes [o] are sufficiently homogeneous. The more price-relevant



16 characteristics there are, the more homogeneous the individual equivalence
classes are. By adding additional characteristics, the homogeneity of these
classes may be increased and the assumption becomes more realistic.

A microeconomic interpretation of the hedonic function is given, for in-
stance, by Diewert (2003a, p. 321 ff.) going back to Rosen (1974). Start-
ing from a list of assumptions on the consumer’s utility functions, he devel-
ops a willingness-to-pay value function that indicates the amount of money
the consumer is willing to pay for an item with any particular characteristics
vector. This eventually leads to a special case of the hedonic equation (2.2).



CHAPTER 3

Hedonic Elementary Price Indices

3.1 Elementary price indices and quality change

3.1.1 Bilateral comparison

of time periods

Elementary price indices measure the price evolu- 17

tion within an elementary aggregate between two
time periods. There is a base period denoted by
0 which serves as a reference and where any index

value is usually normalised to 1 (or 100), and there is a current period de-
noted by 1 which is confronted to the base period. If the index takes a value
larger or smaller than 1 (or 100), this indicates that the prices of the items
of the elementary aggregate in the current period are generally higher or
lower than in the base period, respectively. A value of 1 (or 100) shows that
the price level in the base and current period is the same.

All the concepts introduced here will be focused on the bilateral compar-
ison of two time periods. This is the usual approach for elementary indices.
Index values of subsequent current periods are going to be constructed from
individual bilateral comparisons where the base period remains fixed. In or-
der to bring in the time dimension and to define elementary price indices, we
are now going to extend the framework established in the previous chapter.

Each elementary price index refers to an elementary aggregate G = G0 at
the base period 0. This aggregate varies over time: new items appear on
the market, others disappear. At any time t, the aggregate of interest con-
sists of all items available on the market characterised by the distinguishing
characteristics of G0. This leads to the following definition.



18 Definition 3.1. Let G = G0 be any elementary aggregate defined relative to
the set O0 of all objects supplied on the market at a base period 0 and let
MG be its set of distinguishing characteristics. Let T be the set of all time
periods considered and let Ot denote the set of all objects supplied on the
market at time t.

Then, for any time t ∈ T , the current aggregate Gt = Gt(MG) is defined
as the elementary aggregate induced by MG on Ot, i.e.

Gt(MG) :=
⋂

m∈MG

Ot
m , (3.1)

where Ot
m ⊂ Ot denotes the domain of characteristic m at period t. More-

over, the composite elementary aggregate GT for all time periods in T
is defined by

GT :=
⋃

t∈T

Gt(MG) . (3.2)
⋄

Obviously, by means of (3.2), any elementary aggregate G defined relative
to a base period induces a composite elementary aggregate GT for any set T
of time periods. This viewpoint allows the identification of items that newly
appeared between a base period 0 and a current period 1 by the difference
G1 \ G0 ⊂ G{0,1}. Conversely, the items that disappeared between 0 and 1
can be specified as G0 \G1. The intersection G0 ∩G1 represents all the items
available in both periods.

For the specification of an elementary price index, there are basically two
concurrent approaches. The first is to form the ratio of the average price
level in the current period to the one in the base period. Conversely, the
second approach consists of forming an average of the price ratios (or price
relatives) of individual items of the elementary aggregate. Both approaches
are justified, and hence we are going to investigate both of them in the
following paragraphs.

3.1.2 Elementary price index

concepts

The first of the two approaches for specifying
an elementary price index compares the average
price of the elementary aggregate in the current

period with the one in the base period. If the average price of the elementary
aggregate Gt at time t is denoted by πt(Gt), such an elementary price index
has the form

EPI
0:1(G) =

π1(G1)

π0(G0)
. (3.3)



19Depending on the definition of πt(Gt), this results in different possible im-
plementations of an elementary price index.

In general, the average price πt(G) of any subset G of the elementary
aggregate Gt may be viewed as a measure of location µ characterising the
distribution of the prices at time t of the elements in G. More formally, this
implies defining

πt(G) := µ
(
pt(G)

)
, (3.4)

where pt(G) :=
⋃

o∈G{p
t(o)} and pt(o) is the observed price of o at time t.

The set function µ : P(R≥0) −→ R≥0, where P(R≥0) denotes the power
set of R≥0, may attribute different weights to the individual prices in pt(G),
according to the frequency they occur with among the items of G.

The second approach consists of establishing an elementary price index as
an average of price ratios. Formally, this leads to elementary price indices
of the form

EPI
0:1(G) = µ

( ⋃

o∈G0∩G1

{
p1(o)

p0(o)

})
, (3.5)

where µ, again, is an appropriate measure of location characterising the
distribution of price relatives.

3.1.3 Measuring the pure

price change

Regardless of the approach that is followed, there
is the difficulty of separating two different potential
sources of an observed price change: one that is due

to inflation and another that is due to any change in quality. An elementary
price index is meant to measure only the former of the two, namely the
‘pure’ price change for a population of constant quality.

An important problem of the index concept (3.3) is that the elementary
aggregates involved in both the numerator and the denominator of the ratio
differ. This means that, in general, the quality range of the items considered
for constructing the index changes between the base and the current period.
The observed change of the average price level may thus be partly due to
the change in quality of the objects provided on the market and not only
due to inflation.

In order to build a quality-adjusted elementary price index, it is therefore
necessary to restrict the set of objects involved to those that are available in
both time periods. In other words, the proper specification of an elementary
price index as a ratio of average prices is

EPI
0:1(G) =

π1(G0 ∩ G1)

π0(G0 ∩ G1)
(3.6)



20 rather than (3.3). By restricting the range of items over which the averages
are taken, one ensures that the quality range of the items considered is stable
over time and that the elementary price index does not suffer from a bias
due to quality-driven price changes.

The most extreme special case of this approach is the one where µ takes
the price of a single item o∗ ∈ G0 ∩ G1 as a representative for the whole
elementary aggregate G{0,1}. In practice, o∗ might be the item that generates
the highest turnover or is sold most frequently on the market. Equation (3.3)
becomes then just

EPI
0:1(G) =

π1({o∗})

π0({o∗})
=

p1(o∗)

p0(o∗)
. (3.7)

When the elementary price index is defined as an average of price relatives
as in (3.5), the concept itself requires that the range of the items considered is
limited to G0∩G1, since it is only for these items of the composite elementary
aggregate G{0,1} that prices are observable for both time periods. Both
elementary price index concepts suffer thus from the restriction that, in
order to measure inflation without any bias due to quality change, all the
items considered need to be available in both the base and the current time
periods. However, the set of items G0∩G1 may be small or even empty. The
items contained therein may thus be unable to represent well the range of
items available in either the base or the current period, i.e. of items of the
composite elementary aggregate G{0,1}.

In order to relax the mentioned restriction and ideally to be able to average
over all the items in G{0,1}, i.e. over those being available at least in one of
the two periods, it is necessary that prices can be estimated also for items
that are not contained in G0 ∩ G1. With the aim of providing such price
estimates, a quantity of conventional methods of quality adjustments has
been developed. We are now going to recall shortly the most important of
them.

3.1.4 Conventional methods

of quality adjustment

The so-called direct comparison or comparable re-
placement method identifies a new item onew ∈
G1 \ G0 in the current period with a very similar

item o ∈ G0 in the base period. Any price difference between o and onew is
assumed to arise from true inflation and not from quality change. The un-
observable price of onew in period 0 is then defined as p0(onew) := p0(o), and



21the respective ratio representing the price change of this item from period 0
to 1 is calculated by

p1(onew)

p0(onew)
=

p1(onew)

p0(o)
. (3.8)

A similar approach is taken in the overlap pricing method, where, again, a
new item onew ∈ G1\G0 is matched with an item o ∈ G0. This time, however,
the unobservable price p0(onew) is defined by p0(onew) := k(o, onew) p0(o)
with the correction factor

k(o, onew) :=
pt(onew)

pt(o)

in some intermediate time period t ∈ [0, 1] where both objects o and onew

are available. The respective price relative of onew is then given by

p1(onew)

p0(onew)
=

p1(onew)

pt(onew)

pt(o)

p0(o)
. (3.9)

In the explicit quality adjustment method, a new onew is matched to an old
object o just as in the previous methods, but the correction factor k(o, onew)
is estimated by other means than a ratio of observed prices. Different alter-
native methods for estimating k(o, onew), such as expert judgments, quantity
adjustments or even hedonic regressions, are described in detail in the liter-
ature (ILO et al., 2004, para. 7.72 ff.). ‘Hedonic regressions’, in this context,
must not be confused with proper hedonic elementary price indices as they
will be introduced below.

If all of the new items in G1\G0 are linked in one of these ways to old items
in G0, then a (potentially hypothetical) base period price p0 is available for
any element in G1. This allows for an inclusion of the prices of all elements
of G1 in (3.5) or (3.6), already. If, additionally, the same methods of quality
adjustment are applied to the items that have disappeared between the base
and the current period (i.e. the items in G0 \ G1), the range over which the
averages are taken can potentially be extended to the whole G{0,1}.

3.1.5 Summary and

critical comments

The elaboration above has shown the main properties
and issues of elementary price indices. We discussed
that there are basically two approaches for measuring

the price evolution within an elementary aggregate. The key lesson is that
there needs to be a constant reference quality that is present in both the
numerator and the denominator of any price ratio used to calculate the ele-
mentary price index, be it the ratio of average prices for the whole aggregate



22 or the price ratio for an individual item. In the raw index concepts intro-
duced above, this reference quality is represented by the set of items from
G0 ∩ G1 that are considered for the calculations.

For some specific elementary aggregates, especially for those subject to
rapid technological progress, the list of items available in both the base
and the current periods may be too small to serve as the implementation
of reference quality. An elementary price index is expected to measure the
price evolution for the whole quality spectrum of items belonging to the
elementary aggregate at any time period and not only for those that stay
on the market for a sufficiently long period.

The conventional methods of quality adjustment provide tools that allow
to impute unobservable prices, in order to augment the admissible set of
items used as reference quality range. They are, however, inherently ar-
bitrary, and there is no common methodological approach that covers all
of them. They are ad hoc solutions that may or may not work for each
individual item of an elementary aggregate. Based on the hedonic econo-
metric model introduced in Section 2.3, we are now going to develop a more
sophisticated solution to the issues mentioned so far.

3.2 Hedonic elementary price indices

3.2.1 The hedonic econometric

model revisited

The hedonic econometric model establishes a
relationship between characteristics and prices
of the items of an elementary aggregate. Now,
it needs to be developed further in order to

take account of the time dimension. It will be important for the following
analysis that the domain of the hedonic function does not change over time.
Therefore, we will assume that the set Mpr

G of price-relevant characteristics
remains the same for all time-periods considered.

Hedonic econometric model (in time). Let GT be a composite elementary ag-
gregate for a given set of time periods T with distinguishing characteristics
MG. There exists a finite set of characteristics

Mpr
G = {m1, . . . , mKG

} ⊂ MG

and for each period t ∈ T a function ht
G : R

KG −→ R≥0, such that the price
pt(o) of any item o ∈ Gt available at time t can be written as

pt(o) = ht
G

(
m

pr
G (o)

)
+ ǫt(o) (3.10)



23with m
pr
G (o) = (m1(o), . . . , mKG

(o))′. For all t ∈ T , the residual term ǫt(o)
is assumed to be stochastic with expectation

E[o](ǫ
t(o)) = 0 (3.11)

where [o] denotes the m
pr
G -equivalence class to which o belongs, [o] ∈ Gt/∼m

pr

G
,

and E[o] the expectation built over all items belonging to [o]. Moreover, for
any pair oi, oj ∈ G it is assumed that their residual terms ǫt(oi) and ǫt(oj)
satisfy

E[oi,oj]

(
ǫt(oi) ǫt(oj)

)
= 0 (3.12)

for all t ∈ T , where E[oi,oj ] denotes the expectation built over all pairs of
items (o′i, o

′
j) with o′i ∈ [oi] and o′j ∈ [oj ]. ⋄

Again, the hedonic function ht
G for time t ∈ T is defined on the quotient

set Gt/ ∼m
pr

G
of the current elementary aggregate Gt with respect to the

equivalence relation ∼m
pr

G
. Each equivalence class of items of the same

quality is thus mapped at any time t by ht
G to a certain price value.

The time-dependency of the hedonic function ht
G is one of the key ele-

ments of this reformulation of the hedonic econometric model. The hedonic
function attributes a price to each quality, and it is important to recognise
that this price may change over time. The quality-adjusted price evolution
for an elementary aggregate where the hedonic hypothesis holds is thus fully
represented by the evolution of the hedonic function. In other words, an ap-
propriate comparison of the hedonic functions in a base and a current period
may thus be seen as an implementation of an elementary price index.

The four key elements of quality-adjusted elementary price indices, namely
the items of the elementary aggregates, their qualities, their prices, and time,
are summarised in Fig. 3.1. Measurement or quantification leads from level
I, the set of all objects, to level II, the set of characteristics vectors. These
are then mapped to price values (level III) through hedonic functions that
change over time. The triangles and bullets on the time line symbolise the
different price distributions in the base and the current period, respectively.

3.2.2 Hedonic elementary

price indices

The two elementary price indices concepts, along
with the conventional methods for quality adjust-
ment introduced in Section 3.1 incorporate already

at least implicitly the notion of quality. Some of the adjustment methods,
such as the approach using hedonic regressions for quality adjustments, may
even explicitly use information contained in the characteristics of the con-
sidered items as a representation of their respective qualities. Incorporating
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Figure 3.1: Elementary aggregates, qualities, prices, and time—the four key ele-

ments of hedonic elementary price indices



25the space of characteristics as a third dimension besides objects and prices,
however, allows for a more precise handling of quality.

The hedonic econometric model allows to define the average price πt(Gt)
of an elementary aggregate Gt on the basis of an average combination of
characteristics. One might specify a representative characteristics vector
µ∗, e.g. by

µ∗ :=
(
µ1

(
m1(G

t)
)
, . . . , µKG

(
mKG

(Gt)
))

where mk(Gt) :=
⋃

o∈Gt{mk(o)} and where the functions µk : P(R) −→ R

(k = 1, . . . , KG) average individual characteristics over all items of the aggre-
gate. The average price of the elementary aggregate Gt would consequently
be defined as

π(Gt) := ht
G(µ∗) , (3.13)

provided that ht
G is defined on the whole range of µ∗. Moreover, a hedonic

elementary price index in the sense of both (3.3) and (3.5) can be defined
by

HPI
0:1(G) =

h1
G(µ∗)

h0
G(µ∗)

(3.14)

using the two hedonic functions h0
G and h1

G in the base and in the current
period respectively.

In this approach, the quality of the representative item considered is held
constant by introducing the characteristics vector µ∗ in both the numerator
and the denominator of the above price ratio. It is thus a generalisation
of the index concepts introduced by Brachinger (2002). Here, µ∗ plays
the role of the constant reference quality discussed in Section 3.2. From a
technical point of view, this definition makes sense if µ∗ lies in mG(G0) ∩
mG(G1), i.e. in the domains of both h0

G and h1
G . If this is not the case, a

minimal requirement is that both hedonic functions can be extended to a
domain including µ∗.

The disadvantage of (3.14) is that reference quality is represented only
through one single characteristics vector. As we have already discussed, it
is generally preferable to keep the variety of the considered items of the
elementary aggregate intact in taking the whole quality spectrum as a refer-
ence for building an elementary price index. In this sense, one might imagine
identifying a set M∗ ⊂ mG(G0) ∪ mG(G1) of representants from the char-
acteristics space containing more than just one characteristics vector. After
transformation through the hedonic functions h0

G and h1
G , an appropriate



26 measure of location λ can be applied to reduce this variety to one single
number, such as

HPI
0:1(G) =

λ(h1
G(M∗))

λ(h0
G(M∗))

(3.15)

with ht
G(M∗) :=

⋃
m∈M∗{ht

G(m)} for t ∈ {0, 1}. The question raised above
whether the hedonic functions need to be extended to a larger domain is also
relevant here, since M∗ contains in most cases more than mG(G0)∩mG(G1),
i.e. it contains characteristics vectors that could not be observed in both time
periods.

Equation (3.15) represents in the sense of (3.3) a ratio of means of im-
puted prices in two periods. Alternatively, one can also consider a particular
average of price ratios as in (3.5). The corresponding hedonic elementary
price index is

HPI
0:1(G) = λ

( ⋃

m∈M∗

{
h1
G(m)

h0
G(m)

})
. (3.16)

Obviously, (3.14) is a special case of both (3.15) and (3.16) for the case
where M∗ = {µ∗} and λ is just the identity function.

3.3 A stochastic approach to hedonic elementary price indices

3.3.1 The sampling approach It is obvious that in practice, the reference items
used for measuring the price evolution of an el-
ementary aggregate cannot cover the complete

population (cf. ILO et al., 2004, para. 9.8). Although the number of pur-
chases of objects during a certain time period on a market is finite, it is
impossible to observe the whole universe. Any elementary price index, there-
fore, can only base on samples of observations. It needs to be considered as
a stochastic variable or, in other words, ‘as a function that transforms sam-
ple survey data into an index number’ (Balk, 2005, p. 676). Moreover, one
needs to distinguish between the elementary price index as a meta-parameter
of populations of items in different time periods (i.e. the ‘population index’
in the terms of Dorfman et al., 1999) and its realisation for a specific data
set.

Our preferred approach to hedonic elementary price indices will therefore
be a stochastic one in which we are going to model the sampling procedure
involved. Its philosophy is thus very close to the fairly recent expositions
of Dorfman et al. (1999) or Silver and Heravi (2006). We imagine a
random draw from all the items of an elementary aggregate Gt at time t



27and denote by M t the random vector of characteristics and P t the random
variable representing the price of the drawn item. Based on the hedonic
econometric model, the relationship between M t and P t is given by

P t = ht
G(M t) + ǫt (3.17)

where the random error ǫt has Eǫt = 0 for all t ∈ T and is assumed to be
independent of M t. Within this additive error model, the hedonic function
ht
G therefore is exactly the conditional mean

ht
G(m) = E(P t |M t = m) , (3.18)

and the conditional distribution P(P t |M t) depends on M t only through
ht
G (see e.g. Hastie et al., 2001, p. 28).
The hedonic elementary price index concepts developed in the last section

will now be translated into this new stochastic framework. The formula
given in (3.14), for instance, can be written as the ratio

HPI
0:1(G) =

h1
G(µ∗)

h0
G(µ∗)

=
E(P 1 |M1 = µ∗)

E(P 0 |M0 = µ∗)
(3.19)

of the expected prices in the base and current period given that the charac-
teristics equal the constant reference vector µ∗.

This reference characteristics vector can easily be seen as some kind of
mean of the characteristics available on a market. If we imagine to have
a random vector M representing the outcome of a random draw from a
population of reference characteristics, µ∗ can be defined as the expectation
of M , i.e. µ∗ := EM . In (3.19) as in (3.14), the fixed vector µ∗ plays the role
of the constant reference quality within the elementary price index. Again,
however, reference quality should embrace the whole quality spectrum of
items within the elementary aggregate. This can be achieved in a very
general way by identifying the whole distribution of M as reference quality.
Any indicator depending only on the distribution of M can then serve for
introducing reference quality into a hedonic elementary price index formula.

In the simplest case, where only the expectation of M is taken into con-
sideration, the hedonic elementary price index can be defined by

HPI
0:1(G) =

h1
G(EM)

h0
G(EM)

=
E(P 1 |M1 = EM)

E(P 0 |M0 = EM)
. (3.20)

The distribution of M , as we have just mentioned, represents the prob-
ability of drawing a certain characteristics vector from a specified reference



28 population. It remains an open question, how this reference population and
thus the distribution of M should be specified. Supposing that M

L∼ M0,
i.e. when the population observed in the base period is defined as the refer-
ence population, we get the index

HPI
0:1(G) =

h1
G(EM0)

h0
G(EM0)

,

introduced as true hedonic Laspeyres price index by Brachinger (2002,
p. 6). Conversely, if one takes the population of the current period as refer-
ence quality, i.e. M

L∼ M1, this approach leads to the true hedonic Paasche
price index

HPI
0:1(G) =

h1
G(EM1)

h0
G(EM1)

.

From a theoretical point of view, there is, however, no reason why the
distribution of M should be restricted to either M0 or M1. One alter-
native, for instance, would be to define M as a mixture of the other two
distributions, i.e.

PM = g PM0 + (1 − g) PM1 ,

where PM , PM0 and PM1 are the probability measures of M , M0 and M1,
respectively, and g ∈ [0, 1]. Such a concept represents the practice of taking
characteristics expressions from the populations in both the base and the
current periods for building the population of reference quality. This is,
for instance, the case for the true hedonic adjacent periods price index as
outlined by Brachinger (2002, pp. 6–8).

Instead of implementing the reference quality just by the expectation of
M , it is preferable to use more information contained in the distribution
of M for constructing hedonic elementary price indices. If we translate the
definitions (3.15) and (3.16) into the current stochastic framework, we get
for instance

HPI
0:1(G) =

Eh1
G(M)

Eh0
G(M)

(3.21)

and

HPI
0:1(G) = E

[
h1
G(M )

h0
G(M )

]
. (3.22)

Again, both of these index definitions include (3.19) as a special case, namely
when all the probability mass of PM is concentrated on µ∗.



29It still needs to be explained how the expectations in (3.21) and (3.22)
are to be interpreted. Following (3.18), we have

Eht
G(M) = EM (EP t |Mt(P t |M)) (3.23)

=

∫

R
KG

[∫

R

p dPP t|Mt(p |m)

]
dPM (m) .

for t ∈ {0, 1}. Here, PP t|Mt stands for the probability measure of the
conditional distribution of P t given M t, and EP t |Mt is the expectation
with respect to this probability measure. Moreover, PM is the probability
measure respective to the distribution of M , and EM is its expectation.
In the special case where the random variables and vectors considered are
continuous, we have

Eht
G(M) =

∫

R
KG

[∫

R

p
f(P t,Mt)(p, m)

fMt(m)
dp

]
fM (m) dm (3.24)

with f(P t,Mt) being the common probability density of P t and M t, fMt the
marginal density of M t and, finally, fM the density of M .

It can be seen that for this definition to hold, the support of fM needs
to be contained in the support of fMt for t ∈ {0, 1}. In other words, for
each vector m ∈ R

KG with fMt(m) = 0, we need to have fM(m) = 0.
This has to be taken into consideration when the reference quality M is
chosen. In particular, PM must not attribute a positive probability to any
set of characteristics vectors that does not have a positive probability with
respect to PM0 and PM1 as well, i.e. within the populations available in
both the base and current period.

In practice, therefore, it is useful to assume that PM0 and PM1 attribute
a positive probability to any non-discrete set of vectors in the characteristics
space, i.e. the cartesian product of the ranges of all price-relevant character-
istics. This ensures that out-of-sample-prediction is possible, and thus there
are no formal restrictions on the distribution of reference characteristics M .

Besides, it can be noted that whenever M
L∼ M t, by the law of iterated

expectations, we have

EM(EP t |Mt(P t |M)) = EP t .

If the reference distribution M is chosen following the Paasche principle,
i.e. if M

L∼ M1, equation (3.21) becomes

HPI
0:1(G) =

Eh1
G(M 1)

Eh0
G(M 1)

=
EP 1

EM1(EP 0 |M0(P 0 |M 1))
.



30 On the other hand, if we follow the principle of Laspeyres (M L∼ M0) we
get the index

HPI
0:1(G) =

Eh1
G(M 0)

Eh0
G(M 0)

=
EM0(EP 1 |M1(P 1 |M0))

EP 0
.

The hedonic index defined in (3.22) can similarly to (3.23) be written as

HPI
0:1(G) = EM

[
EP 1 |M1(P 1 |M)

EP 0 |M0(P 0 |M)

]
.

or, in the special case of continuous characteristics variables, as

HPI
0:1(G) =

∫

R
KG

∫
R

p
f

P1,M1 (p,m)

f
M1(m) dp

∫
R

p
f

P0,M0 (p,m)

f
M0(m) dp

fM (m) dm .

The requirements mentioned above concerning the support of fM still apply
in this situation.

3.3.2 Universal formulae for

hedonic elementary price indices

In the previous paragraphs, we proposed sev-
eral alternative definitions of a bilateral he-
donic elementary price index. We are now

going to show that, under certain conditions and with a small modification,
the definitions (3.21) and (3.22) coincide with their non-stochastic counter-
parts (3.15) and (3.16). This will allow us to limit further investigations to
the stochastic versions.

Let us thus look at (3.21) first. Assume that PM is the empirical probabil-
ity distribution of any finite reference population M∗. In that case, Eht

G(M)
is exactly the arithmetic mean of the elements in ht

G(M∗), t ∈ {0, 1}, pro-
portionally weighing the price values in ht

G(M∗) according to the number of
elements contained in their preimage under ht

G . As a matter of fact, (3.15)
is thus a special case of (3.21) if λ is the arithmetic mean, and the same
holds for (3.16) and (3.22).

Admitting only arithmetic means for λ seems, however, far too restrictive
in a price index context. The widespread application of geometric means for
aggregating price ratios to elementary indices suggests more general index
definitions than those given in (3.21) and (3.22).

In this sense, two generalised definitions of a hedonic elementary price
index are

HPI
0:1(G) =

ϕ−1(Eϕ(h1
G(M)))

ϕ−1(Eϕ(h0
G(M)))

(3.25)



31or

HPI
0:1(G) = ϕ−1

(
E

[
ϕ

(
h1
G(M)

h0
G(M)

)])
(3.26)

where ϕ is a continuous and injective function which maps a connected
subset of R to R. Taking ϕ = ln and for PM the empirical distribution of M∗

would thus turn (3.16) with λ being the geometric mean into a special case of
(3.26), for instance. This same procedure works for λ being the arithmetic
or harmonic mean (by taking ϕ(x) = x or ϕ(x) = 1/x respectively), but
it is not directly applicable to more complicated location measures λ. The
formulae (3.25) and (3.26) therefore are still not universal enough to embrace
fully the definitions in (3.15) and (3.16), but they are able to model the most
important cases.

It should be noted, finally, that both definitions, (3.25) and (3.26), coin-
cide if ϕ = ln, just as (3.15) and (3.16) coincide if λ is the geometric mean.
This is due to the linearity of the expectation and the properties of the
natural logarithm.





CHAPTER 4

An Axiomatic Approach

to Hedonic Elementary Price Indices

4.1 Bilateral hedonic elementary price indices

In the following paragraphs, the stochastic approach to hedonic elementary 33

price indices introduced in the previous chapter is going to be taken as a base
for further investigations. A hedonic elementary price index is assumed to be
a certain function of different probability distributions. There are, first of all,
the price distributions in both the base and the current periods, represented
by the random variables P 0 and P 1, for the composite elementary aggregate
G{0,1}, which we will denote from now on just by G for the sake of brevity.
Secondly, along with the price distributions, there are the random vectors
M0 and M 1, representing the respective distributions of characteristics
expressions. Finally, there is the random vector M which incorporates the
reference quality distribution.

