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Abstract. This paper proposes an empirical Bayes approach for Markov switch-

ing autoregressions that can constrain some of the state-dependent parameters (re-

gression coefficients and error variances) to be approximately equal across regimes.

By flexibly reducing the dimension of the parameter space, this can help to en-
sure regime separation and to detect the Markov switching nature of the data.

The permutation sampler with a hierarchical prior is used for choosing the prior

moments, the identification constraint, and the parameters governing prior state

dependence. The empirical relevance of the methodology is illustrated with an

application to quarterly and monthly real interest rate data.
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1. Introduction

Markov switching regression models have been proposed as appropriate explanations of the growth

rate of real GNP (Hamilton, 1989; Chib, 1996; Frühwirth-Schnatter, 2001), of the growth rate of

exchange rates (Engel and Hamilton, 1990), and have also been used to model real interest rates (Garcia

and Perron, 1996; Hamilton, 1994b). In the recent literature, the practicality of Markov chain Monte

Carlo (MCMC) simulation has led several authors to favor Bayesian methods for estimating these

models.

The Bayesian estimation of Markov switching regression models precludes an improper prior on the

state-specific parameters, since this would lead to an improper posterior (however, an improper prior on

a state-invariant parameter might be used). On this topic, see, e.g., Frühwirth-Schnatter (2001, Section

2.2.1). A second issue is the identification of Markov switching models: without a prior inequality

restriction on some Markov switching parameters, a multimodal posterior is obtained. A poor choice of

this prior restriction will cause misspecification.

An elegant solution to the second problem is the permutation sampler, proposed by Frühwirth-

Schnatter (2001). In a version of this method, each pass of a Gibbs or Metropolis-Hastings sampler

is followed by a random permutation of the regime definitions. This version is known as the random

permutation sampler. Scatter plots of the simulation output can then be used to suggest an appropriate

identification constraint, such as θ1 > θ2 > · · · > θK , where θi is a particular population parameter

in regime i. The model can then be reestimated under this constraint by enforcing the corresponding

permutation of the regimes; this is known as the constrained permutation sampler (it is easy to check

that implementing this sampler is equivalent to truncating the prior distribution on the support defined

by the identification constraint). At this stage, a phenomenon known as label switching might indicate

that the inequality restriction poorly characterizes the data, or that the assumed number K of regimes

is too large.

The permutation sampler requires a prior that is invariant with respect to relabeling. Unfortunately,

this may put a large prior mass near a subspace where the state-specific parameters are equal. When

the likelihood does not strongly dominate the prior, this can totally mask regime separation and the

Markov switching nature of the data (and make very difficult the task of selecting a proper identification

constraint). Such a situation can occur with a fairly large sample when the number of observations in

a particular regime is low.

As this paper will illustrate, this difficulty can often be avoided by allowing the prior dependence

of some state-specific parameters. For example, if the prior correlation coefficient between any two

The author is indebted to the reviewers for valuable comments, including the suggestion that mixture priors might
be preferable to the Bayes factor approach that was used in a previous version of this paper. Any remaining errors or

shortcomings are the author’s responsibility.
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elements of (θ1, . . . , θK) is close to 1, these parameters are constrained to be approximately equal across

regimes; this may allow the likelihood to overrule the prior for those other parameters that are, in

fact, subject to regime shifts. On the other hand, a negative prior correlation coefficient on regime-

switching parameters might also help in identifying such shifts. The problem, of course, is to choose the

prior dependence in a meaningful way. Ideally, any prior correlation coefficient should be treated as an

unknown random parameter, with a probability distribution that can be mostly determined from the

data.

This paper proposes a prior for the Markov switching autoregression model that fully addresses

the issues mentioned in the two previous paragraphs. First, the prior distributions on the regression

coefficients are mixtures of equicorrelated multivariate normals, with correlation coefficients that are

uniformly distributed. Secondly, the state-specific error variances are modeled by introducing latent scale

variables that can be interpreted as percentages of the total variance corresponding to the prevailing

regime. A mixture of Dirichlet prior distributions on these scale variables is proposed. The conditional

Dirichlet distributions can be uniform on the unit simplex, and can also concentrate the prior mass on

a region where the error variances are approximately equal.

The model also incorporates the possibility of heavy-tailed disturbances. This is done by introduc-

ing other latent scale variables that have identical, independent, and state-invariant inverted gamma

distributions; this formulation is similar to the one used by Geweke (1993). The equation errors then

follow Student-t distributions with Markov switching variances and with a common unknown degrees

of freedom parameter, which is restricted to be greater than an arbitrarily chosen prior lower bound.

The plan of the paper is as follows. In Section 2, the model and prior specification are presented.

Section 3 discusses the algorithm for simulating the joint posterior, using the random permutation sam-

pler with the mixture prior. Implementing this algorithm involves drawing candidates from a truncated

inverted gamma density, which is generalized in the sense that negative degrees of freedom are allowed;

a very efficient mixed rejection algorithm for drawing such candidates is described in the Appendix.

Section 4 illustrates the potential importance of the new prior by comparing it with the usual inde-

pendent prior, using the random permutation sampler with simulated data. Section 5 discusses the

special issues that arise in an implementation of the constrained permutation sampler; an empirical

Bayes approach is proposed where the prior parameters are chosen as point estimates obtained from the

random permutation results. Sections 6 and 7 present applications to US quarterly and monthly real

interest rate data. Section 8 concludes.
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2. The model and the prior

A regression model allowing for structural change and departures from normality may be written as:

yt =
p∑

j=1

xtjβ
j
St

+
(
hStwtσ

2
) 1

2 ut for t = 1, . . . , T (2.1)

where St is a discrete random variable with St ∈ {1, . . . , K}, and where wt is a continuous random

variable. hSt and βj
St

take the values hSt = hi and βj
St

= βj
i if St = i. We assume that hi > 0 for all

i, and that
∑K

i=1 hi = 1. Conditionally on the xtj, on St, and on wt, the disturbance ut is standard

normal. The covariates xtj can include lagged values of yt, constant terms, deterministic trends, and

current and lagged values of exogenous variables.

If wt = 1 for all t and if S1, . . . , ST follow a Markov process, this is a standard regression model with

Markov switching coefficients βj
St

and with Markov switching innovation variance σ2hSt . So, σ2 is the

sum of the state-specific innovation variances and σ2hSt is a state-specific variance component.

If βj
1 = · · · = βj

K = βj for all j and h1 = · · · = hK = 1/K, and if the wt follow identical independent

inverted gamma distributions with parameters a = ν/2 and b = ν/2 (see Bernardo and Smith, 2000,

p. 119), equation (2.1) implies that the observations yt have conditional Student-t distributions with

expectation
∑p

j=1 xtjβ
j , constant scale parameter σ2/K, and ν degrees of freedom; see Geweke (1993).

The parameterization of the equation variances in (2.1) is unusual, and is motivated by our objective

of enabling the imposition of an approximate equality of these variances. There are other reasons

for choosing this parameterization. Firstly, since the common variance factor σ2 is state-invariant,

an improper prior such as p(σ2) ∝ σ−2 could be used. Secondly, since the support of (h1, . . . , hK)

is bounded by construction, a uniform prior on these parameters (which many authors would use to

represent complete ignorance) will be proper, so that the difficulties mentioned in the second paragraph

of the Introduction do not arise.

We will now propose suitable priors on the parameters of the preceding model, which consist of:

(1) the time-specific latent variables, forming the vectors:

S =

⎛
⎝ S1

...
ST

⎞
⎠ and w =

⎛
⎝ w1

...
wT

⎞
⎠ ;

(2) the regression coefficients βj
i , forming the K × p matrix:

B =

⎛
⎜⎝
β1

1 . . . βp
1

...
...

...
β1

K . . . βp
K

⎞
⎟⎠ ; (2.2)

(3) the state-specific variance factors, forming the vector h = (h1, . . . , hK);

(4) the matrix P of transition probabilities, with elements Pij = P [St+1 = j | St = i];
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(5) the common variance factor σ2;

(6) the number ν of degrees of freedom, characterizing the distribution of wt.

In so doing, we will follow three guiding principles. First, the conditional priors should, in a limiting

sense, encompass simplifications of (2.1). These simplifications include: (a) a regression model without

Markov switching in the state-specific parameters βj
St

and hSt ; (b) a regression model with normal errors.

Secondly, the considerations in the fifth paragraph of the Introduction suggest hierarchical (mixture)

marginal priors on B and h. Thirdly, for the reasons given by Frühwirth-Schnatter (2001), the prior

should be invariant with respect to a relabeling of the states: for instance, p(h) must be the same as

p(h∗), where h∗ is an arbitrary permutation of h. These objectives are met by the following densities.

Conditionally on the transition probabilities, the prior on S is Markov:

P [S1 = s1, . . . , ST = sT | P] = π1

K∏
j=1

K∏
i=1

P
Nij
ij (2.3)

where Nij is the number of one-step transitions from i to j in (s1, . . . , sT ), and π1 (the probability of

the initial state) is an element of the vector of ergodic probabilities, which is the sum of the columns of

(A′A)−1, where:

A =
(
IK − P′

ı′K

)
ıK being the K × 1 vector with all elements equal to unity; see Hamilton (1994a, p. 684).

For the sake of parsimony, we put independent prior distributions on the columns Bj of B in (2.2).

Conditionally on the hyperparameters (vj , rj, µj), the prior distribution of Bj is multinormal with

covariance matrix:

Mj = vj [(1 − rj)IK + rjıK ı
′
K ] (2.4)

and expectation vector (µj , . . . , µj), so that:

p(Bj | vj , rj, µj) ∝ (detMj)−
1
2 exp

[
−1

2
(Bj − µjıK)′M−1

j (Bj − µj ıK)
]
. (2.5)

An approximate state-invariance of the jth regression coefficient is obtained when rj tends to one.

