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Abstract

Classical rational interpolation is known to su�er from several drawbacks, such as unattainable points and
randomly located poles for a small number of nodes, as well as an erratic behavior of the error as this number
grows larger. In a former article, we have suggested to obtain rational interpolants by a procedure that attaches
optimally placed poles to the interpolating polynomial, using the barycentric representation of the interpolants.
In order to improve upon the condition of the derivatives in the solution of di�erential equations, we have
then experimented with a conformal point shift suggested by Koslo� and Tal-Ezer. As it turned out, such
shifts can achieve a spectacular improvement in the quality of the approximation itself for functions with
a large gradient in the center of the interval. This leads us to the present work which combines the pole
attachment method with shifts optimally adjusted to the interpolated function. Such shifts are also constructed
for functions with several shocks away from the extremities of the interval.
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1. Introduction

Our aim in the present work is the rational approximation of a function f on a real interval I ,
which we may take as [ − 1; 1] without loss of generality, in such a way that the approximant
interpolates f between N + 1 abscissae x0; : : : ; xN in I which are either given in advance or images
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of given points under a conformal map. The reader may consult [6] for an example of an application
of such interpolants. We assume that f is analytic (holomorphic) within a domain D1 containing I .
Let pN be the polynomial of degree at most N interpolating f between x0; : : : ; xN . It is well known

that, for good interpolation points (nodes) such as Chebyshev’s or Legendre’s, one has exponential
convergence of the sequence pN toward f:

|pN − f|6 c · e−�N
for some constants c and �. (This same kind of interpolation is also of interest if f is merely
in Cp−1(I) for large p with f(p) of bounded variation, in which case one reaches an order of
convergence p:

|pN − f|6 c · N−p:)

However, the constants c and � in the above estimate depend, explicitly or implicitly, on derivatives
of f; when the latter are very large, the fast convergence may show up only after too large values
of N for practical purposes.
Rational interpolation often does much better for small values of N . However, classical rational

interpolants r, in which the sum of the degrees of numerator and denominator add up to N , are un-
predictable for small N . In many cases, which document more the rule than the exception, unwanted
poles occur in the vicinity of I , or even on I , making the corresponding r useless as approximants.
To obtain better interpolants r in cases f is known everywhere on I , we have proposed in [5] to

attach poles to pN in such a way as to minimize some functional, e.g., some norm ‖r − f‖, taken
as a measure of the approximation error. The decrease of the functional induced by the optimization
documents the motion of the poles from their position at in�nity (for pN ) to an optimal �nite
position. In sharp contrast to classical interpolants, the resulting rational interpolants r are at least
as good as pN and neither unwanted poles nor unattainable points [18] may occur.
Quite impressive results have been obtained in [5] with this method, and this even with equidistant

xk , for which pN is notoriously useless for many f when N grows large (Runge’s phenomenon).
For these points the computations had however to be performed in quadruple precision (about 32
digits), a manifestation of the ill-conditioning. And the higher N , the higher the necessary precision.
If the goal is just to approximate f, and if one can choose the xk—a situation we will assume

here—it is clearly better to stay with Chebyshev or Legendre points. On the other hand, it is well
known by experts in spectral methods that derivatives of polynomials interpolating between such
points which accumulate in the vicinity of the boundary are ill-conditioned for large N . Koslo� and
Tal-Ezer [14] have therefore suggested to conformally shift these points from their, say, Chebyshev
position by a conformal map g from a y-domain containing another copy J of I (with the Chebyshev
points yk) onto a domain containing D1, and this in such a way that g(J ) = I and that the new
nodes xk = g(yk) are closer to equidistant than the yk’s. These authors then suggest to approximate
f by the transplant of the polynomial in y of degree at most N interpolating F(y) := f(x) between
the yk . While the exponential convergence is maintained by the analyticity of g, the derivatives are
now better conditioned.
We have successfully applied that same idea in [7] to our rational interpolant with optimized

poles of [5]. As a by-product, the improvement in the approximation was particularly impressive for
functions with a large gradient in the center of the interval, a consequence of the fact that Koslo�
and Tal-Ezer’s shift places more nodes there. Though not surprising in principle, this improvement
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impressed us by its magnitude: in some cases it was more pronounced than that obtained from the
attachment of poles.
After having studied the numerical results of [7], Richard Baltensperger has suggested that we

