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Perturbed projection for linear scaling solution of the coupled-perturbed self-consistent-field
equations [V. Weber, A.M.N. Niklasson, and M. Challacombe, Phys. Rev. Lett. 92, 193002 (2004)]
is extended to the computation of higher-order static response properties. Although generally
applicable, perturbed projection is further developed here in the context of the self-consistent first
and second electric hyperpolarizabilities at the Hartree—-Fock level of theory. Nonorthogonal,
density-matrix analogs of Wigner’s 2n+1 rule valid for linear one-electron perturbations are given
up to fourth order. Linear scaling and locality of the higher-order response densities under
perturbation by a global electric field are demonstrated for three-dimensional water clusters.

I. INTRODUCTION

First-principles electronic structure theory has tradition-
ally been limited to the study of small systems with a limited
number of nonequivalent atoms. Despite the tremendous in-
crease in computational power of digital computers this has
remained the case, until the advent of reduced complexity
algorithms over the last decade.'™ In the best case, these
reduced complexity algorithms scale only linearly with the
system size, N, allowing simulation capabilities to keep pace
with hardware improvements. Linear scaling algorithms ex-
ploit the quantum locality (or nearsightedness) of nonmetal-
lic systems, manifested in the approximate exponential decay
of density-matrix elements with atom-atom separation
through the effective use of sparse matrix methods. For small
systems, linear scaling methods may be inefficient due to
overhead. However, for large, complex systems these meth-
ods hold the promise of a major impact across materials sci-
ence, chemistry, and biology.

So far, a majority of work in linear scaling electronic
structure theory has focused on methods and calculations
involving the ground state, with little attention devoted to the
problem of response properties. The calculation of static
response within Hartree—Fock or density-functional theory
may be obtained through solution of the coupled-perturbed
self-consistent-field (CPSCF) equations, which yield
properties such as the electric polarizability and
hyperpolarizability,7’8 the Born-effective charge, the nuclear
magnetic shielding tensor,” indirect spin-spin coupling
constant,m’11 geometric derivatives (i.e., higher-order ana-
lytic force constants),'? and polarizability derivatives such as
the Raman intensity,l‘%’14 to name but a few.

Conventional approaches to the solution of the CPSCF
equations7’8’15 are based on perturbation of the wave func-
tion, requiring an N*-scaling eigensolve which may need to
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be followed by an O(N°) transformation of two-electron in-
tegrals, depending on the method. In addition to the formal
scaling of these conventional methods, they do not admit
exploitation of quantum locality through the effective use of
sparse matrix algebra. More recently, schemes with the po-
tential for reduced complexity have been put forward.
Ochsenfeld and Head-Gordon proposed a scheme based on
the Li—Nunes—Vanderbilt density-matrix functional.'® Later,
Larsen ef al.'’ proposed an iterative solution of the CPSCF
equations involving equations derived from unitary opera-
tions and approximations to the matrix exponential. In both
of these approaches, a linear system of equations containing
commutation relations is obtained, which implicitly deter-
mines the response function. However, the method of solu-
tion for these equations is not discussed, and computational
results are not presented. Recently though, with an apparent
reformulation of the commutation relations presented in Ref.
16, Ochsenfeld er al.'® claimed linear scaling computation of
NMR chemical shifts for one-dimensional alcanes at the
GIAO-HF/6-31G" level of theory, but likewise provided no
details on their method of solution. Such commutation rela-
tions lead to equations of the Sylvester type and may be
solved with a number of ::1pproaches,19 the particulars of
which are of interest.

In contrast, perturbed projection20 is an alternative for
N-scaling solution of the CPSCF equations that is simple and
explicit. Based on a recently developed density-matrix per-
turbation theory,2' perturbed projection exploits the direct re-
lationship between the density matrix D and the effective
Hamiltonian or Fockian F via spectral projection; D= 6(l
—F), wherein 6 is the Heaviside step function (spectral pro-
jector) and the chemical potential & determines the occupied
states via Aufbau filling. Spectral projection can be carried
out in a number of ways.zz_29 Of special interest here are
recursive polynomial expansions of the projector, including
the second-order trace-corlrecting22 (TC2) and fourth-order
trace—resetting23 (TRS4) purification algorithms. These new
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methods (TC2 and TRS4) have convergence properties that
depend only weakly on the band gap, do not require knowl-
edge of the chemical potential, and perform well for all oc-
cupation to state ratios. Perhaps most important to the cur-
rent contribution, these methods converge rapidly to smooth,
monotone projectors.