The hyperprior on (vj , rj, µj) is now introduced. The eigenvalues of Mj are easily shown to be

λj = [1+(K −1)rj ]vj (with multiplicity 1) and ψj = (1− rj)vj (with multiplicityK −1). For Mj to be

positive definite, we must then have vj > 0 and −(K − 1)−1 < rj < 1. We take the hyperprior for rj to

be uniform on this interval. For the conditional prior variances vj , we take independent inverted gamma

hyperpriors with parameters αj and φj. Finally, we assume independent central normal hyperpriors on

the µj with variances θ2j . This implies the following joint hyperpriors:

p(vj, rj, µj) ∝ v
−αj−1

j exp
(
−φj

vj

)
exp

(
− µ2

j

2θ2j

)
I(rj) (2.6)
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where I(rj) = 1 if −(K − 1)−1 < rj < 1, I(rj) = 0 otherwise.

The vector h follows a Dirichlet distribution with all parameters equal to γ:

p(h1, h2, . . . , hK−1 | γ) =
Γ(Kγ)
[Γ(γ)]K

⎡
⎣h1h2 . . . hK−1

⎛
⎝1 −

K−1∑
j=1

hj

⎞
⎠
⎤
⎦

(γ−1)

IS(h1, . . . , hK−1) (2.7)

where S = {(h1, . . . , hK−1) | hi > 0,
∑K−1

j=1 hj < 1} and IS(.) is an indicator function.

When γ = 1, this is a uniform prior on the unit simplex. When γ tends to infinity, h converges in

probability to the barycentre where h1 = · · · = hK = 1/K, and this imposes an approximate equality

of the variances across states.

The prior on h is made flexible by specifying a translated exponential hyperprior for γ, which takes

the form:

p(γ) = ξ exp[−ξ(γ − ε)]I[ε,∞)(γ) (2.8)

where ξ > 0 and ε ≥ 0. In (2.8), choosing ε < 1 would lead to an unbounded and multimodal marginal

density p(h), which the author deems inadvisable. A large value of ξ would concentrate the prior mass

of γ on a neighborhood of ε. In the empirical part of this paper, the author chose ξ = 0.1 and ε = 1

since this implies confidence intervals consistent with his prior beliefs.

It has been pointed out by two referees that the mixture (2.7)–(2.8) is not the only way in which an

approximate equality constraint on the variances could be imposed. Equation (2.1) can also be written

as:

ln

⎛
⎝yt −

p∑
j=1

xtjβ
j
St

⎞
⎠

2

− lnwt = lnσ2
St

+ lnu2
t

with σ2
St

= hStσ
2. A prior similar to (2.5) could then be used on (lnσ2

1, . . . , lnσ
2
K). Unfortunately, the

non-normality of lnu2
t necessitates the careful choice of a candidate-generating density for implementing

a Metropolis-Hastings step; and the rejection probability for this step must be computed from the entire

set of observations. Kim et al. (1998) find it necessary to use an auxiliary mixture model in similar

circumstances. By contrast, as will be shown in the next section, (2.7)–(2.8) leads to full conditional

posteriors that are proportional to densities that can be sampled directly; the factor of proportionality

has a particularly simple form. The implementation of Metropolis-Hastings in this case becomes very

easy, and does not require the choice of tuning parameters. In fact, Chib and Greenberg (1995, p. 330)

seem to recommend this simple implementation of the Metropolis-Hastings sampler when it is available.

Choosing non-uniform conjugate priors on the transition probabilities would raise the question of

prior parameter choice, and this would warrant the introduction of a three-level prior hierarchy for S.

Since the proposed prior hierarchies for B and h include only two levels, the author sees little point in

such an exercise. For this reason, the rows of P are taken to be uniformly and independently distributed
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on the unit simplex:

p(Pi1, . . . , Pi,K−1) = Γ(K)IS(Pi1, . . . , Pi,K−1). (2.9)

The prior on the common variance factor is the usual inverted gamma with parameters a and b:

p(σ2) =
ba

Γ(a)
(σ2)−a−1 exp

(
− b

σ2

)
. (2.10)

As previously mentioned, a and b can both tend to zero.

Following Geweke (1993), the wt have independent identical inverted gamma distributions with pa-

rameters a = b = ν/2:

p(w | ν) =
(ν

2

)Tν
2
[
Γ
(ν

2

)]−T
(

T∏
t=1

wt

)− ν
2−1

exp

[
−1

2

T∑
t=1

ν

wt

]
. (2.11)

Finally, the prior on the degrees of freedom parameter is a translated exponential with parameters

λ > 0 and δ ≥ 0:

p(ν) = λ exp [−λ(ν − δ)] I[δ,∞)(ν). (2.12)

When λ becomes large, the prior mass becomes concentrated in the neighborhood of δ; a prior constraint

on the degrees of freedom can be imposed in this fashion. Of course, approximate error normality is

obtained for large values of δ. When δ = 0, the prior in (2.12) is the same as the one proposed by

Geweke (1993). The present (modest) generalization is useful for two reasons: firstly, it is potentially

important, on numerical grounds, to bound ν away from zero; secondly, approximate normality can be

imposed while maintaining a reasonably tight prior, and this can improve the convergence properties

of the MCMC algorithm. In Sections 6 and 7, the author chose δ = 1 and λ = 0.01, implying a prior

expectation of E(ν) = 101.

To summarize, the joint prior is the product of (2.3), (2.5)–(2.6) for j = 1, . . . , p, and (2.7)–(2.12).

6



3. Simulating the joint posterior

The algorithm of this section is a special case of the random permutation sampler described in

Frühwirth-Schnatter (2001); the special issues that arise in an implementation of a constrained per-

mutation sampler will be discussed in Section 5. An initial draw is made from an arbitrary proper

distribution, such as the joint prior described in Section 2. This draw is followed by N passes of the

permutation sampler. Let µ, r, and v be vectors with elements µj , rj, and vj for j = 1, . . . , p. A single

pass first draws, in succession and using the most recent conditioning values, from the full conditional

posteriors:

p(S | P, σ2, h, B, w, data) (3.1)

p(P | S) (3.2)

p(B | S, σ2, h, w, µ, r, v, data) (3.3)

p(µ | B, r, v) (3.4)

p(r | B, µ, v) (3.5)

p(v | B, µ, r) (3.6)

p(w | S, ν, σ2, h, B, data) (3.7)

p(ν | w) (3.8)

p(σ2 | S, h, B, w, data) (3.9)

p(γ | h) (3.10)

p(hi | h−i, S, σ
2, B, w, γ, data) for i = 1, . . . , K − 1 (3.11)

where h−i is defined as the vector h without elements hi and hK . hK is given by 1 −∑K−1
j=1 hj.

Then, in order to generate a balanced sample from the posterior, a random permutation Π =

(Π1, . . . ,ΠK) of (1, 2, . . . , K) is selected with probability (K!)−1. For all i and j in {1, . . . , K}, ele-

ment (i, j) of P is replaced by the element with indices (Πi,Πj); the ith row of B is replaced by the

row with index Πi; and the ith element of h is replaced by the element with index Πi. For t = 1, . . . , T ,

St is replaced by ΠSt .

Sampling S and P. Simulating (3.1) and (3.2) does not involve any novel techniques; the results in

Chib (1996) can be used without modifications.

Sampling B. Simulating (3.3) is also straightforward. Upon defining Rti = 1 if St = i, Rti = 0

otherwise,

XS =

⎛
⎜⎜⎝
x11R11 . . . x11R1K . . . x1pR11 . . . x1pR1K

x21R21 . . . x21R2K . . . x2pR21 . . . x2pR2K

...
...

...
...

...
...

...
xT1RT1 . . . xT1RTK . . . xTpRT1 . . . xTpRTK

⎞
⎟⎟⎠ , (3.12)
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VB as a block-diagonal matrix with jth diagonal block equal to Mj in (2.4), µ = (µ1 . . . µp)′, and ΩS as

a diagonal matrix with t-th diagonal element equal to σ2wthSt , the full conditional posterior of vecB

is multinormal with parameters:

E(vecB | S, σ2, h, w, µ, r, v, data) =
[
V −1

B + (X′
SΩ−1

S XS)
]−1 [

V −1
B (µ⊗ ıK ) +X′

SΩ−1
S y

]
(3.13)

V (vecB | S, σ2, h, w, µ, r, v, data) =
[
V −1

B + (X′
SΩ−1

S XS)
]−1

. (3.14)

Note that an analytical inverse V −1
B is available, since:

M−1
j =

1
vj(1 − rj)

(
IK − rj

[1 + (K − 1)rj]
ıK ı

′
K

)
.

Sampling µ, r, and v. We now discuss the simulation of (3.4) to (3.6). Note that only B provides

posterior information on (µ, r, v). The method for simulating (3.4) and (3.5) relies on the observation

that assumption (2.5) can be equivalently restated, using the spectral form of Mj , as:

Bj = µj ıK +
(√

λjQ1 +
√
ψjQ2

)
η (3.15)

where η ∼ N(0, IK), Q1 = K−1ıK ı
′
K , and Q2 = IK −Q1. Note that ı′KQ1 = ı′K and that ı′KQ2 is a null

vector. Multiplying (3.15) by ı′K/K yields:

ı′KB
j

K
= µj + u

√
λj

K
(3.16)

where u is standard normal. The full conditional posteriors p(µj | Bj , rj, vj) = p(µj | Bj , λj) then

follow from (2.6) and from (3.16), as normal distributions with expectations:

(θ−2
j +Kλ−1

j )−1λ−1
j (ı′KB

j)

and variances (θ−2
j +Kλ−1

j )−1.

