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Résumé 
 

 

Grâce à leur réactivité particulière et à leurs propriétés caractéristiques, les radicaux 

alkoxyles constituent un outil puissant de la chimie organique moderne. Parmi leurs 

transformations typiques, les réactions de β-scission ont retenu notre attention. En effet, 

la conversion stéréoselective de systèmes bicycliques pontés, permet d’obtenir de 

nombreux intermédiaires synthétiques utiles. Dans ce travail de thèse, nous décrivons 

nos efforts à ces fins. 

Etudiant dans un  premier temps les méthodes directes de génération des radicaux 

alkoxyles, nous avons traité des dérivés du norbornènol avec du tétraacétate de plomb. 

Dans ces conditions, le 2-méthylbicyclo[2.2.1]hept-5-èn-2-ol produit le cis-5-

acétylméthyl-2-cyclopentyl acétate, avec un rendement de 65% et une stéréosélectivité 

totale. Afin de démontrer le potentiel de cette méthode pour la préparation de synthons 

cyclopentènes, nous avons synthétisé plusieurs précurseurs d’analogues de 

carbanucléosides. 

Nous avons ensuite développé une nouvelle voie de synthèse des bicycles pontés de 

taille moyenne, en partant d’un dérivé de la norbornanone très facilement accessible. Le 

processus implique une séquence de cyclisation radicalaire intramoléculaire/β-

fragmentation originale. 

La réaction de fragmentation d’époxyde induite par un radical nous a permis de générer 

des radicaux alkoxyles à partir de radicaux oxiranylcarbinyles dérivés de 

bicyclo[2.2.n]alk-5-ènes. Leur β-scission/cyclisation suivie d’une réduction par un atome 

d’hydrogène ou d’un piégeage avec un allylstannane, a donné des cétones bicycliques 

fonctionnalisées avec des stéréoselectivités élevées. 

Nous avons appliqué le réarrangement sulfoxyde-sulfénate à la génération de radicaux 

alkoxyles. En effet, le traitement du 2-(1-phénylsulfinyléthènyl)bicyclo[2.2.1]hept-5-ène 

avec Bu3SnH/AIBN dans le toluène à reflux a fournit le radical 2-

vinylbicyclo[2.2.1]hept-5-èn-oxyle qui, après fragmentation, cyclisation et piégeage a 

conduit à la cis-bicyclo[4.3.0]non-7-èn-3-one avec un rendement de 46%. 

Enfin, nous avons développé une voie originale, donnant accès à un nouveau précurseur 

de radicaux alkoxyles. La réaction du dérivé phénylsélényléthanesulfonate du trans-2-



phénylcyclohexanol en présence de tris(triméthylsilyl)silane et d’AIBN additionnés au 

pousse-seringue en 12 h, a produit le trans-2-phénylcyclohexanol avec un rendement de 

26%, ce qui constitue un résultat encourageant en faveur d’un mécanisme radicalaire de 

la réaction. 

 

 



 

Summary 

 

 

Due to their peculiar reactivity, alkoxyl radicals have unique characteristic properties, 

which make them powerful tools in modern organic chemistry. Among their typical 

transformations, β-scission reactions have retained our interest because of their potential 

in converting stereoselectively bridged bicyclic systems into a variety of useful synthetic 

intermediates. In this work, we describe our efforts directed toward this goal. 

We first decided to study a direct method for the generation of alkoxyl radical and  

treated several norbornenol derivatives with lead tetraacetate. When starting from 2-

methylbicyclo[2.2.1]hept-5-en-2-ol, yields up to 65% and total selectivity has been 

obtained in favor of cis-5-acetylmethyl-2-cyclopentyl acetate. To demonstrate the 

potential of the developed method for the preparation of versatile cyclopentene synthons, 

synthesis of a variety of carbanucleoside analogue precursors was achieved from the 

latter. 