Perturbed projection has demonstrated linear scaling in
computation of the first electric polarizability for three-
dimensional water clusters with the Hartree—Fock model.”’
Also in a preceding paper, we outlined a nonorthogonal
density-matrix perturbation theory30 for response to a change
in basis (e.g., as occurs in the evaluation of higher-order
geometric energy derivatives'?). In this article, the perturbed
projection method is extended to higher orders in the electric
polarizability, up to fourth order in the total energy.

This paper is organized as follows: First, we describe the
perturbation expansion and the computation of response
properties through solution of the CPSCF equations. Then
we present extension of perturbed projection through higher
orders and the computation of properties using a density-
matrix analog of Wigner’s 2n+1 rule. Next, we present sev-
eral examples of calculated higher-order response properties.
We show the saturation of hyperpolarizabilities up to fourth
order (i.e., up to the second hyperpolarizability y) for a series
of water chains. We also demonstrate linear scaling complex-
ity for the solution of the higher-order CPSCF equations and
an approximate exponential decay in elements of higher-
order response functions for three-dimensional water clus-
ters. Finally, we discuss these results and present our conclu-
sions.

Il. THE COUPLED-PERTURBED SELF-CONSISTENT-
FIELD EQUATIONS

CPSCF equations yield static response functions and
properties in models including both the Hartree-Fock (HF)
and density-functional theory (DFT). In the following we
develop perturbed projection for solution of the CPSCF
equations in the framework of polarization and Hartree—Fock
theory. In many cases, the extension of perturbed projection
to the computation of other static perturbations is straightfor-
ward. In the case of model chemistries that involve DFT, an
extra programming effort is required.3l’32 Also, in the case of
properties such as the NMR chemical shift and geometric
derivatives (force constants), perturbation of the nonorthogo-
nal basis requires additional considerations that we have de-
tailed in a preceding paper.30

A. Notation

The superscripts and subscripts refer to perturbation or-
der and self-consistent cycle count, respectively. The sym-
bols D, F, ..., are matrices in an orthogonal representation,
while D,F, ..., are the corresponding matrices in a nonor-
thogonal basis. The transformation between orthogonal and
nonorthogonal representations is carried out in O(N) using
congruence transformations®>* provided by the approximate
inverse (AINV) algorithm for computing sparse approximate
inverse Cholesky factors with a computational complexity
scaling linearly with the system size. 7

B. Response expansions

Within HF theory, the total electronic energy E,, of a
molecule in a static electric field £ is

Ea(&)=THD -+ &)} + THD - ([P} + KID))}

=Tr{D - F[D]} - %Tr{D - (JID]+ K[D))}, (1)

where D=D[£] is the density matrix in the electric field
&,h° is the core Hamiltonian, M is the dipole moment matrix,
J[D] is the Coulomb matrix, K[D] the exact HF exchange
matrix, and

F=FE=h+uE+J[DE)]+K[D(E)] (2)

is the Fockian. The total energy of a molecule in a homoge-
neous electric field may be developed in a Taylor-series ex-
pansion around £=0 as

1
Ei(€) = Eu0) = 2 1 = 5 2 g €°€"
a *ab

1 1
= B LU E = = D Y EEE
3! abc 4! abed

3)

where «,, is the polarizability, 8,,. and 7,;., are the first and
second hyperpolarizabilities, respectively, u, is the dipole
moment, and £ is the electric field in direction a. The po-
larizability «,, is the second-order response of the total en-
ergy with respect to variation in the electric field while the
higher derivatives, B,,. and 7,4 give rise to the first and
second hyperpolarizabilities,”” where

FEqo;

- 2 o TDY,], 4

Ayp 9En agb o I'[ IL'Lb] ( a)
P Eqo

= =-2TiD%u,], 4b

Babc oEa (95” 9 &€ o [ luc] ( )
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d=— T =-2Ti[Du,]. (4c
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Here D denotes a density-matrix derivative with respect to
a field in directions a... at £=0 and the factor 2 accounts for
the orbital occupation. The density-matrix derivative or “re-
sponse function” is given by

Dt = o(al = F(E)) (5)

&8& £20

The Fockian may also be expanded order by order in the
perturbation to yield

1
F(E)=F0+ 2 Fi&r+ — 2, Frheee

21,

1
+ ;E Fubegaghge 4 (6)

abc

where F? stands for 9F(E)/9E%, Fb=FPF(E)/IE*IE, and
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so on for the higher-order terms. A similar expansion also
holds for the density matrix D(E).