The method for drawing r relies on the fact that the rj are conditionally independent, and that the

full conditional posterior of rj is proportional to a density that can be sampled. Indeed, equations (3.15)

and (2.6) imply:

p(rj | Bj , µj, vj) ∝ fj(rj)
[
(1 − rj)−

K−1
2 exp

(
− y′jQ2yj

2(1 − rj)

)
I(0, K

K−1 )(1 − rj)
]

(3.17)

where yj = (Bj − µj ıK)/√vj, and:

fj(rj) = [1 + (K − 1)rj]−
1
2 exp

(
− y′jQ1yj

2[1 + (K − 1)rj]

)
.
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The square bracket in (3.17) is a generalized (since K ≤ 3 is not excluded) truncated inverted gamma

kernel on (1 − rj) with parameters n = K − 1, b = K/(K − 1), and sj = y′jQ2yj (see the Appendix).

A candidate ((1 − r1), . . . , (1 − rp)) is drawn from the product of the generalized truncated inverted

gamma densities,1 and is accepted with probability:

min

[
1,

f1(r1) . . . fp(rp)
f1(rold

1 ) . . . fp(rold
p )

]

where (rold
1 , . . . , rold

p ) = rold is the most recently drawn vector. If the candidate is rejected, rold is

retained.2

Finally, if we define Θj = (1− rj)IK + rjıK ı
′
K , the full conditional posteriors p(vj | Bj , µj, rj) follow

immediately from (2.5) and (2.6), as inverted gamma distributions with parameters α∗
j = αj + K/2,

and:

φ∗
j = φj +

1
2
(Bj − µj ıK)′Θ−1

j (Bj − µjıK ).

Sampling w. The full conditional posterior of wt in (3.7) is obtained as:

p(wt | S, ν, σ2, h, B, data) ∝ w
−ν+3

2
t exp

[
− bt
wt

]
(3.18)

with:

bt =
1
2

[
(yt −

∑p
j=1 xtjβ

j
St

)2

σ2hSt

+ ν

]

which is an inverted gamma with parameters (ν + 1)/2 and bt.

Sampling ν. Draws from (3.8) are made by optimized rejection sampling from a translated exponential

source density. The method is a straightforward modification of Geweke (1996, p. 749). The target

density is:

p(ν | w) ∝
(ν

2

)Tν
2
[
Γ
(ν

2

)]−T

exp [−ϕν ] I[δ,∞)(ν) (3.19)

with:

ϕ =
1
2

T∑
t=1

[lnwt +w−1
t ] + λ. (3.20)

A candidate ν is drawn from a translated exponential source density:

g(ν ;α, δ) = α exp [−α(ν − δ)] I[δ,∞)(ν) (3.21)

where α maximizes the acceptance probability. This choice of α is found by solving:

T

2

[
ln
(

1 + αδ

2α

)
+ 1 − Ψ

(
1 + αδ

2α

)]
+ α− ϕ = 0 (3.22)

1In practice, 1 − rj is restricted to [ε∗,K/(K − 1) − ε∗], where ε∗ is a small positive number such as 10−6.
2Another implementation would draw the correlation coefficients rj one at a time. This would make monitoring the

rejection rates more cumbersome, but may be preferable when the number of regressors is large.
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where Ψ(.) is the digamma function. The candidate is accepted with probability:

p =
k(ν)

s(α, δ)g(ν ;α, δ)
(3.23)

where k(ν) is the kernel in (3.19), and:

s(α, δ) =
k
(

1+αδ
α

)
g
(

1+αδ
α

;α, δ
)

=
[
1 + αδ

2α

]T (1+αδ)
2α

[
Γ
(

1 + αδ

2α

)]−T

α−1 exp
[
1 − ϕ(1 + αδ)

α

]
. (3.24)

Substituting for k(ν), s(α, δ), and g(ν ;α, δ) in (3.23) yields:

p =

[
Γ
(

1+αδ
2α

)
Γ
(

ν
2

)
]T [ν

2

]Tν
2
[
1 + αδ

2α

]−T (1+αδ)
2α

exp
[
(ν − δ)(α− ϕ) +

ϕ

α
− 1

]
. (3.25)

Sampling σ2. The density in (3.9) is an inverted gamma:

p(σ2 | S, h, B, w, data) ∝ (σ2)−a∗−1 exp
(
− b∗

σ2

)
(3.26)

where a∗ = a + T
2 , and:

b∗ = b+
1
2

[
T∑

t=1

(yt −
∑p

j=1 xtjβ
j
St

)2

wthSt

]
.

Sampling γ. According to (2.7) and (2.8), the kernel of the density in (3.10) is:

Γ(Kγ)
[Γ(γ)]K

exp

[(
K∑

i=1

lnhi − ξ

)
γ

]
I[ε,∞)(γ). (3.27)

The method is similar to the one used for drawing ν . We choose the source density:

g(γ;α, ε) = α exp [−α(γ − ε)] I[ε,∞)(γ) (3.28)

where α maximizes the acceptance probability. A solution of the saddlepoint problem in Geweke (1996,

p. 749) implies in this case:

Ψ
(
K

[
1 + αε

α

])
− Ψ

(
1 + αε

α

)
+

∑K
i=1 lnhi − ξ + α

K
= 0. (3.29)

The left-hand side of (3.29) is a strictly increasing function of α. Upon using an asymptotic ex-

pansion of the digamma function (Abramowitz and Stegun, 1972, Section 6.3.18) and the fact that∑K
i=1 lnhi/K ≤ − lnK, it is easy to show that this left-hand side has a strictly negative limit as α→ 0

and is unbounded as α → +∞. Hence, a unique solution to (3.29) always exists. The conditional

acceptance probability can be calculated, along the lines of (3.23)–(3.25), as:

p =
Γ(Kγ)

Γ
(
K
[

1+αε
α

])
[

Γ
(

1+αε
α

)
Γ(γ)

]K

exp

[(
K∑

i=1

lnhi − ξ

)(
γ − ε− α−1

)
+ α(γ − ε) − 1

]
. (3.30)
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Sampling h. The full conditional posterior of hi in (3.11) is, for i = 1, . . . , K − 1:

p(hi | h−i, S, σ
2, B, w, γ, data) ∝

⎡
⎣hi

⎛
⎝1 −

K−1∑
j=1

hj

⎞
⎠
⎤
⎦

γ−1

h
−Ni

2
i

exp

[
− 1

2hi

T∑
t=1

(yt −
∑p

j=1 xtjβ
j
i )2Jt

σ2wt

]
I
(0,1−∑K−1

j �=i hj)
(hi) (3.31)

where Jt = 1 if St = i, Jt = 0 otherwise, and where Ni = #{St = i}. Note that h−i is defined as the

vector h without the elements hi and hK ; if K = 2, the sum appearing in the indicator function is zero.

This is a non-standard density, which can be characterized by a truncated inverted gamma kernel (if

Ni > 2) a generalized truncated inverted gamma kernel (if Ni = 1 or Ni = 2), or a uniform kernel (if

Ni = 0) multiplied by:

fh(hi, h−i) =

⎡
⎣hi

⎛
⎝1 −

K−1∑
j=1

hj

⎞
⎠
⎤
⎦

γ−1

.

A candidate is drawn from this uniform, or, using the algorithm in the Appendix, from the density:

p(hi;Ni, bi, si) ∝ h
−Ni

2
i exp

(
− si

2hi

)
I(0,bi)(hi) (3.32)

where bi and si can be inferred from (3.31). This candidate is accepted with probability:

min
[
fh(hi, h−i)
fh(hold

i , h−i)
, 1
]

(3.33)

where hold
i is the most recently drawn value of hi. If the candidate is rejected, hold

i is retained.

The last element hK is drawn as 1 − ∑K−1
j=1 hj. Since, for any s ∈ {1, . . . , K}, we have hs =

1 − ∑K
j �=s hj , the last element of h may be associated with state K without loss of generality: the

degenerate conditional distribution of h will remain the same if state K is redefined as state s, state s

as state K, hs and hK are interchanged, and rows s and K of B are interchanged.

The validity of the algorithm and the correctness of the computer program were checked by the fol-

lowing method, suggested by Geweke (2004). If, at each pass of the permutation sampler, the dependent

variables yt are simulated from the likelihood, a sample from the joint density f(y, θ) is obtained. The

generated θ values should follow the prior distribution; this can be verified by means of empirical dis-

tribution tests. This method is quite powerful, and is applicable to the constrained and unconstrained

versions of the permutation sampler.
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4. Random permutation with simulated data

In this section, we will illustrate how the unconstrained (or random) permutation sampler, used

in conjunction with the mixture prior of Section 2, can serve to elicit an appropriate identification

constraint. A comparison with results obtained with independent priors on the regression parameters

will also be made. Two simulated samples of T = 200 observations were generated from yt = β1
St

+σStut

with the following data generating processes:

DGP1 (switching intercept, constant variance).

yt = 0.25 +
√

0.5ut if St = 1

= 1 +
√

0.5ut if St = 2

DGP2 (constant intercept, switching variance).

yt = 3 +
√

0.5ut if St = 1

= 3 +
√

0.05ut if St = 2

where St follows a first-order Markov process with P11 = P22 = 0.9, and where ut is standard normal.

For both samples, the parameters of the mixture prior were chosen as a = b = 1, ε = 1, ξ = 0.1,

δ = 100, λ = 0.1, θ1 = 1, α1 = 11, and φ1 = 5. So, the prior on σ2 is proper, but has no finite moments;

approximate error normality is imposed by constraining ν to be greater than 100; and the hyperprior

for v1 has an expectation of φ1/(α1 − 1) = 0.5 and a variance of φ2
1/[(α1 − 1)2(α1 − 2)] = 25/900.

In Figure 1, histograms of the simulated regression parameters β1
1 , h1 = σ2

1/(σ
2
1+σ2

2) and σ2 = σ2
1+σ2

2

(based on 10000 replications) are presented. Note that, since the random permutation sampler is used,

the joint posterior is multimodal by construction, and that a histogram of β1
2 would contain exactly the

same information as the histogram of β1
1 . The modes of the six histograms in Figure 1 correspond quite

closely to the DGP values, and the proper identification constraints are clearly suggested by the top left

panel and by the middle right panel.