Each of these five random quantities may be seen as a function

X : G −→ R≥0 or R
KG

o 7−→ X(o)
.

Here, G itself is the space of events relevant to the experiment being per-
formed as it contains all the hypothetical objects for which prices and char-
acteristics are to be observed. As G is finite, the power set P(G) forms a
σ-algebra, and a probability space can be established by adding an appro-
priate probability measure on P(G). There are, actually, three probability



34 measures of predominant interest, namely one for the base and one for the
current period price and characteristics distribution as well as one that gen-
erates the distribution of reference quality.

A general bilateral hedonic elementary price index can now be defined as
follows.

Definition 4.1. A bilateral hedonic elementary price index is a func-
tional φ of the form

φ : R
G
≥0 × R

G
≥0 × (RKG )G × (RKG )G × (RKG )G −→ R≥0

(P 0, P 1, M0, M1, M) 7−→ φ(. . . )
,

where R
G
≥0 and (RKG )G are the sets of all random variables or vectors defined

on G with values in R≥0 and R
KG , respectively. ⋄

It is important to note that a hedonic index HPI
0:1(G) is not a random

variable itself but takes probability distributions as arguments and yields a
positive real number as a result, just as the mean operator does for individual
random variables.

It has been a tradition in the price index literature for a long time to pro-
pose desirable properties for index formulae in the form of so-called tests or
axioms. An extensive overview of this axiomatic approach to index number
theory was recently given by ILO et al. (2004, Chap. 16). Similar trea-
tises have been written, amongst others, by Balk (1995) as well as Vogt
and Barta (1997), for instance. They all refer predominantly to previous
works by Fisher (1922), Eichhorn (1976, 1978), Eichhorn and Voeller
(1976), Diewert (1993, 1999), and others cited therein.

We are now going to follow an approach similar to the one taken in ILO
et al. (2004, para. 20.58 ff.), which itself follows, among others, Eichhorn
(1978, pp. 152–60) and Diewert (1995, pp. 5–17), in order to develop ax-
ioms for hedonic elementary price indices.

4.2 Axioms for hedonic elementary price indices

One of the most fundamental properties an index should have is its conti-
nuity with respect to its arguments. It is, however, one of the most difficult
to translate into the current setting, where the arguments of the index are
random variables. For sequences of random variables, there are different
notions of convergence. We are now going to propose convergence in the
L2 Hilbert space consisting of all equivalence classes of R-valued random
variables that have finite second moments (see e.g. Fristedt and Gray,



351997) as a base for the continuity axiom. Since G is finite, P 0 and P 1 are
both elements of L2.

Test 1 (Continuity). φ is continuous in the two price variables, i.e. if (P 0
n :

n = 1, 2, . . . ) and (P 1
n : n = 1, 2, . . . ) are sequences of random variables in

L2 that converge to P 0 and P 1, respectively, then

lim
n→∞

φ(P 0
n , P 1, M0, M1, M) = φ(P 0, P 1, M0, M1, M )

and
lim

n→∞
φ(P 0, P 1

n , M0, M1, M) = φ(P 0, P 1, M0, M1, M )

for all M0, M1 and M . ⋄

It remains an open question if continuity of the index should also be required
with respect to the distributions of M0, M 1, and M . Whereas it might be
possible to define a sensible notion of convergence also for multivariate ran-
dom variables, it is unclear how continuity could be proved for indices such
as (3.25) or (3.26) where these three distributions of characteristics expres-
sions are essentially used for conditioning expectations. Further research
needs to clarify this issue.

A second basic property of any price index is the fact that if neither prices
nor characteristics change, the index equals unity:

Test 2 (Identity).

φ(P t, P t, M t, M t, M) = 1

for all P t, M t and M . ⋄

The next two tests represent properties of monotonicity. For this aim, a
sensible order relation on R

G
≥0 and (RKG )G needs to be introduced. We thus

look first at the following definition:

Definition 4.2. Let X0, X1 be two real-valued random variables with distri-
bution functions FX0

and FX1
, respectively. Then X1 is called strictly

stochastically larger than X0, noted by X1 >st X0, if

FX1
(x) ≤ FX0

(x) ∀x ∈ R and ∃x0 ∈ R : FX1
(x0) < FX0

(x0) .

Of interest for the current context are, however, conditional price distribu-
tions given a certain realisation of the characteristics vector. The following
definition extends the notion of stochastic dominance introduced above to
conditional distributions.



36 Definition 4.3. Let X0, X1, Y be three random variables, the former two hav-
ing values in R, and let FX0 | y and FX1 | y denote the conditional distribution
functions of X0 and X1, given Y = y, respectively. Then X1, given Y = y,
is conditionally strictly stochastically larger than X0, given Y = y,
noted by X1 | y >st X0 | y, if

FX1 | y(x) ≤ FX0 | y(x) ∀x ∈ R and ∃x0 ∈ R : FX1 | y(x0) < FX0 | y(x0) .

This concept now allows the formulation of two axioms on the monotonic-
ity of hedonic elementary price indices. The idea here is that, if the current
period prices rise, so does the index:

Test 3 (Monotonicity in current period prices).

φ(P 0, P 1+, M0, M1, M ) > φ(P 0, P 1, M 0, M1, M) .

if P 1+ |m >st P 1 |m for all m ∈ M (G). ⋄

Conversely, if the base period prices increase, the price index decreases:

Test 4 (Monotonicity in base period prices).

φ(P 0+, P 1, M0, M1, M ) < φ(P 0, P 1, M 0, M1, M) .

if P 0+ |m >st P 0 |m for all m ∈ M (G). ⋄

Another basic property a hedonic index should possess is the fact that
multiplying the current period prices by a positive number λ should lead to
a multiplication of the index value by the same factor:

Test 5 (Proportionality in current period prices).

φ(P 0, λP 1, M0, M1, M) = λφ(P 0, P 1, M 0, M1, M) .

for all λ ∈ R>0. ⋄

For base period prices, on the other hand, an inverse proportionality is
assumed:

Test 6 (Inverse proportionality in base period prices).

φ(λP 0, P 1, M0, M1, M ) = λ−1φ(P 0, P 1, M0, M 1, M) .

if λ ∈ R>0. ⋄



37The next property cited in the literature represents the desire that an
index be some kind of mean value of the observable price ratios. It is,
however, not obvious how this so-called mean value test can be translated
into the current context. Since, for traditional elementary price indices, this
test is implied by Tests 1, 2, 3, and 5 (see ILO et al., 2004, p. 363, based on
Eichhorn, 1978, p. 155), such a translation is not absolutely necessary.

The symmetric treatment of outlets axiom and the price bouncing test, as
they can be found in ILO et al. (2004, paras. 20.59–60), for instance, are not
relevant in this context. They both refer to permutations of price samples
and may therefore be replaced later by some invariance properties on the
index estimator, but not on the index itself.

The tests presented so far are seen as ‘reasonably straightforward and un-
controversial’ in the literature (ILO et al., 2004, para. 20.59). The following
tests are now refinements that are said not to be ‘necessarily accepted by
all price statisticians’.

First of all, there is the important time reversal test that may be stated
as follows:

Test 7 (Time reversal).

φ(P 0, P 1, M0, M1, M ) = 1/φ(P 1, P 0, M 1, M0, M ) ⋄

A strengthened version of the time reversal test is the so-called circularity
test:

Test 8 (Circularity).

φ(P 0, P 1, M 0, M1, M )×φ(P 1, P 2, M1, M2, M) = φ(P 0, P 2, M0, M 2, M)
⋄

A common demand on a price index is its invariance to changes in the units
of price measurement. This property is reflected by the commensurability
axiom or test:

Test 9 (Commensurability).

φ(λP 0, λP 1, M0, M1, M) = φ(P 0, P 1, M0, M 1, M) .

if λ ∈ R>0. ⋄

It should be noted, however, that Test 9 will be satisfied by any index that
satisfies Test 5 and Test 6.



38 Such an invariance under changes of units of measurements could, at first
sight, also be proposed for the individual components of the characteris-
tics vectors M0, M 1 and M . Given that some of the characteristics may
be measured at the nominal or ordinal level only, such a rescaling could,
however, be senseless under certain circumstances.

All of these ten axioms concentrate on the index’ behaviour relating to
the two price variables. The characteristics variables are more difficult to
tackle. This is mainly due to the fact that the nature and the meaning
of the individual characteristics may vary in a large spectrum going from
precise metric physical measurements to potentially blurry expert judgments
measured on an ordinal or even nominal scale.

One desirable property, however, is that the ordering of the price-relevant
characteristics should not be of any importance for hedonic elementary price
indices. This is reflected by the fact that permuting the elements of the
vectors of characteristics expressions does not change the index value:

Test 10 (Symmetric treatment of characteristics).

φ(P 0, P 1, M0, M1, M) = φ(P 0, P 1,PM0,PM 1,PM)

if P is a KG-dimensional permutation matrix. ⋄

This completes the listing of tests for a bilateral hedonic elementary price
index. In the following section, it will be investigated under what circum-
stances the index concepts introduced in Section 3.3.2 satisfy these axioms.

4.3 Testing the index definitions

In order to check whether (3.25) and (3.26) satisfy the axioms stated above,
it seems appropriate to reformulate these formulae such that all the ingredi-
ents of Def. 4.1 become visible. In fact, (3.25) and (3.26) can be re-written
as

φ1(P
0, P 1, M0, M1, M) =

ϕ−1(EMϕ(EP 1 |M1(P 1 |M)))

ϕ−1(EMϕ(EP 0 |M0(P 0 |M)))
(4.1)

and

φ2(P
0, P 1, M0, M 1, M) = ϕ−1

(
EM

[
ϕ

(
EP 1 | M1(P 1 |M )

EP 0 | M0(P 0 |M )

)])
(4.2)

respectively. The mapping ϕ is, as defined above, a continuous and injective
function which maps a connected subset of R to R.



39The two hedonic indices φ1 and φ2 both satisfy the continuity test (Test 1),
since the expectation, be it conditional or not, is continuous in the L2-sense
described in the axiom (see e.g. Fristedt and Gray, 1997), and since ϕ
and ϕ−1 are continuous.

It is straightforward to see that φ1 and φ2 satisfy the identity test (Test 2),
due to the fact that EM is linear. In fact, if P 0 = P 1 = P t and M0 = M1 =
M t, we have φ1 = 1 and φ2 = ϕ−1(EM [ϕ(1)]) = 1.

More care is necessary to prove under what conditions the indices φ1 and
φ2 proposed above satisfy the monotonicity tests (Tests 3 and 4). Theorems
on the monotonicity of the mean operator can be found in the literature
(see e.g. Lehmann 1986, S. 84, Müller and Stoyan 2002, S. 5, or Ross
1983, S. 252). In the following, we are first going to prove a similar result
for strict stochastic dominance and conditional expectations. The central
point here is the following lemma:

Lemma 4.4. Let X0, X1 be two real-valued random variables, X1 >st X0,
and let V be a random variable uniformly distributed on [0, 1]. Then there
exist two non-decreasing functions g0 and g1, such that

1. g1(v) ≥ g0(v) for all v,

2. ∃v0, v1 ∈ [0, 1], v0 < v1, with g1(v) > g0(v) for v0 < v < v1 and

3. g0(V ) L∼ X0, g1(V ) L∼ X1. ⋄

Proof. Let F0 and F1 be the cumulative distribution functions of X0 and X1,
respectively. As X1 >st X0, it follows that F1(x) ≤ F0(x) for all x, and there
exists a value x0 with F1(x0) < F0(x0). Let

gi(v) := inf{x |Fi(x − 0) ≤ v ≤ Fi(x)} (i = 0, 1).

The functions g0 and g1 are non-decreasing, because F0 and F1 are non-decreasing.
Hence,

gi(Fi(x)) ≤ x and Fi(gi(v)) ≥ v ∀x, v (i = 0, 1). (4.3)

It follows that v ≤ Fi(x
′) implies gi(v) ≤ gi(Fi(x

′)) ≤ x′ and, conversely, gi(v) ≤
x′ implies Fi(gi(v)) ≤ Fi(x

′). Therefore, v ≤ Fi(x
′), and we have

gi(v) ≤ x′ ⇐⇒ v ≤ Fi(x
′) .

It follows that

P(gi(V ) ≤ x) = P(V ≤ Fi(x)) = Fi(x) ∀x ,



40 and thus gi(V ) L∼ Xi, i = 0, 1. Moreover,

g0(v) = inf{x |F0(x − 0) ≤ v ≤ F0(x)}

≤ inf{x |F1(x − 0) ≤ v ≤ F1(x)} = g1(v) ∀ v ,

as F1(x) ≤ F0(x)∀ x and because F0, F1 are monotonically increasing. To complete
the proof, we look at

vε := F1(x0) + ε(F0(x0) − F1(x0)) = F0(x0) − (1 − ε)(F0(x0) − F1(x0)) .

If 0 < ε < 1, then, because of F0(x0) − F1(x0) > 0, the monotonicity of g0 and
(4.3), there is

g0(vε) = g0

(
F0(x0) − (1 − ε)(F0(x0) − F1(x0))

)
≤ g0(F0(x0)) ≤ x0 .

It remains to be shown that g1(vε) > x0 for 0 < ε < 1, from where we have
g1(v) > g0(v) for F1(x0) < v < F0(x0). Assume thus that g1(vε) ≤ x0. We
then also have F1(g1(vε)) ≤ F1(x0). Conversely, (4.3) says that F1(g1(vε)) ≥
vε = F1(x0) + ε(F0(x0) − F1(x0)). Therefore F1(x0) ≥ F1(x0) + δ with δ =
ε(F0(x0) − F1(x0)) > 0, which is a contradiction. �

This leads us now to the following proposition on the strict monotonicity
of the mean operator:

Corollary 4.5. Let X0, X1 be two real-valued random variables, X1 >st X0.
Then, E(X1) > E(X0), if both of the expectations exist. ⋄

Proof. Let V be a random variable with a uniform distribution on [0, 1]. It follows
from Lemma 4.4 that there are two functions g0 and g1 with g1(v) ≥ g0(v) for all
v and gi(V ) L∼ Xi, i = 0, 1. We therefore have

E(X1) = E(g1(V )) ≥ E(g0(V )) = E(X0)

due to the monotonicity of the integral. To prove the strict inequality, we define
the difference function gd := g1 − g0. Hence,

E(X1) = E(g1(V )) = E
(
(g0+gd)(V )

)
= E(g0(V ))+E(gd(V )) = E(X0)+E(gd(V )) .

It remains to be shown that E(gd(V )) > 0. From Lemma 4.4, we know that
gd(v) ≥ 0 for all v and that gd(v) > 0 for v0 < v < v1. Therefore,

E(gd(V )) =

∫ 1

0

gd(v) dv ≥

∫
v1

v0

gd(v) dv > 0 . �

Let us now show that this same property also holds for conditional expec-
tations.



41Lemma 4.6. Let Y be a random variable, g0, g1 two real-valued measurable
functions with P((g1 − g0)(Y ) > 0) = 1. Then, g1(Y ) >st g0(Y ). ⋄

Proof. Let F0 and F1 be the cumulative distributions functions of g0(Y ) and g1(Y ),
respectively. We then have

F1(x) = P(g1(Y ) ≤ x) ≤ P(g0(Y ) ≤ x) = F0(x) ∀ x .

It remains to be shown that there exists a value x0, such that F1(x0) < F0(x0).
Assume that F1(x) = F0(x) for all x. In this case, P(g1(Y ) ≤ x) = P(g0(Y ) ≤ x),
i.e.

P(g1(Y ) > x ≥ g0(Y )) = P(g0(Y ) ≤ x) − P(g1(Y ) ≤ x) = 0 ∀x ,

which is a contradiction to the assumption that P((g1 − g0)(Y ) > 0) = 1. �

Corollary 4.7. Let X0, X1 and Y be random variables, the former two being
real-valued. Assume that X1 | y >st X0 | y for all y in the range of Y . Then,

E(X1 |Y ) >st E(X0 |Y ) ,

if both of the conditional expectations exist. ⋄

Proof. Let gi(y) := E(Xi | y), i = 0, 1. From Corollary 4.5, we know that g1(y) >
g0(y) for all y on the support of the probability (density) function of Y . It follows
from Lemma 4.6 that g1(Y ) >st g0(Y ). �

Theorem 4.8. The indices φ1 and φ2 are monotonic in the sense of Tests 3
and 4. ⋄

Proof. We are going to assume that P 1+ |m >st P 1 |m and P 0+ |m >st P 0 |m
for all m ∈ M(G). Because ϕ is continuous and injective, it is also strictly mono-
tonic. It follows from Corollary 4.7 and Lemma 4.6 that EP1+ | M1(P 1+ |M) >st

EP1 |M1(P 1 |M) and from Corollary 4.5, we conclude that

ϕ−1(EMϕ(EP1+ | M1(P
1+ |M))) > ϕ−1(EMϕ(EP1 | M1(P 1 |M))) . (4.4)

To see this, let

g1(m) := ϕ(EP1+ |M1(P
1+ |m)) and g0(m) := ϕ(EP1 |M1(P 1 |m))

for all admissible m ∈ R
KG . From Corollary 4.5, we have g1(m) > g0(m) for

all m if ϕ is increasing, and it follows from Lemma 4.6 that g1(M) >st g0(M).
Applying Corollary 4.5 a second time leads to EM (g1(M)) > EM (g0(M)), and,
since ϕ−1 is also strictly monotonically increasing, to the mentioned result.



42 If, on the other hand, ϕ is decreasing, we have g1(m) < g0(m), g1(M) <st

g0(M) and EM (g1(M)) < EM (g0(M)). Since in this case, ϕ−1 is likewise strictly
monotonically decreasing, we return to the inequality (4.4).

Therefore,

ϕ−1(EMϕ(EP1+ |M1(P 1+ |M)))

ϕ−1(EMϕ(EP0 |M0(P 0 |M)))
>

ϕ−1(EMϕ(EP1 |M1(P 1 |M)))

ϕ−1(EMϕ(EP0 |M0(P 0 |M)))

and, by analogy,

ϕ−1(EMϕ(EP1 |M1(P 1 |M)))

ϕ−1(EMϕ(EP0+ |M0(P 0+ |M)))
<

ϕ−1(EMϕ(EP1 |M1(P 1 |M)))

ϕ−1(EMϕ(EP0 |M0(P 0 |M)))
.

This completes the proof of the monotonicity of φ1. The monotonicity of φ2 is
proved in a completely analogous way. �

Let us now turn to the proportionality axioms.

Theorem 4.9. A sufficient condition for φ1 and φ2 to satisfy the proportion-
ality tests (Tests 5 and 6) is that ϕ(λx) = ϕ(λ)+ϕ(x) or ϕ(λx) = ϕ(λ)ϕ(x)
for all λ, x ∈ R. ⋄

Proof. Let us first assume that

ϕ(λx) = ϕ(λ) + ϕ(x) (4.5)

for all λ, x ∈ R. We then have ϕ−1(µ + y) = ϕ−1(µ)ϕ−1(y) for all µ, y ∈ R.
To see this, we define µ∗ = ϕ−1(µ) and y∗ = ϕ−1(y). Thus, ϕ−1(µ) ϕ−1(y) =
ϕ−1(ϕ(µ∗))ϕ−1(ϕ(y∗)) = µ∗ y∗ = ϕ−1(ϕ(µ∗ y∗)). Given (4.5), this last term is
equal to ϕ−1(ϕ(µ∗) + ϕ(y∗)) = ϕ−1(µ + y).

Due to the property just introduced and the linearity of the conditional expec-
tations, we have now

φ1(P
0, λP 1, M0, M1, M) =

ϕ−1(EMϕ(EP1 | M1(λP 1 |M)))

ϕ−1(EMϕ(EP0 |M0(P 0 |M)))

=
ϕ−1(EMϕ(λEP1 |M1(P 1 |M)))

ϕ−1(EMϕ(EP0 |M0(P 0 |M)))

=
ϕ−1(EM [ϕ(λ) + ϕ(EP1 | M1(P 1 |M))])

ϕ−1(EMϕ(EP0 |M0(P 0 |M)))

=
ϕ−1(ϕ(λ) + EMϕ(EP1 |M1(P 1 |M)))

ϕ−1(EMϕ(EP0 | M0(P 0 |M)))

=
ϕ−1(ϕ(λ))ϕ−1(EMϕ(EP1 | M1(P 1 |M)))

ϕ−1(EMϕ(EP0 | M0(P 0 |M)))

= λφ1(P
0, P 1, M0, M1, M) .



43This proves the satisfaction of test 5 by φ1 if ϕ satisfies (4.5). If ϕ(λ x) = ϕ(λ)ϕ(x),
the same proof holds when all the additions are replaced by multiplications. More-
over, an analogous proof can be given for φ2 or test 6. �

By simplification, φ1 always satisfies the circularity test (Test 8) and thus
automatically the time reversal test (Test 7). For φ2, we have one sufficient
condition given in the following theorem.

Theorem 4.10. A sufficient condition for φ2 to satisfy the circularity axiom
(Test 8) is that ϕ(x y) = ϕ(x) + ϕ(y) for all x, y ∈ R. ⋄

Proof. From the condition ϕ(x y) = ϕ(x) + ϕ(y), it follows immediately that
ϕ−1(x+y) = ϕ−1(x)ϕ−1(y) for all x, y ∈ ϕ(R) (see proof of Theorem 4.9). There-
fore

φ2(P
0, P 1, M0, M1, M) × φ2(P

1, P 2, M1, M2, M)

= ϕ−1

(
EM

[
ϕ

(
EP1 | M1(P 1 |M)

EP0 | M0(P 0 |M)

)])
ϕ−1

(
EM

[
ϕ

(
EP2 |M2(P 2 |M)

EP1 |M1(P 1 |M)

)])

= ϕ−1

(
EM

[
ϕ

(
EP1 |M1(P 1 |M)

EP0 |M0(P 0 |M)

)]
+ EM

[
ϕ

(
EP2 | M2(P 2 |M)

EP1 | M1(P 1 |M)

)])

= ϕ−1

(
EM

[
ϕ

(
EP1 |M1(P 1 |M)

EP0 |M0(P 0 |M)

)
+ ϕ

(
EP2 |M2(P 2 |M)

EP1 |M1(P 1 |M)

)])

= ϕ−1

(
EM

[
ϕ

(
EP1 | M1(P 1 |M)

EP0 | M0(P 0 |M)

EP2 |M2(P 2 |M)

EP1 |M1(P 1 |M)

)])

= φ2(P
0, P 2, M0, M2, M) . �

The commensurability axiom (Test 9) is always satisfied by φ2 since

φ2(λP 0, λP 1, M0, M1, M) = ϕ−1

(
EM

[
ϕ

(
EP 1 |M1(λP 1 |M)

EP 0 |M0(λP 0 |M)

)])

= ϕ−1

(
EM

[
ϕ

(
λEP 1 |M1(P 1 |M)

λEP 0 |M0(P 0 |M)

)])

= ϕ−1

(
EM

[
ϕ

(
EP 1 |M1(P 1 |M )

EP 0 |M0(P 0 |M )

)])

= φ2(P
0, P 1, M0, M1, M) .

Moreover, it is satisfied by φ1 under the condition given in Theorem 4.9.
This is due to the fact that any index satisfying Tests 5 and 6 also satisfies
Test 9.



44 Table 4.1: Satisfaction of the tests by the two indices for different transformation

functions ϕ

Index ϕ(x) T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

φ1 x • • • • • • • • • •
ln x • • • • • • • • • •
x−1 • • • • • • • • • •
any • • • • – – • • – •

φ2 x • • • • • • – – • •
ln x • • • • • • • • • •
x−1 • • • • • • – – • •
any • • • • – – – – • •

•: satisfied, –: not satisfied in general

Finally, φ1 and φ2 both satisfy Test 10 since

E(P |M) = E(P |PM)

for any permutation matrix P.
In Section 3.3.2, we identified three important candidates for ϕ, namely

ϕ(x) = x, ϕ(x) = lnx and ϕ(x) = x−1. Table 4.1 lists the tests which are
satisfied by the indices φ1 and φ2 in general or depending on how ϕ is chosen
among these candidates.

The fact that Test 7 and Test 8 are not generally satisfied by φ2 and
ϕ(x) = x or ϕ(x) = x−1 can be seen as follows: If ϕ(x) = x and PM is the
empirical distribution of any reference set M∗, φ2 has the form

1

cardM∗

∑

m∈M∗

h1
G(m)

h0
G(m)

, (4.6)

which is exactly the formula of the Carli elementary price index. If, under
the same assumption concerning PM , ϕ(x) equals x−1, then (4.6) becomes
the harmonic mean of the price relatives. It is, however, known from the
literature that both of these index formulae generally fail the time reversal
and the circularity test (see e.g. ILO et al., 2004, p. 364).

To see that φ1 may fail Test 5 if ϕ does not satisfy one of the conditions
of Theorem 4.9, let us consider the following setting. Assume that PM is a
two-point distribution with values m1 and m2 each having the probability
1/2. Assume further that

p1
1 := EP 1 |M1(P 1 |M = m1)) 6= EP 1 |M1(P 1 |M = m2)) =: p1

2 .



45If we now take ϕ = exp (and therefore ϕ−1 = ln), we have

φ1(P
0, λP 1, M0, M1, M ) =

ln(EM exp(EP 1 |M1(λP 1 |M )))

ln(EM exp(EP 0 |M0(P 0 |M)))

=
ln(EM exp(λEP 1 |M1(P 1 |M )))

ln(EM exp(EP 0 |M0(P 0 |M)))

=
ln(exp(λp1

1)
1
2 + exp(λp1

2)
1
2 )

ln(EM exp(EP 0 |M0(P 0 |M)))

=
− ln 2 + ln((expλp1

1) + (expλp1
2))

ln(EM exp(EP 0 | M0(P 0 |M )))
,

and this last expression is different from

λφ1(P
0, P 1, M0, M1, M) = λ

− ln 2 + ln((exp p1
1) + (exp p1

2))

ln(EM exp(EP 0 |M0(P 0 |M)))

in general. This counterexample also holds for φ2 and Test 5, for Test 6 as
well as for φ1 and Test 9.

4.4 Conclusion

From an axiomatic point of view, the choice between φ1 and φ2 is biased
towards the former, at least if one is willing to accept the additional restric-
tion that ϕ(λx) = ϕ(λ) + ϕ(x) or ϕ(λx) = ϕ(λ)ϕ(x) for all λ, x ∈ R. This
is due to the fact that, in this case, all the axioms presented in Section 4.2
are satisfied. It is true that this also holds for φ2 together with ϕ = ln, but
then φ1 and φ2 coincide, such that this special case is already embraced by
φ1.