Within HF theory, the unperturbed Fockian F° in the
nonorthogonal basis is

F'=h"+J(D% + K(D"), (7)
while the first variation of the Fockian is

F=u,+J(DY) + K(D“), (8)
and the higher terms are given by

Fe = J(D ) + K(D*). 9)

In computation of the unperturbed Fockian, the Coulomb
matrix J may be computed in O(N 1g N) with the quantum
chemical tree code®® (QCTC) and the exchange matrix K
computed in O(N) with the O(N)-exchange (ONX) algo-
rithm that exploits quantum locality of the density matrix
D°.*° Likewise the Fockian derivatives, F*, may be com-
puted with the same algorithms in linear scaling time if ele-
ments of D manifest an approximate exponential decay
with atom-atom separation, similar to the decay properties of
D°.

While the expansions above are given explicitly for
Hartree—Fock theory, similar expressions hold also for
Kohn—Sham and hybrid HF/DFT, which involve variation of
the exchange-correlation matrix V;“(DO,D“, ...).31’32

C. Conditions for self-consistency

The derivative density matrices and derivative Fockians
depend on each other implicitly, and must be solved self-
consistency via the CPSCF equations. The necessary and
sufficient criteria for convergence of the CPSCF equations
involve generalized self-consistence conditions that were ob-
tained fzoom perturbative expansion of the SCF commutation
criteria,

[F, D=0, (10)
[F,D°]+[F, D] =0, (11)
[F2 DO+ [F, D]+ [P, D]+ [F°, D] =0, (12)

[Fbe DO+ [F, DY+ [ F, D] + [ F°, D] + [ F*, D*]

+ [P, D1+ [F, D]+ [F, D] =0, (13)
in addition to the idempotency constraints,*’
D°=DD°, (14)
D ={D", D", (15)
D ={D*, D’} +{D*, D"}, (16)
Dabc — {Dahc,po} + {Dab,DC} + {DaC,Dh} + {DbC,Da},
(17)

where the anticommutator notation {A, B}=AB+ BA has been
used.

lll. SOLVING THE HIGHER-ORDER CPSCF
EQUATIONS WITH PERTURBED PROJECTION

In the solution of the CPSCF equations, it is first neces-
sary to determine the ground-state density matrix D. This
may be accomplished in O(N) using a purification algorithm
such as Niklasson’s* second-order trace-correcting scheme
(TC2) in conjunction with sparse atom-blocked linear
algebra.23’41 Linear scaling is achieved for insulating systems
through the dropping (filtering) of atom-atom blocks with
Frobenious norm below a numerical threshold (7
~107*-1077). At SCF convergence the TC2 algorithm gen-
erates a polynomial sequence defining the ground-state pro-
jector, from which the derivative density matrices are ob-
tained directly.

Having solved the ground-state SCF equations, solution
of the CPSCF equations commences with a guess at the de-
rivative densities (i.e., Dj=0), followed by computation of
derivative Fockians. At the rth CPSCF cycle, the nth-order
derivative Fockians are

,.,z{ua+J(Di>+K(Df>, n=1 "

: J(D )+ KDY ), n>1.