In Figure 2, the histograms of the hyperparameters µ1, v1, r1, and γ illustrate a point suggested in

the Introduction: for DGP1, the Dirichlet parameter γ can take fairly large values, thus constraining

the error variances to be approximately equal across states; this may help to achieve the bimodality that

was apparent in the top left panel of Figure 1. On the other hand, the prior expectation of the intercept

is close to the average of the DGP values, and this may also help in achieving regime separation. For

DGP2, the prior correlation coefficient r1 has a clear mode of unity; this constrains the intercept to be

approximately equal in both states, and may help to achieve the bimodality that was apparent in the

middle right panel of Figure 1. Again for DGP2, most of the mass of the Dirichlet parameter γ is now

concentrated near a value of one, which would correspond to a uniform prior on h1.
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It is interesting to compare the results in Figure 1 with those obtained with independent priors.

For this purpose, the random permutation sampler was run on the previous series, but this time with

independent N(0, 100) prior distributions on β1
1 and β1

2 , and independent inverted gamma priors on σ2
1

and σ2
2 with a = b = 1. In this case, exact error normality was assumed. The results are presented

in Figure 3, where the extreme outliers in the left-hand panels illustrate the dangers involved in using

relatively non-informative priors on state-specific parameters.

In the right-hand panels of Figure 3, two things are apparent. Firstly, regime separation in the

variances is much sharper than in Figure 1. This is the cost of flexibility: by construction, the mixture

prior used in Figure 1 puts substantial mass near the subspace where the variances are equal. If the

parameter ξ were increased from 0.1 to 100, for instance, this phenomenon would become much less

noticeable. Secondly, the histogram of σ2 shows some upward bias (compare with the bottom right

panel of Figure 1; the DGP value is 0.55). A possible explanation is that an invariant prior has been

used, so that the priors on σ2
1 and σ2

2 must be the same; their common mode is equal to the DGP value

of σ2
1 ; but σ2

2 is much lower than σ2
1. This may cause an upward bias in their sum. A nearly improper

prior on the variances would not work: when a and b are set equal to 10−6, the algorithm fails for

numerical reasons. This does not happen when the parameterization of equation (2.1) is used.

We conclude this section by providing some details on the implementation and on the performance of

the random permutation sampler with the mixture prior. Convergence checking was done by means of

heteroscedasticity and autocorrelation consistent Wald tests of the equality of the expectation vectors

from two independent Markov chains, differing by their numbers of burn-in passes. The covariance

matrices of the vectors of means were estimated by the method of Andrews (1991), using a Parzen kernel

and VAR(1) prewhitening (Andrews and Monahan, 1992). This ensured easy, optimal, and automatic

bandwidth selection. The autocorrelation properties of the chains are quite acceptable. Table 1 presents

the relative numerical efficiencies (RNE), defined as the ratio between the sample variance and 2π times

the estimated spectral density at zero. A relative numerical efficiency close to one indicates negligible

autocorrelation. The RNE are always larger than 0.19; the value of 0.19 occurs for σ2 in DGP1, the

first two partial autocorrelation coefficients being 0.679 and 0.186. By contrast, the corresponding

coefficients for h1 in DGP1 were −0.067 and 0.001. The rejection rates in the Metropolis-Hastings step

for h1 in DGP1 and DGP2 were respectively 0.11 and 0.17. The corresponding values for the correlation

coefficient r1 were 0.20 and 0.25. These low values indicate that the candidate densities are close to the

exact conditional posteriors. Finally, the optimized rejection methods for drawing ν and γ appear to be

quite effective. In DGP1, the acceptance rate for ν was never less than 0.03, with an average of 0.86;

the corresponding figures for DGP2 are 0.06 and 0.86. The performance of the method for drawing γ is

even more favorable. The acceptance rate was never lower than 0.16, with an average of 0.91 for DGP1

and 0.95 for DGP2.
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5. Implementing the constrained permutation sampler

There would, in principle, be no difficulties in imposing identification restrictions with the prior of

Section 2. However, it should be noted that if the identifying restriction is an inequality constraint on

the error variances, this constraint should be imposed by changing the support of the full conditionals

in (3.31): for instance, when K = 2, h1 < h2 is imposed by restricting h1 to the interval (0, 0.5).

Nevertheless, as is clear from Section 4, the prior in (2.5)–(2.8) will often put substantial mass on

regions where the parameters are positively correlated across states. When a parameter is affected by

an identification constraint, this may interfere with the permutation sampler and cause spurious label

switching. In such a case, independent priors on those parameters that are used for model identification

might be preferable.

Other arguments also plead in favor of using fixed prior parameters with the constrained permu-

tation sampler. When identification is imposed, misspecification diagnostics that are not available at

the random permutation stage can be used. One such method is based on an analysis of predictive

probabilities, called “p-scores” by Kaufmann and Frühwirth-Schnatter (2002). A simple variant of this

method conditions on point estimates (posterior averages) θ̂i of the regression parameters and transition

probabilities. Upon defining yt−1 as the vector of observations on ys up to t−1, the conditional p-scores

are defined as:

pt =
K∑

j=1

P [Yt ≤ yt | yt−1, θ̂, St = j]P [St = j | yt−1, θ̂]. (5.1)

The conditional probability that Yt ≤ yt is easily computed from the Student-t integral, and the prob-

abilities of the regimes can be computed by one pass of the discrete filter described in the Appendix of

Kaufmann and Frühwirth-Schnatter (2002). If the model is correct, the p-scores should have indepen-

dent uniform distributions asymptotically. The transformed p-scores ut = Φ−1(pt), where Φ(.) is the

normal integral, can also be used and should be independent standard normal. Also, sensitivity analysis

can easily be done by estimating Bayes factors in favor of more diffuse priors, using the approach in

Geweke (1998).

The previous paragraphs suggest an empirical Bayes approach, where the random permutation sam-

pler (with the mixture prior of Section 2) is run for the elicitation of fixed prior parameters, which are

used at the constrained permutation stage. The prior parameters µj , vj , rj, and γ can be set equal

to point estimates (e.g. posterior medians) obtained from the hyperprior estimated by random per-

mutation. If random permutation suggests identification from the variances, the author recommends

that (2.7) and (2.10) be replaced by independent identical inverted gamma priors on σ2
1 , . . . , σ

2
K , with

parameters that are suggested by the random permutation results. For instance, choosing a first pa-

rameter of a = 1 will guarantee stochastically bounded variances; since the prior mode is b/(a+ 1), the
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second parameter b can then be chosen as (a + 1)σ̂2/K, where σ̂2 is the point estimate of σ2 obtained

by random permutation.

Using this empirical Bayes prior on the two samples of Section 4 turns out to be very satisfactory.

Figure 4 presents the results of an application of the constrained permutation sampler to these series,

using priors with parameter values given by λ = 0.1, δ = 100, and by the medians of the estimated

distributions in Figure 2 (µ1 = 0.52, v1 = 0.46, r1 = −0.06, γ = 9.4, and (2.10) with a = b = 1 for

DGP1; µ1 = 2.25, v1 = 0.482, r1 = 0.606, and independent inverted gamma priors on σ2
1 and σ2

2 with

a = 1 and b = 0.552 for DGP2). No significant bias is present, in spite of some label switching for

DGP1: after the initial burn-in period, 206 changes in the chosen permutation occurred. No such label

switching occurred for DGP2.

6. An application to quarterly real interest rate data

Garcia and Perron (1996) used the following model to describe the ex post real interest rate:

F (L)(yt − µSt) = σStut (6.1)

where F (L) is a polynomial in the lag operator L, St is a discrete latent variable following a Markov

process, ut is N(0, 1), and yt is the difference between the nominal interest rate and the inflation rate.

The authors estimated two- and three-state models with quarterly and monthly data spanning the years

1961 to 1986. Hamilton (1994b, p. 3071) estimated a simplified version of this model with F (L) = 1

and St ∈ {1, 2, 3}, using an extended quarterly data set spanning the years 1960 to 1992. In both

contributions, the estimates were maximum likelihood.

In this section, we will show:

(1) that a Bayesian estimation of the model in this paper, which has simpler dynamics than (6.1)

when F (L) 
= 1, can provide an adequate description of quarterly real interest rate data spanning

the period 1953:1 to 2002:3. The estimates are very close to the ones obtained by Hamilton for

the smaller sample. However, a simple switching AR(0) model appears to be slightly misspecified;

(2) that the new prior proposed in this paper, and in particular equation (2.7), turns out to be

important for a clear separation of the regimes.

The dependent variable is yt = it − πt, where it is the nominal annual interest rate on 3-month

US treasury bills for the third month of quarter t (as given by the series FYGM3 in the DRI-WEFA

economics database) and πt is 400 times the quarterly change in the logarithm of the consumer price

index (given by the series PZRNEW in the same database).
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6.1. Random permutation.

Table 2 presents summary statistics of the state-invariant parameters obtained by running the random

permutation sampler on the following autoregression:

yt = β1
St

+ β2
St
yt−1 +

3∑
j=1

βj+2
St

∆yt−j + (hStwtσ
2)

1
2ut (6.2)

with St ∈ {1, 2, 3}, and with the following prior parameters:

a = b = 10−6, λ = 0.01, δ = 1; (6.3)

ξ = 0.1, ε = 1, θ21 = 10, θ22 = · · · = θ25 = 0.01, α1 = · · · = α5 = 11, φ1 = 100, φ2 = · · · = φ5 = 0.1. (6.4)

So, the prior on σ2 is almost improper; the distribution of the errors is not constrained to be normal; and

the hyperprior parameters on the regression coefficients correspond to prior beliefs that the intercept is

probably not much larger than 6 in absolute value, and that the DGP is stationary. On the other hand,

the relatively high values of the αj imply fairly informative hyperpriors on the variances vj . The reason

for an informative choice will be discussed shortly.