The only argument that speaks for φ2 based on the results obtained above
is that φ2 always satisfies the commensurability axiom (Test 9) whereas φ1

does not in every case. This, however, is only relevant if the above restric-
tions on ϕ do not apply. The index φ2, finally, remains also a candidate if
one is prepared to disregard the time reversal and the circularity test.

Unfortunately, there is no apparent proof that the above restrictions on
ϕ are not only sufficient but also necessary for φ1 to satisfy all the tests.
The family of admissible transformation functions ϕ therefore cannot be
specified further here.

As a matter of fact, based on what has been presented so far, there is
no single response to the question of how a hedonic elementary price index



46 should be defined. Several interpretations are possible, and, just as in the
case of conventional (i.e. non-hedonic) elementary indices, other criteria need
to be taken into account in order to decide between the alternatives. These
criteria presumably do not depend on the fact that quality adjustments are
undertaken but resemble those presented, for instance, in ILO et al. (2004,
Chap. 20).

The results we obtained in the current part are still innovative in the
way that the task of defining a hedonic index was completely separated
from the estimation. It is important to see that a quality-adjusted or, more
specifically, a hedonic elementary price index is an economic parameter that
first needs to be properly defined. It is a non-stochastic parameter of the
price and quality distributions realised on the market, and it depends on the
concept of a reference quality spectrum that is held constant for comparing
two time periods.

Now that such candidate definitions are identified, we can turn our at-
tention to the question of how these parameters may be estimated. This is
going to be attempted in Chapter 6.
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CHAPTER 5

Estimating the Hedonic Function

5.1 General considerations

The issue of estimating the hedonic function 49

ht
G(m) = E(P t |M t = m)

for a given elementary aggregate G at a specific point t in time and for any
meaningful characteristics vector m ∈ R

KG is fundamental for the subse-
quent estimation of a hedonic elementary price index. Since the focus will
always be directed to one specific elementary aggregate, the index G will be
dropped in the further analysis.

The starting point for a hedonic regression is always a sample of different
representatives of the elementary aggregate under review at time t. More
specifically, the estimation of ht is based on a random sample, i.e. on N t

independent and identically distributed (i.i.d.) random variables

(P t
1 , M t

1), . . . , (P
t
Nt , M t

Nt) , (5.1)

where (P t
n, M t

n) L∼ (P t, M t) for all n ∈ {1, . . . , N t}.
If H := {h : R

K −→ R≥0} denotes the potential hedonic functions ap-
plicable to the given elementary aggregate, any estimate ĥt of the hedonic
function ht results then from a mapping

h : R
Nt

≥0 × R
Nt×K −→ H

(P t,Mt) 7−→ ĥt := h[P t,Mt]
(5.2)



50 where P t = (P t
1 , . . . , P t

Nt)′ denotes the random vector of sampled prices and
M

t is the respective N × K random matrix (M t
1, . . . , M

t
Nt) of the price-

relevant characteristics. As a consequence, ĥt is actually a random variable
with values in H.

In order to simplify the notation, we are not going to distinguish ĥt as an
estimator (i.e. a random variable with value in H) or as an estimation (i.e.
an element of H) of ht. It will be clear from the context which of the two
meanings is applicable.

Given any specific representative of the elementary aggregate with char-
acteristics vector m, its price predictor is then defined by

P̂ t := ĥt(m) = h[P t,Mt](m) .

In this framework, the vector m is not random but fixed in advance, and
the randomness of P̂ t stems from the randomness of the estimator ĥt.

5.2 Model selection

As we have just discussed, the estimation of a hedonic function for a specific
period t is a mapping of the data (P t,Mt) to the set H of all possible
hedonic functions. In practice, however, only very restricted subsets of H
are commonly regarded as candidates for ĥt. In specifying the so-called
functional form of a hedonic regression, one implicitly limits the range of
possible outcomes of h to a well-defined family of functions.

Figure 5.1 describes, inspired by Hastie et al. (2001, p. 199), the rela-
tionship between the true and estimated hedonic functions as well as the
possible outcomes of h in H. The black dot labelled ‘True ht’ indicates the
true hedonic function as it is assumed to exist by the hedonic econometric
model. It is this point in H one would like to estimate as accurately as
possible. However, as there is a model residual ǫt which represents quality-
independent price components, the actual realisation of ht in a given sample
will almost surely differ from the true hedonic function. The set of possible
realisations is depicted by the gray shaded area containing an ‘Observed ht’
as an example.

When specifying the functional form of the hedonic regression model, one
explicitly restricts the outcomes of h to the subset of H containing all the
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True ht

Observed ht
Model family 2

Model family 1

Closest fit in family
Estimated ĥt

Figure 5.1: Schematic outline of the set H of all possible hedonic functions

elements of the proposed form. If a linear regression approach is chosen, for
instance, only functions of the form

h(m) = β0 +

K∑

k=1

βk mk (5.3)

with β0, . . . , βK being any real numbers are allotted as candidates for choos-
ing the hedonic function estimate ĥt. Two such subsets of H are depicted by
the curved lines labelled ‘Model family 1’ and ‘Model family 2’ in Fig. 5.1. It
is obvious that the intersection of two or more such subsets is not necessarily
empty due to the fact that any given hedonic function may be contained in
several model families.

In general, the estimation of a hedonic function is done by determining
or searching for an element in such a model family which is—in a certain
sense—closest to the observation. The distance to be minimised is measured
by an appropriate metric such as the least squares or least absolute devia-
tions criteria. This procedure, however, does not yield the hedonic function
within the family that is closest to the truth but the function that is closest
to the observation.

The degree of flexibility of a regression approach to closely fit the data—
or, in other words, the degrees of freedom involved—are connected in some



52 sense with the rigidity of the model families depicted in Fig. 5.1. If the
functional form is too rigid, it may occur that both the estimated ĥt and
the closest fit in family are far away from the true ht. This is potentially the
case for family one in the drawing. On the other hand, however, the actual
estimate ĥt in this first example is near to the closest fit in family, and it
has about the same distance from either the observed or the true hedonic
function. Another extreme is the second model family in the drawing which
tends to over-fit the data. Here, the estimated ĥt is far away both from the
closest fit in family and from the true hedonic function. Nevertheless, the
estimate within the second family is nearer to the truth than the estimate
within the first family. In this case and for this realisation, the second family
would thus be preferable, even though the over-fitting is important.

These reflections describe the difficulty of choosing an appropriate func-
tional form in practice. The question of how to compare different model
families with respect to their goodness of fit is going to be treated in detail in
Section 5.4. There has, moreover, been a lot of discussion in the literature on
whether one or the other regression approach are valid or preferable from an
economic point of view for estimating hedonic functions. Diewert (2003a),
for example, states that the linear regression approach or, equivalently, the
family of functions (5.3), is ‘unlikely to be consistent with microeconomic
theory’. Triplett (2004) discusses in detail, however, that most of these
studies—including the one by Diewert—implicitly or explicitly treat the
special case where all the buyers have the same preferences. This assump-
tion, however, is empirically inappropriate. Largely based on Rosen (1974),
Triplett concludes not only that the ‘hedonic functional form is purely an
empirical issue’ but also that ‘Any empirical form that fits the data is con-
sistent with the theory’. He shares thus the opinion expressed already by
Griliches (1971a, p. 58) that ’There is no a priori reason to expect price
and quality to be related in any particular fixed fashion’.

Looked at in this way, the choice of a functional form for a hedonic regres-
sion is a purely statistical problem. Any regression technique that can be
used to describe the relationship between characteristics and price is there-
fore a candidate for further investigation. A few such approaches are now
going to be presented.



535.3 Regression models

5.3.1 Linear regression Linear regression methods are undoubtedly the most
commonly used technique for estimating the hedonic
function. Triplett (2004, pp. 180 ff.) discusses the

history and the common practice for choosing functional forms in hedonic
regressions. According to him, the two most widely used functional families
are the semi-log and the double-log approach.

In the semi-log functional form, the underlying regression equation is

lnP t = βt
0 +

K∑

k=1

βt
k M t

k + ηt (5.4)

and the corresponding hedonic function has the form

h[P t,Mt](m) = exp

(
β̂t

0[P
t,Mt] +

K∑

k=1

β̂t
k[P t,Mt]mk

)
.

Here, the β̂t
k[P t,Mt] are ordinary least squares estimates of the parameters

βt
k, k ∈ {0, . . . , K}. Due to the log-transformation of the prices, the random

error term ηt is not directly comparable to ǫt in (3.17).
It needs to be noted that the above specification holds if categorical

variables only have two levels. If, however, a categorical variable M t
k has

Lk > 2 levels, it first needs to be recoded into Lk − 1 dichotomous variables
M t

k,1, . . . , M
t
k,Lk−1 and, for each of them, a coefficient β̂t

k,l[P
t,Mt] needs to

be estimated. For the sake of simplicity, we are going to stick to the nota-
tion introduced above, and this convention is assumed to be tacitly applied
where necessary.

As a second model family, the double-log approach starts from the equa-
tion

lnP t = β0 +
∑

k∈Kcon

βt
k lnM t

k +
∑

k∈Kcat

βt
kM t

k + ηt (5.5)

and yields the hedonic function

h[P t,Mt](m) = exp

(
β̂t

0[P
t,Mt] +

∑

k∈Kcon

β̂t
k[P t,Mt] lnmk

+
∑

k∈Kcat

β̂t
k[P t,Mt]mk

)



54 Here, Kcon and Kcat assemble the indices of the continuous and the categor-
ical exogenous variables respectively.

A convenience of these two ‘log linear’ approaches is that the resulting
hedonic function estimates always yield positive prices. With the choice
of either the semi-log or the double-log approach, one implicitly assumes
that the variance of the error term ǫt is proportional to (E[P t])2 (see e.g.
Montgomery and Peck, 1992, p. 98) while ηt, if at all, is homoscedastic.
The predominance of these two approaches in the hedonic price index lit-
erature indicates that this assumption might often be adequate in practice.
Interestingly, the double-log approach is the ‘overwhelming favourite’ for
IT equipment studies, while the semi-log form is the most widely used for
‘noncomputer products’ (Triplett, 2004, p. 180), such as automobiles.

The linear regression approach

P t = β0 +

K∑

k=1

βk M t
k + ǫt (5.6)

together with the hedonic function estimate

h[P t,Mt](m) = β̂t
0[P

t,Mt] +

K∑

k=1

β̂t
k[P t,Mt]mk (5.7)

is less frequently used in practice, presumably because it does not fit the
data well in most of the cases (see e.g. Murray and Sarantis, 1999 or
Yu, 2003). Moreover, the linear hedonic function (5.7) is likely to produce
negative prices, especially if m is dissimilar to the vectors contained in M

t.
Such a situation might be observed when m is the characteristics vector of
an item unavailable in period t. It is one of the main aims of the hedonic
price index theory to be able to handle such settings, so it would be a severe
drawback if exactly in these cases, the estimated prices were negative and
thus impossible to interpret.

The question of whether to introduce the variables themselves or to use
their logarithms can be tested statistically using the Box-Cox or Box-Tidwell
transformations (see e.g. Berndt, 1991, p. 128). The idea here is to trans-
form a variable X to X(λ) by

X(λ) =
Xλ − 1

λ

where λ is a parameter to be estimated. If λ = 1 for all variables (P t and
M t

k, k ∈ {1, . . . , K}), the functional form is linear. Conversely, if λ → 0



55then X(λ) → lnX or, in other words, if λ tends to 0 for all the continuous
variables, the functional form approaches to the double-log specification.
The difference between the Box-Cox and the Box-Tidwell transformations is
that the latter allows for different λs for the individual exogenous variables.
Testing one of the three functional forms described above means thus testing
if the λs have the appropriate values, 0 or 1 respectively.

Box-Cox models have been used in empirical studies by Bitros and
Panas (1988) or Yu (2003), for instance. According to Triplett (2004,
p. 182), however, ‘the Box-Cox test quite commonly results in rejection of
all the functional forms offered up to it.’ This holds at least for the three
approaches mentioned above and is one of the reasons why Dickie et al.
(1997) argue for testing any hedonic price equation also against alternatives
that are not nested within the Box-Cox form. Anglin and Gençay (1996,
pp. 633–4) as well as Curry et al. (2001, p. 661) summarise the discussion
in the literature about the use of linear, semi-log, double-log or Box-Cox
models for hedonic regressions. On this basis, both of them conclude that
more flexible functional forms need to be investigated. The alternatives they
propose are a semi-parametric approach and the use of neural networks re-
spectively. Other techniques such as boosted regression trees seem to be
promising as well (see e.g. van Wezel et al., 2005).

In the present piece of work, we will content ourselves with one further
approach that goes beyond the linear or log-linear models presented above,
namely the partial least squares (or PLS) regression.

5.3.2 PLS regression Partial least squares regression is particularly useful in
a setting where the independent variables are numerous

and correlated. Similar to principal components regression (PCR), the main
idea of this method is to first project the vector of covariates to a few latent
variables which are then used as regressors for one or more dependent vari-
ables. In contrast to PCR which concentrates on the independent variables
only, PLS regression takes into consideration the dependent variables as well
for determining the latent variables. In other words, partial least squares
‘seeks directions that have high variance and have high correlation with the
response’ (Hastie et al., 2001, p. 67).

The ability of reducing a large number of correlated regressors to a smaller
dimension makes the PLS method particularly suitable for hedonic regres-
sions. This is especially true if categorical characteristics with many levels
are involved (e.g. the makes or models of cars). PLS regressions have been
used in hedonic studies for example by Tenenhaus et al. (2004) for mod-
elling expert judgments of products based on their characteristics. A funda-



56 mental overview on PLS regression is given by Abdi (2004). Comprehensive
presentations are contained in Martens and Næs (1989) or Tenenhaus
(1998).

Let X denote the design matrix built upon M
t, i.e. the matrix having as

columns the N t realisations of M t
k (or M t

k,l if the kth variable is categorical
with more than two levels, see above), k ∈ {1, . . . , K}. The matrix X has
thus N t rows and

card Kcon +
∑

k∈Kcat

(Lk − 1)

columns, where Lk is the number of levels of the categorical variable M t
k.

Unlike in linear regressions with an intercept term, there is no column in
the design matrix containing only ones. Let Y be the random vector of
response variables, e.g. Y = lnP t where the natural logarithm is applied
component-wise. Moreover, Xc and Y c denote centered copies of X and Y ,
respectively, where each component is diminished by the respective column
mean.

The idea of PLS regression is now to project the centered design matrix
Xc onto A latent variables T̂ = (T̂ 1, . . . , T̂ A) by a matrix V̂, i.e. T̂ =

XcV̂. The matrix V̂ is thereby determined iteratively such that, among
other conditions, the scaled covariances between Y and the T̂ a are maximal.
Details are to be found in the literature mentioned above. A least squares
fit of a linear regression model with T̂ as the design matrix and Y c as the
response vector is finally estimated, yielding the so-called vector of loadings

Q̂ = (T̂
′
T̂)−1

T̂Y c .

The hedonic function can finally be written as

h[P t,Mt](m) = exp(Ȳ + x′
V̂Q̂) (5.8)

where Ȳ is the mean of Y , and x′ is a row vector built upon m in exactly
the same manner as the centered design matrix Xc is built upon M

t, i.e.
having the same structure and being centered exactly as any row in Xc.
The exponential function in (5.8) corresponds to the logarithm applied to
the prices in the definition of Y . If the prices are transformed in another
manner (or not at all), the respective inverse function needs to be introduced
here.

The optimal number A of factors in a PLS regression model is usually
determined by cross-validation on the original data set. Several algorithms
have been developed to carry out PLS regression. The calculations in Chap-
ter 8 are going to be done with the ‘modified kernel algorithm’ proposed



57by Dayal and MacGregor (1997) and implemented by Wehrens and
Mevik (2006).

5.4 Model assessment

Starting from the idea that ‘the functional form for hedonic functions should
depend on the data, and not on some a priori reasoning’ (Triplett, 2004,
p. 188), there is a need for an overall measure of the predictive power of a
model in order to find the one which best fits the data.

Davison and Hinkley (1997) present an approach of how to use boot-
strap techniques to estimate such an aggregate prediction error. Their ap-
proach will now be applied to the context of hedonic functions. Let us
assume that the prediction error of a single prediction P̂ is measured by
a cost function c(P, P̂ ), usually an increasing function of |P − P̂ |. Overall
prediction accuracy is then measured by

D(h, ĥ) = E(P+,M+)

[
c(P+, ĥ(M+))

]

where ĥ = h[p,M] is a fixed estimate of the hedonic function, and (P+, M+)
is a new observation that stems from the same distribution as the original
data. Clearly, as the true hedonic function h, i.e. the distribution of (P, M ),
is unknown, D or, more precisely,

∆(h) = Eĥ(D(h, ĥ)) = E(P,M)

[
E(P+,M+)

[
c(P+, h[P ,M](M+))

]]

needs to be estimated in practice. One is thus interested in the average
prediction accuracy of models learnt by h over all possible data sets of size
N sampled from (P, M ).

A first approach to obtain such an estimate would be to use the same
data set (p,M) as it was used to estimate the hedonic function. This leads
to the apparent error

∆̂app = D(ĥ, ĥ) =
1

N

N∑

n=1

c(pn, ĥ(mn))

which, however, tends to underestimate ∆. This is due to the fact that the
same data set is used for the model fitting and the predictions. The mean
difference between the true aggregate prediction error and the apparent error
will be denoted by

e(h) = Eĥ[D(h, ĥ) − D(ĥ, ĥ)] = ∆(h) − Eĥ[D(ĥ, ĥ)] ,



58 the expected excess error. The idea now is to build a bootstrap estimate ê
of e(h) in order to modify the apparent error into a reasonable estimate of
∆.

If one assumes that ĥ⋆r = h[p⋆r,M⋆r] (r = 1, . . . , R) are bootstrap repli-
cations of ĥ, a bootstrap estimate êB of the expected excess error can be
calculated by

êB =
1

R

R∑

r=1

[
1

N

N∑

n=1

c(pn, ĥ⋆r(mn)) −
1

N

N∑

n=1

c(p⋆rn, ĥ⋆r(m⋆rn))

]
. (5.9)

Finally, a bootstrap estimate ∆̂B of the aggregate prediction error is ob-
tained by

∆̂B = êB + ∆̂app . (5.10)

If different functional forms of hedonic functions or, to say it in the termi-
nology used by Hastie et al. (2001), different learners h are to be compared,
it is necessary to define an ordering structure on the universe of all the pos-
sible learning algorithms. One such ordering could be obtained by defining
a learner h1 to be preferable to h2, denoted by h1 ≻ h2, if and only if
∆(h1) < ∆(h2), i.e. if the aggregate prediction error of the resulting hedonic
function estimate ĥ is lower for h1 than for h2.

In other words, one would want to test the null hypothesis ∆(h1) < ∆(h2)
based on estimations of ∆(h1) and ∆(h2) in order to reject a learner h1 in
favour of h2. This null hypothesis can alternatively be written as

∆(h1) − ∆(h2) < 0 . (5.11)

Having calculated ∆̂t
B(h1) − ∆̂t

B(h2) for a set of independent time periods
t ∈ {1, . . . , T}, we are going to propose using a Wilcoxon signed rank test
for testing nonparametrically the null hypothesis that the median of these
estimated differences is less than zero. Rejecting this null hypothesis would
then support the assumption that h2 ≻ h1.

Empirical results using these methods are going to be presented in Sec-
tion 8.4.

5.5 Further econometric considerations

A careful investigation of important econometric issues such as variable se-
lection, outlier detection, the impact of unmeasured characteristics, het-
eroscedasticity of the random error terms and multicollinearity of the inde-
pendent variables that are inherent in every regression problem would go



59beyond the scope of this thesis. For estimating the hedonic functions in
Part III, these issues are going to be dealt with on an ad hoc basis. No
comprehensive treatment of these questions is therefore given here, but the
applied methods will briefly be presented in Chapter 8, where applicable.
For theoretical treatises of some of these aspects, the reader is referred to
Triplett (2004) or to the more specific articles by Arguea and Hsiao
(1993), Dickie et al. (1997), Andersson (2000), or Benkard and Bajari
(2003).





CHAPTER 6

Estimating Hedonic Elementary

Price Indices

6.1 Index estimators

In the previous chapter, we studied techniques for estimating the hedonic 61

function ht(m) = E(P t |M t = m) for a given elementary aggregate at a
specific point t in time and for any characteristics vector m. These estimates
are now key elements for constructing estimators for hedonic elementary
price indices.

Bilateral hedonic elementary price indices, as they were defined in (3.25)
and (3.26), are characterised by the fact that they describe the price evo-
lution between a base and a comparison period, 0 and 1, while holding the
quality of the observed items constant. Any estimator of a specified hedonic
elementary price index will therefore base on essentially three constituents,
namely the two estimated hedonic functions ĥ0 and ĥ1 representing the
quality-price relationship for both the base and the comparison periods,
and the distribution PM of reference quality. Depending on the transforma-
tion function ϕ that is taken for the definition of the index, the estimator is
going to have a different form.

6.1.1 Reference quality It has already been discussed in Section 3.3 that, con-
forming to the way the reference quality distribution

PM is specified, different index concepts can be generated. Among these are,



62 for instance, the different ‘true’ hedonic indices as outlined by Brachinger
(2002).

The definitions (3.25) and (3.26) postulate that a hedonic elementary price
index is built upon expectations of specific random variables with respect
to PM . Estimators for these expectations depend thus immediately on how
this reference quality distribution is specified.

There are essentially two different approaches of specifying PM that need
to be distinguished. The first of them consists of choosing deliberately
one or several explicit items of an elementary aggregate for representing
the reference quality. These items—let us denote them by o1, . . . , oN—are
then fixed over time, and only these are used for defining and estimating
a quality-adjusted price index. In other words, the distribution of M is
chosen such that exclusively the characteristics vectors m1, . . . , mN where
mn := (m1(on), . . . , mK(on))′ for all n ∈ {1, . . . , N} have a non-zero prob-
ability. It remains open whether the same probability is attributed to all of
these characteristics vectors, i.e. P(M = mn) = 1/N for all n, or whether
there is an individual weighting of each of these items. It is possible, for in-
stance, to weigh each representant according to expenditure shares or sales
volumes by choosing an appropriate probability value.

In this first approach, the elementary price index definitions (3.25) and
(3.26) can be rewritten explicitly as

HPI
0:1 =

ϕ−1
(∑N

n=1 ϕ(h1(mn)) × P(M = mn)
)

ϕ−1
(∑N

n=1 ϕ(h0(mn)) × P(M = mn)
) (6.1)

and

HPI
0:1 = ϕ−1

(
N∑

n=1

ϕ

(
h1(mn)

h0(mn)

)
× P(M = mn)

)
. (6.2)

Estimators for both of these indices are obtained straightaway by replacing
the hedonic functions h0 and h1 by estimators ĥ0 and ĥ1 respectively in the
above formulae.

The second fundamental approach for specifying PM is to interpret M as
being the outcome of a random draw from a certain population of quality
vectors. This population—we call it M∗—might consist of all characteristics
vectors that exist on the market at a specific point in time or over a certain
time period. In this case, the expectation with respect to PM cannot be
calculated explicitly like in the first approach, since the whole population



63M∗ is not known to the observer in general. This expectation needs to be
estimated.

Due to the fact that the individual characteristics m1, . . . , mK may be very
diverse in their nature—they may be measured on any thinkable scale—and
that there may be interactions, it seems difficult to define and estimate a
parametric probability model for PM , from where the expectation could
be extracted. A more practicable approach is therefore to estimate PM

empirically on the basis of a random sample of elements of M∗.
Assume that such an i.i.d. sample is given by M 1, . . . , MN where Mn

L∼
M for all n ∈ {1, . . . , N}. The hedonic elementary price indices (3.25) and
(3.26) can then be estimated empirically by

ĤPI
0:1

=
ϕ−1

(
1
N

∑N
n=1 ϕ(ĥ1(Mn))

)

ϕ−1
(

1
N

∑N
n=1 ϕ(ĥ0(Mn))

) (6.3)

and

ĤPI
0:1

= ϕ−1

(
1

N

N∑

n=1

ϕ

(
ĥ1(Mn)

ĥ0(Mn)

))
, (6.4)

respectively. These formulae are almost identical to estimators of (6.1) and
(6.2) for the case where all the representants m1, . . .mN are equiprobable.
The only difference is that, now, there is a third source of randomness, apart
from the random variables ĥ0 and ĥ1 already present in the estimators of
(6.1) and (6.2). This third source is the sample M1, . . . , MN which, in
contrast to the first approach, is not fixed in advance.

If these two approaches for specifying the reference quality are compared,
it is difficult to identify a favourite. The first of them, where the refer-
ence characteristics vectors are explicitly chosen, has the advantage that
the reference quality is known exactly. In the second approach, contrarily,
reference quality is not known completely and needs to be estimated. The
latter might, however, be more representative for the effective quality spec-
trum available on the market than the first approach, where only a restricted
set of representants is chosen. The price of this potential gain in represen-
tativeness is an increased variability of the price index estimator. This is
due to the fact that the reference quality needs to be estimated based on a
random sample.

Since for hedonic indices, an extensive database of product characteristics
is in general available from the estimation of the hedonic functions, the



64 additional cost for estimating PM following the idea of the second approach
should be negligible. Certainly, a straightforward approach is to estimate
the reference quality distribution by some or even all of the items in this
database. Moreover, assuming that this data builds a representative sample
of the transactions for a certain elementary aggregate in a specific market
over a certain time period, an implicit weighting of the individual items
according to their sales volumes would even automatically take place.

6.1.2 Bilateral hedonic

elementary price index

estimators

In the estimators presented in the previous section,
the transformation function ϕ remained unspecified.
Depending on the form of this function, different can-
didate index formulae can now be outlined. In Chap-

ter 4, we discussed that, in order to satisfy some of the axioms, ϕ should be
chosen such that ϕ(λx) = ϕ(λ)+ϕ(x) or ϕ(λx) = ϕ(λ)ϕ(x) for all λ, x ∈ R.
Moreover, it was shown that ϕ(x) = x, ϕ(x) = lnx, and ϕ(x) = x−1 are
interesting candidates of such transformation functions.

Table 6.1 displays the bilateral hedonic price index estimators that are
generated when using the index estimators (6.3) and (6.4) together with all
three proposed transformation functions ϕ. Most of the elementary index
formulae used in practice (see e.g. ILO et al., 2004, pp. 360–1) can be re-
produced like that, namely those attributed to Dutot, Jevons, Carli, and
the one that is called ‘Harmonic Carli’ here. Moreover, we find a ‘Harmonic
Dutot’ index estimator which does not appear in the mentioned literature.