use instead of Koslo� and Tal-Ezer’s shift a much more adaptive g such as the one advocated and
proven more e�cient and versatile by Bayliss and Turkel in [2]. The present work is devoted to the
use of such adaptive point shifts for improving upon the optimized denominator rational interpolation
of [5].
Section 2 reviews polynomial interpolation and the method of constructing rational interpolants by

optimally attaching poles to the interpolating polynomial, as introduced in our earlier work. Section
3 recalls the e�ect of conformal point shifts on the interpolant and its derivatives. Section 4 describes
the use of Bayliss and Turkel’s point shift, which involves two parameters, one for the location of
an accumulation of points, the other for their concentration. In Section 5 we construct a new shift
that can in principle handle an arbitrary number of shocks. The work is completed with numerical
examples and conclusions.

2. Rational interpolation with optimized denominator

This interpolation method, recently introduced in [5], starts with the polynomial interpolant. The
unique polynomial pN of degree 6N that interpolates f between the xk may be written in its
barycentric form [13]

pN (x) =
N∑
k=0

wk
x − xk fk

/
N∑
k=0

wk
x − xk ; (2.1)

where

wk := 1

/
N∏

i=0; i �=k
(xk − xi):

For several standard point sets {xk}Nk=0, the weights wk may be analytically computed, one of the
many advantages of Lagrange interpolation [3]. This is in particular the case for Chebyshev points.
Moreover, since the wk appears in the numerator and in the denominator of (2.1), any common
factor may be discarded. Here we will use the Chebyshev points of the second kind xk = cos k�=n,
whose simpli�ed weights read [17]

w∗
k = (−1)k�k ; �k :=

{
1=2; k = 0 or k = N;

1 otherwise:

Then (2.1) evaluates pN at any given x in O(N ) operations.
As mentioned in the Introduction, the convergence pN → f is very rapid if f is di�erentiable a

large number p of times, and it adapts automatically to p. It is exponential for analytic functions
such as those we will consider in the examples.
On the other hand, it is easy to infer from Markov’s inequality that, when functions with steep

gradients (shocks) are to be approximated, the degree N , and hence the number of xk , will have
to grow sharply with the steepness of the shocks [5]. Rational interpolation is thus to be preferred
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when approximating functions with large slopes. As mentioned in the Introduction, classical rational
interpolation is hampered by unattainable points and unpredictable poles close to or even on I (see,
e.g., Fig. 1b and Table 5 in [5]).
For this reason, we have suggested in [5] a di�erent kind of rational interpolation in cases where

f is known everywhere on I and where the computing time is not an issue. The basic idea is to
start with pN , which may be viewed as a rational interpolant with all its poles at in�nity, to �x P,
the number of poles zj to be attached to pN , and to move the zj from in�nity toward an optimal
position, i.e., one which minimizes some error functional, here ‖r − f‖∞.
Let Rmn denote the set of all rational functions with numerator and denominator degrees at most

m, resp. n. Our problem is therefore the following.
Problem. Find among all r ∈RNP with r(xk) = f(xk); k = 0; 1; : : : ; N , one that minimizes

‖r − f‖∞ := max
x∈I |r(x)− f(x)|: (2.2)

It is easy to see that this optimization problem has a solution [5]. The unicity question is not
settled, yet.
The resulting interpolants have many advantages over classical rational interpolants: they can have

neither unattainable points nor unwanted poles, and the sequence {‖r−f‖∞: r ∈RNP} decreases as
P increases.
The barycentric representation of pN permits a very simple attachment of the poles: it su�ces to

replace the wk in (2.1) with

bk := wk · dk; dk :=
P∏
i=1

(xk − zi) (2.3)

(if an interpolant with the poles zj exists, see [5]). The optimization problem has been numerically
solved with success in [5] with standard modern algorithms. The results show that the nice properties
just mentioned also arise in practice, and in particular that the resulting interpolants can indeed
accommodate much more pronounced shocks than pN .
In [6], such optimized rational interpolants have been computed as one part of a two-step algorithm

for improving upon the polynomial pseudospectral solution of two-point boundary value problems.
There, the minimized error functional was the size of the residual of the di�erential equation for the
approximate solution r. This residual involves derivatives, which are notoriously ill-conditioned for
large number N of Chebyshev—or Legendre—points [20].