After construction of the derivative Fockians, response func-
tions through D7} are computed, constituting one cycle in
solution of the CPSCF. As described in Sec. III A, these re-
sponse functions are obtained directly through variation of
the occupied subspace projector,

, (19)
£=0

d"
= Eﬁ(ﬁl - F.(E)
which is accomplished via perturbed projection, a subset of
the Niklasson and Challacombe density-matrix perturbation
theory21 corresponding to the solution of the CPSCF equa-
tions. However, in contrast with Ref. 21, a Taylor-series ex-
pansion is employed here, consistent with previous work on
the polarization tensor.
After a few CPSCF cycles, the approach to self-
consistency may be accelerated with Weber and Daul’s
DDIIS algorithm,42

(20)

in which the ¢, coefficients are chosen to minimize the
nth-order commutation relations, as in Egs. (11)—(13). The
application of the DDIIS algorithm to the acceleration of
higher-order CPSCF equations is developed further in Sec.
III B. At self-consistency, the conditions given in Sec. II C
have been met, and it is then appropriate to compute re-
sponse properties. In general, we can obtain an expectation
value for properties that is linear in the response functions
through direct, order by order expansion of Eq. (1). In the
case of polarization, and other properties that involve a linear
one-electron perturbation h(l), expressions for the total-
energy response reduce to

EvD —o Tr(D(y)h(l)),

tot

21

consistent with Egs. (4a)—(4c) for the (hyper)polarizabilities.
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A. Perturbed projection

Although a number of analytic, asymptotically discon-
tinuous representations exist for the Heaviside step function
0, direct representation (and variation) of these forms as in
Eq. (19) is problematic. Polynomial expansion of the step
function is an alternative choice® but demands a very high
order and can be costly. Specifically, polynomial expansion
of 0 with a p’th-order polynomial incurs a cost that is at best
Oy p) 445 polynomial expansion techniques, such as those
based on the the Chebychev polynomials, may also be
plagued by Gibbs oscillations,*® which are high-order ripples
in the approximate € due to incompleteness. Alternatively,
recursive purification methods achieve high-order represen-
tation in O(log p).** In addition, purification methods (such
as TC2 and TRS4) yield projectors that are smooth and
strictly monotonic.

Each perturbed projection sequence is based on a corre-
sponding purification scheme or generator, such as TC2.*
The perturbed projection sequence is obtained by collecting
terms of the response order by order upon perturbative ex-
pansion of its generator.21 Perturbed projection provides ex-
plicit, recursive formulas for the construction of response
functions, retaining the convergence properties, smoothness,
and monotonicity of the generating sequence. These explicit
formulas-stand in contrast with methods where the density-
matrix derivatives are implicitly defined as solutions to equa-
tions of Sylvester type.l67

Sufficient to compute fourth-order properties using the
2n+1 rule presented in Sec. III C, perturbed projection is
outlined in the following for computation of the second-
order response function: the perturbed projection sequence is
started with the A{ ", which are prepared from the Fockian
F° and its derivatives F* and " by mapping their spectrum

into the domain of convergence™ using
Fonax = F°
0= (22)
fmax - fmin
and
PO (23)
o ]:min_]:max’

where F;, and F,,,, are the upper and lower bounds to the
eigenvalues of 7.

While perturbed projection can be formulated within any
purification scheme, we focus here on the simple and effi-
cient TC2 method.* Briefly, TC2 constructs a ground-state
projector through a series of trace-correcting projections;
when the trace is larger than N,, x2 is used to reduce the
trace, and when the trace is less than N,, 2x—x2 is used to
increase the trace. The resulting sequence of correcting pro-
jections yields a step at the correct chemical potential. Within
this framework, the second-order TC2 perturbed projection
sequence is

P = A%+ (e, A0

1+1 _{ )CO}
A= (0,20 TAT=N, Q4
A= ()
or
X0 =2X7 = (A, A0y + {7, A7)
A =240 (A A0}
XLy =240 - {0, A0} T A)] < N,.
X?H = ZX,Q - (X?)z
(25)

As with the TC2 generator, the nth-order response functions

D% = lim Xfl, (26)

o0

converges quadratically, reaching convergence when either
the error &=|Tr[AY]=N,|+|Tt{A7]|+..., or the maximum el-
ement in the change X" =|X%;—A7 | falls below 7, the
atom-atom block drop tolerance described in Ref. 23. As
outlined in Ref. 30, when the solution gets close to conver-
gence, i.e., —1073, we alternate
the projection at each step, which protects the convergence
under the incomplete sparse linear algebra.

B. Derivative DIIS

Direct inversion in the iterative subspace (DIIS), intro-
duced some time ago by Pulay,47’48 accelerates convergence
toward self-consistency. DIIS employs information accumu-
lated during preceding iterations to construct an effective

Fockian .7-'k at the kth SCF cycle, which minimizes the com-
mutation error between the Fockian and the density matrix.
The effective Fockian is then used instead of F to generate
an improved density matrix.