From the axiomatic point of view adopted in Chapter 4, it is the Dutot,
Jevons and ‘Harmonic Dutot’ index estimators that are serious candidates
for being used in practice, since for the others, the underlying indices do not
generally satisfy the time reversal and circularity tests. Jevons is certainly
a particularly attractive candidate since it evolves from both index estima-
tors, (6.3) and (6.4). Moreover, there is further theoretical support for this
formula which might also be adaptable in this context (see ILO et al., 2004,
p. 371). Yu (2003) provides empirical support for the choice of the Jevons
formula in a hedonic price index framework and, more generally, Silver and
Heravi (2006) show that the difference between the Dutot and the Jevons
indices in a matched-model framework depends mainly on the change in the
dispersion of log prices over time.

6.1.3 Double imputation In the estimators proposed in Table 6.1, only im-
puted (estimated) prices are used even though ob-

served prices might be available for certain characteristics vectors mn in one
or the other time period. These formulae follow thus the ‘double imputation’



65Table 6.1: Bilateral hedonic elementary price index estimators

Formula Transformation Resulting estimator Index type

(6.3) ϕ(x) = x Î0:1
D =

∑
N

n=1
ĥ1(Mn)

∑
N

n=1
ĥ0(Mn)

Dutot

ϕ(x) = ln x Î0:1
J = N

√√√√
N∏

n=1

ĥ1(Mn)

ĥ0(Mn)
Jevons

ϕ(x) = x−1 Î0:1
HD =

(∑
N

n=1

(
ĥ1(Mn)

)−1
)−1

(∑
N

n=1

(
ĥ0(Mn)

)−1
)−1

‘Harmonic Dutot’

(6.4) ϕ(x) = x Î0:1
C =

1

N

N∑

n=1

ĥ1(Mn)

ĥ0(Mn)
Carli

ϕ(x) = ln x Î0:1
J = N

√√√√
N∏

n=1

ĥ1(Mn)

ĥ0(Mn)
Jevons

ϕ(x) = x−1 Î0:1
HC =

(
1

N

N∑

n=1

(
ĥ1(Mn)

ĥ0(Mn)

)−1)−1

‘Harmonic Carli’



66 method as outlined in detail by Triplett (2004, p. 70 ff.). Moreover, in this
aspect, they contradict the practice of most of the hedonic index studies,
where prices are imputed only for items entering or exiting the market dur-
ing the considered time period, whereas observed prices are used wherever
possible (‘single imputation’).

The question of whether or not such a double imputation is admissible,
has been discussed with scepticism in the mentioned literature. Triplett
concludes that this matter ‘is not settled, and depends . . . on one’s interpre-
tation of hedonic residuals’. Pakes (2003, p. 1589) empirically compares the
resulting index values in a similar context under both regimes and discovers
that they are ‘virtually identical’.

The reason for the appearance of this double imputation approach in the
present context is based on the manner the estimators were developed. The
adoption of the hedonic econometric model led to equation (3.17) where, at
any time t, the price P t of a randomly chosen item of an elementary aggre-
gate was written as a function ht(M t) of its price-relevant characteristics
expressions plus a quality-independent component ǫt having mean zero. For
being able to control for quality differences, hedonic elementary price indices
were then defined as ratios of conditional expectations of P t given a refer-
ence quality distribution PM . With the introduction of estimators of the
indices, estimations of all these conditional expectations were implemented
as predictions from the estimated hedonic functions as they were developed
in Chapter 5.

From this point of view, double imputation perfectly conforms to the the-
ory. If observed prices were used in the index estimators, one would intro-
duce unsystematic price residuals into the calculations. Using the estimators
in Table 6.1 allows, in contrast, to get rid of these unsystematic price compo-
nents, provided—and this might be the essential problem in practice—that
the hedonic functions are correctly specified. In fact, whether or not there
is a large difference between indices estimated by single or double imputa-
tion estimators depends largely on the variance of the quality-independent
price component ǫt and on the prediction error of the hedonic functions (cf.
Pakes, 2005, p. 22).

Hulten’s (2003, p. 9) belief that ‘a large part of the problem reflects a
lower degree of confidence in data that are imputed using regression analysis’
seems to point out exactly the reason why double imputation is rarely used in
practice and vehemently criticised in theory, e.g. by Triplett (2004). ‘Price
estimates’, Hulten states, ‘collected directly from an underlying population
are generally regarded as “facts”.’ If, in contrast, ‘the price is inferred using



67regression techniques, it becomes a “processed” fact subject to researcher
discretion’.

Assuming, however, that the hedonic hypothesis holds and that hedonic
functions can be estimated sufficiently well, the theory developed here nev-
ertheless supports the use of double imputation techniques for estimating
hedonic elementary price indices. Moreover, it is important to note that
the formulae proposed here go further than most of the propositions in the
literature in the sense that prices are imputed for all the representative
characteristics vectors. In the literature, hedonic price imputations (single
or double) are usually only done, if a matching of raw prices between the
base and the current time periods is not possible, while for the items where
a matching is possible, conventional matched-model indices are calculated.
Examples of such ‘hybrid’ indices are proposed, discussed, and applied by,
e.g., Pakes (2003), de Haan (2004), and Van Reenen (2005).

It is also from this last point of view that Triplett (2004, p. 70 ff.)
argues that, ‘If the hedonic function is correctly specified, then it seems
incontrovertible that double imputation creates error’, since, among other
reasons, ‘the regression line does not provide the best estimate of the price
when the price . . . is actually observed’. Silver and Heravi (2004a), in
contrast, propose sales weighted hedonic indices where prices are imputed
for both matched and unmatched items. According to Silver’s report on
the seventh meeting of the ‘Ottawa’ International Working Group on Price
Indices (2003), ‘There remains the issue of whether imputations for the
whole sample are preferable to imputations for only the unmatched sample
using the double imputation method’. It seems that this question needs to
be discussed further.

6.1.4 The time dummy variable

method

An important special case of a quality-adjusted
price index estimator is the time dummy vari-
able method (see e.g. Griliches, 1971a, p. 59,

Silver and Heravi, 2003, pp. 280–1, or Triplett, 2004, p. 48–55). There,
the bilateral hedonic elementary price index to be estimated is directly a
parameter of the hedonic function, which is estimated based on the pooled
observations of both the reference and the current period.

It is interesting to see that this approach still is a special case of the price
index concept presented here. Assume that h is a ‘learner’, which maps
the space of the price and characteristics observations to the set H of all
potential hedonic functions as presented in Chapter 5. The hedonic function



68 estimator ĥt for time t ∈ {0, 1} may then be defined as

ĥt(m) = h[P 0:1,M0:1]((m′, t)′)

where P 0:1 = (P 0′, P 1′)′ is the vector of the pooled price observations for
periods 0 and 1 and

M
0:1 =

(
M

0
0

M
1

1

)

is the matrix of the pooled characteristics expressions for periods 0 and 1,
augmented by a dummy variable indicating the period an observation stems
from. Hereby, 0 and 1 stand for appropriate vectors containing only zeros
and ones respectively.

If, for the hedonic function, the semi-logarithmic functional form (5.4) is
adopted and β0:1

K+1 denotes the coefficient of the time dummy variable, it is
evident that

ĥ1(m) = exp(β̂0:1
K+1) × ĥ0(m) .

Due to this relation, all the estimators given in Table 6.1 can, in this case, be
simplified to exp(β̂0:1

K+1) and are thus completely independent of the reference
characteristics vectors Mn, n ∈ {1, . . . , N} (compare Brachinger, 2002,
p. 12).

The time dummy variable method, however, has been criticised in the
literature, mainly because the coefficients of the characteristics variables are
in this approach implicitly assumed to remain constant over the two pooled
time periods (see e.g. Silver and Heravi, 2003, 2004a, and 2004b).

6.2 Bootstrap replications of hedonic elementary price indices

6.2.1 Estimation error and

confidence intervals

The index formulae given in Table 6.1 are all point
estimators of the respective bilateral hedonic ele-
mentary price indices (6.3) and (6.4). Given that
the hedonic price predictors ĥ0 and ĥ1 as well as,

in general, the sample of reference characteristics M1, . . . , MN are random
variables, this randomness propagates to any estimator Î0:1. However, try-
ing to deduce the probability distribution of Î0:1 analytically from those of
its constituents seems ambitious given the potential complexity of the hedo-
nic functions and the generally unknown form of PM . Yet, it is possible to
employ Monte-Carlo simulations to estimate this distribution empirically.



69Let us define the random estimation error of the hedonic elementary price
index estimator Î0:1 by

ζ0:1 := Î0:1 − I0:1 .

A sensible method for qualifying the estimator Î0:1 is the estimation of
confidence intervals for the underlying index. An equitailed (1 − 2α) confi-
dence interval for I0:1 is given by

[
Î0:1 − ζ0:1

1−α, Î0:1 − ζ0:1
α

]
(6.5)

where ζt
α and ζ0:1

1−α are the α and (1 − α) quantiles of ζ0:1 respectively.
In order to determine these quantiles, some knowledge on the probability

distribution of ζ0:1 is needed. Bootstrap resampling methods, as they are
extensively described, e.g., by Davison and Hinkley (1997), provide one
manner of acquiring such knowledge. Their main idea is to use computer
simulations for generating an empirical approximation of the distribution of
interest based on new arrangements of the input data. These arrangements
are essentially random samples drawn with replacement from the original
data set.

In this sense, the distribution of ζ0:1 may be estimated by the empirical
distribution of

ζ0:1
⋆ := Î0:1

⋆ − Î0:1 . (6.6)

Here, Î0:1
⋆ are bootstrap replications of the hedonic price index, while Î0:1

remains fixed. The following section is going to discuss how such replications
of Î0:1

⋆ can be acquired.

6.2.2 Resampling methods The process of generating the replications Î0:1
⋆ can

reasonably be split into two sub-problems. Any
estimator Î0:1 is a function of ĥ0, ĥ1, and of the realisations m1, . . . , mN

of the reference characteristics sample. We can thus independently generate
first replications ĥ0

⋆ and ĥ1
⋆ of ĥ0 and ĥ1 respectively, and then replications

m⋆1, . . . , m⋆N of m1, . . . , mN . The second step will be left out, if PM puts
positive probability on a discrete, fixed and known set of reference charac-
teristics vectors only (cf. Section 6.1.1). We are now going to present three
different approaches for tackling the first sub-problem, i.e. the generation of
replications of the hedonic function estimators.

A first and most generally applicable bootstrap approach is the so-called
case-based resampling procedure (see Davison and Hinkley, 1997, Section
6.2.4). For both periods t ∈ {0, 1}, a sample of N t price-characteristics
combinations is drawn with replacement from the N t original data points at



70 period t. This new sample is then used as an input to the regression algo-
rithm h from where simulated values of ĥ0

⋆ and ĥ1
⋆ are obtained. Repeating

this procedure R times leads to R new estimates of the hedonic function in
both time periods, from where R replications of ζ0:1

⋆ can be deduced.

Algorithm 6.1 (Case-based resampling).

For r = 1, . . . , R, for t ∈ {0, 1},

1. sample νt
⋆1, . . . , ν

t
⋆Nt randomly with replacement from {1, . . . , N t}

2. for n = 1, . . . , N t, set pt
⋆n = pt

νt
⋆n

, mt
⋆n = mt

νt
⋆n

;

3. compute ĥt
⋆r := h[pt

⋆,M
t
⋆], where pt

⋆ = (pt
⋆1, . . . , p

t
⋆Nt) and

M
t
⋆ = (mt

⋆1, . . . , m
t
⋆Nt). ⋄

Pakes (2003) and Van Reenen (2005) apparently used such a case-based
bootstrap procedure for the estimation of standard errors of hedonic ele-
mentary price indices.

A second approach is the model-based resampling, where the resampling
takes place on the residuals of the original model (see Davison and Hink-
ley, 1997, Sect. 6.2.3). The underlying idea here is that, given the model
(3.17), the regression residuals are estimates of the random errors ǫt. A
simulated price for a certain characteristics vector mt

n can thus be obtained
by adding such a residual to the regression fit ĥt(mt

n).
An important condition of the model-based approach is that the residuals

involved need to be suitable for simulating the distribution of the random
errors ǫt. In other words, the raw residuals et

n = pt
n − ĥt(mt

n) need in
general to be modified in such a manner that they have the same variance
as ǫt before they can be used for a model-based resampling. In the case
of linear regression, i.e. if (3.17) is specified by P t = X

tβt + ǫt where X
t

is the design matrix containing the data M
t plus a constant, the vector of

raw residuals et = (et
1, . . . , e

t
Nt) can be written as et = (I − H

t)ǫt where
H

t = X
t(Xt′

X
t)−1

X
t′ is the hat matrix of the regression model at time t.

Therefore, Davison and Hinkley (1997, p. 261) recommend to work with
the modified residuals

rt
n =

pt
n − ĥt(mt

n)

(1 − ht
n)1/2

(6.7)

where ht
n is the nth diagonal element of H

t, because their variances match
with those of ǫt. This makes sense if the standard assumption of homosce-
dasticity of the ǫt is tenable. In order to get proper estimates of ǫt having
mean zero, the values of rt

n are finally going to be re-centered by individually
subtracting their average r̄t.



71Algorithm 6.2 (Model-based resampling).

For r = 1, . . . , R,

1. for t ∈ {0, 1}, for n = 1, . . . , N t,

a) sample ǫt
⋆n from rt

1 − r̄t, . . . , rt
Nt − r̄t;

b) compute the simulated response pt
⋆rn = ĥt(mt

n) + ǫt
⋆n;

2. compute ĥt
⋆r := h[pt

⋆r,M
t], where pt

⋆r = (pt
⋆r1, . . . , p

t
⋆rNt). ⋄

Inconvenient in the model-based resampling is the fact that properly mod-
ified, i.e. variance-adjusted residuals may not be easy to acquire, especially
when the regression approach h is complicated. In nonlinear regression mod-
els, for instance, the so-called leverages ht

n are not available straight away.
Moreover, the assumption of homoscedasticity of the random errors ǫt may
not be justified. This is particularly true if one assumes that the model resid-
uals ǫt are not just random noise but economically significant. (See Reis
and Santos Silva, 2002 or Triplett, 2004, p. 186 ff. for some comments
on the issue of heteroscedastic error terms in hedonic regressions.)

Case-based resampling, in contrast, is always applicable and does not
depend on any assumption about ǫt. Yet, Davison and Hinkley (1997,
p. 264 ff.) identify two disadvantages of case-based compared to model-based
resampling. First, they state that case-based estimations might be inefficient
if the constant-variance model is correct, and, secondly, they argue that case-
based simulations lead to simulated samples with different designs, because
the vectors mt

⋆1, . . . , m
t
⋆Nt are randomly sampled. The design matrix of a

regression model, however, ‘fixes the information content of a sample, and
in principle our inference should be specific to the information in our data’.

A third approach which overcomes the disability of the model-based ap-
proach to cope with heteroscedastic error terms is the so-called wild bootstrap
originally proposed by Liu (1988) and developed further by Davidson and
Flachaire (2001). Here, the error terms ǫt

1, . . . , ǫ
t
Nt are still assumed to

be mutually independent and to have a common mean of zero, but they
may be heteroscedastic with E[(ǫt

n)2] = (σt
n)2. The error term, in this case,

may be written as ǫt
n = σt

n vt
n where E[vt

n] = 0 and E[(vt
n)2] = 1. Corre-

spondingly, the simulated prices pt
⋆rn are no longer obtained by adding to

ĥt(mt
n) any ǫt

⋆n sampled from the centered modified residuals, but by adding
the corresponding modified residual rt

n multiplied by a random number ǫt
⋆n

drawn from a completely independent auxiliary distribution having mean
zero and variance one. For the case of hypothesis testing, both Davidson
and Flachaire (2001) and MacKinnon (2002) advise to draw the numbers



72 ǫt
⋆n from the Rademacher distribution, i.e. from a discrete random variable

having either the value −1 or 1 with probability ½ each. For the estimation
of confidence intervals, there is weaker evidence for this specific choice and
other alternatives such as the one proposed by Mammen (1993) might also
be appropriate. Nevertheless, the Rademacher distribution is going to be
proposed in the following third resampling approach.

Algorithm 6.3 (Wild bootstrap).

For r = 1, . . . , R,

1. for t ∈ {0, 1}, for n = 1, . . . , N t,

a) sample ǫt
⋆rn from a discrete random variable having either the

value −1 or 1 with probability 1/2 each;

b) compute the simulated response pt
⋆rn = ĥt(mt

n) + rt
n ǫt

⋆rn;

2. compute ĥt
⋆r := h[pt

⋆r,M
t], where pt

⋆r = (pt
⋆r1, . . . , p

t
⋆rNt). ⋄

The main advantage of the wild bootstrap compared to the model-based
approach is its ability to incorporate heteroscedastic error terms. Moreover,
it shares the property of the model-based approach concerning the unmodi-
fied regression design. However, it is an open question whether its efficiency
is still better than the one of the case-based approach.

The three approaches presented so far provide solutions for what has been
called the first sub-problem in generating replications Î0:1

⋆ of hedonic elemen-
tary price indices. The second issue is the generation of replications of the
reference characteristics vectors. Here, however, only case-based resampling
is applicable. In other words, the replications m⋆1, . . . , m⋆N need to be
sampled individually with replacement from m1, . . . , mN .

Regardless of the approach that is chosen for the simulation of ĥ0
⋆ and

ĥ1
⋆, a sample of simulated estimation errors ζ0:1

⋆1 , . . . , ζ0:1
⋆R is finally calculated

by (6.6). If, for instance, the Jevons formula is used for estimating the
respective indices, ζ0:1

⋆R can be calculated by

ζ0:1
⋆R := N

√√√√
N∏

n=1

ĥ1
⋆(m⋆n)

ĥ0
⋆(m⋆n)

− N

√√√√
N∏

n=1

ĥ1(mn)

ĥ0(mn)
. (6.8)

Furthermore, if the increasingly ordered values of ζ0:1
⋆r (r = 1, . . . , R) are

denoted by ζ0:1
⋆[1], . . . , ζ

0:1
⋆[R], an estimate of the confidence interval (6.5) is

given by [
Î0:1 − ζ0:1

⋆[(R+1)(1−α)], Î
0:1 − ζ0:1

⋆[(R+1)α]

]
. (6.9)



73For this reason, the number R of bootstrap replications has to be chosen
such that (R + 1)α is an integer.

It should be noted that, at this stage, the regression approach h remains
completely unspecified. Moreover, these resampling approaches do not de-
pend on the specification of the hedonic price index by, e.g., the Jevons
formula. They are similarly applicable to all bilateral hedonic price index
estimators of the form (6.3) or (6.4).





PART III

Hedonic Elementary Price Indices

for Used Cars





CHAPTER 7

Data Source:

The AutoScout24 Marketplace

7.1 Why used cars?

The decision to work with used cars data in the empirical part of the present 77

thesis was largely influenced by the availability of an appropriate data set.
The demands on such data are high if they shall be used for hedonic re-
gressions. The hedonic econometric model assumes that there is a finite set
of price-relevant characteristics which are perfectly sufficient for modelling
the quality-price relationship. No indication is given, however, how these
characteristics can be determined in practice.

‘Getting the characteristics right is not just the first step in estimating
a hedonic function, it is the most important step’, says Triplett (2004,
p. 140). While a data-driven variable selection using econometric techniques
may take place routinely when searching for the price-relevant characteristics
of an elementary aggregate, it is even more important to first get measure-
ments of a sufficiently extensive set of variables to choose from.

When statistical offices start the estimation of a hedonic elementary price
index, they need to have the (financial) means for investigating together
with experts which variables are potentially price-relevant for a specific el-
ementary aggregate. Only then, they may develop a strategy of how these
variables can be measured for a representative sample of the population.

Such an approach was not feasible for the present piece of work. The
empirical analysis here rather had to base on measurements of variables



78 that were already available in a properly designed database. Such a database
could be found for the market of used cars in Switzerland. It was a great
opportunity that the private company AutoScout24, maintaining an internet
platform for trading cars (see www.autoscout24.ch), accepted to open its
database for the purpose of price index research.

According to AutoScout24, more than half of the 700 000 used cars traded
per year in Switzerland find their new owner through their internet plat-
form (see Settele, 2005). Due to their cooperation with about 3000 car
merchants, the cars offered on the platform do not only stem from private
persons but to a large part from institutional dealers.

Cars—either new or used—have frequently been analysed in hedonic stud-
ies. Beginning with Court (1939), one of the very first articles on hedonic
price indices, automobile prices attracted the most attention in hedonic
analyses up to Griliches (1971b, p. 3). The list of examples mentioned
therein extends to the present with, e.g., Griliches (1971a), Bitros and
Panas (1988), Gordon (1990), Arguea and Hsiao (1993), Murray and
Sarantis (1999), Reis and Santos Silva (2002), or van Dalen and Bode
(2004), ranging from theoretical to applied studies, e.g. for specific countries
or markets. In general, hedonic price equations are not only estimated with
the aim of building a quality-adjusted price index but also for studying the
economic behaviour of consumers with regard to certain characteristics of a
product. Boulding and Purohit (1996) is one such example.

Several national statistical agencies currently use hedonic approaches for
estimating their elementary price indices for used cars. Amongst these are
New Zealand, Germany, the Netherlands, Finland, and Sweden (see Nair,
2004, German Federal Statistical Office, 2003, and Ahnert and
Kenny, 2004). In the US, according to the Boskin report (Boskin et al.,
1996), ‘The CPI index for used cars has long been known to be upward
biased, simply because no quality adjustments were applied to this category
at all’. This changed in 1987 where the Bureau of Labor Statistics (BLS)
began adjusting the used cars elementary index for quality changes, although
not with hedonic methods. This practice was reviewed by Pashigian (2001),
but he did not mention any explicit need for changing towards a hedonic
elementary price index for used cars.

Even though there may be goods such as personal computers and their
operating systems, where the change in quality is more rapid and more
prevalent (cf. White et al., 2004, p. 19), applying hedonic techniques for the
used cars elementary price index seems to be an acceptable choice. Moreover,
used cars are currently the tenth most highly weighted elementary aggregate
in the Swiss CPI (see Table 7.1). With a weight of 1.253 percent, the

http://www.autoscout24.ch
http://www.autoscout24.ch
http://www.autoscout24.ch
http://www.autoscout24.ch


79Table 7.1: Current weights in percent and historical comparison of the 15 most im-

portant elementary aggregates in the Swiss CPI

Elementary aggregate Current weight Historical weights

2006 2000 2002 2004

Rentals for flats 18.724 20.143 20.093 19.637

Hospital services 6.418 6.287 5.56 6.049

Medical services 3.906 2.897 3.497 3.746

Meals in restaurants and cafés 3.627 4.185 4.141 3.659

Pharmaceutical products 2.907 1.848 2.407 2.735

New motor cars 2.610 1.816 2.148 2.509

Petrol 2.557 – – –

Dental services 1.763 1.457 1.596 1.670

Fuel oil 1.683 1.281 0.926 1.181

Used motor cars 1.253 0.950 1.080 0.871

Package holidays 1.181 1.342 1.475 1.239

Mobile telephone services 1.109 – – –

Passenger transport services (direct) 1.106 1.094 1.083 1.046

Fixed-line telephone services 1.089 – – –

Other outpatient services 1.063 0.550 0.954 1.041

Source: Swiss Federal Statistical Office. The elementary aggregates ‘Petrol’, ‘Mobile telephone services’,

and ‘Fixed-line telephone services’ were contained in higher level aggregates until 2005.

impact of the elementary index for used cars on the whole CPI is comparably
important.

7.2 Data retrieval, storage, structure, and analysis

7.2.1 Data import Fig. 7.1 displays the infrastructure that has been installed
for data retrieval, storage, and analysis. As AutoScout24
did not keep a history of the published advertisements over

a period that was sufficiently long for estimating price indices, we opted for
a daily transfer of the currently advertised cars. For this purpose, Auto-
Scout24 installed an export script on their server that nightly stored the pub-
lished advertisements along with some related tables to comma-separated
ASCII files.

Table 7.2 lists the data fields contained therein for each advertisement.
They consist of 51 characteristics variables of the advertised car (including
the 34 equipment dummies referenced by cars_equipment and listed in
Table 7.3). Furthermore, there are four variables describing the publication

http://www.autoscout24.ch
http://www.autoscout24.ch
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81date, the date of the last update, the type of advertisement (cars_adtype)
and the number of page impressions for each advertisement. Finally, there is
a unique identifier (cars_car_id) as well as the postcode of the advertiser.

At the Seminar of Statistics, a personal computer (ecosocpc11 in Fig. 7.1)
was installed for the purpose of retrieving, managing, and supplying the
data for further analysis. Each night, a scheduled PHP script used to fetch
by FTP from AutoScout24 the exported files (about 20 to 30 megabytes
of data each time) and to store them to a local hard disk. Great care
had to be directed to the handling of errors and exceptions during the file
transfer. Each snapshot provided by AutoScout24 had to be fetched within
24 hours before it was overwritten with new data and thus lost for any
further analysis.

Once the data was stored locally, another PHP script managed the in-
tegration of the new data into a MySQL database. In a first step, all the
auxiliary reference tables were updated with the newly arrived content, and
the list of advertisements was read into a temporary table named cars.

In order to keep a complete history of the advertised cars, the content
of cars was then integrated into an all-embracing table named carhist con-
taining all the advertisements that had existed at any previous date. In
addition to the fields already available in cars, the table carhist contained
two fields from_dt and to_dt giving the start and the end date of each
entry. Moreover, there was a field named car_revision that numbered the
different versions of an advertisement over time.

The integration of the newly arrived advertisements (cars) into carhist

was done in four steps. First, all the entries in carhist that were no longer
available in cars were identified, and their field to_dt was set to the date and
time when the current snapshot was exported by AutoScout24. This value
was determined through the time of the last modification of the respective
file on their FTP server.

Secondly, all the advertisements in cars that did not yet figure in carhist

were imported. For each of them, a new entry was made in carhist inheriting
from the original all the characteristics of the advertised car. The start date
from_dt was set to the value given in cars_changed and to_dt to a virtual
date in the indefinite future (31.12.9999 23:59:59). The revision number of
a newly appeared item was set to 0.