3. Conformal points shifts and their in�uence upon the derivatives

To reduce the just-mentioned ill-conditioning, Koslo� and Tal-Ezer [14] have suggested using in
lieu of the Chebyshev points themselves their images under a conformal map that renders them
closer to equidistant, an idea which has proven e�ective in several instances [1,4,15,16]. We have
applied it ourselves in [7] to the above method of interpolation with optimized denominator.
There we have attached poles zj in x-space by attaching poles vj = g[−1](zj) to PN (y) =∑N
k=0 (wk=(y − yk))fk=

∑N
k=0 (wk=(y − yk)) in y-space. In view of (2.3), the resulting rational
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interpolant reads

R(y) :=

N∑
k=0

wk
P∏
i=1
(yk−vi)

y−yk fk

N∑
k=0

wk
P∏
i=1
(yk−vi)

y−yk

=

N∑
k=0

wk
P∏
i=1
(g[−1](xk)−g[−1](zi))

g[−1 ](x)−g[−1](xk) fk

N∑
k=0

wk
P∏
i=1
(g[−1](xk)−g[−1](zi))

g[−1 ](x)−g[−1](xk)

= : r(x)

and the vj are optimized by minimizing

‖R− F‖∞ =max
y∈J |R(y)− F(y)|; (3.1)

as in (2.2).
As mentioned in the Introduction, one goal of the conformal shift, besides a better approximation

at steep shocks in the interior of the interval, is the improvement of the approximation of the
derivatives. The derivatives of r are given as functions of those of R by [7]

r′(x) = R′(y)y′(x) =
R′(y)
g′(y)

r′′(x) = R′′(y)[y′(x)]2 + R′(y)y′′(x) =
R′′(y)
[g′(y)]2

− g′′(y)
[g′(y)]3

R′(y); (3.2)

where the derivatives of

R(y) =
N∑
k=0

uk
y − yk fk

/
N∑
k=0

uk
y − yk

can be computed by the Schneider–Werner formulae

R′(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N∑
k=0

uk
y − yk R[y; yk]

/
N∑
k=0

uk
y − yk ; y �= yi; i = 0(1)N;

−
⎛
⎝ N∑

k=0;k �=i
ukR[yi; yk]

⎞
⎠/

ui; y = yi;

R′′(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
N∑
k=0

uk
y − yk R[y; y; yk]

/
N∑
k=0

uk
y − yk ; y �= yi; i = 0(1)N;

−2
⎛
⎝ N∑

k=0;k �=i
ukR[yi; yi; yk]

⎞
⎠/

ui; y = yi;

with R[z; z; yk] = (R′(z)− R[z; yk])=(z − yk).
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4. Adaptive point shifts for functions with a shock

It now remains to choose a good conformal point shift g. In [7], we went for Koslo� and Tal-Ezer’s
map,

g(z) =
arcsin �z
arcsin �

with a parameter � varying from 0 to 1. For �=0, the points remain the Chebyshev ones. As �→ 1
they become equidistant. The fast convergence rates mentioned in the Introduction are maintained
for every �xed �¡ 1.
This shift was introduced for improving the conditioning of the derivatives of the approximation

in time evolution problems. In [7], however, we have noticed an important by-product, namely a
sharp improvement in the quality of the approximation itself for functions with a shock at 0. The
aim of the present work is to take a better advantage of this e�ect by adapting the shift to the
interpolated function. We achieve this by considering the various proposals for shifts g by Bayliss
and Turkel in [2]. Their comparisons demonstrate the particularly remarkable e�ciency of the map

x = g(y) =
1
�
tan[�(y − �)] + �; (4.1)

where

�=
�+ �
2
; � =

�− �
�+ �

(4.2)

with

�= arctan[�(1 + �)]; �= arctan[�(1− �)]:
g embodies two parameters: � determines the location of the maximal gradient, � its magnitude, (g
is constructed from y = g[−1](x) = � + (1=�)arctan[�(x − �)], and � is the location of the maximal
gradient of the corresponding arcus tangens; notice that � = 0 for � = 0.) Fig. 1b displays g[−1](x)
for � = 35:35 and � = −0:5024, the best values for approximation without the help of poles in
Table 2 (Example 1).
Bayliss and Turkel have roughly optimized the shift by computing over a grid of values of � and