In a different approach, we developed a new and promising method for the synthesis of 

medium-sized bridged bicycles with good yields, starting from a readily available 

norbornenone derivative. The process involves a novel radical intramolecular 

cyclization/β-fragmentation sequence. 

Further work led us to take advantage of the radical-induced epoxide fragmentation 

reaction to generate alkoxyl radicals from oxiranylcarbinyl radicals of bicyclo[2.2.n]alk-

5-ene derivatives. Upon β-scission, cyclization and hydrogen reduction or trapping with 

an allylstannane, those afforded functionalized bicyclic ketones with moderate to good 

yields and high stereoselectivities. 

We then found an application of the well-known sulfoxide-sulfenate rearrangement for 

the generation of alkoxyl radicals. Indeed, treatment of 2-(1-phenylsulfinylethenyl) 

bicyclo[2.2.1]hept-5-ene with Bu3SnH/AIBN in refluxing toluene gave 2-

vinylbicyclo[2.2.1]hept-5-en-oxyl radical which, after fragmentation, cyclization and 

trapping, afforded the expected cis-bicyclo[4.3.0]non-7-en-3-one in about 46% yield.  

Finally, in a preliminary study, we prepared the phenylselenylethanesulfonate derivative 

from trans-2-phenylcyclohexanol and tested it as an alkoxyl radical precursor. Its 

reaction with syringe-pump addition of tris(trimethylsilyl)silane and AIBN over 12 h in 



refluxing toluene, resulted in formation of a 26% yield of trans-2-phenylcyclohexanol, 

which constituted an encouraging result in favor of a radical pathway for the reaction. 
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Generation and Application of Alkoxyl Radicals in Organic Synthesis 

 

 

1. Introduction 

 

Over the past 30 years, radical chemistry has known a big surge.1-5 While it was first 

considered as the dark part of chemistry, radicals being believed to be too reactive and 

unstable to be useful for synthetic purposes, it has now become an unavoidable chapter of 

the synthetic organic chemistry library. However, most of the research has focused on 

carbon-centered radicals, alkoxyl radicals having attracted interest to a much lesser 

extend. Early work was reported by Barton,6 Mihailovic7 and Surzur,8 but systematic 

study has developed only during the past few years. 

This review summarizes the actual knowledge on alkoxyl radical chemistry. Most of the 

methods for the generation of that species and its chemistry will be described. 

 

2. Reactivity 

 

As supported by the bimolecular rate of hydrogen abstraction from tributyltin hydride 

(∼108 M-1s-1, 30°C), measured by Ingold,9,10 alkoxyl radicals are believed to be 

electrophilic. Due to their high reactivity, alkoxyl radicals have unique characteristic 

properties, which make them suitable for ring closure reactions,11,12 for selective hydrogen 

abstractions13-15 and remote functionalizations of non-activated carbon hydrogen bonds16 

as well as for ring expansion of cycloaliphatic compounds by β-scission.17,18  

Intramolecular hydrogen atom transfer, giving alcohols, has been observed to occur only 

via six-centered transition structures.19-21 The preference for δ-H-atom abstraction has 

been attributed to a more favorable entropy of activation, while ε-H-atom abstraction is 

enthalpically favored.22 The rate constant of the reaction has been shown to be relatively 

independent of the nature of the alkoxyl radical.19,23 
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In alkoxyl radical 5-exo-trig cyclization, formation of the five-membered tetrahydrofuran 

derivative, happening with rates on the order of 5.2 x 108 s-1,24,25 is favored over the six-

membered tetrahydropyran ring. In contrast, 6-exo-dig cyclization produces both six- and 

seven-membered ring compounds.6,26 A stereochemical model, based on the study of 

substituted 4-pentenyl-1-alkoxyl radicals, was proposed by Hartung for oxygen radical 

cyclization.12,27 Indeed, data derived from competition kinetics point to a chairlike 

transition state which should be similar to the one found in the 5-hexenyl radical 

rearrangement. Thus, the major products arise from transition geometries with the 

substituents aligned in pseudo-equatorial position (Figure 1).28  

 