The third step dealt with advertisements in carhist that were still available
in cars but had been changed in between. For this purpose, the date and
time contained in cars_changed was compared to from_dt and to_dt of
the entries in carhist corresponding to each advertisement. If cars_changed

happened to lie between the start and the end date of an entry in carhist, its

http://www.autoscout24.ch
http://www.autoscout24.ch
http://www.autoscout24.ch


82 Table 7.2: Data fields received from AutoScout24

Data field Description

cars_car_id Identification number of advertisement (primary key)

cars_cartype_id Car type code (new, used, demonstration, old-timer)

cars_make_id Make code (e.g. VW, Opel, BMW, Audi, . . . )

cars_model_id Model code (e.g. Golf, Astra, A4, Passat, . . . )

cars_model_full Full model description (e.g. ‘2.2dCi Authentique’)

cars_body_id Body code (e.g. cabriolet, limousine, coupé, . . . )

cars_doors Number of doors

cars_seats Number of seats

cars_bodycol_id Body colour code (e.g. blue, black, silver, . . . )

cars_bodycol_met Metallic paint dummy

cars_intcol_id Interior colour code (e.g. grey, anthracite, . . . )

cars_fuel_id Fuel type code (e.g. petrol, diesel, electricity, . . . )

cars_cylinders Number of cylinders

cars_ccm Cubic capacity in cm3

cars_hp Horsepower

cars_gear_id Gear code (manual, automatic)

cars_firstreg_year Year of first registration

cars_firstreg_mth Month of first registration

cars_mileage Mileage in km

cars_price Advertised price

cars_pricenew Original price when new

cars_cur Currency of the displayed prices

cars_warranty Remaining warranty (number of months)

cars_comments Textual description of features, damages etc.

cars_accident Dummy indicating if car has had an accident

cars_equipment List of applicable equipment codes (see Table 7.3)

cars_created Date and time of creation of advertisement

cars_changed Date and time of last update of advertisement

cars_adtype Advertisement type code

addresses_zip Postcode of the advertiser

cars_hits Number of page impressions of the advertisement



83Table 7.3: Equipment dummies contained in the database

Variable name Description

Airbag Driver airbag

Airbag.Beifahrer Passenger airbag

ABS Anti-lock brakes

Elektr.Fensterheber Electric front windows

Elektr.Schiebedach Electric sunroof

Klima Air conditioning

Klima.Automatik Climate control

Ledersitze Leather seats

Radio.CD Radio with compact disc player

Radio.Tonband Radio with compact audio cassette player

Schiebedach Sunroof

Sitzheizung Seat heating

Tempomat Cruise control

Zentralverriegelung Central locking

X8fach.bereift Two sets of tyres

Anhängerkupplung Trailer coupling

Standheizung Stand heating

Elektr.Parkhilfe Electronic parking aid

Xenon.Scheinwerfer Xenon headlights

Sportsitze Sports seats

Sidebags Side airbag

Faltdach Folding roof

Servo Power steering

Alufelgen Aluminium wheels

Sperrdiff. Locking differential

Elektr..Sitze Electric front seats

Alarmanlage Anti-theft alarm

Nebelscheinwerfer Fog headlights

X4x4 Four-wheel drive

Sonnendach Moonroof

Wegfahrsperre Engine immobiliser

Hardtop Hardtop

Navigationssystem Guidance system

Partikelfilter Particulate filter



84 end date was set to the value of cars_changed. Then, a new entry with a
new revision number was created in carhist inheriting the end date from its
predecessor, the start date from cars_changed and all the car characteristics
from the respective entry in cars.

Finally, one had to deal with advertisements in cars that had disappeared
for a moment but reappeared in the latest export file. In this case, a new en-
try was created in carhist. Its revision number was set to one more than the
highest revision number already existing for the respective advertisement.
Furthermore, the start and end dates of the new entry were determined as
for completely new advertisements.

The entire import procedure will be illustrated in the following example.
Assume that the table carhist contains the values given at the top of Ta-
ble 7.4 and that the table cars given in the middle needs to be imported.
Therein, the dates and times are such that t0 < t1 < t6 and t2 < t3 < t7
(see Fig. 7.2). The four steps described above are now as follows:

1. Handling of disappeared items: Since car_id number 3 is no longer
available in cars, its value of to_dt is set to t10, i.e. the time of mod-
ification of the file on the FTP server.

2. Handling of new items: The cars_car_id number 5 is not yet con-
tained in carhist. It is thus added with revision number 0.

3. Handling of changed items: Since t6 ∈ ]t1,∞[, the advertisement num-
ber 1 has apparently changed. A new entry is thus added to carhist.

4. Handling of reappeared items: With t7 > t3, the advertisement num-
ber 2 has reappeared. It is integrated into carhist with a new revision
number.

At the end, the table carhist has the form given at the bottom of Table 7.4.
The values printed in bold are those that have been updated or added. Note
that the advertisement number 4 contained in cars has not been integrated
since its modification date t5 is identical to the one already contained in
carhist.

Fig. 7.2 shows graphically the five advertisements described in the ex-
ample above. The thick horizontal lines stand for the advertisements and
their different revisions (indicated as small numbers above). The two verti-
cal dashed lines represent two subsequent export times of the database by
AutoScout24. The top table in Table 7.4 contains all the information up to
t9, the table at the bottom all the information up to t10.

http://www.autoscout24.ch


85Table 7.4: Integration of new advertisements into the database

carhist (before import)

car_id car_revision from_dt to_dt . . .

1 0 t0 t1 . . .

1 1 t1 ∞ . . .

2 0 t2 t3 . . .

3 0 t4 ∞ . . .

4 0 t5 ∞ . . .

cars (to be imported, date of modification on FTP server: t10)

cars_car_id cars_changed . . .

1 t6 . . .

2 t7 . . .

4 t5 . . .

5 t8 . . .

carhist (after import)

car_id car_revision from_dt to_dt . . .

1 0 t0 t1 . . .

1 1 t1 t6 . . .

2 0 t2 t3 . . .

3 0 t4 t10 . . .

4 0 t5 ∞ . . .

5 0 t8 ∞ . . .

1 2 t6 ∞ . . .

2 1 t7 ∞ . . .

t
t0 t1

0

t9 t6

1 2
1

t2 t3

0
2

t7

1

t4 t10

0
3

t5

0
4

t8

0
5

Figure 7.2: Timeline of the advertisements described in Table 7.4
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87The absolute number of advertisements contained in the database is de-
picted in Fig. 7.3. The black line indicates the number of entries in cars

as they have been retrieved from AutoScout24 from 20 October 2004 to
31 March 2006. It ranges from 67 506 (22 November 2004) to 79 801 (4
March 2006) advertisements, except for one outlier on 1 May 2005, where
only 48 258 entries were transmitted, presumably due to a technical fail-
ure. The distance between the black line and the dotted blue line at the
top represents the number of advertisements that had disappeared in the
file fetched at each specific date compared to the day before. The height
of the solid red-coloured area below the black line reflects the number of
advertisements that had reappeared whereas the white space above it shows
the number of new advertisements. Finally, the vertical distance between
the red area and the dotted red line at the bottom represents the number
of advertisements that had been changed from the previous to each current
date.

It can be seen from Fig. 7.3 that the number of changing, appearing, reap-
pearing, or disappearing advertisements was generally lower on week-ends
than on working days. The spike at the end of September 2005 is due to the
fact that from 25 to 29 September, no data was fetched from AutoScout24
due to an unnoticed breakdown of ecosocpc11 caused by a power failure in
the city of Fribourg. For this reason, the statistic for 30 September shows
more advertisements than usual that had been changed in the meantime.

7.2.2 Preparing the data for

further analysis

The structure of the table carhist just described is
convenient for the extraction of data for a certain
point in time. Retrieving all the cars available at

any time t can be done by a simple SQL statement selecting all the entries
of carhist where t is between from_dt and to_dt.

It is somewhat more difficult to retrieve all the advertisements for a whole
period [t0, t1] instead of one single time t. The solution adopted here re-
turned all those entries in carhist where from_dt ≤ t1 and to_dt ≥ t0. If,
however, more than one revision of an advertisement satisfied these criteria,
only the latest of them was retained. In the example given in Fig. 7.2, a
query for all the advertisements of the period [t9, t10] would thus yield the
entries number 1 (revision 2), 2 (revision 1), 3, 4, and 5 (each revision 0). If
one is interested in only those advertisements that were updated during the
given period, the additional criterion from_dt ≥ t0 needs to be applied. For
the example above, in this case, the query yields only the advertisements
number 1 (revision 2), 2 (revision 1) and 5 (revision 0).

http://www.autoscout24.ch
http://www.autoscout24.ch


88 Whenever data was extracted from the database for statistical analysis,
several other criteria were applied in order to retain only relevant entries.
First, only advertisements having cars_firstreg_year > 0 were selected in
order to allow for a proper specification of the car’s age. Secondly, only ad-
vertisements where the price was given and strictly positive were extracted.
A third criterion based on cars_cartype_id ensured that only advertise-
ments for used and not for new, demonstration, or old-timer cars were ex-
tracted. Finally, a last rule was applied sorting out any entry where the
price values were not given in Swiss Francs or where the currency had not
been specified. This was the case for about 0.2‰ of the data.

For almost all variables contained in carhist, the raw import data were
used for any further analysis. There are, however, two exceptions to this
rule. First, for every advertisement, a new variable age has been calculated
yielding the number of months between the year and month of first registra-
tion and from_dt. Where no month of first registration was given, age was
defined to be the difference in months between the beginning of the year
of first registration and from_dt. Secondly, the value ‘not available’ was
introduced instead of any value 0 in the fields doors, seats, cylinders, ccm,
hp, mileage, and pricenew as well as for all the equipment dummies in the
case where none of them was contained in equipment.

7.2.3 Infrastructure for

statistical analysis

Statistically analysing such huge amounts of data is
very demanding both for the software and for the
hardware involved. The choice of a software environ-

ment for statistical computing fell on R (R Development Core Team,
2006), mainly because of its unrestricted availability and extensibility. This
choice turned out to be a very lucky one, as during the whole project, there
never was a situation where any idea or wish could not be realised with
R. Thanks to the availability of the extension packages DBI and RMySQL

(R Special Interest Group on Databases (R-SIG-DB), 2006; James
and DebRoy, 2006), it was straightforward to develop an import function
that communicated with the MySQL database. The packages Rmpi and
snow (Yu, 2004; Tierney et al., 2004) provided a comfortable interface
to parallel computing, mainly used for the bootstrapping algorithms to be
presented later.

On the hardware side, we soon discovered that our desktop PCs (Pen-
tium 4, 1.5 GHz, 768 MB RAM, Windows XP Professional—ecosocpc11

etc. in Fig. 7.1) were too weak for efficiently estimating either the hedonic
functions or the hedonic price indices. The reason for this failure was mainly
the limitation of the RAM size. Dealing with up to 70 000 observations and



89more than fifty variables (or even more, if categorical variables were trans-
formed to dummies) for the hedonic regressions was not feasible with the
indicated memory size. Analogous restrictions applied for the estimation of
the hedonic indices based on up to 200 000 reference characteristics vectors.
A solution to these hardware requirements could be found by outsourcing
all the calculations to a Beowulf class cluster (see www.beowulf.org), where
R 2.3.1 was installed on four nodes (Dual Opteron, 2 GHz, 3 GB RAM,
Linux Fedora Core 2).

7.3 Descriptive statistics and data filtering

In the following paragraphs, we present some descriptive statistics for the
advertisements available during the year 2005. For this purpose, all the
data for this period were fetched from the database as described above
(Section 7.2.2). This yielded 476 274 observations.

Table 7.5 lists the most important quantitative and qualitative variables
along with some summary statistics. For the quantitative variables, the
minimum, the maximum, the arithmetic mean, the median as well as the
first and third quartile (Q1 and Q3, respectively) are given. Moreover, the
share of missing values (marked as ‘NA’, i.e. ‘not available’) is indicated. For
the qualitative variables, the shares of the five most important categories
are displayed.

Fig. 7.4 illustrates the relative importance of the dummy variables for
equipment, accident, and metallic paint. The larger a black rectangle is, the
more advertisements have the value one in the variable concerned. Results
are given for the twenty most frequent car models as well as for the whole
data set (red bar in the background). The widths of the rectangles are
proportional to the frequency of the different car models indicated on the
horizontal axis of the figure. The figure shows that characteristics such as,
e.g., anti-lock brakes, airbags, engine immobilisers, or power steering were
rather common whereas, e.g., folding roofs, stand heatings, or two sets of
tyres occurred only very rarely.

A histogram of the price distribution is depicted in Fig. 7.5 on a logarith-
mic scale. At first sight, it seems that the logarithm of the price variable
is almost normally distributed. An adequate normal probability plot of
ln(price) is given in the left frame of Fig. 7.6. The quantiles of the stan-
dard normal distribution are drawn on the horizontal axis while the vertical
axis contains the sample quantiles of ln(price). It is apparent that there
are a number of price values at both tails of the distribution that show a

http://www.beowulf.org
http://www.beowulf.org


90 Table 7.5: Summary statistics of selected variables in the 2005 data

price pricenew age mileage doors seats

Min. 1 1 0 1 1 1

Q1 9800 33000 31 32700 3 5

Median 16900 45660 56 68000 5 5

Mean 23180 58360 69.34 77450 4.115 4.785

Q3 27800 69190 94 110000 5 5

Max 10000000 1000000 1198 1000000 9 56

NA 0.00 % 75.27 % 0.00 % 0.11 % 3.05 % 6.13 %

cylinders ccm hp

Min. 1 1 1

Q1 4 1762 110

Median 4 1997 140

Mean 4.803 2266 156

Q3 6 2598 192

Max 90 60010 999

NA 4.11 % 2.40 % 3.37 %

make body bodycol

VW 11.82 % Limousine 46.35 % blau 20.85 %

OPEL 8.96 % Kombi 21.39 % schwarz 18.98 %

BMW 8.20 % Geländewagen 7.73 % silber 18.90 %

AUDI 8.17 % Cabrio 7.27 % grau 10.55 %

MERCEDES-BENZ 7.55 % Minivan 6.78 % grün 8.48 %

(Other) 55.30 % (Other) 9.57 % (Other) 22.00 %

NA 0.00 % NA 0.90 % NA 0.24 %

gear fuel intcol

Handschaltung 65.15 % Benzin 86.13 % schwarz 20.37 %

Automat 33.81 % Diesel 12.92 % grau 17.57 %

Elektro 0.01 % anthrazit 12.11 %

Erdgas 0.00 % beige 6.98 %

Erdgas/Benzin 0.02 % blau 3.28 %

(Other) 2.67 %

NA 1.04 % NA 0.93 % NA 37.02 %
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Figure 7.4: Relative importance of the equipment dummies for the twenty most

common car models in the database
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Figure 7.5: Histogram of the observed prices (in CHF)
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Figure 7.6: Normal probability plot of the natural logarithm of the price for the origi-

nal and the truncated data set



93special behaviour. Based on a more detailed analysis, we recognised that
most of these advertisements embodied erroneous information. Even though
the advertising rules of AutoScout24 clearly request that the quoted prices
must be end-consumer prices containing the value-added tax as well as any
other additional charges, it could be observed that virtual prices such as 1
or 999 999 CHF were entered by vendors several times. This behaviour was
often accompanied by a comment (in cars_comments) saying that the ven-
dor was waiting for bids by phone or that the advertised car was not offered
but sought by the vendor. Since AutoScout24 did not regularly check the
compliance of the advertisements entered by their customers with the rules,
there are several such entries in the database.

For any further analysis, therefore, all the advertisements that did not
have a price higher than 52 and lower than 999 999 CHF were filtered out.
The lower bound of 52 CHF, on one hand, was chosen to be the same as
the minimal price for an advertisement on the AutoScout24 platform. The
idea upon this choice is based is that the vendor would probably want to get
at least the price of the advertisement back when he sells the car. On the
other hand, eliminating all the cars with a price higher than a million did
not seem to be too restrictive since the meaningful advertisements falling
in this range were very sparse. An ad hoc analysis for the advertisements
being excluded like that (0.04 % of the 2005 data) showed that the large
majority of them really contained obviously inappropriate information. A
normal probability plot of the truncated data is shown in the right frame of
Fig. 7.6 showing that the truncation leads to a distribution of ln(price) that
is closer to normality.

The truncation of the allowed price range as described above is admittedly
somewhat unsatisfactory. On one hand, there are advertisements having
prices lower than 52 or higher than 999 999 CHF which do not contain
erroneous information. On the other hand, and this might be even more
important, errors and unwanted entries are also contained among the large
majority of advertisements that fall into the admitted price range. In a
production environment, e.g. when an official CPI should be estimated using
these data, more care would be needed in order to ‘clean’ the database. With
appropriate data mining techniques, one would probably be able to find
and filter out more effectively the unwanted advertisements. One could also
imagine applying such techniques for identifying candidates for a subsequent
manual analysis.

Finally, the geographical distribution of the advertised cars is displayed
in Fig. 7.7. This map is based on the postcodes of the dealers as they are
available in the database. A circle is drawn for every postcode having its

http://www.autoscout24.ch
http://www.autoscout24.ch
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Figure 7.7: Geographical distribution and relative number of the advertisements

center approximatively at the place where the corresponding town or village
is situated. The diameter of each circle is a positively monotonic function
of the number of advertisements having the corresponding postcode.

The picture shows that the geographic structure of Switzerland seems to
be astonishingly well covered by the data set. Moreover, the observed adver-
tisements seem to correspond closely to the density of the population. More
detailed analyses, however, would be needed to confirm these hypotheses.
An interesting question for further research might be to compare differences
and changes in prices of used cars for the different regions of Switzerland.

7.4 Conceptual limitations of the data set

At the beginning of the current chapter, we noted that the data provided
by AutoScout24 seemed to be particulary suitable for a hedonic analysis.
After having described the nature of these data, the question whether this
is really true needs now to be reconsidered.

The advantages of this data set are obvious: It contains a large number
of standardised characteristics which can be used directly for estimating

http://www.autoscout24.ch


95hedonic functions. Moreover, it was discussed that quality-adjusted price
indices for cars in general or particularly for used cars have often been
estimated with hedonic techniques in the literature and increasingly also in
the practice of statistical offices.

There are, however, at least two downsides that have to be mentioned
with regard to the AutoScout24 data. One of them is the quality of the
data in general and the second is related to the validity of the price values
in particular.

It has been discussed in the previous section that a number of adver-
tisements containing obviously erroneous information have been detected.
While the share of such ‘dirty’ data points seems to be particularly high
at both tails of the price distribution, it is unknown how precise and ad-
equate the data in general are. While the advertisements stemming from
large institutional dealers probably are quite accurate, the same is not true
for those entered by private individuals. Since the validity of the data en-
tered cannot be checked for each individual car, errors are to be expected.
This is particularly true for the equipment dummies, where no distinction
is currently made for items that are not present and others where one does
not know whether they are present or not. In other words, a value of zero
cannot be distinguished from ‘not available’ for the equipment dummies.
It was described above that these variables were all attributed the value
‘NA’ whenever all of them contained zeros, but this might be inappropriate.
On the other hand, it seems plausible that some individuals do not know
whether their car possesses one or the other characteristic or not. So they
should have the possibility to indicate their uncertainty.

As a general rule, it might be an interesting question for further research
whether some kind of plausibility rating for each vendor (or category of
vendors) could be introduced in order to downweigh advertisements that are
less plausible in favour of those that stem from a more credible source. This
could be done by AutoScout24 directly by introducing some sort of vendor
rating mechanism. This would give the purchaser of a car the possibility
to indicate to what degree the information contained in the advertisement
was appropriate, and this information could then be displayed on the web
site whenever the same vendor sells another car afterwards. Similar rating
systems can currently be found in online auctions for instance.

The second important downside is related to the fact that the prices indi-
cated with the advertisements, assuming that they are correct, are offering
prices instead of transaction prices. This is a problem for estimating price
indices because for these, methodically, one is interested in the prices ac-
tually paid by the consumers along with the precise quality they buy for a

http://www.autoscout24.ch
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96 certain price rather than in the price labels being attached by the vendors.
The problem is similar to the use of list prices for new cars as discussed,
for instance, by Gordon (1990, pp. 355 ff.). There, it is explained how age-
adjusted prices of used cars can be used as a proxy for the transaction prices
of new cars. This assumes, however, that the prices available for used cars
are real transaction prices or are very close to them.

There is evidence for the assumption that the prices published on plat-
forms such as the one provided by AutoScout24 are upper limits for the
prices effectively paid. The probable existence of consumers bargaining with
vendors for a lower price or for additional equipment (such as an additional
set of tyres, for instance) should not be neglected. Another issue is that
vendors might publish prices which are higher than the market is willing to
pay. As a result, the respective car would be advertised on the platform but
not sold for the indicated price.

There are at least two approaches that could be suitable for tackling this
last issue. The first consists in looking exclusively at cars that are advertised
for a comparatively short time period only. Therebehind lies the idea that
cars offered at or below the market price would be sold quickly whereas the
others would stay on the platform until the market price changes. Another
quite similar approach would be to observe how the advertised price of a
car evolves over time until a purchaser is found. An economically plausible
assumption would probably be that the last price observed is nearest to the
market and to the realised transaction price.

The second, probably less promising approach is to produce an estimate
of the discounts vendors are giving to their customers. Trying to ask the
vendors to indicate the real transaction price when they unpublish an ad-
vertisement seems to be a difficult task. Many of them would probably
want to keep such information confidential. Asking the same question to
the purchasers would even be more difficult because they are and cannot
be known in general. A feasible alternative might be to try and estimate
an overall discount share, possibly subdivided into different car types and
price classes. Assuming that these shares remain constant over time, such
an overall discount factor, however, would not change most of the hedonic
price index estimates, at least not those satisfying the commensurability
axiom (Test 9).

This last remark provides evidence for the assumption that discarding
such discounts and working with the advertised prices might not influence
the resulting index estimates dramatically. There is a need, however, for
testing this hypothesis empirically before such data is used in a production
environment. In our project, the main concern is to study methods for in-

http://www.autoscout24.ch


97dex estimation and not to interpret the resulting index estimates. It seems
thus admissible to ignore this concern and to take the data as if they con-
tained transaction prices. Doing so might change the estimates but not the
methodology applied.





CHAPTER 8

Estimating the Hedonic Function

for Used Cars

This chapter is going to present the estimation procedure for the hedonic 99

functions with different functional forms or model types. For the current
analysis, hedonic functions have been estimated on a monthly basis. In the
sequel, February 2005 on some occasions will be taken as an example to
illustrate the estimation process. The explanations, however, are applicable
to any other month as well.

8.1 Linear regression

8.1.1 Simple semi-log model

(SSL)

The first model type to be presented is the stan-
dard version of a semi-log model as it has been
discussed in Section 5.3.1. In a first step, we
will now present the final algorithm developed

for estimating this type of hedonic function. Several econometric questions
are deliberately left open at this stage. This will allow us to describe the
algorithm in a compact manner. The mentioned questions, however, are af-
terwards reconsidered in the critical comments that follow in Section 8.1.2.

The algorithm starts with fetching the car advertisements that had been
created or updated during, e.g., February 2005 from the database as de-
scribed in Section 7.2.2. This yields 64 951 advertisements as displayed in
the first column of Table 8.1. The analysis is restricted to new and updated
advertisements in order to work with up-to-date data; it has been discussed



100 Table 8.1: Sample sizes considered for the hedonic function estimation

Month Original data SSL ESL SDL FDL SPLS EPLS SSL/m

Oct 2004 37356 66.8% 66.9% 66.3% 66.6% 68.4% 67.2% 67.0%

Nov 2004 57647 77.0% 77.1% 76.7% 76.7% 78.7% 77.9% 77.3%

Dec 2004 68743 81.2% 81.3% 80.9% 80.9% 83.2% 82.5% 81.6%

Jan 2005 66138 82.2% 82.3% 81.9% 81.9% 84.1% 83.3% 82.5%

Feb 2005 64951 84.0% 84.1% 83.8% 83.8% 85.8% 84.8% 84.3%

Mar 2005 64716 85.2% 85.4% 84.9% 84.9% 87.1% 86.2% 85.6%

Apr 2005 66221 84.2% 84.3% 83.9% 83.9% 86.0% 85.0% 84.5%

May 2005 77978 83.9% 84.0% 83.7% 83.6% 85.6% 84.8% 84.3%

Jun 2005 68785 83.6% 83.8% 83.3% 83.3% 85.3% 84.4% 84.0%

Jul 2005 66545 84.5% 84.6% 84.0% 84.2% 86.3% 85.5% 84.9%

Aug 2005 70692 84.6% 84.7% 84.2% 84.3% 86.4% 85.5% 84.9%

Sep 2005 70509 85.2% 85.3% 84.9% 84.9% 87.2% 86.4% 85.6%

Oct 2005 68310 85.2% 85.4% 84.8% 84.9% 87.3% 86.5% 85.7%

Nov 2005 67853 84.8% 84.9% 84.4% 84.5% 86.8% 85.9% 85.2%

Dec 2005 68830 85.6% 85.8% 85.2% 85.3% 87.7% 87.0% 86.1%

Jan 2006 72596 85.5% 85.7% 85.1% 85.3% 87.6% 86.7% 85.9%

Feb 2006 69712 85.2% 85.3% 84.9% 84.9% 87.3% 86.2% 85.6%

Mar 2006 74408 83.4% 83.5% 83.0% 83.1% 85.3% 84.2% 83.8%

that advertisements remaining on the platform for a long time might indi-
cate that the published price is higher than the consumers are willing to
pay.

The second step of the algorithm consists of defining a maximal and a
minimal regression model for the data. We are going to explain below what
roles these two models play. The maximal formula for the simple semi-log
model is given by

log(price) ~ make + body + bodycol + bodycol_met + fuel + gear +

doors + seats + cylinders + ccm + hp + age * mileage + warranty +

accident + X4x4 + X8fach.bereift + ABS + Airbag + Airbag.Beifahrer +

Alarmanlage + Alufelgen + Anh.ngerkupplung + Elektr..Sitze +

Elektr.Fensterheber + Elektr.Parkhilfe + Elektr.Schiebedach +

Faltdach + Hardtop + Klima + Klima.Automatik + Ledersitze +

Navigationssystem + Nebelscheinwerfer + Partikelfilter + Radio.CD +

Radio.Tonband + Schiebedach + Servo + Sidebags + Sitzheizung +

Sonnendach + Sperrdiff. + Sportsitze + Standheizung + Tempomat +

Wegfahrsperre + Xenon.Scheinwerfer + Zentralverriegelung

while the minimal formula just contains



101log(price) ~ age + mileage

The notation of these formulae corresponds to their standard representation
in the S language (see Chambers, 1998, p. 166 or Chambers and Hastie,
1993, Chap. 2). The symbol ‘˜’ is a special operator which stands for ‘is
fitted to’ or ‘is modelled as’ while ‘+’ means inclusion of the corresponding
variable. The ‘*’ operator denotes factor crossing, i.e. ‘age * mileage’ ex-
pands to ‘age + mileage + age:mileage’ where ‘age:mileage’ is interpreted
as the interaction of ‘age’ and ‘mileage’. The response term ‘log(price)’
stands for the natural logarithm of the price variable.

When a linear model is fit using such a formula, the information contained
therein is used to build an appropriate design matrix X. Unless the constant
factor ‘1’ is removed explicitly by adding ‘- 1’ to the formula, the first entry
in every row of the design matrix will contain the value 1 corresponding
to a constant regressor term. Quantitative variables are included as single
columns whereas categorical variables with L levels are split into L − 1
columns containing only the values 0 and 1 where appropriate.