The rejection rates were somewhat higher than those reported in Section 4 (an average of 0.24 for

the hi; 0.53 for the rj; and averages of 0.76 for ν and 0.14 for γ). The results are based on 70000 passes

of the algorithm in Section 3, of which the first 60000 were discarded. Convergence was tested by the

method described in Section 4.3

An examination of the medians of the prior correlation coefficients in Table 2 suggests that the

autoregression coefficients might not exhibit much variation across states. Indeed, the histograms for

r2, r4, and r5 have clear modes of unity, whereas r3 is almost uniform. By contrast, the median of

the prior correlation coefficient of the intercept is close to zero, so that a substantial posterior mass is

concentrated on negative values. The data do not appear to be very informative on the prior variances

vj , since their posterior moments are quite close to the prior ones (this was also the case in the simulation

experiments of Section 4 and in other experiments made by the author, which is one reason why high

values of the αj were chosen). The estimated posterior expectation of γ is close to the prior value of 11;

this suggests that the error variances might not be very different across states.

An examination of the histograms of the state-specific parameters confirmed that an identification

restriction on the intercept is very probably the most appropriate. In the top panel of Figure 5, the

kernel density estimate for β1
1 shows three clear modes. The corresponding graphs for all the other state-

specific parameters (coefficients, variance ratios, and transition probabilities) were clearly unimodal.

In the two bottom panels of Figure 5, we report (for comparison purposes only) the results of the

random permutation sampler with two other priors. The first one is the empirical Bayes prior suggested

3The number of burn-in passes is larger than necessary; this conservative number was chosen in order to minimize the

chances of having to run the convergence test more than once, since the statistic is costly to compute.
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in Section 5: the priors (2.5) and (2.7) with parameters (µj, vj , rj, γ) given by the relevant medians in

Table 2 were used. The other parameters were as in (6.3). The corresponding kernel density estimate is

given in the middle panel, where state separation is sharper than in the top panel, as can be expected.

The bottom panel of Figure 5 shows the result of replacing the value of 9.23 for γ by a value of 1.01

(a uniform prior gave draws of hi less than 10−16, leading to numerical problems). In this case, the

multimodality becomes barely noticeable. This suggests that an approximate equality constraint on the

variances may, indeed, help to identify the model.

6.2. Constrained permutation.

We now discuss applications of the constrained sampler to the same data. The left-hand panels of

Figure 6 present kernel posterior density estimates of the intercept in each state, using the identification

constraint β1
1 < β1

2 < β1
3 , and the empirical Bayes prior where (µj , vj, rj, γ) are equal to the medians in

Table 2. The values in (6.3) are used for the other parameters. Label switching did not occur after the

initial burn-in passes.4

The right-hand panels of Figure 6 are obtained with the identification constraint σ2
1 < σ2

2 < σ2
3 ,

identical independent inverted gamma priors on the variances with a = 1 and b = 7.365, and the

previous empirical Bayes prior on the regression coefficients. In this case, label switching occurred for

4332 out of the 10000 postburn-in passes. A very clear cross-contamination of the states occurs in the

right-hand panels, further confirming that identification from the variances is not appropriate here.

Table 3 presents the summary statistics obtained with the empirical Bayes prior, when the model is

identified by constraining the intercept. An examination of the estimates in Table 3 reveals that the

middle regime (St = 2) has a lower innovation variance and a higher persistence than the other two.

The disturbances are close to normality, with a point estimate (θ̄) of the degrees of freedom parameter

equal to 118.8. The relative numerical efficiencies are quite high, except for the degrees of freedom. This

may be due to the relatively low value of λ = 0.01 (compare with the corresponding values in Table 1,

where λ = 0.1). The last rows of Table 3 correspond to the equilibrium expectations E[yt | St], given

by eSt = β1
St
/(1 − β2

St
). The results are quite close to the ones reported by Hamilton (1994b), in spite

of the longer sample period used in this paper and of the differences in the estimation methods. Indeed,

Hamilton reports estimates of ê1 = −1.58, ê2 = 1.58, and ê3 = 5.69.

Figure 7 presents the smoothed probabilities P [St = i | data], estimated as the percentage of replica-

tions of St corresponding to regime i. Since 95% confidence bands are practically indistinguishable from

the point estimates, they are not reported in the figure. The years 1953 to 1972 can be clearly associated

with the intermediate regime, with the exception of a short spell (1956–1958) during which the data are

less informative. The years 1973 to 1980 are clearly associated with the low-mean state. Thereafter,

4Note that the ordering β1
1 < β1

2 < β1
3 only applies to each individual replication, so that the three left-hand panels in

Fig. 6 can overlap.
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the process switches to the high-mean state until 1987, when the middle regime again prevails. At the

end of the sample, a transition to the low-mean state is suggested.

We will now attempt to justify the estimates in Table 3 by reporting the results of misspecification

tests. Table 4 presents the results of autoregressions on the transformed p-scores ut, defined in Section 5,

and on their squares u2
t . Kolmogorov-Smirnov p-values for testing the hypothesis ut ∼ N(0, 1) are also

presented. No evidence of misspecification is present when identification is done by constraining the

intercept: the F -statistic for testing the joint nullity of all autoregression coefficients for ut has a p-value

of 0.0394, none of the individual coefficients being significant. For u2
t , the p-value of the F -statistic is

0.4435. When identification is done by constraining the variances, the p-value of the F -statistic for ut

falls to 0.0000196.

It is interesting to note that this method also provides evidence of misspecification when all the lagged

endogenous variables are excluded from (6.2): in this case, the fourth partial autocorrelation coefficient

of the transformed p-scores becomes strongly significant. The significance of the lag polynomial appears

to be mainly due to seasonal effects. Indeed, when (6.2) is replaced by an AR(0) regression equation

with seasonal dummies, results very similar to those reported in Tables 3 and 4 and in Figure 7 are

obtained.

7. An application to monthly real interest rate data

We will now discuss an application of the Markov switching regression model to the same data as in

Section 6, but sampled at a monthly rather than quarterly frequency.

The monthly data are much noisier than the quarterly ones. A simple switching AR(12) model

appeared unable to fully capture seasonality. Significant residual ARCH effects were also present in

such a formulation. We will limit our presentation to a single reasonably parsimonious specification

that appears to be congruent with the data. It is the following:

yt = β1
St

+ β2
St
D4t + β3

St
D6t + β4

St
D11,t + β5

St
D12,t + β6

St
yt−1 + β7

St
y2

t−1 + (hStwtσ
2)

1
2ut (7.1)

where St ∈ {1, 2, 3}, and D4t, D6t, D11,t, D12,t are seasonal dummies for the months of April, June,

November, and December, respectively. The dependent variable is yt = it − πt, where it is the nominal

annual interest rate on 3-month US treasury bills and πt is 1200 times the monthly change in the

logarithm of the consumer price index. The sample period is 1952:2 to 2002:9.

The inclusion of the squared lag y2
t−1 in (7.1) could be justified by a first-order Taylor approximation

of an LSTAR model with transition variable yt−1 (see van Dijk et al., 2002, p.11) or by a second-order

Taylor expansion of an arbitrary non-linear conditional mean function; it was suggested by significant

first-order autocorrelations in the squared p-scores when this variable was omitted. Posterior 95%

confidence intervals on the coefficients of other seasonal dummies contained the zero value in all regimes,

suggesting their exclusion from (7.1).
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Table 5 presents the results of an application of the random permutation sampler to (7.1), with the

following prior parameters:

a = b = 10−6, λ = 0.01, δ = 1 (7.2)

ξ = 0.1, ε= 1, α1 = · · · = α7 = 11;

θ21 = · · · = θ25 = 2, θ26 = 0.01, θ27 = 0.0001;

φ1 = · · · = φ5 = 20, φ6 = 0.1, φ7 = 0.001. (7.3)

A choice of larger values for the θ2j and φj in (7.3) led to poor sampler convergence.

An examination of Table 5 suggests conclusions similar to the previous ones: the prior variances vj

are essentially identified by the hyperprior; on the other hand, the data are reasonably informative on

the expectations µj and the correlation coefficients rj. In particular, the histogram of r1 (corresponding

to the intercept) showed a clear mode at the lower bound of −0.5. As before, a kernel density plot of β1
1

had three clear modes, whereas unimodality was observed for the other state-specific parameters. The

rejection rates were similar to those reported in Section 6 (an average of 0.16 for the hi; 0.60 for the rj ;

and averages of 0.83 for ν and 0.15 for γ).

Table 6 reports the results of the constrained permutation sampler, with the identification restriction

β1
1 < β1

2 < β1
3 , and with the empirical Bayes prior based on (7.2) and on the medians in Table 5. Label

switching occurred in only 4 of the 10000 postburn-in passes. The diagnostics are presented in Table 7,

and show no evidence of misspecification.

In Table 6, the middle state is again characterized by a higher persistence and a lower innovation

variance. The autoregression coefficient β6
St

is close to zero when St = 2 and has an approximate value of

0.10 in the other two regimes. The squared lag coefficient β7
St

is approximately the same in all regimes,

and is indeed significant. Seasonal effects appear to differ somewhat across regimes, suggesting that a

naive deseasonalization procedure would not be appropriate.

A noticeable difference between the monthly and quarterly estimates concerns the degrees of freedom.

In Tables 5 and 6 (contrary to Tables 2 and 3) the estimated posterior expectation of ν is considerably

lower than the prior value of 101. Indeed, when the Bayes factor for λ = 0.1 versus λ = 0.01 is estimated

by the method in Geweke (1998), a value of 2.11 is obtained; it is significantly greater than unity, with

a numerical standard error of 0.09. The corresponding estimate for the quarterly sample of Section 6

was 0.54, with a numerical standard error of 0.07. This suggests that accounting for leptokurtic errors

is important for explaining the behavior of the monthly data.