� and selecting those parameter values for which a functional related to the interpolation error is
minimized. Here we minimize the functional (3.1) with respect to the P+2 variables z1; : : : ; zP; �; �
using standard software. In the numerical examples discussed in Section 6, we also estimate the
precision of the derivatives of r by evaluating ‖r′−f′‖∞ and ‖r′′−f′′‖∞ with the formulae (3.2).
A simple calculus exercise yields for the expressions containing g:

g′(y) = � cos2 t=�;
g′′(y)
[g′(y)]3

= 2�2 cos3 t sin t=�; t = �(y − �):

Notice that, in contrast with the method used in [5–7], the nodes xk are no longer chosen at
the onset, but result from the optimization procedure. The Remes algorithm [8], on the other hand,
yields best rational approximants in RN;P which interpolate between (at least) N + P + 2 abscissae
xk . Our xk , however, have the advantage of being images of �xed points yk under a conformal map
determined by only few parameters.
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Fig. 1. Function and inverse change of variable y = g[−1](x) in Example 1, Table 2, no poles.

5. Functions with multiple shocks

After having addressed functions with one steep gradient in the interior of I , it is natural to consider
functions f with several such shocks. When these are su�ciently close to one another, a simple
change of variable with two parameters as in (4.1) will sometimes do [2]. In more general cases,
however, two parameters will be necessary for every shock (one for location, the other for steepness).
One way is to split I into subdomains and to consider another approximation on each of them

[2]. This, though, ruins the spectral accuracy.
It therefore seems preferable to address such problems with a single conformal map involving two

parameters for every shock, say �q and �q. We will now construct such a map. The basic idea arises
from the observation that, as g[−1] in (4.1) is steep at the shock, it is relatively �at away from the
latter, and the more so the steeper the shock. At such �at parts one thus can add another function to
g[−1] without altering it too much. We therefore construct a new g[−1] accommodating Q shocks as

y(x) = g[−1](x) = � +
1
�

Q∑
q=1

arctan[�q(x − �q)]; (5.1)

where � and � are the parameters needed for ensuring that g[−1](−1)=−1; g[−1](1) = 1. A straight-
forward solution of this 2× 2-system yields the same values of � and � as in (4.2), with

� :=
Q∑
q=1

arctan[�q(1 + �q)];

� :=
Q∑
q=1

arctan[�q(1− �q)]:
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To �nd g itself, we notice that g[−1], as a sum of monotone increasing functions, is itself monotone
increasing from −1 to 1 and that, consequently, the equation g[−1](x) = y, i.e.,

Q∑
q=1

arctan[�q(x − �q)] = �(y − �) (5.2)

has a solution x for every y∈ J . The sum of arcus tangens may be written as a single arcus tan-
gens, the argument of which is a rational function involving xQ. (5.2) thus will in general require
a numerical solution, e.g., with the method of Dekker–Brent [9]. For Q6 4; y may be expressed
according to the formulae for roots of polynomials. For simplicity, we will con�ne ourselves here
to the case Q = 2. Eq. (5.2) then yields

�1(x − �1) + �2(x − �2)
1− [�1�2(x − �1)(x − �2)] = tan[�(y − �)]= : t (5.3)

or ax2 + bx + c = 0 with

a := �1�2t; b := [(�1 + �2)− a(�1 + �2)];
c:= (�1�2�1�2 − 1)t − (�1�1 + �2�2):

Notice that the sum formula used to transform (5.2) into (5.3) holds true merely up to multiples
of �. We have therefore chosen that solution of the quadratic equation for which g[−1](x) equals y,
the value to be inverted.
The derivatives, to be inserted into (3.2) when computing r′(x) and r′′(x), are obviously given by

y′(x) =
1
�

Q∑
q=1

�q
1 + s2q

;

y′′(x) =
−1
�

Q∑
q=1

2�2qsq
(1 + s2q)2

; sq := �q(x − �q):