Once the formulae are defined, the simple semi-log model algorithm con-
tinues with removing from the original data set all the observations that
contain missing values in at least one of the variables included in the maxi-
mal model formula. Then a linear model is fit to the remaining data using
the maximal model formula as described above. In order to detect out-
liers or, more precisely, influential observations, DFFITS statistics are then
calculated based on the model residuals for every observation contained in
the data set (see Belsley et al., 1980; Velleman and Welsch, 1981;
Brachinger, 1990; Harrell, 2001). Observations having

DFFITSi > 2

√
K

N t

with K and N t being the number of columns and rows of the design matrix,
respectively, are marked as influential and deleted from the data set. This
criterion corresponds to the recommendations given in the mentioned liter-
ature. The share of data points left over after the exclusion of incomplete
and influential observations is 84.0% for February 2005. Similar values for
all the other months are displayed in Table 8.1.

The next and final step consists of performing a step-wise model selection
based on the Akaike information criterion (AIC). This is done with the func-
tion stepAIC in the R package MASS (see Venables and Ripley, 2002,
p. 175 ff.). Starting from a linear model fitted using the maximal formula,
the algorithm searches iteratively for the subset of predictor variables that



102 minimises AIC by removing or adding terms on the right-hand side of the
model equation as needed. The range of models searched consists of all
those having at least the terms given in the minimal formula and at most
the terms in the maximal formula.

Table A.1 in the appendix displays the terms that remained in the final
model for the months considered. The adjusted R2 statistics of these simple
semi-log models are all located between 0.9436 and 0.9488. A plot of the
observed (horizontal axis) versus predicted (vertical axis) price values for
this model for February 2005 is displayed in the top-left frame of Fig. 8.1
on page 113. There, the data points used for the estimation of the final
model are represented by black circles while the coloured crosses show the
observations that were tagged as outliers and not used for the estimation of
the model.

8.1.2 Critical comments The algorithm just displayed provides a compara-
tively simple approach for estimating a hedonic func-

tion. A semi-log model is fit to the data where outliers have been removed.
The variables to be included are chosen automatically according to the AIC
criterion, and the accuracy of the model fit measured by the adjusted R2

values is respectable. Several important issues, however, are neglected in
this procedure. Some of them shall now be commented.

One critical point is that the estimation does not use the whole infor-
mation contained in the data. Several variables, such as pricenew, intcol,
and model, as well as the postcode of the dealer have not been considered.
The reasons for adopting this practice were diverse for the individual vari-
ables. pricenew and intcol were discarded because they were missing for
from about one third up to three quarters of the observations (see the ‘NA’
shares displayed in Table 7.5 for the 2005 data). Since all the observations
containing missing values for the relevant variables were thrown out of the
data set, the loss of information by doing so while keeping these two vari-
ables in the model would have been important. Since pricenew, however,
turned out to be an important predictor when analysed for the data where
it was available, a special treatment of this variable led to the enhanced
semi-log model that is going to be displayed in Section 8.1.3.

The reason for excluding the model variable was its huge number of dif-
ferent categories (1270 for the 2005 data). Including it would have meant
adding almost as many (exactly one less) additional columns to the design
matrix leading to an important increase in computing time and memory
size requirement for performing estimations and predictions. We are going
to present a technique of how to include the model variable in a simple



103semi-log model in Section 8.3. Taking into account the information on the
geographic location of the vendors, finally, would necessitate a more com-
plex spatial price model. Including just cartesian coordinates as predictors
would probably not be meaningful enough in such an essentially linear hedo-
nic regression model. Building a more sophisticated spatial model, however,
would be an extensive research question of its own.

Strongly connected with the choice of the analysed variables is the second
piece of criticism that is directed towards the handling of missing values in
the data. It has just been mentioned that several variables were excluded
because they contained too many missing values. This approach seems to
be adoptable since the number of complete observations is large. On the
other hand, one could also argue that some of these observations might not
be missing at random but due to the way the data are generated. One could
imagine, for instance, that an institutional dealer does not report one or the
other variable simply because he does not survey it. This would lead to the
exclusion of all these observations even though they might contain valuable
information for the other predictors. Throwing away all the incomplete
observations is thus just a first approximation. Further research would be
needed to analyse imputation mechanisms for missing values.

A third critical point is related to the model specification. Except for the
term ‘age:mileage’, the models taken into consideration here do not contain
any second-order or even higher-order interactions between the variables. It
seems plausible, however, that some characteristics or bundles of character-
istics might be correlated with each other or with, e.g., the make of the car.
Neglecting such dependencies in the model building process might thus be
inappropriate. On the other hand, introducing second-order terms for these
more than fifty variables would, again, increase dramatically the number
of covariates. More sophisticated techniques are thus needed to reduce the
number of dimensions while taking into account the existing interactions—
PLS regression is going to be one such candidate.

Finally, an important weakness of this simple semi-log approach is the
way it handles influential observations. Even though there is theoretical ev-
idence for the applied criterion based on the DFFITS estimations, especially
if one is interested in appropriate predictions of the endogenous variable (see
Brachinger, 1990, p. 209), it seems unsatisfactory, as it does not distin-
guish erroneous from somewhat aberrant but still meaningful observations.
Due to this fact, the goodness of fit of the model presented here tends to be
over-estimated since many ‘good’ data points are just thrown away. Other
techniques, e.g. those stemming from the data mining literature, which are
able to discover real outliers, might therefore be preferred. It seems im-



104 portant that any hedonic function estimator is robust against outliers to a
certain extent, especially in our case where the data do contain erroneous in-
formation. The reader is referred to Diewert (2003b, pp. 28–9) for a short
comment on whether or not to remove influential observations is appropriate
in hedonic regressions in general.

Based on the criticism just presented, we are now going to study several
alternatives to this simple semi-log model in order to confront some of these
imperfections. First, an enhanced semi-log model will be presented where
the pricenew variable is included. Then, we are going to study first a double-
log model and then a mixture of both a semi-log and double-log model.
Section 8.2 is going to present two models which try to deal with interactions
between the exogenous variables, while the last approach to be presented in
Section 8.3 starts from the idea of estimating an individual regression model
for every car model separately.

8.1.3 Enhanced semi-log model

(ESL)

It has been noted in the previous subsection
that the original price of a car—represented
by the variable pricenew—might have an im-

portant explanatory power on the price of a used car. This is due to the
fact that the original price of a new car reflects its quality as it is perceived
by the consumers. People are willing to pay more for a car that offers, in a
certain sense, a higher quality.

If one observes a car over time, there are only a few characteristics that
change while most of them—at least those representing the equipment of the
car—remain constant despite the usage. In the present context, those that
do or may change are age, mileage, warranty, and accident. One could thus
imagine that the price of a used car could well be explained by these four
variables combined with pricenew. In other words, one could expect that
price depends on the time-independent equipment variables only through
pricenew.

Since the ageing properties of a car, however, are different for different
makes or models, the variable pricenew alone might not be sufficient for
replacing the whole set of equipment variables. Nevertheless, it is interesting
to investigate whether the original price is able to replace at least some of
them. For this purpose, the simple semi-log model will now be extended to
incorporate pricenew whenever it is available.

The enhanced semi-log hedonic function estimator starts with exactly the
same procedure as the simple semi-log algorithm for estimating a hedonic
function without taking into account the pricenew variable. In an additional
step, however, this same procedure is repeated for the sub-population of the



105data where the original price is available. In this second step, the term
‘log(pricenew)’ is added to the right-hand side of both the maximal and
minimal formulae. Adding the natural logarithm of the original price and
not the original price itself contradicts in a sense the philosophy of the semi-
log compared to the double-log models. Since the current price, however, is
incorporated through the logarithm, it would be incoherent not to do the
same with the original price.

The hedonic function generated by this algorithm contains thus informa-
tion on two fitted semi-log models. Every time it is to be applied on a
characteristics vector in order to predict a price value, it determines first
whether the variable pricenew is contained in the vector. If this is the case,
the price is predicted using the model with the pricenew variable, if not, it
is predicted using the simple semi-log model.

Table A.2 displays the terms that remained in the final models for the
months considered. The bullets to the left of the vertical bars stand for
variables that were included in the models without pricenew. These are the
same as those contained in Table A.1. The bullets to the right of the vertical
bars refer to the models where log(pricenew) is included. It turns out that
less equipment variables remain in the models with pricenew than in those
without it, which is what had been expected. The adjusted R2 statistics
of the models with pricenew are located between 0.953 and 0.9627 whereas
those of the models without pricenew correspond to the values given in
Section 8.1.1.

A plot of the observed versus predicted price values for this enhanced
semi-log model for February 2005 is displayed in the top-right frame of
Fig. 8.1.

8.1.4 Simple double-log model

(SDL)

The third family of models to be implemented
are based on the double-log approach (see Sec-
tion 5.3.1) which is, according to Triplett

(2004, p. 180), the ‘overwhelming favourite’ for IT equipment studies. There,
all the metric variables (price, doors, seats, cylinders, ccm, hp, age, and
mileage) are introduced into the formulae of the simple semi-log model
through natural logarithms. Here, the variable pricenew is, again, disre-
garded.

The terms that remained in the final models are displayed in Table A.3.
Here, the adjusted R2 statistics range from 0.9289 to 0.9369. They are thus
lower than in the simple semi-log model.



106 8.1.5 Flexible double-log model

(FDL)

In order to let the data speak on whether or
not to include a metric variable in its original
form or in its form transformed by the natu-

ral logarithm (or both), the following ‘flexible’ double-log model algorithm
specifies the maximal formula as

log(price) ~ make + body + bodycol + bodycol_met + fuel + gear +

log(doors) + log(seats) + log(cylinders) + log(ccm) + log(hp) +

log(age) * log(mileage) + doors + seats + cylinders + ccm + hp +

age * mileage + warranty + accident + X4x4 + X8fach.bereift + ABS +

Airbag + Airbag.Beifahrer + Alarmanlage + Alufelgen +

Anh.ngerkupplung + Elektr..Sitze + Elektr.Fensterheber +

Elektr.Parkhilfe + Elektr.Schiebedach + Faltdach + Hardtop + Klima +

Klima.Automatik + Ledersitze + Navigationssystem +

Nebelscheinwerfer + Partikelfilter + Radio.CD + Radio.Tonband +

Schiebedach + Servo + Sidebags + Sitzheizung + Sonnendach +

Sperrdiff. + Sportsitze + Standheizung + Tempomat + Wegfahrsperre +

Xenon.Scheinwerfer + Zentralverriegelung

and the minimal formula as

log(price) ~ log(age) + log(mileage)

The effect of these settings is that, during AIC minimisation, both the
logarithmic and the linear terms are taken into account while requiring at
least log(age) and log(mileage) to be present.

The terms that remained in the final models are displayed in Table A.4.
Interestingly, almost all the metric variables are present in the final model
both in their original and in their logarithmic form. This might indicate that
neither the pure semi-log nor the pure double-log models are good enough
for fitting the dependence structure in the data. Here, the adjusted R2

statistics range from 0.9451 to 0.9505, which is slightly higher than for both
the simple semi-log and the simple double-log model. A more sophisticated
comparison of these models, however, will be discussed in Section 8.4.

8.2 PLS regression

8.2.1 Simple PLS model (SPLS) A completely different family of models are
those based on the partial least squares algo-
rithm (see Section 5.3.2). For the implemen-

tation within the present project, two different settings have been used: a
‘simple’ one where the number A of latent variables is fixed in advance and an



107‘enhanced’ one where A is determined by ten-fold adjusted cross-validation
on each individual data set.

In contrast to the semi-log and double-log models presented so far, it
was possible here to introduce the model variable as a regressor into the
model formula. Moreover, the approach presented in the enhanced semi-log
algorithm of estimating two different models for the subsets of the data with
and without taking into account the variable pricenew has been followed for
these two PLS models by default. The PLS model formula is thus given by

log(price) ~ model + body + bodycol + bodycol_met + fuel + gear +

doors + seats + cylinders + ccm + hp + age * mileage + warranty +

accident + X4x4 + X8fach.bereift + ABS + Airbag + Airbag.Beifahrer +

Alarmanlage + Alufelgen + Anh.ngerkupplung + Elektr..Sitze +

Elektr.Fensterheber + Elektr.Parkhilfe + Elektr.Schiebedach +

Faltdach + Hardtop + Klima + Klima.Automatik + Ledersitze +

Navigationssystem + Nebelscheinwerfer + Partikelfilter + Radio.CD +

Radio.Tonband + Schiebedach + Servo + Sidebags + Sitzheizung +

Sonnendach + Sperrdiff. + Sportsitze + Standheizung + Tempomat +

Wegfahrsperre + Xenon.Scheinwerfer + Zentralverriegelung

in the case without pricenew. In the other case, log(pricenew) has been
added to the right-hand side of this expression. Depending on the number
of different model categories that were present in each month’s data, the
design matrices X consisted of up to more than 1300 columns.

In order to detect and remove outliers, a mechanism analogous to the
one for the semi-log and double-log models has been implemented. It relies
on the leverage of each individual observation i which, in a PLS regression
framework, can be defined as

hi =
1

N t
+ t̂

′

i(T̂
′
T̂)−1t̂i

where T̂ is the factor score matrix as it has been described in Section 5.3.2
and t̂

′

i is the i-th row of T̂. The details are to be found in Martens and
Næs (1989, pp. 276–7). Following the advice presented there, an observation
i has been tagged as influential if

hi >
2(1 + A)

N t
.

This was done after having estimated a first PLS model with A = 50 latent
variables. Then, the same model was fit again using only the non-influential
data. This last model would then be used by the resulting hedonic function
for its price predictions.



108 Table 8.2: Preferred number Aopt of latent variables determined by cross-validation

for the different enhanced PLS models

Oct 2004 Nov 2004 Dec 2004 Jan 2005 Feb 2005 Mar 2005

w. pricenew 31 42 87 90 57 96

w/o pricenew 80 74 81 77 82 95

Apr 2005 May 2005 Jun 2005 Jul 2005 Aug 2005 Sep 2005

w. pricenew 100 93 100 95 100 100

w/o pricenew 83 95 91 83 98 80

Oct 2005 Nov 2005 Dec 2005 Jan 2006 Feb 2006 Mar 2006

w. pricenew 100 96 99 100 100 100

w/o pricenew 85 79 92 81 100 83

The PLS model estimations in R were calculated using the package pls

(Wehrens and Mevik, 2006) and the algorithm kernelpls.fit therein. This
algorithm was developed by Dayal and MacGregor (1997) and is partic-
ularly efficient if the number of observations exceeds largely the number of
variables, which is true in the present context.

8.2.2 Enhanced PLS model (EPLS) The enhanced PLS model deviates from the
simple one in the way the number A of latent

variables is determined. For the former, A is fixed to 50 in advance whereas,
for the latter, A is chosen between 1 and 100 such that the mean squared
error of prediction (MSEP) of the resulting PLS regression model is minimal.
The MSEP is estimated by ten-fold adjusted cross-validation on the learning
data set (see Mevik and Cederkvist, 2004). This is done for both the
model without and with the variable pricenew individually yielding for each
of them a preferred number Aopt of latent variables to include. Table 8.2
shows the realised values of Aopt for the different EPLS models. Since many
of them are close or even equal to 100, it might have been judicious to allow
an even larger number of latent variables to be chosen. Such a practice,
however, would have increased further the memory requirements and the
calculation time. The predictions in the resulting hedonic function were
thus based on the preferred number of components displayed in Table 8.2.

Whether or not either the simple or the enhanced PLS models perform



109better than the semi-log and double-log models presented above is going to
be discussed in Section 8.4. It is apparent, however, that several fundamental
issues inherent in the estimation of a hedonic function for used cars could
not be solved just by switching to this other regression technique. The
most prominent of them is outlier detection since the mechanism for doing
so is just as rudimentary here as it was for the linear regression models.
A potentially interesting approach of a robust method of estimating PLS
models based on the BACON algorithm (see Billor et al., 2000) has been
developed by Kondylis and Hadi (2005).

8.3 Per-model simple semi-log model (SSL/m)

With the enhanced semi-log and the two PLS models, we already presented
an approach where different models were fit to two subsets of the original
population: one model, excluding the pricenew variable, on the whole pop-
ulation and the other, including the pricenew variable, on the part of the
population where this information was given. The idea of fitting different
models within a family of models to different subsets of the training data is
now going to be developed one step further.

One major drawback of the simple semi-log approach presented in Sec-
tion 8.1.1 is its disability of integrating the car model variable into the
regression model. It seems realistic to assume that there are characteristics
variables which interact with the car model, since some models may have ac-
cessories as a standard fitting that others do not. Accessories may thus not
be price-relevant for all the models of a certain make. For this reason, one
could imagine fitting a semi-logarithmic regression model of the form given
above not to the data set as a whole, but to each car model individually. In-
teractions between the car model and the other characteristics variables are,
in this manner, implicitly taken care of. When a prediction is to be made
for a given characteristics vector, this is done using the estimated parameter
vector for the corresponding car model.

An important inconvenience related to this pure ‘per-model’ simple semi-
log approach—as it was implemented in Beer (2007), for instance—is that
the observations for the individual months are not numerous enough to
admit of fitting a regression model for every individual car model. It only
makes sense to carry out a regression in a specific month for car models
where at least about one hundred observations are available. This is twice
as much as there are exogenous variables. If regression models were only
fitted for these most frequent car models, however, a certain part of the



110 Table 8.3: Indicators of the per-model simple semi-log hedonic function estimates

Month Model count Model share Data share Overall adj. R2 Partial adj. R2

Oct 2004 69 10.6% 59.1% 0.958 0.967

Nov 2004 117 16.9% 73.6% 0.961 0.967

Dec 2004 133 18.6% 76.7% 0.962 0.967

Jan 2005 132 18.2% 76.1% 0.961 0.967

Feb 2005 135 18.9% 76.0% 0.963 0.969

Mar 2005 135 18.4% 76.0% 0.962 0.969

Apr 2005 127 17.3% 75.1% 0.962 0.968

May 2005 151 20.1% 78.1% 0.961 0.966

Jun 2005 136 18.4% 76.5% 0.961 0.967

Jul 2005 135 18.2% 76.3% 0.961 0.967

Aug 2005 139 18.6% 76.7% 0.960 0.966

Sep 2005 137 18.3% 75.9% 0.960 0.965

Oct 2005 139 18.3% 76.2% 0.961 0.967

Nov 2005 135 18.1% 75.1% 0.961 0.966

Dec 2005 137 18.2% 76.1% 0.960 0.966

Jan 2006 144 19.1% 76.8% 0.960 0.965

Feb 2006 141 18.9% 76.2% 0.961 0.967

Mar 2006 146 19.2% 76.9% 0.959 0.964

training data would be neglected completely. Moreover, predictions would
not be feasible for every complete characteristics vector in the training data
but only for the car models where a regression was carried out.

In order to overcome this weakness, we implemented here the idea of
predicting prices of rare car models, i.e. where less than one hundred obser-
vations were available in the training data, using a simple semi-log model
fitted to the data set containing all of the advertisements in the current
time period. The resulting per-model simple semi-log approach is therefore
an amended version of the original simple semi-log model yielding more pre-
cise price predictions for the most frequent car models. The formulae of the
regression models for the individual car models are almost the same as those
of the simple semi-log model. The only difference is that in each analysed
subset of the data, variables showing no variance (e.g. make) are removed
from the formula. Outlier detection and variable selection are performed for
every car model individually.

Table 8.3 presents some summary statistics for the hedonic functions es-
timated for the different months under consideration. The column entitled
‘Model count’ gives the number of car models for which individual regres-



111sions were performed. ‘Model share’ is ‘Model count’ divided by the total
number of different car models available in the respective learning data set.
‘Data share’ represents the share of the observations (after outlier deletion)
that belong to these car models receiving special attention.

Calculating adjusted R2 statistics for this per-model approach requires
special care, as the number of included covariates varies between the different
car models. Starting from the unadjusted R2 values, we chose to do the
adjustment as if all models had the maximal number of covariates over
all regressions performed in a month. This yielded the values given in the
column entitled ‘Overall adj. R2’ in Table 8.3 showing an important increase
compared to the simple semi-log approach. The ‘Partial adj. R2’ values are
adjusted R2 statistics calculated for the ‘Data share’ of the observations only
where special per-model regression fits are available. They indicate that the
fit is somewhat better for observations of car models receiving individualised
treatment—which is what could be expected.

One final aspect that calls for some attention here is the existence of high
multicollinearity between the independent variables. Parameter estimates
of linear regression models are known to become unstable and potentially
misleading if several covariates are highly correlated. This is usually not a
problem if the purpose of a regression analysis is to make predictions of the
response variable, ‘provided that the values of the independent variables for
which inferences are to be made follow the same multicollinearity pattern
as the data on which the regression model is based’ (Neter et al., 1985,
p. 393). Multicollinearity may be an issue, however, if out-of-the-sample
predictions are made—which is, to a certain extent, the case for hedonic
elementary price indices.

The six previous modelling approaches of the hedonic function were all
based on a large and varied data set, so that multicollinearity never seemed
to be an issue. This, unfortunately, is not the case for the per-model simple
semi-log approach which showed to be much more susceptible to problems
related to multicollinearity. Restricting the analysis to individual car models
resulted, for instance, in low variance in certain characteristics for certain
models. As a result, it could be observed that hedonic functions of this
second type yielded highly unrealistic price predictions in the order of less
or more than 10−10 or 1010 Swiss francs respectively for certain reference
characteristics vectors. This issue showed to be even more severe if no
variable selection was performed.

For this reason, we decided to constrain all hedonic functions introduced
in this chapter to return only price predictions that lie in a plausible range
between one and one million Swiss francs. For the current per-model simple



112 semi-log type hedonic functions, moreover, predictions made using one of
the model-specific regression equations are only accepted and returned if
the resulting price is contained in the price range of the original data. If
this is not the case, the price is automatically predicted using the overall
simple semi-log model fitted to the entire learning data set.

8.4 Overall examination of the different models

After having estimated these seven types of hedonic functions, one would
like to answer the question which of them performs best. If we compare the
plots displayed in Fig. 8.1 of the observed versus predicted price values for
the different models, it is interesting to see that the PLS models seem to
give better predictions in absolute terms for prices higher than about 50 000
francs. For lower price values, the semi-log and double-log models seem to
perform better—which is, however, mainly due to the fact that, at the lower
end of the price range, many observations are tagged as outliers (marked as
coloured crosses) by the linear models. Since the prices are log-transformed
in all the models, a fixed absolute difference between untransformed prices
has more weight at a lower than at a higher price level. In other words, the
least squares criterion is less influenced by an absolute difference between
the observed and the predicted price of a car the higher both prices are.
Interestingly, this phenomenon apparently has a weaker effect for the PLS
than for the linear models.

In Section 5.4, an overall measure ∆(h) of the predictive power of a model
type h has been presented. We are now going to investigate bootstrap
estimates ∆̂B of the aggregate prediction error for each hedonic function.
These are calculated using two different cost functions, namely the squared-
log cost function

cql(P, P̂ ) = (lnP − ln P̂ )2

and the absolute cost function

ca(P, P̂ ) = |P − P̂ | .

The motivation for the squared-log cost function is the fact that it cor-
responds exactly to the least squares criterion being minimised when es-
timating the semi-log or double-log models by the ordinary least squares
procedure. The absolute cost function is an alternative where the original
prices—and not their logarithms—are compared to each other.

Table 8.5 gives bootstrap estimates ∆̂B of the aggregate prediction error ∆
for each hedonic function using both cost functions introduced above. They



113

Figure 8.1: Observed versus fitted price values for different hedonic function esti-

mates in February 2005
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Figure 8.1: (cont.)



115were calculated based on the formulae (5.9) and (5.10) using R = 199 boot-
strap replications ĥ⋆r generated by the case-based resampling algorithm 6.1.
In each row, the lowest and thus most preferable value is printed in bold
and the second lowest is printed using a regular font weight.

It is important to note that, in order to generate these replications, the
model specifications have been imposed to be the same as in the correspond-
ing hedonic functions. In other words, when the replications of the semi-log
hedonic function estimate for February 2005 were created, the model for-
mula for all these replications was chosen to be the one that resulted from
the variable selection procedure of the original estimate for February 2005.
In the per-model simple semi-log model, all the model-specific regressions
were performed using the same formulae as in the original hedonic function
estimate. Moreover, the number of latent variables in the enhanced PLS
model, for example, was held constant for all replications within one time
period.

It can be seen from Table 8.5 that the per-model simple semi-log modelling
approach seems to perform best for both cost functions. Second best is the
enhanced PLS model if the goodness of fit is measured by the absolute cost
function. Conversely, the flexible double-log model seems to perform second
best for the squared-log cost function. This confirms the observations of
the plots in Fig. 8.1 where we had noticed that the PLS models seem to
perform better than, e.g., the simple semi-log models in absolute terms over
the whole price range.

In order to test which of these differences in estimated aggregate predic-
tion error are statistically significant at a certain level, we pick up the idea
presented in Section 5.4 of performing a Wilcoxon signed rank test on the
differences of the estimated aggregate prediction errors between the models
for the different time periods.

Table 8.4 displays all the alternatives that were supported by exact Wil-
coxon signed rank tests through rejecting the corresponding (i.e. opposite)
null hypotheses at the 5% level. Results are given for both cost functions
individually. The results show that, for the squared-log cost function, the
ordering of the models can be summarised by

SSL/m ≻ FDL ≻

{
SSL
ESL

}
≻ SDL ≻ EPLS ≻ SPLS

whereas, for the absolute cost function, this results in

SSL/m ≻ EPLS ≻ SPLS ≻ ESL ≻ FDL ≻ SSL ≻ SDL .



116 Table 8.4: Testing the aggregate prediction error of the different models

Alternatives supported at the 5% level for the squared-log cost function:

SSL/m ≻ FDL SSL/m ≻ SSL SSL/m ≻ ESL SSL/m ≻ SDL SSL/m ≻ EPLS SSL/m ≻ SPLS

– FDL ≻ SSL FDL ≻ ESL FDL ≻ SDL FDL ≻ EPLS FDL ≻ SPLS

– SSL ≻ SDL SSL ≻ EPLS SSL ≻ SPLS

– ESL ≻ SDL ESL ≻ EPLS ESL ≻ SPLS

– SDL ≻ EPLS SDL ≻ SPLS

– EPLS ≻ SPLS

–

Alternatives supported at the 5% level for the absolute cost function:

SSL/m ≻ EPLS SSL/m ≻ SPLS SSL/m ≻ ESL SSL/m ≻ FDL SSL/m ≻ SSL SSL/m ≻ SDL

– EPLS ≻ SPLS EPLS ≻ ESL EPLS ≻ FDL EPLS ≻ SSL EPLS ≻ SDL

– SPLS ≻ ESL SPLS ≻ FDL SPLS ≻ SSL SPLS ≻ SDL

– ESL ≻ FDL ESL ≻ SSL ESL ≻ SDL

– FDL ≻ SSL FDL ≻ SDL

– SSL ≻ SDL

–



117The choice of the cost function has thus a large impact on the evaluation
of the models. The per-model simple semi-log hedonic function seems to
perform best with regard to both cost functions. Apart from that, the only
relations that hold for both cost functions are EPLS ≻ SPLS and FDL ≻
SSL ≻ SDL giving some support for preferring the flexible or enhanced
models to their simple alternatives. No overall ordering, however, can be
established between the simple or enhanced semi-log or double-log and the
PLS models. This is particularly interesting if one takes into account that
the PLS models use much more of the information contained in the data
by including the model variable instead of make. The dominance of the
per-model simple semi-log model shows that an appropriate inclusion of the
model variable does yield better predictions.

