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Pyridinium salts similar to those used as ionic liquid solvents

readily undergo palladation in the presence of a base, thus

giving palladium-pyridylidene N-heterocyclic carbene com-

plexes that are active catalysts for Suzuki-type cross-coupling

reactions.

Solvents are generally used to maximize the homogeneous

distribution of reaction partners and to control and balance

temperature effects throughout a reaction. In addition, they may

accelerate reactions by stabilizing key transition states along the

reaction coordinate through non-covalent interactions. However,

they are considered to be chemically inert during reactions, that is,

they are not subject to breaking and making of (covalent) bonds.

Recently, ionic liquids have been promoted as a novel class of

solvents,1 since they combine a variety of advantages such as

environmental friendliness (virtually no vapor pressure, easiness of

recovery and recycling), physical robustness within a large

temperature range, and high solubilization potential, e.g., for

reactions catalyzed by metal nanoparticles.2 Most often, ionic

liquids derived from imidazolium and pyridinium ions have been

used, for example [bimim][BF4] and [MePy][Cl–AlCl3].

Interestingly, imidazolium ionic liquids have also been used as

precursors of N-heterocyclic carbene ligands in organometallic

chemistry.3 It has been shown that metallation of imidazolium

salts can occur under mild conditions and in the absence of a

base.4 These findings suggest that ionic liquids may act as reagents

and not only as solvents in transition metal catalyzed reactions.

In contrast to imidazolium salts, pyridinium ionic liquids have

been assumed to be resistant towards metallation.5 Their

resistance can be rationalized by a comparatively low stabilization

of the corresponding carbene by one nitrogen only. However,

pyridylidene-type transition metal complexes have been proposed

as products from N-protonation and -alkylation of platinum

group pyridyl complexes.6 In addition, similar complexes have

recently been shown to display remarkably strong trans effects.7

Here, we provide evidence for the formation of pyridylidene

complexes using pyridinium ionic liquids as ligand precursors.

Moreover these pyridylidene complexes actively catalyze Suzuki

cross-coupling reactions.

Our approach towards pyridylidene complexes starts from

nicotine as a versatile starting material. First, coordination of the

pyrrolidine nitrogen should support the M–Ccarbene bond through

chelate formation. Second, enantiopure nicotine is readily available

and offers a cheap and convenient access to chiral complexes that

may be useful for asymmetric catalysis. Thus, the pyridinium salt 1

has been prepared from nicotine by selective alkylation of the

imine nitrogen with iPrI. At room temperature, 1 is a highly

viscous ionic liquid that dissolves readily in alcohols, though only

sparingly in THF and H2O. Palladation of 1 occurs smoothly at

room temperature in the presence of [Pd(OAc)2] and a base such as

KOtBu (eqn. 1).

ð1Þ

Contrary to our expectation, metallation takes place at the 4-

rather than at the most acidic 2-pyridinium position, thus

affording the palladium complex 2 as an orange solid.{ The

observed regioselectivity of metallation possibly originates from

the directing effects of the pyrrolidine substituent,8 though

shielding of the ortho positions by the bulky isopropyl groups

may also be effective.

The two low-field doublets at d 8.69 and 8.49 in the 1H NMR

spectrum of 2 are indicative for the protons ortho to the pyridine

nitrogen and are therefore diagnostic for the site of metallation.

Notably, we observed a long-range coupling between H2 and H5

(5JHH 5 1.7 Hz) that is relatively large, probably owing to the

particular electronic configuration of the heterocycle.

The proposed structure of 2 was unequivocally confirmed by an

X-ray diffraction analysis{ of single crystals that were grown by

slow diffusion of Et2O into a DMSO solution of 2. The unit cell

contains four independent molecules of 2, whose structures are

mutually strongly related. The molecular structure (Fig. 1) reveals

a palladium center in a slightly distorted square-planar environ-

ment defined by two iodide ligands and the C,N-bidentate

chelating pyridylidene ligand. The most relevant features of the

five-membered palladacycle—average bite angle 82.5(2)u, Pd–C

1.975(5) Å, Pd–N 2.136(4) Å—are very similar to those of related
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chelating arylamine palladium complexes.9 Apparently, the metal–

carbon bond length in these complexes is essentially defined by the

chelating amine site. Hence, Pd–C bond analysis does not provide

any information on the metal–carbon bond strength. In contrast,

the metal–iodide bonds represent useful probes for the trans

influence of the pyridylidene site. The Pd–I bond trans to carbon

(average Pd1–I2 2.692(1) Å) is significantly longer than the one

trans to nitrogen (average Pd1–N1 2.589(1) Å). The difference of

0.10 Å corresponds to a 3.7% bond stretching and indicates a trans

influence of the pyridylidene ligand that is about as strong as the

one observed in related imidazolylidene complexes.10

The pyridinium ring does not show any significant C–C bond

length alterations that could indicate a quinoidal pyridylidene

structure in the solid state (eqn. 2). Conservation of the sp2

hybridization at the pyridine nitrogen would point to a zwitterionic

structure with a highly dipolar resonance form, comprising a

cationic pyridinium group and an anionic palladate rather than a

neutral pyridylidene palladium complex (eqn. 2).

ð2Þ

The 13C NMR chemical shift of the palladium-bound carbon

(dC 176.2), however, compares well with related heterocyclic

carbenes6,7 and suggests considerable carbene contribution to the

bonding.