6. Numerical examples

We have tested the e�ect of adaptive point shifts on our rational interpolation with optimized poles
on two examples, one with a single shock, the other with two shocks. The optimization problems
were solved with the simulated annealing method of [11]. The minimized sup-norm (3.1) has thereby
been estimated by considering the 1000 equally spaced points

ŷ ‘ =−5
4
+
‘ − 1
999

10
4
; ‘ = 1(1)1000;

on the interval [−5=4; 5=4] and computing the maximal absolute value of the error at those ŷ ‘ lying
in [− 1; 1].
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Table 1
E�ect of an optimized Bayliss–Turkel point shift on rational approximation with optimized poles in
Example 1 with 	 = 10′000 and N = 100

� � Poles ‖r − f‖ ‖r′ − f′‖ ‖r′′ − f′′‖
* * 1:684e− 1 2:214e + 1 6:027e + 3
* * (−0:4902;±2:011e− 2) 5:224e− 4 2:158e− 1 8:241e + 1

(−0:5056;±2:228e− 2)
(−0:5178;±5:613e− 2)

−0:5185 7:408 9:447e− 9 5:012e− 6 1:138e− 2
−0:4976 8:273 (−1:027;±3:147e− 3) 1:279e− 11 6:270e− 9 1:654e− 5
−0:4981 8:519 (−1:030;±3:574e− 3) 2:495e− 12 1:754e− 9 5:659e− 6

(1:062;±5:346e− 3)

Table 2
E�ect of an optimized Bayliss–Turkel point shift on rational approximation with optimized poles in
Example 1 with 	 = 1′000′000 and N = 240

� � Poles ‖r − f‖ ‖r′ − f′‖ ‖r′′ − f′′‖
* * 7.076e−1 4:803e + 2 4:504e + 5
* * (−0:5001;±2:017e− 3) 8:031e− 4 2:628e + 1 4:491e + 4

(−0:5041;±2:080e− 2)
(−0:5012;±8:379e− 3)

−0:5024 35:35 2:873e− 9 2:335e− 5 8:499e− 2
−0:5009 39:79 (−1:007;±9:506e− 4) 6:340e− 11 2:466e− 7 2:431e− 3
−0:4968 42:59 (−1:006;±6:682e− 4) 4:860e− 12 4:062e− 8 2:151e− 3

(1:046;±6:790e− 3)

Example 1. The function is

f(x) = e1=(x+1:2) + cos �(x + 0:5) +
erf (�(x + 0:5))

erf (�)
; �=

√
0:5	:

It consists of a function suggested in [12] as a test for solution methods for two-point boundary
value problems, shifted by −0:5 and supplemented with a term with essential singularity at x=−1:2,
i.e., on the real axis to the left of I . Fig. 1a shows f for 	= 106 between −0:7 and 1, in order for
the shock to be distinguishable (at −1 the value of f is about 147).
First, we have approximated f for 	=10′000. The results with N =100 are displayed in Table 1.

� and � are the parameters used in the change of variable (4.1)—stars thereby meaning that no change
is made—the third column gives the optimized pole pairs and the last three show the approximation
errors ‖r − f‖; ‖r′ − f′‖ and ‖r′′ − f′′‖, estimated in the same way as the minimized norms
(3.1)—but now in x-space with equidistant x̂‘ := ŷ ‘.
Table 1 documents the successive improvements in the approximation: the polynomial has an error

of about 10−1, which decreases to 5 · 10−4 with the attachment of six poles. Without poles, on the
other hand, but with an optimized Bayliss–Turkel point shift (4.1), the error becomes as small as
10−8!
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Table 3
E�ect of an optimized two-shock point shift on the rational approximation with optimized poles in
Example 2 with 	 = 10′000, 
= 100 and N = 200