An interesting question for further research would certainly be to estimate
these aggregate prediction errors by other means such as adjusted cross-
validation or the 0.632 bootstrap estimate (see, e.g., Davison and Hink-
ley, 1997, Sect. 6.4.1, Efron and Tibshirani, 1993, Chap. 17, or Mevik
and Cederkvist, 2004) and to compare the results to those obtained here.
Moreover, if outlier detection could be accomplished by a method that is
independent from the regression model of the hedonic function, one could
first ‘clean’ the database and then estimate all the models and bootstrap
replications using the same data. This would significantly increase the rel-
evance of such a comparison of estimated aggregate prediction errors. An
important weakness of the results presented here is the fact that for each
of the six model types, other data were finally left over for estimating the
models and prediction errors. Differences between the prediction errors may
thus to a certain extent be due to the fact that not all the models predict
prices for the same set of observations. Therefore, the above preference
orderings must, in any case, be interpreted with care.

One conclusion that seems to be supported by these results is that parti-
tioning the data and building separate models for different sub-populations
allows to increase the predictive power of the resulting hedonic function.
One could now construct per-model hedonic functions not only for the sim-
ple semi-log but also for other regression approaches. Moreover, it could be
studied whether partitioning the data with regard to other variables than
model or pricenew could yield even better results. The extreme case of
such a partitioning approach is probably the fitting of regression trees to
such data. It is an open question, however, whether such an extreme solu-
tion is really the best one.
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120 8.5 Concluding remarks

If one tries to summarise the experience presented in this chapter about
estimating hedonic functions, the following aspects have to be mentioned:

Variable selection has two different dimensions. In a first stage, it is im-
portant to carefully select variables that are potentially price-relevant for a
certain elementary aggregate in order to survey them for further quantitative
analysis. This needs to be done based on expert judgements. In a second
stage, variable selection plays its role within the regression procedure and is
there a purely statistical issue. For this second stage, standard techniques
such as the one applied here minimising the AIC are applicable.

Outlier detection seems to be one of the most difficult issues inherent
in the practical estimation of a hedonic function. Ideally, it should be ac-
complished independently from the estimation of a regression model. Only
then, the goodness of fit estimations of different regression models can be
compared with a clear conscience. Using robust techniques for estimating
hedonic functions is certainly favourable. In this case, however, the esti-
mates of aggregate prediction error should probably be generated using a
cost function that does not give too much weight to large differences stem-
ming from real outliers in the data.

The functional form of a hedonic function needs to be chosen in such a
way that it fits the data and not necessarily any theoretical reasoning. The
family of candidate models should be broad enough to potentially provide
good approximations of the truth. Modern adaptive regression approaches
are certainly interesting techniques for modelling hedonic functions, because
they may approximate a very broad universe of functional forms. There is,
however, no a priori evidence that they would substantially outperform
conventional models, such as the semi-log linear regression, in terms of pre-
dictive power.

Automated processes need to be established for the estimation of hedo-
nic functions in a productive environment. Second-stage variable selection,
outlier detection, and model estimation should not require the intervention
of experts. The methods need to be designed in such a manner that they
can cope with different potential data sets for separate time periods. Nev-
ertheless, an ongoing quality assessment of the estimations will in any case
be necessary.



CHAPTER 9

Estimating Hedonic Elementary

Price Indices for Used Cars

In this last chapter, we are going to apply the tools developed so far for 121

estimating hedonic elementary price indices for used cars. These estimates
relate on the theoretical concepts introduced in Chapter 6 and on the es-
timated hedonic functions presented in Chapter 8. The base period of all
indices presented in this chapter will be set to October 2004.

Given the conceptual limitations of this data set (see Section 7.4), it is
important not to overrate the numerical results that are going to be pre-
sented in this chapter. Therefore, we deliberately refrain from comparing
these index estimates with the official results published by the Swiss Fed-
eral Statistical Office. Our interest lies in analysing the outcomes of different
estimation methods, as far as this is possible.

9.1 Hedonic elementary price index estimates

It has been shown in the previous chapters that any bilateral hedonic ele-
mentary price index estimator is determined by essentially three mutually
independent dimensions. The first dimension consists of the potential index
estimators where the five formulae given in Table 6.1 are individual repre-
sentatives. The second dimension reflects the type or functional form of the
hedonic functions. Seven alternative approaches have been investigated in
Chapter 8.



122 Table 9.1: Reference sample size for individual (base or current month) samples or

symmetric samples combined with the base month October 2004.

Month Individual Combined

Oct 2004 81209 –

Nov 2004 104161 118745

Dec 2004 100893 139327

Jan 2005 97319 147320

Feb 2005 99188 155781

Mar 2005 101354 162637

Apr 2005 105520 170754

May 2005 104816 173268

Jun 2005 107811 178406

Jul 2005 106159 178556

Aug 2005 104809 178494

Sep 2005 106935 181545

Oct 2005 109497 184990

Nov 2005 109992 186205

Dec 2005 109202 185998

Jan 2006 110301 187514

Feb 2006 109685 187443

Mar 2006 115618 193709

The third dimension assembles the potential reference characteristics sam-
ples to be used for the index estimation. Here, we are going to consider
either the sample of cars available in the base period, the current period or
in both periods symmetrically combined. Since the reference sample oper-
ationalises the reference quality spectrum of the index, choosing either of
these three samples has an impact on the nature of the index. If the base
period sample is used for the index estimation, this mimics a Laspeyres-type
approach since, in the aspect already described in Section 3.3, the base pe-
riod population is held constant. Using the current period sample, on the
other hand, rather follows the philosophy of Paasche-type indices where the
constant population represents the current period. Taking the symmetric
sample finally leads to an implementation of an index that is similar to the
true hedonic adjacent periods price index (Brachinger, 2002, pp. 6–8).

The samples used for the estimations are all extracted from the database
using the procedure specified in Section 7.2.2. In contrast to the learning
data sets fetched for fitting the models in Chapter 8, where only adver-
tisements which had been changed during a specific month were included,



123Table 9.2: Bilateral hedonic elementary price index estimates for February 2005.

Comparison of different hedonic functions, index formulae, and reference sample

types.

Formula Reference Functional form

SSL ESL SDL FDL SPLS EPLS SSL/m

Î0:1
J base 1.0063 1.0041 1.0054 1.0068 1.0025 1.0056 1.0080

symmetric 1.0072 1.0047 1.0054 1.0070 1.0027 1.0054 1.0067

current 1.0079 1.0055 1.0058 1.0076 1.0033 1.0057 1.0060

Î0:1
D base 1.0013 0.9991 1.0085 1.0047 1.0054 1.0035 1.0028

symmetric 1.0026 1.0000 1.0092 1.0049 1.0063 1.0037 1.0032

current 1.0032 1.0006 1.0094 1.0053 1.0075 1.0041 1.0031

Î0:1
HD base 1.0106 0.9958 1.0019 1.0102 0.9823 1.0004 1.0127

symmetric 1.0104 0.9801 1.0018 1.0092 0.9504 0.9902 1.0085

current 1.0108 0.9760 1.0022 1.0094 0.9400 0.9872 1.0062

Î0:1
C base 1.0068 1.0051 1.0060 1.0074 1.0061 1.0101 1.0143

symmetric 1.0077 1.0057 1.0061 1.0076 1.0063 1.0100 1.0131

current 1.0084 1.0064 1.0065 1.0082 1.0069 1.0106 1.0123

Î0:1
HC base 1.0057 1.0027 1.0047 1.0062 0.9971 1.0011 1.0019

symmetric 1.0066 1.0031 1.0048 1.0064 0.9957 1.0005 1.0005

current 1.0073 1.0039 1.0051 1.0069 0.9960 1.0005 0.9998

all available advertisements are now retained within these reference samples.
While it was important to have up-to-date data points for fitting the models,
it is now more important to have a broad universe of items included in the
reference quality spectrum. As a consequence, the number of characteristics
vectors contained in reference samples of a single month is higher than the
number of data points used for the estimation of the hedonic functions. (The
latter is displayed in the column labelled ‘Original data’ of Table 8.1.) When
combining a base and a current period in order to build a ‘symmetric’ refer-
ence sample, individual advertisements occurring in both months were only
included once—using the version with the highest revision number available
during the given time periods. Again, all advertisements with prices outside
the range of 52 to 999 999 CHF were discarded (cf. Section 7.3). Table 9.1
shows the reference sample sizes both for individual one-month samples and
for combined two-month samples.

Based on these three dimensions, we will have to choose from a 5× 7× 3
matrix of potential estimates for each individual hedonic elementary price



124 index value to be estimated. This is a discrete grid with 105 edges in a
three-dimensional space where each dimension is on its own potentially high-
dimensional and continuous. (Table 9.2 displays these point estimates for
February 2005 as an example.) It is difficult to overlook all these estimates
as a whole, especially if this needs to be done over several time periods.

We therefore first identify a standard case and compare deviations from
this case in only one or two dimensions at a time. Our standard index for-
mula will be the one by Jevons since it emerges from both (6.3) and (6.4) and
seems to have the largest support in the literature. As a standard functional
form of the hedonic function, we are going to take the per-model simple
semi-log approach since it performed best in terms of aggregate prediction
error among all of the alternatives presented in Chapter 8. The standard
reference sample will be the symmetric inclusion of base and current period
observations.

Fig. 9.1 shows three times the bilateral hedonic elementary price index
estimates obtained using the reference model. In each of the three frames,
this model is confronted with alternatives obtained by moving along one of
the three dimensions described above. In the top frame, results from the six
alternative index formulae are presented, showing that the index estimates
obtained by the Jevons formula lie somewhere in the center of the different
alternatives. This is, at least for the three alternative implementations of
(6.4), due to the theoretical inequality relations between the arithmetic,
geometric, and harmonic means (see e.g. ILO et al., 2004, p. 361). In the
middle frame, secondly, the seven different functional forms are varied, while
the third frame displays the results for the three alternative specifications
of the random sample that were analysed.

Fig. 9.2 shows the effect of changing the reference sample type individually
for each index formula while holding the modelling approach of the hedonic
function constant at its reference level ‘SSL/m’. Fig. 9.3 holds constant the
reference sample type (‘symmetric’) and shows the effect of changing the
functional form of the hedonic regressions. The interaction between the
functional forms and the reference sample type is finally depicted in Fig. 9.4
for estimates obtained using the Jevons formula.

A number of most prevalent conclusions that can be drawn from these
results is now going to be summarised:

The price index estimates seem to be to a large extent insensitive to the
choice of the reference sample among the base period, the current period,
and the inclusion of both periods symmetrically. This finding emerges from
the fact that the curves in the lower frame of Fig. 9.1 as well as those in
Fig. 9.2 almost coincide. The average price change between the base and any
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Figure 9.1: Bilateral hedonic elementary price index estimates using the reference

model. Comparison with alternatives in each of the three main dimensions.
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Figure 9.2: Bilateral hedonic elementary price index estimates using the per-model

simple semi-log modelling approach for the hedonic functions. Comparison of al-

ternative index formulae and reference sample types
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Figure 9.3: Bilateral hedonic elementary price index estimates using the symmetric

reference sample. Comparison of alternative index formulae and functional forms of
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129current period seems to be almost identical for any of the three populations
used as reference quality. This might be due to the fact that the quality
spectrum does not change dramatically between the different periods.

In general, indices estimated using the simple double-log model tend to
have lower values than those estimated using the other functional forms,
at least if they are calculated using the Jevons formula. The discrepancy,
however, should not be overrated since the SDL model did not perform very
well in terms of goodness of fit (cf. Section 8.4).

According to Fig. 9.4, the variance of the index estimates over the differ-
ent functional forms of the hedonic functions tends to increase with time.
Moreover, according to Fig. 9.3 as well as to its two counterparts Fig. A.1
and Fig. A.2 in the appendix which show the results based on the base period
and the current period reference sample respectively, it seems to be lower
for the Jevons, Carli, and Harmonic Carli than for the Dutot and Harmonic
Dutot indices. It thus seems that estimates of the index type (6.4) are less
sensitive to the specification of the hedonic functional form than estimates
of the index type (6.3). This is probably due to the fact that the latter is
essentially a ratio of means whereas the former is a mean of ratios.

Finally, the observed variance of the index estimates over the five different
index formulae is not surprising because these formulae are all estimators of
different theoretical indices. The choice of an index estimator depends first of
all on the specification of the index we want to estimate. Comparing results
delivered by the five formulae among each other is thus not informative with
regard to the robustness of these estimates.

9.2 Estimates of bootstrap confidence intervals

In order to get some further idea about the quality of the point estimates
presented so far, we are now going to estimate confidence intervals for some
of the bilateral hedonic elementary price indices. In Section 6.2, three ap-
proaches for estimating such intervals using bootstrap replications have been
presented. The aim of the current section is also to compare these three
techniques for those hedonic functions where all of them are applicable.

The bootstrap replications were all built on the same data as the original
hedonic function estimates. In other words, the outlier detection procedure
was not repeated for each replication. Moreover, as in Section 8.4, the model
specification was always fixed to be the same for each replication as far as
this was possible in order to catch the variability in the data rather than any
variability in the models. For example, the replications of the simple semi-



130 log hedonic functions were all built using the model formula that resulted
from the model selection algorithm of the original estimate. This means that
exactly the same subset of exogeneous variables was used for all replications,
and there was no individual model selection involved any more. The same
holds for both of the double-log models. In the enhanced semi-log model, the
specification was held constant individually for both the part of the model
including the pricenew variable and the other part excluding it. In the per-
model simple semi-log model, the model formulae applied to the different car
models were fixed individually as well. This regime was somewhat weaker
for the PLS models, where only the number of latent variables was fixed
for all replications in a month—always based on the number applied for the
original estimates.

Choosing the number of replications R represents a trade-off between the
precision of the estimates and the computing time needed. The higher R, the
better the empirical distribution of the estimates approximates the under-
lying reality. The higher R, however, the more time is necessary to produce
the estimates. For the current study, a number of R = 199 replications was
chosen. This choice ensures that, when determining the empirical 2.5%, 5%,
95%, and 97.5% quantiles of ζ0:1

⋆ as defined in (6.6), an integer number of
at least five observations is left over at each tail of the distribution. Some
analyses using a higher number of replications showed no relevant change in
the resulting empirical quantiles. Table 9.3 shows the average time that was
needed to produce one replication of ζ0:1

⋆ along with the total time needed
to produce R = 199 replications either using one single CPU or using four
or eight CPUs in parallel.

The durations were measured when running the simulations on the Be-
owulf cluster nodes described in Section 7.2.3. They depend to a certain
extent on the implementation of the algorithms. Linear reductions of all
these time intervals could certainly be attained by purging the source code
appropriately. In the current implementation, for example, replications us-
ing all five index formulae were simultaneously generated, and intermediate
results were stored in order to estimate the aggregate prediction error of the
hedonic functions afterwards. If all such ballast is removed, the computa-
tions would be somewhat quicker.

If we now look at the individual resampling algorithms, it is evident that
the case-based version is the most generally applicable since it does not rely
on the availability of variance-adjusted residuals. It is therefore similarly ap-
plicable to all seven hedonic modelling approaches proposed in the previous
chapter. Its implementation was straightforward. R = 199 new estimates
(ĥ0

⋆r, ĥ
t
⋆r) (r = 1, . . . , R) were obtained on the basis of resampled price-



131Table 9.3: Average time needed for creating bootstrap replications.

Model One replication R = 199 replications

1 CPU 4 CPUs 8 CPUs

SSL 3.2 min 10 h 33 min 2 h 38 min 1 h 19 min

ESL 5.4 min 17 h 48 min 4 h 27 min 2 h 13 min

SDL 3.2 min 10 h 37 min 2 h 39 min 1 h 20 min

FDL 3.7 min 12 h 7 min 3 h 2 min 1 h 31 min

SPLS 4.0 min 13 h 21 min 3 h 20 min 1 h 40 min

EPLS 4.8 min 15 h 48 min 3 h 57 min 1 h 58 min

SSL/m 28.7 min 3 d 23 h 10 min 23 h 47 min 11 h 54 min

characteristics combinations from the original data. One technical problem
encountered, however, was that the three gigabytes of random access mem-
ory available were insufficient for routinely creating replications of the SPLS
and EPLS models, due to the inclusion of the model variable. For this rea-
son, the number of observations used for building the replications of the two
PLS models was fixed to be half of the number of observations used for the
original estimate. In other words, wherever the number N t occurs in Algo-
rithm 6.1, it was replaced by N t/2 for the PLS models. The variance of the
index estimators based on PLS hedonic regression models might therefore
be somewhat overestimated.

The implementation of the model-based and the wild bootstrap algorithms
was less straightforward. The main problem here was the proper speci-
fication of variance-adjusted residuals. With the choice of modelling the
natural logarithm of the dependent price variable, one implicitly assumes
that the variance of the error term ǫt is proportional to (E[P t])2 (see e.g.
Montgomery and Peck, 1992, p. 98), as has already been mentioned in
Section 5.3.1. The model-based bootstrap algorithm, however, depends on
the homoscedasticity of the error term. We therefore defined the modified
residuals used in the algorithm as

rt
n =

ln pt
n − ln ĥt(mt

n)

(1 − hn)1/2
. (9.1)

instead of (6.7), where hn is the nth diagonal element of the hat matrix of the
corresponding linear regression model. This reflects that the assumption of
homoscedasticity is translated to the error term ηt of the transformed model
(5.4) or (5.5). As a consequence, the step 1b of Algorithm 6.2 needed to be
changed into pt

⋆rn = exp(ln ĥt(mt
n)+ǫt

⋆n) accordingly. In the wild bootstrap



132 Table 9.4: Lengths of 90% and 95% bootstrap confidence intervals (multiplied by

100) over the period from Nov 2004 to Mar 2006 for Jevons-type index estimates.

Comparison of different modelling and bootstrap approaches.

Model Bootstrap algorithm Interval lengths Mean length difference

90% 95% 90% 95%

SSL case-based 0.41–0.52 0.49–0.63 0.003 0.000

model-based 0.37–0.49 0.45–0.59 0.002 0.001

wild 0.41–0.52 0.51–0.60 0.000 0.001

ESL case-based 0.40–0.54 0.47–0.65 0.003 0.002

model-based 0.39–0.50 0.45–0.63 −0.000 −0.000

wild 0.43–0.51 0.51–0.60 0.002 −0.003

SDL case-based 0.45–0.56 0.52–0.67 −0.000 0.003

model-based 0.44–0.53 0.51–0.63 0.005 0.001

wild 0.45–0.56 0.52–0.71 0.002 −0.002

FDL case-based 0.42–0.53 0.50–0.64 −0.000 0.003

model-based 0.38–0.52 0.47–0.59 0.001 0.003

wild 0.40–0.55 0.49–0.62 0.001 0.000

SPLS case-based 0.85–1.07 1.04–1.35 0.008 0.007

EPLS case-based 0.86–1.07 1.06–1.34 0.008 −0.005

SSL/m case-based 0.46–0.58 0.55–0.71 0.014 0.008

model-based 0.37–0.51 0.43–0.61 0.013 0.010

wild 0.38–0.50 0.44–0.63 0.012 0.020

algorithm 6.3, the step concerned is also 1b which needed to be adapted into
pt

⋆rn = exp(ln ĥt(mt
n) + rt

n ǫt
⋆rn).

Model-based and wild bootstrap confidence intervals were estimated for
the SSL, ESL, SDL, FDL, and SSL/m models. In the per-model simple semi-
log modelling approach, the residuals of the regressions for each car model
were modified individually according to (9.1) using their specific hat matrix
coefficients, but then pooled together for generating the bootstrap replica-
tions. In order to modify the residuals of observations where no model-
specific regression model had been estimated, the hat matrix of the overall
model was used. In the enhanced semi-log model, similarly, residuals of ob-
servations where pricenew was available were modified using the hat matrix
of the regression model including pricenew, while all the other residuals
were modified using the respective hat matrix element of the overall model.
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Figure 9.5: Jevons-type bilateral hedonic elementary price index estimates for the

symmetric reference samples. Comparison of different functional forms of the he-

donic function and of different bootstrap approaches.
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Figure 9.5: (cont.)
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Figure 9.5: (cont.)



136 Using (6.9), 90% and 95% confidence intervals for bilateral elementary
price indices in all the months under consideration were estimated. They
are displayed for the Jevons formula along with the point estimates of the
indices in Fig. 9.5. The gray areas represent the 90% confidence intervals
while the gray lines show the borders of the 95% intervals. The respective
ranges of interval lengths (upper minus lower bound) over time are listed
in Table 9.4, each value being multiplied by the factor of 100 for reasons of
better legibility.

It is interesting to compare the interval lengths calculated above to those
obtained when the reference characteristics m1, . . . , mN are not resampled
in (6.8), i.e. when the original values mn are used instead of m⋆n. This
second case imitates the idea that the reference characteristics distribution
PM puts equal probability weight on the values m1, . . . , mN , whereas in
the above case m1, . . . , mN is seen as a sample from an unknown PM . If we
subtract the length of the confidence intervals where no resampling of the
characteristics is done from those in the original model, we see hardly any
difference. The respective average differences—again multiplied by 100—are
contained in the two columns labelled ‘Mean length difference’ of Table 9.4.
We conclude that the variance of the index estimators with regard to the
randomness of the reference sample seems to be negligible—presumably due
to the large size of the sample.

If we compare the various results obtained, several phenomena can be
observed. These will now be shortly summarised and commented:

The confidence intervals presented here are all conditioned on the choice
of the supposed functional form of the hedonic functions. Given the hedonic
regression model, they contain the true but unknown index values with a
certain probability (90 or 95 percent). The variance observed is the variance
due to sampling from all the five price and characteristics distributions the
index depends on (cf. Section 4.1). It does, however, not cover the vari-
ance due to choosing a specific regression model for approximating the true
hedonic functions. We see from Fig. 9.5 that there are interval estimates
for different regression approaches that do not even intersect (e.g. the confi-
dence intervals for the ESL and SDL models in March 2006). Unconditioned
confidence interval for hedonic elementary price indices would therefore be
considerably larger.

The lengths of the confidence intervals obtained using the essentially lin-
ear hedonic regression models (SSL, ESL, SDL, FDL, and SSL/m) are all
comparable and mostly independent of the bootstrap algorithm used. In
contrast, the lengths of the intervals obtained using the two PLS hedonic
regression models are generally about twice as large as the former. To a



137certain extent, this might be due to the fact that, for the PLS models, the
replications of the hedonic function estimates were based on only half of
the original observations as mentioned above. Increasing the sample size,
however, does not usually decrease linearly the variance of any estimator,
especially for samples of this size. It seems highly probable that most of
the additional variance observed here is really due to the choice of the PLS
approach.

The most prominent differences between the three bootstrapping approaches
can be identified for the estimates based on the ESL hedonic functional
model. Whereas the two residual-based resampling approaches are compa-
rable between each other, they contrast somewhat with the results obtained
using the case-based resampling algorithm. There is no apparent expla-
nation for this phenomenon. In general, however, the resulting confidence
intervals are comparable for all the three bootstrap approaches—in spite
of their individual advantages and disadvantages. It appears that the case-
based resampling procedure is sufficient and, due to its ease of use, preferable
to the two other approaches.

Fig. A.3 and Table A.5 in the appendix show the same results for the in-
dex estimated using the Dutot formula, and all the observations mentioned
above similarly hold. As a general rule, the confidence intervals are longer
for the Dutot than for the Jevons indices. This means that the index (6.3)
with ϕ(x) = lnx can be estimated more precisely than the alternative imple-
mentation of (6.3) with ϕ(x) = x—which is certainly an empirical argument
for using the former of the two in practice.

Due to the nonparametric nature of these confidence intervals, they are
not generally centered around the respective point estimates. It may even
happen that the point estimate lies outside any of these intervals. This
is the case when the point estimate lies in the upper or lower tails of the
corresponding distribution (see also Beer, 2007 for an example of such a
situation). When implementing this kind of hedonic elementary price index
estimators in a production environment, it should therefore be discussed
whether it is wiser to use the original point estimate or rather an appropriate
summary statistic, e.g. the median, of the estimated probability distribution
as an estimate for the corresponding index.





CHAPTER 10

Conclusions, Recommendations,

and Open Questions

Why such an effort? In his critical review on price hedonics, Hulten (2003) 139

insists on the demand for ‘perceived credibility’ formu-
lated by Schultze and Mackie (2002, p. 7) with regard

to the application of hedonic methods for building and estimating consumer
price indices. ‘Policy’, he says, ‘ultimately relies on the consent of the public,
not the vision of convinced experts.’ However, the more the academic world
is convinced of hedonic methods as being the most promising to account for
changes in product quality, the higher the acceptance by the public and the
policymakers will be.

The present piece of work is a contribution to the academic discussion
of hedonic methods in price statistics. In the first part, we constructed an
axiomatic framework for hedonic elementary price indices and touched the
fundamental question of what we want to measure with such indices. We
then embedded well-known elementary index estimators into the proposed
framework. Finally, we studied the problems arising when a hedonic ele-
mentary price index needs to be implemented in practice, and we tried to
estimate how sensitive such an index may be with regard to sampling and
specification errors.

Whelan (2005, p. 66) recently argued that the consumer or retail price
index in general as a ‘method of measuring inflation adopted in developed
economies is profligately over-engineered for the phenomenon it measures’.
In this sense, it is certainly appropriate to discuss whether hedonic elemen-



140 tary price indices, which need a respectable effort to be properly defined
and estimated, are really necessary in practice. Whelan is probably right
in saying that ‘Merely because the index is important does not mean that
it requires huge effort’. Users of an inflation measure, however, ‘have a
right to demand a quality product from the supplier and to define quality
in their own terms’ (Hulten, 2003, p. 13). Statistical offices estimating and
publishing a CPI are thus urged to work with ‘best practice’ methods.