Finally, the estimated state probabilities are given in Figure 8. They agree quite closely with the

corresponding quarterly estimates in Figure 7. Note, however, that the evidence in favor of the low

regime for the years 1956 to 1958 is now much clearer. The close agreement between Figure 7 and

Figure 8 gives further credence to the claim that acceptable models have been identified. Sampling
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the data at a quarterly rather than monthly frequency leads to simple linear conditional models, and

appears to mask a non-linear STAR-type effect that occurs in the monthly data.

8. Discussion and conclusions

This paper has formulated a Markov switching regression model which includes, as special limiting

cases, models where some or all of the state-dependent parameters are equal across regimes. Using

a hyperprior allows the parameters governing state dependence to be estimated from the data. The

possibility of heavy-tailed disturbances was taken into account, and this was found to be necessary for

an adequate modeling of monthly real interest rate data.

Constraining some state-specific parameters to be approximately equal across regimes turns out to

be useful for the identification of the Markov switching nature of the model, and for the selection of

an appropriate identification constraint. Indeed, imposing state-invariance amounts to reducing the

dimension of the parameter space, and this can lead to a model that is better identified.

The hyperprior on the regression coefficients must be fairly informative; choosing its parameters

necessitates prior judgments on the order of magnitude of these coefficients. However, the prior on the

state-specific innovation variances can be quite diffuse when the model is parameterized in the variance

ratios. The potential importance of this fact was illustrated in a simple example involving simulated

data.

This paper has not investigated the problem of selecting the appropriate number K of regimes. It

is possible that some of the methods for solving this problem, such as reversible jump MCMC (Green,

1995; Robert et al., 2000), are affected by the prior sensitivity illustrated in this paper. This is an

interesting topic for further research.
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Appendix. Efficient simulation from a generalized

truncated inverted gamma distribution

A.1. Density and distribution. Our purpose is to generate draws from a density with the following

kernel:

k(x;n, b, s) = x−
n
2 exp

(
− s

2x

)
I(0,b)(x)

where n ≥ 1 is an integer, s > 0, and b > 0. It can be checked that:

∫ b

0

x−
n
2 exp

(
− s

2x

)
dx =

( s
2

)1−n
2

Γ
(
n− 2

2
,
s

2b

)
if n ≥ 2;

= exp
(
− s

2b

) [
2
√
b−

√
2πs exp

( s
2b

)
Erfc

(√
s

2b

)]
if n = 1;

(A.1)

where Γ(a, z) =
∫∞

z
e−tta−1dt is the incomplete gamma integral and where Erfc(z) = 2√

π

∫∞
z
e−t2dt is

the complementary error function. Note that Γ(1
2 , z

2) =
√
πErfc(z) (Abramowitz and Stegun, 1972,

p. 262), and that Γ(0, z) is the exponential integral E1(z), for which accurate rational approximations

are available (ibid., p. 231).

It follows that the normalized density and cumulative distribution function (cdf) are given by:

f(x;n, b, s) =

(s
2

)n
2 −1

x−
n
2 exp

(
− s

2x

)
I(0,b)(x)

Γ
(
n− 2

2
,
s

2b

) if n ≥ 2;

=
exp

( s
2b

)
x−

1
2 exp

(
− s

2x

)
I(0,b)(x)[

2
√
b−√

2πs exp
( s

2b

)
Erfc

(√
s

2b

)] if n = 1; (A.2)

F (x;n, b, s) =
Γ
(
n− 2

2
,
s

2x

)

Γ
(
n− 2

2
,
s

2b

) if n ≥ 2;

=

[
2
√
x exp

(
− s

2x

)
−√

2πsErfc
(√

s

2x

)]
[
2
√
b exp

(
− s

2b

)
−√

2πsErfc
(√

s

2b

)] if n = 1. (A.3)

When n > 2, x follows an inverted gamma distribution with parameters (n−2)/2 and s/2, truncated

on the interval (0, b). When n ≤ 2, the density is non-standard. It is readily checked that f(x;n, b, s)

attains a single mode at the point w = min(b, s/n). The next sections will discuss four complementary

methods for simulating f(x;n, b, s).
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A.2. Gamma source density. When n > 2, f(x;n, b, s) can be simulated by the obvious method:

Step a. Draw x ∼ Ga
(
n− 2

2
,
s

2

)
;

Step b. Return x−1 if x−1 < b, otherwise go to Step a;

provided that the acceptance probability remains high. This probability is given by:

pga =
Γ
(
n− 2

2
,
s

2b

)

Γ
(
n− 2

2

) (A.4)

which is the probability that a chi-square variate with n − 2 degrees of freedom be greater than s/b.

Clearly this will become unacceptably low for high values of s/b.

A.3. CDF inversion. Another straightforward method is:

Step a. Draw u ∼ U(0, 1);

Step b. Return a numerical approximation to the solution of u = F (x;n, b, s), where F (x;n, b, s) is

given by (A.3).

This method will only be reliable if (A.3) can be evaluated accurately. Unfortunately, when s/b is

very large, the numerical approximation error in the numerator of (A.3) is divided by an arbitrarily

small number, and meaningless values can be generated.

A.4. Uniform source density. This method is based on the source density:

p1(x; b) =
1
b
I(0,b)(x).

A candidate z is drawn from p1, and is accepted with conditional probability:

f(z;n, b, s)
ap1(z; b)

, where a = sup
0<x<b

f(x;n, b, s)
p1(x; b)

.

By iterated expectations, the unconditional acceptance probability is then pun = a−1.

This probability is easy to evaluate. Since the maximum of f(x;n, b, s) is attained when x = w =

min(b, s/n), we have a = bf(w;n, b, s), or, using equation (A.2):

pun =
(s

2

)1−n
2

Γ
(
n− 2

2
,
s

2b

)
b−1w

n
2 exp

( s

2w

)
if n ≥ 2

=
[
2
√
b−√

2πs exp
( s

2b

)
Erfc

(√
s

2b

)]
w

1
2 b−1 exp

( s

2w
− s

2b

)
if n = 1. (A.5)

Suppose that b < s/n. We then have w = b, and, upon letting a = (n− 2)/2 and z = s/(2b):

pun = Γ(a, z)z−a exp(z) if n ≥ 2;

= 2
[
1 −√

π
√
z exp(z) Erfc(

√
z)
]

if n = 1. (A.5a)
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As z tends to infinity, both these expressions tend to zero (Abramowitz and Stegun, 1972, pages 231,

263, and 298). We conclude that for given n, the uniform source density will be impractical when s/b

is very large. However, for given n > 2, the convergence to zero of pun is much slower than that of pga,

due to the presence of the exponential term in pun.

Suppose now that b ≥ s/n, so that w = s/n. Equation (A.5) becomes:

pun =
( s

2b

)
Γ
(
n− 2

2
,
s

2b

)(n
2

)−n
2

exp
(n

2

)
if n ≥ 2;

= 2
[
1 −√

π

√
s

2b
exp

( s

2b

)
Erfc

(√
s

2b

)](s
b

) 1
2

exp
(
b− s

2b

)
if n = 1. (A.5b)

We conclude that for given n, the uniform source density is a poor choice when s/b is close to zero.

However, in this case, pga in (A.4) is close to one, so that the gamma candidate can be used provided

that n > 2. If n ≤ 2, then s/(2b) ≤ 1, and the numerical difficulties mentioned at the end of Section

A.3 do not arise, so that cdf inversion is reliable.

For the sake of completeness, we state the details of the uniform rejection method.

Step a. Let w = min(b,
s

n
);

Step b. Draw u ∼ U(0, 1);

Step c. Draw z ∼ U(0, b);

Step d. If u >
( z
w

)−n
2

exp
[
−s

2
(
z−1 − w−1

)]
then go to Step b;

Step e. Return z.

A.5. Exponential source density. The considerations in Section A.4 suggest that one of the three

preceding methods will always work, provided that b ≥ s/n.

If b is much less than s/n, all three methods will ultimately fail. However, in this case, a good

approximation to f(x;n, b, s) can be provided by the density of an exponential candidate that has been

truncated, translated, and reflected, that is:

z = b− y where p(y) ∝ e−βyI(0,b)(y).

The density of z is given by:

p2(z; β, b) =
β exp(βz)

exp(βb) − 1
I(0,b)(z).

We now address the issue of the choice of β. Again, we must first evaluate the supremum of the

density ratio, which is the inverse of the acceptance probability. Upon letting:

h(z) =
f(z;n, b, s)
p2(z; β, b)

,
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we see that:

lnh(z) = −n
2

ln z − s

2z
− βz + k.

This function is strictly concave if z < 2s/n, which will be the case if z < b < s/n. Equating its first

derivative to zero yields the admissible root:

z0 =
s

n

2
+

√
n2

4
+ 2βs

> 0.

For z0 to be less than b, we must have:

β >
1
2b

(s
b
− n

)
(A.6)

and β will indeed be an admissible parameter of the exponential source density if b < s/n (when this is

not satisfied, the method of this section is not applicable). The lower bound in (A.6) turns out to be

an appropriate choice. In this case, h(z) is maximized for z = b, and the acceptance probability of a

candidate z having the density p2 is:

p∗ex =
p2(b; β, b)
f(b;n, b, s)

=
( s

2b

)1−n
2
( s

2b
− n

2

)
Γ
(
n− 2

2
,
s

2b

)
exp

(s
b
− n

2

) [
exp

( s
2b

− n

2

)
− 1

]−1

if n ≥ 2;

=
(s
b
− 1

)
exp

(
s

2b
− 1

2

)[
1 −√

π

√
s

2b
exp

( s

2b

)
Erfc

(√
s

2b

)][
exp

(
s

2b
− 1

2

)
− 1

]−1

if n = 1.