Recently, Weber and Daul have developed the derivative
DIIS (DDIIS) scheme for accelerating convergence of the
CPSCF equations.42 Like DIIS, DDIIS is based on minimi-
zation of the Frobenious norm of an error matrix

=S e, @)

where the e{*’s are just the nth-order commutator relation of
Egs. (10)—(13) (e.g., the first-order error matrix is given by
e=[F!, D]+[F°, D). The optimal coefficients c; are solu-
tions to the quadratic programming problem

r

1 r
inf -5 > cBic, E =17, (28)

i,j=r-s

where elements of the B matrix are given by B;;
=Tr[e§’“'(e?"')7]. A working equation is then obtained
through the associated Euler—Lagrange equation
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where 0=(0,...,0)" and 1=(1,...,1)T are vectors whose
components are 0 and 1, respectively, and \ is the Lagrange
multiplier of the constraint 27 c¢;=1. The set of linear
equations is solved by inverting the left-hand-side matrix. In
the event of a singular or near singular matrix, the rank of
Eq. (29) is reduced by discarding the oldest entries (increas-
ing s) until the linear system stabilizes.

C. Density-matrix formulation of Wigner’s 2n+1 rule

Wigner’s 2n+1 rule, traditionally predicated on deriva-
tives of the wave function, yields order 2n+1 in the energy
response from nth-order derivatives.** A density-matrix
analog of Wigner’s 2n+1 rule for a linear one-electron per-
turbation was given to third order by McWeeny50 and up to
to fourth order by Niklasson and Challacombe® in the or-
thogonal representation, suitable for first-order perturbation.

In the framework of electric polarizabilities, we present
nonorthogonal 2r+1 rules up to fourth order in response of
the total energy. This new formulation includes mixed per-
turbations, accounts for self-consistency, and may be gener-
alized to other linear one-electron perturbations. However,
this formulation may not be extended to basis-set-dependent
perturbations; that case is addressed by Ref. 30.

The first- and second-order energy corrections to electric
perturbations are well known, corresponding simply to ex-
pectation values as in Eq. (21). Beyond second order, the
2n+1 rule offers a valuable alternative to compute higher-
order polarizabilites. The third-order nonorthogonal contri-
bution is

Babc ==2 2 Tr[[Da’Do]SSDbFC]’
P(a,b,c)

(30)

where P(a,b,c) stands for the permutation operator such that
all permutations of a, b, and ¢ are made [e.g., P(a,b,c)
generates the sum of all the six terms: (a,b,c), (a,c,b),
(b,a,c), (b,c,a), (c,a,b), and (c,b,a)] and [A,B]s=ASB
—BSA where S is the overlap matrix. Similarly, the fourth-
order nonorthogonal contribution is

1 N
Yabcd = — 5 E Tr[[Dab,Do]SSDLFd
P(a,b,c.d)

+[D D ]¢S(D*F? + D" F°%)]. (31)

For the orthogonal case S=17 and D“, F*, ..., are replaced
by D*, F*, .... In most cases the complexity of these equa-
tions can be reduced by taking advantage of indicial symme-
try; a, b, ¢, and d represent the Cartesian directions x,y,z SO
that terms with indices in the same direction simplify. For
example, v,,,, reduces to one term requiring only 15 matrix
multiplications. In the worst case, where all the directions are
different, i.e., ¥, LOr any other permutation of (a,a,b,c)],
the relation (31) reduces to include only 12 terms with 180
matrix multiplications. Similar reductions of the computa-
tional cost also apply to Eq. (30). The number of matrix-
matrix multiplies can be further reduced if one uses an

orthogonal representation, but this typically involves matrix-
matrix multiplies with more dense intermediates.