Conclusions and

recommendations

In the first part of the thesis, we identified two different
approaches of defining a hedonic elementary price index
for an elementary aggregate. Both of them still exhibit a

large degree of flexibility, as they build upon a transformation function that
is not intrinsically specified. The list of axioms developed in Chapter 4 pro-
vides guidelines that help to decide which of the two approaches and what
kind of transformation function are preferable. However, the proposed sys-
tem of axioms is not restrictive enough to allow for only one ideal definition
of a hedonic elementary price index.

This has both advantages and disadvantages. From a theoretical point
of view, it would certainly be preferable not having to choose among dif-
ferent definitions of a quality-adjusted inflation measure for an elementary
aggregate of consumption. If one ideal index could be defined, there would
be no ambiguity concerning the interpretation of such a measure. On the
other hand, the flexibility offered by the theory also allows us to rely on
more practical criteria in the choice of the parameter we wish to estimate.
One such criterion might be the expected precision of the index estimates.
If among the theoretically admissible index definitions, there is one where
estimates are generally more robust against misspecifications of the hedo-
nic functions or against sampling errors, it is just pragmatic to prefer this
definition to the others.

In this sense, we come to the empirical conclusion that a hedonic elemen-
tary price index of an elementary aggregate G and for any given reference
quality distribution PM should be defined by

HPI
0:1(G) = exp

(
E

[
ln

(
h1
G(M )

h0
G(M )

)])
. (10.1)

An estimator of this index is given by the Jevons formula

Î0:1
J = N

√√√√
N∏

n=1

ĥ1(Mn)

ĥ0(Mn)
(10.2)



141based on estimates ĥ0 and ĥt of the hedonic functions and on an i.i.d. sample
M1, . . . , MN of reference characteristics vectors.

The reasons for this choice are various. First of all, the index (10.1) is the
only one that incorporates both of the two definition approaches mentioned
above. Due to the properties of the exponential function and of the natural
logarithm, (10.1)—which shows to be the backtransformed mean of trans-
formed price ratios—can also be interpreted as the ratio of backtransformed
means of transformed prices:

exp

(
E

[
ln

(
h1
G(M )

h0
G(M )

)])
=

exp(E ln(h1
G(M )))

exp(E ln(h0
G(M )))

.

Secondly, an important argument for using (10.1) as the preferred index
definition is that it satisfies all of the axioms developed in Chapter 4. All the
theoretical requirements on the index as a quality-adjusted inflation measure
are therefore guaranteed.

Thirdly, with the Jevons formula (10.2), the index (10.1) has a natural
estimator that enjoys a large support in the literature in its non-hedonic
original form. It is currently the preferred base aggregator for unweighed
price observations. From an empirical point of view, we could finally observe
that index estimates generated by (10.2) were less sensitive to the choice of a
specific functional form of the hedonic function than alternatives such as the
Dutot and Harmonic Dutot estimators of other candidate index definitions.
Moreover, compared to the alternatives, the Jevons index estimator showed
a lower variance due to the sampling of prices and characteristics for both the
estimations of the hedonic functions and of the reference quality distribution.

The choice of the reference sample among the items available in the base
period, the current period, and both periods symmetrically taken together
showed to have almost no influence on the estimates. We therefore recom-
mend to use the symmetric reference sample, as it englobes the largest pos-
sible spectrum of items. In particular, it englobes both items that appeared
and items that disappeared between the base and the current period. With
higher-level price indices, practical reasons speak for using a Laspeyres-type
approach, since expenditure shares of the current period are often not avail-
able early enough. This argument, however, does not hold in our context,
as a sample of observations for the current period is in any case needed
for estimating the hedonic function. Building a symmetric sample of items
should therefore be straightforward.

Our investigations suggest that the estimation of the hedonic functions
at different time periods is a question on its own that can and should be
treated completely independently. A regression model needs to be identified,



142 which, depending on the nature of the elementary aggregate under review,
best fits the assumed relationship between the price and the price-relevant
characteristics. If no satisfactory fit can be found, this probably means
that either the wrong characteristics are taken into account or the hedonic
hypothesis does just not hold for this specific elementary aggregate.

Whether a relatively simple regression model is sufficient for modelling
a hedonic function depends on the underlying elementary aggregate and
the available observations. With our per-model simple semi-log approach
building essentially on linear regression models, we showed that it was pos-
sible to approximate the hedonic function of used cars comparably well in
terms of aggregate prediction error. In contrast, modern adaptive regression
approaches might have the advantage that they fit an unknown functional
dependence with no a priori theoretical background more easily and flexi-
bly than an estimator that is manually built upon linear models. Moreover,
they sometimes offer straightforward measures on the overall importance of
individual exogenous variables. This information could be essential for de-
ciding which characteristics should be surveyed in a productive estimation
framework of a hedonic elementary price index.

If a statistical office seeks to introduce hedonic methods, in our opinion,
the following steps are necessary:

1. Determine elementary aggregates where it is difficult to find items
of equal quality in different time periods or to undertake traditional
ad hoc quality adjustments. Hedonic elementary price indices as one
possible approach to the problem of measuring ‘pure’ inflation are
certainly most interesting for elementary aggregates where the quality
spectrum in individual time periods as well as the change between
periods is important.

2. Check the weight these elementary aggregates have in the overall CPI.
The higher the individual weights are, the higher the effect of measure-
ment errors in the corresponding elementary indices for higher-level
indices is. Since hedonic methods generally demand more effort than
traditional quality-adjustment methods, it is important to focus on
elementary aggregates where the potential impact on the reduction of
the overall measurement error is greater.

3. Start with a prospective study on any of the candidate elementary
aggregates just identified. Use market surveys and expert judgements,
for instance, to acquire insight into the range of quality differences ob-
servable on the market, the list of potentially price-relevant character-



143istics of this elementary aggregate, the potential channels for surveying
the necessary range of items, and so forth.

4. Build up a starting data set for exploratory purposes. This data should
reflect the quality spectrum available on the market at a certain point
of time. Moreover, it should include a full range of characteristics
variables. Based on these observations, one would search for a regres-
sion model that best fits the characteristics-price relationship within
the data. A fair technical knowledge of the elementary aggregate un-
der review is certainly helpful for building a hedonic regression model.
Once the model is specified, it is possible to analyse the importance
of the individual exogenous variables. Based on the results of such
an analysis, a reduced list of the most important variables that are
sufficient for estimating the hedonic function can be compiled.

5. Survey regularly the identified characteristics and the price for a rep-
resentative sample of the respective elementary aggregate. These sam-
ples are then used both as samples of reference quality as well as for
estimating the hedonic function at fixed time intervals. Indices are
finally estimated using (10.2), for instance.

While the above steps are sufficient for a regular estimation of hedonic
elementary price indices, it seems judicious that an ongoing quality control
accompany the publication of such estimates. It is recommended to monitor
the goodness of fit of the estimated hedonic functions as well as the variance
of the index estimates. Indicators for both of these aspects may be generated
using, e.g., bootstrap methods, as we outlined in the empirical part of our
research project.

In the Swiss CPI, where bilateral elementary indices are only calculated
within a year and then chained over longer periods, hedonic methods could
technically be introduced for any elementary aggregate within one year’s
time. Since the base period for the bilateral elementary indices within one
year is always the month of December of the previous year (Bundesamt für
Statistik, 2006), these indices could be replaced by hedonic counterparts
each time the base period changes. Moreover, the Federal Statistical Office
could reassess the actually employed hedonic regression model during the
year in order to update it for the following year’s estimations if necessary.
Such an update, however, would not mean changing the index estimators
but potentially adapting the learners of the hedonic functions, in order to
obtain a better fit of the data.



144 It is important to note that hedonic methods, in general, do not provide
a magic solution to any quality adjustment problem occurring within the
estimation of an elementary price index. If, however, the relationship be-
tween quality and price can be modelled well enough using any regression
approach and thus the hedonic hypothesis seems to hold, hedonic methods
certainly provide a sophisticated tool for resolving the problem of quality
change.

Open questions for further

research

Today, the research on hedonic elementary price
indices is far from being complete. Even during the
elaboration of the present thesis, we had to leave

many important and interesting questions aside, in order not to overload
this specific research project. We will now address a few issues that are
open for further investigations.

In the axiomatic framework of hedonic elementary price indices, it would
be interesting to find and formulate other axioms that concentrate more
on the characteristics than on the price variables of individual items of an
elementary aggregate. How can the continuity of the index with regard to
the characteristics random vectors be defined? Is it possible to narrow the
potential field of index definitions in specifying further requirements? Is
there a sensible axiom that would not be satisfied by our preferred index
definition (10.1)? Or are there other axioms that further support the use of
(10.1)?

There are as many theoretical models for hedonic functions as there are
multivariate regression models. The open research questions in this context
are thus the same as those related to any regression problem, and none of
them is particularly different for hedonic regressions. The main aim here is
to predict the price of an item from its characteristics. Any method that
provides an answer to this problem is a candidate estimator of the hedonic
function.

Research questions related to estimators of hedonic indices are, again,
more specific. Is it possible, for instance, to find theoretical results on
the distribution of such index estimators? Under what conditions does the
estimator (10.2) of (10.1) have a lower variance than another estimator
of any other admissible index definition? What other particular properties
does (10.2) have? What about double or single imputation formulae—which
approach is theoretically more satisfactory?

More general investigations could tend towards the application of hedonic
methods for interregional instead of intertemporal price comparisons. Are
price differences of certain goods between different countries due to quality



145differences of the product or to other economic factors? Are used cars of
the same quality more expensive in Zurich than in Fribourg?

The list of open research questions is long and could still be extended. We
hope, therefore, that the results presented in this thesis are going to stim-
ulate further research, especially in the area of the axiomatic foundations
of hedonic elementary price indices. Moreover, we hope that the use of he-
donic methods for estimating quality-adjusted elementary price indices will
become increasingly standard in statistical offices for elementary aggregates
where these methods are appropriate.
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Figure A.1: Bilateral hedonic elementary price index estimates using the base pe-

riod reference sample. Comparison of alternative index formulae and functional

forms of the hedonic functions
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Figure A.2: Bilateral hedonic elementary price index estimates using the current

period reference sample. Comparison of alternative index formulae and functional

forms of the hedonic functions
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Figure A.3: Dutot-type bilateral hedonic elementary price index estimates for the

symmetric reference samples. Comparison of different functional forms of the he-

donic function and of different bootstrap approaches.
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Figure A.3: (cont.)
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164 Table A.5: Lengths of 90% and 95% bootstrap confidence intervals (multiplied by

100) over the period from Nov 2004 to Mar 2006 for Dutot-type index estimates.

Comparison of different modelling and bootstrap approaches.

Model Bootstrap algorithm Interval lengths Mean length difference

90% 95% 90% 95%

SSL case-based 0.56–0.71 0.63–0.85 0.007 −0.001

model-based 0.59–0.74 0.71–0.89 0.007 0.010

wild 0.57–0.69 0.65–0.82 0.007 0.015

ESL case-based 0.62–0.81 0.73–0.94 0.011 0.007

model-based 0.60–0.75 0.73–0.97 0.018 0.039

wild 0.48–0.64 0.58–0.81 0.030 0.020

SDL case-based 0.55–0.70 0.67–0.81 0.010 0.006

model-based 0.62–0.83 0.69–0.97 0.001 −0.000

wild 0.55–0.73 0.67–0.86 0.005 0.010

FDL case-based 0.53–0.66 0.65–0.77 0.003 0.006

model-based 0.56–0.71 0.66–0.83 0.006 0.011

wild 0.51–0.65 0.59–0.81 −0.001 0.004

SPLS case-based 1.22–1.66 1.45–2.06 0.005 −0.006

EPLS case-based 1.21–1.59 1.49–2.09 0.022 0.011

SSL/m case-based 0.60–0.75 0.74–0.88 0.018 0.019

model-based 0.57–0.72 0.68–0.91 0.018 0.014

wild 0.43–0.61 0.52–0.79 0.023 0.031
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The R package ‘hepi’

The real workhorse in the empirical part of our research on hedonic ele- 165

mentary price indices were the algorithms and objects developed in R (R
Development Core Team, 2006). Many parts of the code were closely
related to the specific structure of our data and therefore not directly appli-
cable or even useless in other contexts. However, the elements of the code
related to the representation of hedonic functions and to the estimation of
hedonic elementary price indices as well as some of the essential algorithms
for estimating the hedonic functions could be assembled in a R package,
which is independent of the data set. This package has been made pub-
licly available under the GNU General Public License (Free Software
Foundation, 1991). It may be downloaded from

http://www.michael.beer.name/r-hepi

or requested directly from the author.
On the following pages, the original R-style documentation of the package

in its current state as well as of the functions and classes included is repro-
duced. For the sake of brevity, some non-informative or repeated sections
such as the author name and the references have been omitted from the list-
ing here below. They are, however, contained in the original documentation
accompanying the package.

http://www.michael.beer.name/r-hepi
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hepi-package Functions for Estimating Hedonic Elementary

Price Indices

Description

This package provides a set of functions for estimating hedonic functions and
hedonic elementary price indices.

Details

Package: hepi
Date: 2006-09-14
Version: 1.0-0
License: GPL (version 2 or later) See file LICENCE.
Depends: R (>= 2.2.0)
Suggests: MASS, spdep
LazyLoad: yes
SaveImage: yes
URL: http://www.michael.beer.name/r-hepi

Index:

hedonic.function-class Class "hedonic.function"

hedonic.function Constructor for a "hedonic.function" Object

analyse.in.hf Evaluate Expressions Within the Environment of a Hedonic
Function

is.applicable.hf Test Applicability of Hedonic Function to Data

build.hf.lm Hedonic Function Based on a Linear Model

build.hf.lm.split Hedonic Function Based on a List of Linear Models

hepi Bilateral Hedonic Elementary Price Indices

hedonic.function-class Class "hedonic.function"

Description

Hedonic functions for the use in price statistics.

http://www.michael.beer.name/r-hepi


167Objects from the Class

A hedonic function predicts a price value for an item based on a list of char-
acteristics expressions.

Slots

.Data: An object of class "function" having at least the named argument data

representing the data frame for which new prices are to be estimated.

characteristics.names: A vector containing the names of all variables that
must be available in data in order to provide valid price predictions.

call: An object of class "call", describing how .Data was created.

description: A textual description of the hedonic function .Data.

Extends

Class "function", from data part. Class "OptionalFunction", by class "function".
Class "PossibleMethod", by class "function".

Methods

No methods defined with class "hedonic.function" in the signature.

See Also

hedonic.function

hedonic.function Constructor for a "hedonic.function" Object

Description

This function constructs objects of class "hedonic.function".

Usage

hedonic.function(hf, characteristics.names, env = NULL,

call = match.call(), description = "")



168 Arguments

hf The hedonic function.
characteristics.names

A vector of characteristics names.

env An optional list of objects needed internally for the evalu-
ation of hf.

call An object of class "call", describing how hf was created.

description A textual description of the hedonic function hf.

Details

A hedonic function predicts a price value for an item based on a list of char-
acteristics expressions. hf is thus an object of class "function" having at least
the named argument data representing the data frame for which new prices
are to be estimated.

characteristics.names should contain the names of all variables that must be
available in data in order to provide valid price predictions. It can be used
to check whether the returned hedonic function is applicable for a given data
set.

Value

An object of class "hedonic.function".

See Also

hedonic.function-class

Examples

## Build hedonic function from training data set

build.hf.loglin <- function(traindata) {

model <- lm(log(price) ~ ., traindata)

hf <- function(data) {

predict(model, newdata = data)

}

hedonic.function(

hf = hf,

characteristics.names = all.vars(formula(model)),

env = list(model = model),



169call = match.call(),

description = "Semi-logarithmic hedonic function."

)

}

analyse.in.hf Evaluate Expressions Within the Environment of

a Hedonic Function

Description

This function evaluates R expressions within the environment of an object of
class "hedonic.function".

Usage

analyse.in.hf(expr, hf)

Arguments

expr the expression to be evaluated

hf an object of class "hedonic.function"

Details

Hedonic functions are often predictions from a regression model. This function
allows to easily access the elements in the environment of the hedonic function
for further analysis.

See Also

hedonic.function-class, hedonic.function

Examples

data(boston, package="spdep")

hf0 <- build.hf.lm(

learndata = boston.c,

full.formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS +

I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX +

PTRATIO + B + log(LSTAT),



170 backtrans = exp,

rm.infl = FALSE,

description = NULL,

return.row.labels = FALSE,

allow.variable.selection = FALSE)

analyse.in.hf(ls(), hf0)

analyse.in.hf(summary(learndata), hf0)

analyse.in.hf(summary(hf.model), hf0)

is.applicable.hf Test Applicability of Hedonic Function to Data

Description

This function tests whether a "hedonic.function" object is applicable to a
given data set.

Usage

is.applicable.hf(hf, data)

Arguments

hf an object of class "hedonic.function"

data a named list or data frame

Details

Hedonic functions are usually estimated for a very specific data structure and
cannot be applied to other situations. This function checks whether the given
hedonic function hf is applicable to a certain data set data. This is done by
checking whether data contains at least the variables mentioned in the slot
characteristics.names of the object hf of class "hedonic.function".

Value

is.applicable.hf returns TRUE if data is suitable for hf and FALSE otherwise.

See Also

hedonic.function-class, hedonic.function
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build.hf.lm Hedonic Function Based on a Linear Model

Description

This function estimates hedonic functions based on a linear regression model
for a given dataset.

Usage

build.hf.lm(learndata, full.formula, min.formula,

backtrans = I, rm.infl = TRUE,

description = NULL, return.row.labels = FALSE,

allow.variable.selection = TRUE)

Arguments

learndata A data.frame containing the training data set.

full.formula The formula of the full linear model. See Details.

min.formula If variable selection is wanted, the formula of the minimal
linear model. See Details.

backtrans A backtransformation function applied to all predictions.
See Details.

rm.infl A logical value indicating whether influential observations
should be removed.

description A character string describing the hedonic function.

return.row.labels A logical value indicating whether the row labels of the
cleaned training data should be returned.

allow.variable.selection

A logical value indicating whether variable selection should
be carried out.

Details

This function estimates a hedonic function based on a linear regression model.
An appropriate model formula must be given in full.formula. (See lm for more
details about specifying formulae.)

The function given in backtrans is used to backtransform any predicted value
using the linear model and defauls to the identity function I. If, for example,
log(price) stands on the left-hand side of the model formula, any predicted



172 value needs to be transformed with the exponential function to a valid price.
This can be accomplished by indicating backtrans = exp.

If rm.infl is TRUE, influential observations having

DFFITSi > 2

√
K

N

with K being the number of exogenous variables and N the dimension of
the learning data set are removed before fitting the final model. There, the
DFFITSi values are calculated based on the residuals of a first fit of a linear
model using the model formula full.formula.

If allow.variable.selection is TRUE, a stepwise model selection based on exact
AIC is carried out (see stepAIC for more details). In this case, full.formula

acts as upper and min.formula as lower limit of the search algorithm. If
allow.variable.selection is FALSE the hedonic function is estimated using ex-
actly the formula given in full.formula.

In description, a character string describing the hedonic function may be given
which is saved within the returned "hedonic.function" object.

Value

If return.row.labels == FALSE, the function returns a "hedonic.function"

object representing the fitted regression model.

If return.row.labels == TRUE, the function returns a list with following
elements:

hf The resulting "hedonic.function" object.

row.labels A vector containing the row labels of the cleaned training
data set.

See Also

build.hf.lm.split

Examples

data(boston, package = "spdep")

hf0 <- build.hf.lm(

learndata = boston.c,

full.formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS +

I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX +

PTRATIO + B + log(LSTAT),

backtrans = exp,



173rm.infl = FALSE,

description = NULL,

return.row.labels = FALSE,

allow.variable.selection = FALSE)

is.applicable.hf(hf0, boston.c)

summary(hf0(boston.c))

plot(boston.c$MEDV, hf0(boston.c), xlab = "Observed", ylab = "Predicted")

abline(0,1)

hf1 <- build.hf.lm(

learndata = boston.c,

full.formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS +

I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX +

PTRATIO + B + log(LSTAT),

min.formula = log(MEDV) ~ 1,

backtrans = exp,

rm.infl = FALSE,

description = NULL,

return.row.labels = FALSE,

allow.variable.selection = TRUE)

summary(hf1(boston.c))

build.hf.lm.split Hedonic Function Based on a List of Linear Mod-

els

Description

This function estimates hedonic functions based on linear regression models
for a given dataset. Individual sub-models are fit to subsets of the data split
up according to a factor variable.

Usage

build.hf.lm.split(learndata, split.var, full.formula, min.formula,

backtrans = I, rm.infl = FALSE, description = NULL,

return.row.labels = FALSE, allow.variable.selection = TRUE,

use.overall.hf = TRUE, split.threshold = 100)
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learndata A data.frame containing the training data set.

split.var The name of the factor variable used to split the data into
subsets. See Details.

full.formula The formula of the full linear model. See Details.

min.formula If variable selection is wanted, the formula of the minimal
linear model. See Details.

backtrans A backtransformation function applied to all predictions.
See Details.

rm.infl A logical value indicating whether influential observations
should be removed.

description A character string describing the hedonic function.

return.row.labels A logical value indicating whether the row labels of the
cleaned training data should be returned.

allow.variable.selection

A logical value indicating whether variable selection should
be carried out.

use.overall.hf A logical value indicating whether an overall model should
be fit to the whole data set.

split.threshold The minimal number of observations required for fitting
any sub-model.

Details

This function estimates a hedonic function based on linear regression models.
In contrast to build.hf.lm, however, individual linear models are fit to several
subsets of the data. These subsets are determined through a factor variable
named split.var which needs to be contained in learndata. The minimal size a
subset needs to have in order to fit a linear model is given by split.threshold.

If use.overall.hf is TRUE, an overall model for the whole data set is fit and
stored additionally in order to predict prices for characteristics vectors be-
loning to categories of split.var where less than split.threshold observations
are available in the learning data set.

See the documentation of build.hf.lm for an explanation of the other ar-
guments of the function. Removal of influential observations and variable
selection, if required, is carried out for each sub-model individually.

Value

If return.row.labels == FALSE, the function returns a "hedonic.function"

object representing the fitted regression model.



175If return.row.labels == TRUE, the function returns a list with following
elements:

hf The resulting "hedonic.function" object.

row.labels A vector containing the row labels of the cleaned training
data set.

See Also

build.hf.lm

Examples

data(boston, package = "spdep")

hf0 <- build.hf.lm.split(

learndata = boston.c,

split.threshold = 15,

split.var = "TOWN",

full.formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS +

I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX +

PTRATIO + B + log(LSTAT),

backtrans = exp,

rm.infl = FALSE,

description = NULL,

return.row.labels = FALSE,

allow.variable.selection = FALSE)

is.applicable.hf(hf0, boston.c)

summary(hf0(boston.c))

plot(boston.c$MEDV, hf0(boston.c), xlab = "Observed", ylab = "Predicted")

abline(0,1)

hf1 <- build.hf.lm.split(

learndata = boston.c,

split.var = "TOWN",

split.threshold = 15,

full.formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS +

I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX +

PTRATIO + B + log(LSTAT),

min.formula = log(MEDV) ~ 1,

backtrans = exp,

rm.infl = FALSE,



176 description = NULL,

return.row.labels = FALSE,

allow.variable.selection = TRUE)

summary(hf1(boston.c))

hepi Bilateral Hedonic Elementary Price Indices

Description

This function estimates bilateral hedonic elementary price indices based on
estimations of the hedonic function in the base and the current period as well
as a reference sample of quality characteristics.

Usage

hepi(hf0, hf1, M,

type = c("jevons", "dutot", "carli", "hdutot", "hcarli"),

na.rm = TRUE, debug = FALSE)

hepi.jevons(hf0, hf1, M)

hepi.carli(hf0, hf1, M)

hepi.dutot(hf0, hf1, M)

hepi.hcarli(hf0, hf1, M)

hepi.hdutot(hf0, hf1, M)

Arguments

hf0 The base period hedonic function estimate. Must be of
class "hedonic.function".

hf1 The current period hedonic function estimate. Must be of
class "hedonic.function".

M The reference sample.

type The type of the index estimator(s) to be used. Can be a
vector if estimates of several types are requested.

na.rm A logical value indicating whether observations contain-
ing NA values should be stripped before the computation
proceeds.

debug A logical value indicating whether predicted prices should
be returned for debugging purposes.



177Details

This function yields an estimate of a bilateral hedonic elementary price index.
Inputs are the two estimated hedonic functions hf0 and hf1 of the base and
current period respectively. Both of these must be of class "hedonic.function".
(See hedonic.function for a constructor of a hedonic.function object.)

The third input is the reference sample M to be used for the estimation of
the index. This is usually a data frame containing N characteristics vectors
to which both hedonic functions are applicable.

The type argument lets one choose the index formula to be used (and yet the
index to be estimated). Currently, we implemented five alternative estimators,
namely the

n

√√√√
N∏

i=1

ĥ1(mn)

ĥ0(mn)
(Jevons),

∑
N

n=1
ĥ1(mn)

∑
N

n=1
ĥ0(mn)

(Dutot),

1

N

N∑

n=1

ĥ1(mn)

ĥ0(mn)
(Carli),

(∑
N

n=1

(
ĥ1(mn)

)−1
)−1

(∑
N

n=1

(
ĥ0(mn)

)−1
)−1

(Harmonic Dutot) and

(
1

N

N∑

n=1

(
ĥ1(mn)

ĥ0(mn)

)−1)−1

(Harmonic Carli)

formulae. Details can be found in Chapter 6 of the reference mentioned below.

Value

If debug == FALSE, this function returns a vector with the same length as
type containing the index estimates. They are returned in the same order as
given by type.

If debug == TRUE, this function returns a list with the following entries

index The vector of index estimates as above.

p0hat The vector of predicted prices p̂0 = ĥ0(M) in the base
period.

p1hat The vector of predicted prices p̂1 = ĥ1(M) in the current
period.

ratios The vector of price ratios p̂1
n/p̂0

n (n = 1, . . . , N).
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The hedonic approach is currently seen as the most promising 
method for constructing quality-adjusted price indices. Building upon 
a novel axiomatic framework, the current piece of work tackles the 
fundamental question of what hedonic elementary price indices 
actually measure. They reflect the average price change over time for 
a set of products of constant quality. Furthermore, they are latent 
economic parameters that require a precise definition before being 
estimated from empirical data.

Once the set of suitable definitions is specified, it turns out that most 
of the well-known index formulae are natural estimators of particular 
hedonic elementary price indices. They are all based on estimates of 
the hedonic function relating the characteristics (and thus the qual-
ity) of a product to its price. Adapted bootstrap resampling methods 
may be used to explore the stochastic nature of such estimators of 
‘pure’ inflation.

The concepts presented in this study are illustrated by an empirical 
analysis of the market of used cars in Switzerland.
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