In order to obtain the unconditional probability that a (non-truncated) exponential candidate y be

ultimately accepted, we must multiply p∗ex by:

P (y < b) = 1 − e−βb = 1 − exp
(n

2
− s

2b

)
.

Since (1 − e−x)(ex − 1)−1 = e−x, this product is:

pex =
( s

2b

)1−n
2
( s

2b
− n

2

)
Γ
(
n− 2

2
,
s

2b

)
exp

( s
2b

)
if n ≥ 2;

=
(s
b
− 1

)[
1 −√

π

√
s

2b
exp

( s
2b

)
Erfc

(√
s

2b

)]
if n = 1. (A.7)

Using well-known asymptotic expansions (see Abramowitz and Stegun, 1972, Sections 5.1.51, 6.5.32,

and 7.1.23), we can show that:

lim
z→∞Γ(a, z)ezz1−a = 1

lim
z→∞(2z)[1 −√

π
√
zez Erfc(

√
z)] = 1.

Upon letting z = s/(2b) and a = (n − 2)/2, we then see that lim pex = 1 as s/(2b) → ∞ for given n.

Since s/b is bounded below by n, pex is bounded away from zero in all cases.

We now give the details of the exponential rejection method.
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Step a. Draw u1 ∼ U(0, 1);

Step b. Draw u2 ∼ U(0, 1);

Step c. Compute y =
2b2

nb− s
lnu2;

Step d. If y ≥ b go to Step b;

Step e. Compute z = b− y;

Step f. If u1 >

(
b

z

)n
2

exp
[
− s

2z
− z

2b

(s
b
− n

)
+
s

b
− n

2

]
then go to Step a;

Step g. Return z.

A.6. The full simulation algorithm. A rule for choosing the most suitable method must now be

formulated. It is convenient to work with the ratios of the acceptance probabilities, since this obviates

the need to compute incomplete gamma integrals and error functions. From (A.4), (A.5), and (A.7),

and recalling that w = min(b, s/n), we see that:

α = ln
pun

pga
= ln Γ

(
n− 2

2

)
+ ln

s

2b
− n

2
ln

s

2w
+

s

2w
(if n > 2) (A.8)

β = ln
pex

pga
= ln Γ

(
n− 2

2

)
+
(
1− n

2

)
ln

s

2b
+ ln

( s
2b

− n

2

)
+

s

2b
(if n > 2 and b <

s

n
) (A.9)

pex

pun
=

s

2b
− n

2
(if b <

s

n
) (A.10)

so that pun < pex whenever:
s

b
> n + 2.

The full simulation algorithm can now be stated.

a. If n > 2:

• If s/b > n + 2: Compute β from (A.9). If β > 0 use the exponential candidate, otherwise use

the gamma candidate.

• If s/b ≤ n + 2: Compute α from (A.8). If α > 0 use the uniform candidate, otherwise use the

gamma candidate.

b. If n ≤ 2:

• If s/b > n+ 2, use the exponential candidate.

• If s/b ≤ n + 2, compute pun from (A.5). If pun > 0.001 (say) use the uniform candidate.

Otherwise use the cdf inversion method.

The arguments in Sections A.2 to A.5 show that for given n, the acceptance probability of any

candidate will always be bounded away from zero, and that the inversion method will give reliable results

under its conditions of use. In order to assess the overall practicality of the method, it remains to be
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shown that the maximum of pun, pga, and pex cannot become intolerably low. Plots of max (pun, pga, pex)

against s/b for various values of n reveal that when 3 ≤ n ≤ 20, the global minimum of this function is

attained for s/b = n+ 2 (that is, when pun = pex). In this case, it is a decreasing function of n, ranging

from 0.346 (when n = 3) to 0.238 (when n = 20). When n > 20, the uniform rejection method becomes

dominated by the other two over the entire range of s/b, and the minimax occurs when pex = pga. In

this case, it becomes a slowly increasing function of n, ranging from 0.236 (when n = 21) to 0.328 (when

n = 500).

When n = 1, the minimax between pun and pex is 0.380 under the constraint that s/(2b) > 4.6×10−8

(below this threshold, pun < 0.001, and cdf inversion is used). When n = 2, the corresponding values

are 0.361 and s/(2b) > 0.000038.

These values show that the method of this Appendix will indeed remain practical in all cases.
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Table 1. Relative numerical efficiencies (random
permutation sampler with mixture prior, simulated data)

Parameter DGP1 DGP2

β1
1 0.78 0.34
β1

2 0.75 0.40
h1 1.14 1.01
h2 1.14 1.01
P11 0.27 0.28
P12 0.27 0.28
P21 0.26 0.29
P22 0.26 0.29
σ2 0.19 0.27
ν 0.35 0.32
µ1 0.76 0.60
v1 0.90 0.75
r1 0.43 0.40
γ 0.83 0.36
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Table 2. State-invariant parameters (random permutation
sampler with mixture prior, quarterly real interest data)

θ θ0.025 θ0.5 θ0.975 θ̄ min. max. NSE ×1000 RNE

µ1 −2.386 1.360 4.495 1.227 −6.955 9.217 17.911 0.883
v1 5.547 9.445 18.044 10.061 4.082 37.585 34.622 0.878
r1 −0.475 0.068 0.788 0.094 −0.499 1.000 7.669 0.226
µ2 −0.076 0.088 0.287 0.092 −0.224 0.440 1.821 0.248
v2 0.005 0.009 0.019 0.010 0.003 0.062 0.042 0.716
r2 −0.444 0.363 0.965 0.332 −0.496 1.000 10.468 0.167
µ3 −0.210 −0.049 0.102 −0.051 −0.372 0.228 1.408 0.309
v3 0.005 0.009 0.018 0.010 0.003 0.046 0.037 0.822
r3 −0.458 0.257 0.957 0.253 −0.499 0.999 10.142 0.178
µ4 −0.273 −0.128 0.027 −0.127 −0.401 0.196 1.157 0.433
v4 0.005 0.009 0.018 0.010 0.003 0.038 0.038 0.791
r4 −0.430 0.474 0.980 0.407 −0.497 1.000 10.157 0.169
µ5 −0.232 −0.096 0.046 −0.095 −0.368 0.248 1.029 0.483
v5 0.005 0.009 0.018 0.010 0.003 0.034 0.036 0.826
r5 −0.421 0.410 0.978 0.366 −0.496 1.000 10.089 0.177
γ 1.426 9.235 39.372 12.033 1.006 98.006 131.988 0.585
σ2 8.002 11.048 16.554 11.357 5.096 30.916 41.656 0.270
ν 9.995 100.936 385.926 126.698 3.911 1376.088 7646.400 0.019

Based on the prior parameters in (6.3)–(6.4). θα: estimated posterior quantile at probability α. θ̄: estimate of posterior

expectation. NSE: numerical standard error. RNE: relative numerical efficiency.
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Table 3. Posterior simulation summaries (constrained permutation
sampler with empirical Bayes prior, quarterly real interest data)

θ θ0.025 θ0.5 θ0.975 θ̄ min. max. NSE ×1000 RNE

β1
1 −2.207 −1.239 −0.335 −1.246 −4.496 0.401 7.563 0.389
β1

2 0.975 1.414 1.868 1.416 0.557 2.403 3.356 0.469
β1

3 3.363 4.706 5.875 4.687 1.774 7.142 8.755 0.528
β2

1 −0.039 0.129 0.297 0.129 −0.200 0.493 0.942 0.830
β2

2 −0.022 0.133 0.287 0.133 −0.205 0.450 0.953 0.666
β2

3 −0.048 0.110 0.269 0.110 −0.214 0.424 0.886 0.821
β3

1 −0.189 −0.030 0.129 −0.030 −0.383 0.316 0.893 0.826
β3

2 −0.247 −0.117 0.008 −0.117 −0.387 0.143 0.735 0.806
β3

3 −0.206 −0.059 0.091 −0.058 −0.308 0.204 0.778 0.919
β4

1 −0.343 −0.202 −0.058 −0.201 −0.464 0.072 0.757 0.938
β4

2 −0.304 −0.185 −0.064 −0.185 −0.426 0.019 0.666 0.838
β4

3 −0.350 −0.213 −0.077 −0.213 −0.480 0.071 0.725 0.931
β5

1 −0.314 −0.166 −0.015 −0.166 −0.462 0.129 0.824 0.861
β5

2 −0.272 −0.156 −0.038 −0.155 −0.416 0.071 0.705 0.722
β5

3 −0.260 −0.126 0.013 −0.125 −0.384 0.160 0.720 0.949
h1 0.248 0.371 0.513 0.373 0.153 0.647 0.991 0.464
h2 0.165 0.248 0.349 0.250 0.099 0.459 1.123 0.176
h3 0.225 0.375 0.537 0.377 0.110 0.648 1.323 0.373
P11 0.686 0.894 0.974 0.878 0.025 0.996 1.445 0.280
P12 0.002 0.048 0.233 0.065 0.000 0.632 1.328 0.233
P13 0.006 0.047 0.158 0.057 0.000 0.778 0.534 0.631
P21 0.003 0.024 0.079 0.028 0.000 0.201 0.355 0.324
P22 0.898 0.965 0.992 0.960 0.773 0.999 0.453 0.294
P23 0.000 0.008 0.047 0.012 0.000 0.190 0.222 0.334
P31 0.001 0.036 0.173 0.050 0.000 0.367 0.608 0.575
P32 0.004 0.064 0.216 0.076 0.000 0.381 0.765 0.549
P33 0.717 0.885 0.972 0.874 0.491 0.996 0.809 0.691
σ2 8.380 11.207 15.597 11.397 6.146 21.929 37.344 0.246
ν 11.086 80.864 444.251 118.793 4.557 823.197 7666.532 0.023
e1 −2.544 −1.417 −0.401 −1.432 −6.756 0.570 8.688 0.384
e2 1.213 1.632 2.036 1.632 0.651 2.609 3.117 0.454
e3 4.076 5.283 6.314 5.266 2.395 7.711 7.885 0.508