IV. RESULTS

We have implemented these methods in the MondoSCF
suite of linear scaling quantum chemistry plrograms.51 The
construction of the Fockian and derivative Fockian was car-
ried out using the linear scaling QCTC method for computa-
tion of the Coulomb matrix*®>* and the ONX algorithm”’53
for computation of the Hartree-Fock exchange matrix. The
CPSCF equations were solved, at each order, in an entirely
orthogonal representation. Properties were evaluated using
both the n+1 rule, given by Eq. (21), and the 2n+1 rule,
given by the nonorthogonal formulas in Egs. (30) and (31).
Two different levels of numerical accuracy have been used,
GOOD and TIGHT. Thresholds that define the GOOD
accuracy level include a matrix threshold 7=107, as well as
other numerical thresholds detailed in Ref. 52, which deliver
six digits of relative accuracy in the total energy. The
TIGHT option involves the matrix threshold 7=107% and
delivers eight digits of relative accuracy in the total
energy.

Calculations were carried out on a single Intel Xeon 2.4-
GHz processor running REDHAT LINUX 8.0 and executables
compiled with Portland Group FORTRAN compiler PGF90
4.0-27*

Convergence of the CPSCF equations for the water sys-
tems described in the following is typically achieved in about
10 cycles, independent of cluster size, basis set, matrix
threshold, or order of the response calculated.

All results are reported in a.u. Also, unless otherwise
noted, all timings and values have been obtained by comput-
ing the nth-order response function and evaluation with the
n+1 rule (expectation value), Eq. (21).

A. One-dimensional water chains

Perturbed projection has been used to compute the (hy-
per)polarizabilities a,., B,.., and ... of linear water chains
up to (H,0),,. These calculations have been carried out with
MondoSCF at the RHF/6-31G level of theory using both the
GOOD and TIGHT thresholding parameters, as well as with
the conventional algorithms implemented in the GAMESS
quantum chemistry package.55 These static properties have
been evaluated at the geometries given by Otto et al.,”® and
the GAMESS results are given to the number of digits pro-
vided by that program. The MondoSCF results have been ob-
tained both as expectation values, given by Eq. (21), and
using the nonorthogonal density-matrix 2n+1 rules given in
Egs. (30) and (31).

As a benchmark, we have also carried out calculations
for the linear chain (H,0),, with the VERYTIGHT numerical
thresholding parameters, which employ a 1077 drop
tolerance and aim to provide ten digits of precision
in the total energy. These VERYTIGHT calculations
yield «,=7.142422 a.u., f,,=-12.033362 a.u., and
Voro=1411.425 500 a.u.
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FIG. 1. Total CPU time of the fifth CPSCF iteration of fourth order for the
water cluster sequence with the 6-31G and 6-31G™ basis sets and the GOOD
and TIGHT numerical thresholds (see text) controlling the numerical preci-
sion of the result. The lines are fits to the last three and four points,
respectively.

B. Linear scaling: 3D water clusters

Linear scaling computation of the RHF/6-31G and
RHF/6-31G™ second hyperpolarizabilities, achieved with
perturbed projection, is shown for three-dimensional water
clusters in Fig. 1. These timings are the total CPU time for
the fifth CPSCF cycle, including build time for 7*¢ (ONX
and QCTC), iterative construction of D¢ (perturbed projec-
tion via TC2), and all intermediate steps including the con-
gruence transformation. A breakdown of the dominant con-
tributions to these totals is given in Figs. 2-4, which shows
timings for Coulomb summation (QCTC), perturbed projec-
tion (TC2), and exact exchange (ONX).

Figure 5 shows the increase in cost associated with com-
puting higher-order response functions. Corresponding to
this increase in cost, Fig. 6 shows the magnitude of atom-
atom blocks of density-matrix derivatives up to third order as
a function of atom-atom distance when perturbed by a static
electric field. The density response shows an approximate
exponential decay as a function of internuclear distance with
the rate of decay slowing slightly and the distribution shifted
up with increasing order in the perturbation.

200 T T T T d T
X Good, 6-31G
+ Good, 6-31G**
150 © Tight, 6-31G -
= [0 Tight, 6-31G**
E
L
£ 100 4
=
jo]
.
@]
50 B
0 L 1 " 1
0 50 100 150

number of water molecules

FIG. 2. QCTC CPU time of the fifth CPSCF iteration of fourth order for the
water cluster sequence with the 6-31G and 6-31G™ basis sets and the GOOD
and TIGHT numerical thresholds (see text) controlling the numerical preci-
sion of the result. The lines are fits to the last three and four points,
respectively.
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FIG. 3. TC2 CPU time of the fifth CPSCF iteration of fourth order for the
water cluster sequence with the 6-31G and 6-31G™ basis sets and the GOOD
and TIGHT numerical thresholds (see text) controlling the numerical preci-
sion of the result. The lines are fits to the last three and four points,
respectively.