The pyridylidene complex 2 actively catalyzes the Suzuki

coupling of aryl iodides and bromides with phenylboronic acids

(eqn. 3).§

ð3Þ

Conversions typically reach completion after 24 h, which

compares well with similar catalytic experiments performed with

palladium salts in pyridinium ionic liquids.5 Addition of Hg0 to the

reaction mixture gives 70% conversion, which shows that the

reaction is at least predominantly homogeneous.11,12 Deactivated

aryl bromides such as 4-bromoanisole are converted significantly

slower (56% after 24 h) and aryl chlorides essentially fail (11%),

though optimization of reaction conditions may improve catalyst

performance.

In conclusion, our results show that stable N-heterocyclic

carbene complexes are readily accessible from pyridinium salts by

base-promoted palladation. In view of the mild conditions for the

formation of these novel palladium complexes and their activity in

cross-coupling reactions, similar pyridylidene palladium complexes

may be responsible for the observed catalytic activity when using

palladium as catalyst precursor in pyridinium ionic liquids.

Moreover, we have disclosed a new and cheap entry to chiral

carbene complexes. Their performance in asymmetric catalysis is

currently under investigation and will be reported in due course.
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Notes and references

{ Synthesis of 2: To a suspension of pyridinium salt 1 (0.81 g, 2.4 mmol) in
dry THF (20 mL) was added KOtBu (0.27 g, 2.4 mmol) followed by
Pd(OAc)2 (0.55 g, 2.4 mmol). After 1 h, KI (1.66 g, 10 mmol) was added
and the mixture was stirred for 2 d at room temperature. Volatiles were
evaporated in vacuo, and the residue was purified by column chromato-
graphy (SiO2, CH2Cl2/acetone 8 : 1). The orange fraction was collected and
evaporated to yield 2 as an orange solid (0.36 g, 27%). An analytically pure
sample of 2 was obtained by recrystallization from CH2Cl2 and pentane.
Anal. found (calcd) for C13H20I2N2Pd (564.54): C 27.67 (27.66), H 3.65
(3.57); N 4.91 (4.96); Pd 18.83 (18.85). 1H NMR (500 MHz, DMSO-d6,
298 K) d 8.69 (1H, d, 3J 5 6.4 Hz, H6), 8.49 (1H, d, 3J 5 1.7 Hz, H2), 8.27
(1H, dd, 3J 5 6.5 Hz, 4J 5 1.7 Hz, H5), 4.71 (1H, sept, 3J 5 6.7 Hz,
CHMe2), 4.3 (1H, br, NCHH), 4.09 (1H, t, 3J 5 8.5 Hz, pyCHN), 3.74 (s,
3H, NCH3), 2.53 (2H, m, NCHH, NCH2CH2CHH), 2.4 (1H, m,
NCH2CHH), 2.0 (2H, m, NCH2CHH, NCH2CH2CHH), 1.55 (3H, d,
3J 5 6.7 Hz, CHMeCH3), 1.54 (3H, d, 3J 5 6.7 Hz, CHCH3Me); 13C {1H}
NMR (125 MHz, DMSO-d6, 353 K) d 176.2 (C–Pd), 155.2 (C3), 140.0 (C5),
135.7 (C6), 132.0 (C2), 76.5 (pyCN), 62.0 (CHMe2), 61.7 (br, NCH2), 47.3
(NCH3), 34.3 (NCH2CH2CH2), 22.3 (CHCH3Me), 22.2 (CHMeCH3), 21.8
(NCH2CH2).
{ Crystal data for 2: Empirical formula [C13H20I2N2Pd], M 564.51, orange
rod, orthorhombic, space group P212121 (no. 19), a 5 12.7386(6),
b 5 16.3024(8), c 5 31.923(2) Å, V 5 6629.4(6) Å3, Z 5 16, Dc 5

2.262 g cm23, MoKa radiation, l 5 0.71073 Å, T 5 153(2) K,
2hmax 5 52.2u, 50877 reflections measured, 13031 unique (Rint 5 0.0882).
Final GooF 5 0.944, R1 5 0.0423, wR2 5 0.0853, R indices based on 9801
reflections with I . 2s(I) (refinement on F2), 661 parameters, 0 restraints,
Flack parameter 5 0.01(3). Lp and absorption corrections applied,
m 5 4.832 mm21. CCDC 275134. See http://dx.doi.org/10.1039/b508225k
for crystallographic data in CIF or other electronic format.
§ General Suzuki procedure: To a solution of phenylboronic acid
(0.55 mmol) and aryl bromide (0.50 mmol) in DMSO (3.0 mL) were
added bis(ethylene glycol) dibutyl ether (0.25 mmol, 1H NMR standard)
and aqueous K2CO3 (1.2 mmol dissolved in 1.2 mL H2O), followed by 2
(100 mg, 25 mmol) as a DMSO solution (2.5 mmol in 10 g DMSO). The
reaction mixture was stirred at 100 uC. Aliquots were taken from the
reaction mixture, suspended into aqueous KOH (5 mL) and extracted with
Et2O (3 6 5 mL). The combined organic fractions were washed with brine
(8 mL), dried (Na2SO4), and evaporated to dryness. The residue was
filtered through a short pad of SiO2 (Et2O as eluent), evaporated to
dryness, and analyzed by 1H NMR.
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