Based on equation (6.2) with 3 regimes and on the prior parameters in (6.3) for σ2 and ν; the other prior parameters are

equal to the medians in Table 2. Inequality constraint on the intercepts. θα: estimated posterior quantile at probability α.
θ̄: estimate of posterior expectation. NSE: numerical standard error. RNE: relative numerical efficiency. ei: equilibrium

expectations E[yt | St = i].
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Table 4. P-values of misspecification diagnostics (constrained permutation
sampler with empirical Bayes prior, quarterly real interest data)

Identification Dependent variable F-stat. KS BJ AR(5) ARCH(4) White

β1
1 < β1

2 < β1
3

ut 0.0394 0.7257 0.7361 0.8324 0.2393 0.5382
u2

t 0.4435 NA NA 0.4130 0.7934 0.5492

σ2
1 < σ2

2 < σ2
3

ut 0.0000 0.8070 0.4069 0.7960 0.2515 0.5643
u2

t 0.1926 NA NA 0.8126 0.6118 0.4511

Based on 12-lag autoregressions on the transformed p-scores ut, defined as the inverse normal integrals of pt in (5.1), and on

their squares. F-stat: F-statistic for joint nullity of all autoregression coefficients. KS: Kolmogorov-Smirnov statistic. BJ:

Bera-Jarque statistic. AR(5): Breusch-Godfrey statistic. ARCH(4): LM statistic for residual autoregressive conditional
heteroscedasticity. White: White’s statistic for residual heteroscedasticity (no cross-terms). NA: not applicable.
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Table 5. State-invariant parameters (random permutation
sampler with mixture prior, monthly real interest data)

θ θ0.025 θ0.5 θ0.975 θ̄ min. max. NSE ×1000 RNE

µ1 −0.617 0.953 2.253 0.906 −2.303 3.651 9.011 0.632
v1 1.250 2.167 4.137 2.312 0.842 8.732 8.464 0.802
r1 −0.489 −0.163 0.524 −0.119 −0.500 0.962 6.330 0.193
µ2 −2.423 −0.737 1.095 −0.713 −4.312 3.800 10.339 0.733
v2 1.052 1.796 3.394 1.909 0.688 8.084 6.508 0.883
r2 −0.428 0.478 0.979 0.395 −0.498 1.000 10.618 0.166
µ3 −2.483 −0.841 1.015 −0.805 −4.040 3.276 10.753 0.688
v3 1.059 1.803 3.433 1.915 0.636 6.551 6.454 0.913
r3 −0.453 0.413 0.978 0.356 −0.495 0.999 10.655 0.165
µ4 −0.976 0.966 2.665 0.927 −2.572 4.535 10.962 0.700
v4 1.069 1.797 3.447 1.915 0.719 6.846 6.589 0.895
r4 −0.423 0.467 0.979 0.396 −0.498 1.000 10.464 0.163
µ5 −0.627 1.293 2.937 1.252 −2.637 4.506 11.043 0.676
v5 1.060 1.810 3.385 1.918 0.706 8.422 6.595 0.867
r5 −0.450 0.473 0.976 0.395 −0.499 0.999 10.746 0.163
µ6 −0.072 0.066 0.192 0.064 −0.233 0.315 1.010 0.437
v6 0.005 0.009 0.018 0.010 0.003 0.036 0.038 0.779
r6 −0.466 0.174 0.946 0.194 −0.499 1.000 10.830 0.151
µ7 −0.003 0.012 0.026 0.012 −0.017 0.039 0.116 0.405
v7 0.0001 0.0001 0.0002 0.0001 0.0000 0.0003 0.0004 0.792
r7 −0.456 0.367 0.975 0.329 −0.499 1.000 12.154 0.129
γ 1.569 9.560 38.658 12.264 1.001 140.640 124.308 0.642
σ2 15.624 20.692 26.723 20.804 12.252 32.979 67.358 0.171
ν 6.143 14.234 43.530 17.150 3.663 76.601 524.977 0.037

Based on the prior parameters in (7.2)–(7.3). θα: estimated posterior quantile at probability α. θ̄: estimate of posterior

expectation. NSE: numerical standard error. RNE: relative numerical efficiency.
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Table 6. Posterior simulation summaries (constrained permutation
sampler with empirical Bayes prior, monthly real interest data)

θ θ0.025 θ0.5 θ0.975 θ̄ min. max. NSE ×1000 RNE

β1
1 −2.147 −1.273 −0.298 −1.253 −3.658 0.299 9.194 0.261
β1

2 1.040 1.426 1.785 1.423 0.604 2.215 2.526 0.568
β1

3 2.282 3.567 4.727 3.550 1.338 5.790 10.573 0.342
β2

1 −2.393 −0.909 0.621 −0.904 −4.068 1.754 8.495 0.813
β2

2 −2.139 −1.276 −0.362 −1.273 −2.988 1.450 5.360 0.705
β2

3 −2.763 −1.082 0.600 −1.078 −4.577 1.951 9.370 0.829
β3

1 −3.095 −1.559 −0.067 −1.561 −4.469 2.239 8.489 0.812
β3

2 −1.776 −0.906 −0.065 −0.910 −2.728 0.747 5.041 0.750
β3

3 −2.906 −1.125 0.618 −1.130 −4.435 2.411 10.089 0.774
β4

1 0.145 1.676 3.259 1.683 −1.216 4.648 8.663 0.825
β4

2 0.249 1.104 1.934 1.100 −0.596 2.953 5.098 0.723
β4

3 −0.200 1.505 3.174 1.493 −2.451 4.704 9.543 0.818
β5

1 0.324 1.914 3.495 1.915 −1.121 4.910 9.329 0.740
β5

2 1.212 2.102 2.977 2.099 0.176 3.772 5.569 0.642
β5

3 −0.024 1.673 3.308 1.662 −1.703 4.725 9.114 0.858
β6

1 −0.040 0.098 0.234 0.097 −0.199 0.418 0.893 0.608
β6

2 −0.082 0.025 0.129 0.025 −0.170 0.263 0.723 0.545
β6

3 −0.021 0.133 0.287 0.133 −0.190 0.457 0.870 0.805
β7

1 0.002 0.017 0.032 0.017 −0.017 0.045 0.085 0.830
β7

2 0.002 0.017 0.032 0.017 −0.010 0.050 0.085 0.808
β7

3 0.006 0.020 0.034 0.020 −0.005 0.049 0.074 0.900
h1 0.300 0.409 0.529 0.410 0.225 0.631 1.032 0.311
h2 0.163 0.232 0.313 0.233 0.131 0.526 1.180 0.106
h3 0.227 0.356 0.487 0.357 0.116 0.614 1.284 0.268
P11 0.890 0.958 0.988 0.954 0.734 0.998 0.465 0.305
P12 0.002 0.024 0.088 0.030 0.000 0.213 0.466 0.245
P13 0.001 0.013 0.053 0.017 0.000 0.117 0.203 0.463
P21 0.002 0.012 0.034 0.013 0.000 0.091 0.146 0.319
P22 0.953 0.982 0.995 0.980 0.894 0.999 0.212 0.268
P23 0.000 0.005 0.026 0.007 0.000 0.067 0.151 0.221
P31 0.001 0.015 0.073 0.021 0.000 0.329 0.314 0.404
P32 0.003 0.030 0.094 0.035 0.000 0.276 0.343 0.497
P33 0.872 0.949 0.987 0.944 0.644 0.999 0.426 0.498
σ2 17.158 22.762 28.853 22.819 13.291 37.123 84.979 0.126
ν 6.929 19.886 124.008 32.282 4.133 222.386 1426.770 0.049

Based on equation (7.1) with 3 regimes and on the prior parameters in (7.2) for σ2 and ν; the other prior parameters are

equal to the medians in Table 5. Inequality constraint on the intercepts. θα: estimated posterior quantile at probability
α. θ̄: estimate of posterior expectation. NSE: numerical standard error. RNE: relative numerical efficiency.
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Table 7. P-values of misspecification diagnostics (constrained permutation
sampler with empirical Bayes prior, monthly real interest data)

Identification Dependent variable F-stat. KS BJ AR(7) ARCH(7) White

β1
1 < β1

2 < β1
3

ut 0.0578 0.4606 0.0457 0.6702 0.0889 0.5408
u2

t 0.3715 NA NA 0.5325 0.9964 0.9990

σ2
1 < σ2

2 < σ2
3

ut 0.0000 0.4162 0.0058 0.6354 0.1659 0.7602
u2

t 0.6237 NA NA 0.5581 0.9486 0.9981

Based on 36-lag autoregressions on the transformed p-scores ut, defined as the inverse normal integrals of pt in (5.1), and on

their squares. F-stat: F-statistic for joint nullity of all autoregression coefficients. KS: Kolmogorov-Smirnov statistic. BJ:
Bera-Jarque statistic. AR(7): Breusch-Godfrey statistic. ARCH(7): LM statistic for residual autoregressive conditional

heteroscedasticity. White: White’s statistic for residual heteroscedasticity (no cross-terms). NA: not applicable.
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Figure 1. Regression parameters, unconstrained sampler with
mixture prior, simulated data
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Figure 2. Hyperparameters, unconstrained sampler with
mixture prior, simulated data
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Figure 3. Regression parameters, unconstrained sampler with
independent prior, simulated data
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Figure 4. Regression parameters, constrained sampler with
empirical Bayes prior, simulated data
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Figure 5.  Kernel posterior density estimates of the intercept
in state 1 (unconstrained sampler, quarterly interest rate data)
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Figure 6. Kernel posterior density estimates of the intercept
(constrained sampler, quarterly interest rate data)
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Figure 7. State probabilities (quarterly interest rate data)
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Figure 8. State probabilities (monthly interest rate data)
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