O
R1

R2R3

Figure 1  
 

Driving forces in β-scission reactions are of three types: relief of ring strain,29 cleavage of 

carbon-heteroatom bonds30 and formation of the π C-O bond.31 Its cleavage pattern 

reflects the interplay of multiple thermodynamic and kinetic factors whose precise nature 

or impact remains undetermined.32 The process is helped by increasing substitution on 

both the alkoxyl carbon atom, and on the resulting C-centered radical,33 but polar and 

steric effects may influence it.34,35 Thus, if β-scission is usually reported to occur more 

rapidly than the competing processes as H-abstraction or disproportionation, Beckwith has 

demonstrated its reversibility and, in certain conditions, the possibility for the competing 

H-abstraction process to take place faster.36,37 

 

The use of alkoxyl radical for organic synthesis is largely dependent on the availability of 

the adequate radical precursor. Indeed, formation of the radical and its evolution in the 

chemical transformation through a radical chain process relies on a delicate balance: if the 

starting molecule stability has to be high enough for manipulations, one bond must have a 

sufficiently low dissociation energy for selective homolysis on an appropriate kinetic time 

scale.3 
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One of the most attractive methods for the generation of alkoxyl radicals is the 

straightforward formation of the radical from an alcohol. This approach allows direct 

access to the wanted species, avoiding tedious synthesis of a precursor. To this purpose, a 

palette of reagents has been developed. However, this strategy has not provided a 

universal solution to the problem of alkoxyl radicals generation. Consequently, a number 

of alternative methods have shown their efficiency in the alkoxyl radical chemistry. 
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Scheme 1  
 

3. Direct methods of generation 

 

Lead tetraacetate (Pb(OAc)4). Although reactions of lead tetraacetate (LTA) with alcohols 

are reported since the early sixties,38,39 their mechanism was admitted to involve an 

alkoxyl radical only in the seventies when Mihailovic and Surzur studied extensively the 
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course of the reaction which can follow ionic, radicalar or mixed pathways, depending on 

the reaction conditions.7,40-43 Since pioneering work, the method has been applied to 

organic synthesis. Thus, as reported by Egushi, treatment of 4-hydroxy-2-cyclobutenones 

1 with LTA (2 equiv.) in dry toluene at room temperature gave good yields of 5-acetoxy-

2(5H)-furanones 2 and moderate yields of 5-alkylidene-2(5H)-furanones 3 via  a possible 

alkoxyl-radical-triggered mechanism (β-scission) and subsequent 5-endo ring closure 

(Scheme 1).44,45 

By a similar procedure, Posner46 has demonstrated that lactols could be converted to 

lactones via an alkoxyl fragmentation/tributylstannyl radical elimination sequence. 

Continuation of this strategy led Zhao47 to the preparation of functionalized nine or ten-

membered lactones 5 with 76-95% yields, after fragmentation of bicyclic hemiacetals 4 

(Scheme 2a). 
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Moreover, triquinane precursors were synthesized in 1998 by Lautens and Blackwell.48 

Indeed, upon mixing the norbornane derivative 6 and LTA in benzene at 80°C, compound 

7 was obtain in 86-91% yields after a highly regioselective fragmentation and elimination 

of the mercurial substituent (Scheme 2b). Recently, taking advantage of this methodology, 

we were able to synthesize carbanucleoside analogues derived from 9, which was 

obtained with a nearly complete stereocontrol in 58% yield, by treatment of 8 with LTA 

(2 equiv.) in anhydrous benzene during 24 h (Scheme 2c).49 

Several variations have been brought to the classical procedure. As described by Ianaga, 

erythrose and threose have been prepared from mixed acetal formates as 11 formed in 