�1 �1 �2 �2 Poles ‖r − f‖ ‖r′ − f′‖ ‖r′′ − f′′‖
* * * * 4:441e− 2 1:175e + 1 3:096e + 3
* * * * (−0:5000;±1:572e− 2) 1:109e− 5 3:598e− 3 1:301

(0:7293;±7:826e− 2)
(0:7494;±3:717e− 2)

−0:4924 13:25 0:7125 5:114 1:728e− 8 2:022e− 5 2:151e− 2
−0:4819 15:40 0:7141 5:777 (0:1010;±7:037e− 2) 1:667e− 9 4:097e− 6 3:066e− 3
−0:4855 15:41 0:7154 4:888 (0:1199;±8:128e− 2) 1:363e− 9 2:191e− 6 1:577e− 3

(0:7084;±1:048e− 1)

Shifting to the next order derivative worsens the error by about 102 when the precision is low, by
103–104 when ‖r − f‖ is small. This is consistent with the theoretical factor for Chebyshev points,
about O(N ) in the interior of the interval and O(N 2) close to the extremities [10]. The factor can
therefore be expected to be O(N ) as long as the approximation error—which arises in the interior in
our examples—dominates this di�erentiation error, O(N 2) when it becomes smaller. Without point
shift this derivative-induced loss of accuracy at the end points would be even more pronounced.
For approximating interior shocks, the change of variable is more powerful than the pole at-

tachment; and if it would not be for the function e1=(x+1:2), attaching poles would not bring much
improvement. Because of this steep function outside, but nevertheless close to the approximation
interval, the poles are e�ective here; changes of variable such as (5.1) cannot do any good, they are
even harmful since they shift the nodes away from the boundary (this in contrast to the sine-shift
used in [19], which on the other hand moves the points away from the interior shocks). The last
two examples of Table 1 correspondingly document the e�ciency of the pole attachment, with two
poles and with four: we end up with a precision of about 2 · 10−12, with three digits lost for every
derivative. The poles come to the vicinity of the boundary.
Similar results were obtained with 	= 106, the sole di�erence being that, due to the larger value

of N necessary for a good approximation, the loss in the precision induced by the di�erentiation is
more pronounced, as documented in Table 2 for N = 240.

Example 2. Here we started from the above function, shifted by 0.75 instead of −0:5, and we have
added to it a tanh-term, centered at −0:5, and the same exponential as before:

f(x) = e1=(x+1:2) + cos �(x − 0:75) + erf (�(x − 0:75))
erf (�)

+ tanh(
(x + 0:5)); �=
√
0:5	:

Fig. 2a shows f between −0:7 and 1 for 	= 104 and 
= 102.

Our results are summarized in Table 3. Without shift the poles come close to the location of
the shocks, as in example 1. The point shift is again already impressively e�cient without poles.
Attaching the latter does not bring too much improvement here. A look at their location reveals
that they take care of other di�cult stretches than the left boundary layer. Indeed, the �rst pair
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Fig. 2. Function and change of variable x = g(y) in Example 2, Table 3, no poles.

comes close to the median of the location of the two shocks. This may arise from the fact that the
concentration of so many points at the shocks depletes the median region too much for a reasonable
approximation with the remaining information. The second pair helps at the right shock, which
comes so close to 1 (Fig. 2b) that the change of variable cannot move as many points toward it
than it does to the left shock. The obtained precision of 10−9 is nevertheless quite remarkable for
an analytic approximation using “only” 200 interpolation points. And the second derivative stays at
a good 1:58 · 10−3.

7. Conclusion

The combination of adaptive conformal point shifts and optimal pole attachment, as suggested
in the present work, turns out to be a very e�cient means of improving upon the Chebyshev
interpolating polynomial when approximating functions with shocks. We have thereby used a point
shift suggested by Bayliss and Turkel before constructing one that can in principle handle a function
with an arbitrary number of di�cult stretches.
With a single shock, in Example 1, the precision was improved from 10−1 to 100 to as much as

10−12, quite an achievement. With two shocks, one of them quite close to the boundary, the error
with N = 200 worsens to 10−9, but a loss of 10−3 for each derivative is very satisfactory for an
analytic approximation.
In the future we intend to employ these point shifts for improving upon the two-point boundary

value problem solver introduced in [6].
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