V. DISCUSSION

In our current formulation, the increase in magnitude
and reduction of locality in elements of the response function
make achieving linear scaling more difficult with increasing
order in perturbation. Nevertheless, linear scaling has been
achieved at the HF level of theory up to fourth order (i.e., y)
in the total energy for three-dimensional systems and non-
trivial basis sets. At fourth order, perturbed projection and
exact exchange were the dominant costs in solving the CP-
SCF equations, as shown in Figs. 3 and 4. For the fourth-
order perturbed projection, N scaling is achieved between 70
and 110 water molecules, depending on 7. Despite a nearly
dense D, the dominant work in its construction always
involves multiplication with matrices that are significantly
more sparse, as X7°XY or X’ A%, Likewise, N scaling is
achieved between 70 and 90 water molecules for construc-
tion of the Hartree—Fock exchange contribution. In this case,
the approximate decay of the density matrix still leads to
linear scaling through ordered skip out lists, as described in
Ref. 39. In both cases, the increase in response function mag-
nitude increases the cost and delays the onset of linear scal-
ing. Likewise, the onset of linear scaling for more delocal-
ized systems such as polyacetylene can be expected to occur

T % T L T

X Good, 6-31G
Good, 6-31G**

O Tight, 631G

[0 Tight, 6-31G**

N

CPU time [min]
w
s
T

g
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- | 1 I
U(] 50 100 150

number of water molecules

FIG. 4. ONX CPU time of the fifth CPSCF iteration of fourth order for the
water cluster sequence with the 6-31G and 6-31G™ basis sets and the GOOD
and TIGHT numerical thresholds (see text) controlling the numerical preci-
sion of the result. The lines are fits to the last three and four points,
respectively.
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FIG. 5. Total CPU times with increasing order of the response for the fifth
CPSCF cycle computed as the n+1 expectation value, Eq. (21).

later than for well-localized systems such as the water
chains. This behavior is a desirable result of numerical
thresholding; as the system becomes more delocalized, due
to a narrowing gap or an increase in response order, the
approximate matrices fill in to maintain a fixed accuracy.23

In Tables I-IIT we find that a reduction of the drop tol-
erance by one order of magnitude leads to an increase in
precision by one to two significant digits, with GOOD and
TIGHT yielding approximatively three to four and five to six
correct digits independent of the response order. We further
observe about one extra digit of accuracy when using the
2n+1 rule. This might be expected from the higher-order
error propagation resulting from products of lower-order re-
sponse functions, relative to evaluation with Eq. (21), which
involves an error that is always linear in a higher-order de-
rivative density matrix.

As shown in Fig. 5, computing the second-order re-
sponse is significantly cheaper than the third-order response,
and involves an earlier onset of linear scaling. Because
evaluation of properties with the 2n+1 rule is of negligible
cost relative to solving the CPSCF equations, the cost differ-
ence for evaluating y with the 2n+1 rule relative to the
n+1 expectation is just the difference (roughly 2:3) between
the computation of 8 and y shown in Fig. 5.

oy
R_-R,l [a.u.]

FIG. 6. (Color) Superposition of the magnitudes of the RHF/6-31G density-
matrix derivative elements D, D7, D%y, and D7;" along the x axis with the
separation of basis function centers for (H,0),5s,. The density-matrix deriva-
tives have been converged to within TIGHT (e.g., a matrix threshold 7
=10"% a.u.).

TABLE I. The longitudinal polarizability, «,, for water chains at the RHF/
6-31G level of theory, computed with MondoSCF using GOOD and TIGHT
numerical thresholds, and also with the GAMESS quantum chemistry package
(see Ref. 55).