82% yield by LTA-promoted fragmentation of the C1-alkoxyl radicals of pyranose 

derivatives 10 in the presence of iodine catalyst (Scheme 3a).50 

 
O

OBn
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OH OAc
OCHO
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In 1998, the structure of hainanolidol (12) was established thanks to its conversion into 

the already known harringtononlide (13) by transannular oxidation with LTA under 

irradiation (Scheme 3b).51,52  

Combination of the LTA-oxidation system with free radical carbonylation offers a direct 

access to δ-lactones. Indeed, on the one hand, generation of an alkoxyl radical from a 

linear primary alcohol 14 or secondary alcohol is followed by a 1,5-hydrogen-transfer, 

which creates a carbon-centered radical δ to oxygen. Trapping of this species with carbon 
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monoxide, oxidation and cyclization of the resulting radical yields the δ-lactone 15 in 38-

68% yields (Scheme 4).53 On the other hand, β-scission of C1-unsubstituted cyclobutoxy 

radicals and subsequent carbonylation of the resulting radical affords δ-lactones with ring 

expansion.54 However, while tertiary linear alcohols are unreactive, C1-substituted 

cyclobutanols afford 5-oxoacid derivatives. 

 

O
HR1

OH
R1

OH
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O

O
R1

O
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O

OH
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R2 R2
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Lead dioxide (PbO2). As reported by Miura, PbO2 was able to promote direct formation of 

an alkoxyl radical from an alcohol. Thus, exceptionally persistent and oxygen insensitive 

2,7-di-tert-butylpyren-1-oxyl radical was generated when the hydroxypyrene precursor 

was treated with PbO2 and K2CO3 in benzene.55 

 

Mercury II oxide/iodine (HgO/I2). As reported by Galatsis, it is assumed that the HgO/I2 

system first forms mercuric iodide and diiodomonoxide (I2O). Homolysis of this gives the 

active species, an hypoiodide radical, which in turn generates alkoxyl radicals (Eq. 1).56 
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ROX

ROX   +   HO

HgO   +   2X2 X2O   +   HgX2

XO     +    XX2O

Equation 1

ROH   +   XO

RO     +   X

 
 

Introduced by Akhtar and Barton,57 the mercury II oxide/iodine reagent has been used 

extensively for β-scissions by Suginome,58-79 who has developed the methodology and its 

applications to the synthesis of natural products. Thus, a variety of molecules have been 

prepared by synthesis involving a selective fragmentation of alkoxyl radicals as the key 

step. In standard procedure, those were generated by photolysis of the corresponding 

hypoiodites formed in situ with HgO/I2, in benzene, with Pyrex-filtered light. The class of 

molecules obtained by this method include heterosteroids, 58-61 18- and 19-norsteroids,62 

steroidal lactones,63 benzohomotropones,64 18-functional steroids,65 lignans,66,67 medium-

sized lactones,68 macrolides,69 phthalides,70 naphthalide lignanes,71 monocyclic lactones,72 

macrocyclic lactones,80,73 macrocyclic ketones,74,32,75 furanoheterocycles,76 

furanoquinolones,77 isocoumarins78 and sesquiterpenes.79  

Clarified by 18O-labeling, the reaction path for the formation of 18 from cyclic alcohols 16 

involves a hypoiodite 17, formed in situ by treatment of the starting material with an 

excess of HgO/I2. Irradiation of the hypoiodite 17 gives an alkoxyl radical A, which 

undergoes fragmentation to the stabilized tertiary carbon-centered radical B. One-electron 

oxidation to the corresponding stabilized tertiary carbocation C, combination with the 

formyl oxygen to form a tetrahydropyranyl cation D and its subsequent trapping by I2O18 

generates a lactol hypoiodite E. Photolysis of this results in a secondary alkoxyl radical F. 