NHZO GAMESS GOOD TIGHT
1 5.8136 5.813 620 5.813 588
2 6.3448 6.345 037 6.344 822
3 6.5844 6.584 658 6.584 435
4 6.7276 6.727 905 6.727 672
5 6.8226 6.823 290 6.822 857
10 7.0308 7.031 056 7.030 858
15 7.1047 7.104 904 7.104 770
20 7.1424 7.142 580 7.142 422

VI. CONCLUSIONS

Linear scaling has been demonstrated for the computa-
tion of response properties beyond second order in the total
energy using perturbed projection for solution of the
coupled-perturbed self-consistent-field equations. In addi-
tion, we have provided details of the computational method,
used three-dimensional systems and nontrivial basis sets to
demonstrate linear scaling, and provided a (preliminary) as-
sessment of error control. Perturbed projection for the com-
putation of higher-order response functions is quadratically
convergent, simple to implement through higher order, and
numerically stable. Perturbed projection is not unique to the
Hartree-Fock model, the TC2 generator, or the MondoSCF
N-scaling algorithms, but can be straightforwardly extended
to models that include exchange correlation (DFT), other pu-
rification schemes such as TRS4,23 as well as to other elec-
tronic structure programs.

We have shown that response functions (density-matrix
derivatives) through fourth order are local upon global
electric perturbation, corresponding to an approximate
exponential decay of matrix elements. However, the magni-
tude of the corresponding response function increases with
increasing perturbation order, equivalent to tightening the
matrix drop tolerance, 7. While we have not attempted to
work out a detailed analysis for the propagation of error, it
may be possible to develop a more effective thresholding
scheme for higher orders. In addition to being somewhat
more accurate, the 2n+1 rule also provides a significantly

TABLE II. The longitudinal first hyperpolarizability, S3,.., for water chains
at the RHF/6-31G level of theory, computed with MondoSCF using GOOD and
TIGHT numerical thresholds, and also with the GAMESS quantum chemistry
package (see Ref. 55).

Nup.o GAMESS GOOD GOOD* TIGHT TIGHT"
1 -30.6125 -30.611029 -30.612627 -30.612163 -30.612256
2 —29.5444 -29.547427 -29.548 604 -29.544907 -29.544994
3 -25.3696 -25.372208 -25.373615 -25.370297 -25.370381
4 —22.1411 -22.143436 -22.145040 -22.141494 -22.141603
5 —19.8925 -19.902088 -19.904449 -19.896462 -19.897 141
10  -14.8063 -14.807075 -29.617990 -14.806973 -14.807 119
15 -129713 -12.969238 -12.972227 -12971940 -12.972124
20 -12.0334 -12.028709 -12.033633 -12.034014 -12.034238

*The density-matrix-based 2n+ 1 rule has been used.
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TABLE 1II. The longitudinal second hyperpolarizability, y,..., for water
chains at the RHF/6-31G level of theory, computed with MondoSCF using
GOOD and TIGHT numerical thresholds, and also with the GAMESS quantum
chemistry package (see Ref. 55).

Nu,o  GAMESS GOOD GooD* TIGHT TIGHT"

1 330.5753  330.54375 330.54319 330.57193  330.5724
2 820.1398  820.192 31 820.196 67 820.14775  820.1493
3 1008.5656  1008.58 55 1008.60 73  1008.57 52  1008.5765
4 1103.4813 1103.5053 1103.5280 1103.48 83 1103.4902
5 1168.9563 1169.21 04 1169.2531 1169.06 30 1169.0754
10 13242906 1325.1208 1324.6321 13242975 1324.2999
15 1381.8657 1383.08 02 1382.2322 1381.8758 1381.8738
20 1411.4264 14144092 1411.8528 14114410 1411.4292

“The density-matrix-based 2n+1 rule has been used.

cheaper alternative to the computation of expectation values
and an earlier onset of linear scaling.

A similar exponential decay in the first-order response
corresponding to a local nuclear displacement has likewise
been demonstrated by Ochsenfeld and Head-Gordon.'® This
behavior is expected to hold generally for both local and
global perturbations to insulating systems. Thus, the poten-
tial exists for perturbed projection to achieve linear scaling
for a large class of static molecular properties within the HF,
DFT, and hybrid HF/DFT model chemistries. Of particular
interest, the recently developed nonorthogonal density-
matrix perturbation theory put forward in a proceeding
article™ may enable linear scaling computation of analytic
second derivatives, which are important in computation of
the Hessian matrix.
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