Regioselective β-scission and abstraction of an iodine from an I2 molecule by the carbon-

centered radical G, furnishes the formate 18. The latter can be readily converted into 

oxasteroids 19 by treatment with a complex metal hydride or methyllithium (Scheme 

5).58,59,81 
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Diacetoxyiodobenzene/iodine (DIB/I2). Among the hypervalent iodine reagents,82 which 

have been used for alkoxyl radical generation, diacetoxyiodobenzene (DIB)/iodine system 

has been the most deeply studied. Having found application for fragmentations, 

cyclizations as well as for rearrangements, the methodology was recently effectively used 

in a number of total syntheses.83-85 Introduced by Suárez, the standard procedure involves 

treatment of the alcoholic substrate with DIB in the presence of iodine, under irradiation 

with visible light.86-89 For example, photolysis of steroidal lactol 20 with stoichiometric 

amounts of DIB and iodine, under inert atmosphere leads to alkoxyl radical A. Its β-

fragmentation provides a C-centered radical B, which is stabilized by elimination of an 

hydrogen atom to afford medium-sized lactones 21 in good yield (Scheme 6).86,90 

Meanwhile, in the presence of molecular oxygen, peroxidation of B and homolysis of the 

hydroperoxide bond of radical C furnishes an alkoxyl radical D, which undergoes 

hydrogen abstraction to give the tetrahydrofuran derivative 22 in 35% yield (Scheme 

6).91,92 
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Similar sequential alkoxyl radical fragmentations can be applied to the preparation of 

various interesting medium-sized ketones,93,94 aldehydic biquinanes95 and lactones.96-99 

Extension of the Suárez methodology to a variety of substrates has opened an access to 

building blocks for the synthesis of natural products. 

Thus, DIB/I2-assisted β-fragmentation of bicyclic carbinol amides of the type 23 is a mild 

and simple method for the preparation of 2-(3-iodopropanyl)-substituted succinimides as 

24. The process occurs through an initial alkoxyl radical A, which undergoes two types of 

β-fragmentation to generate radicals B and C. While radical trapping of B by an iodine 

radical from the medium delivers a 72% yield of 24, N-radical C suffers an amidyl 

rearrangement to give the isocyanate 25 in 10% yield. No scission of the C1-C5 bond is 
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observed, the more stable five-membered imide being obtained in all cases as the major 

product, along with some isocyanide (Scheme 7).100  
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Fragmentation of anomeric alkoxyl radicals of carbohydrates generated with the DIB/I2 

system provides a convenient entry into chiral building blocks.101 And, after chiral 

furanose and pyranose derivatives,102 aldopyranosuronic and aldofuranosuronic acid 

lactones as 27, obtained in 43%, were synthesized by a tandem β-fragmentation-

cyclization strategy (Scheme 8).103 
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Similarly, chiral nitrile 29 was obtained in 88% yield by β-fragmentation of alkoxyl 

radicals deriving from β-hydroxy azide 28 (Scheme 9).104 
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By way of a cascade radical fragmentation-transannular cyclization sequence, ketone 31 

was prepared in 81% yield after treatment of bicylic dienol 30 with DIB/I2 in degassed 

cyclohexane under irradiation and reflux (Scheme 10).105 More recently, transannular 

cyclization of 6-hydroxyalkyl 5-cyclodecenones were reported by Suárez.106 
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Tertiary allylic alcohols 32 react with DIB/I2 in cyclohexane under irradiation to give α-

iodo epoxides 33 in 72-83% yields, as a result of alkoxyl radical rearrangement107,108 

(Scheme 11).108 
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Recently, Suárez conditions were found to be efficient for the preparation of 

spironucleosides in moderate yields from nucleoside analogues 34, via 1,5-hydrogen 

migration of a conveniently situated alkoxyl radical A to anomeric position.109 The 

mechanism involves subsequent oxidation and stereospecifical cyclization of the resulting 

anomeric C-1’ radical intermediate B into orthoamide 35 (Scheme 12). 
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Procedures that do not require irradiation have also been described. For example, Ianaga 

developed a fragmentation of pyranose derivatives, which proceed smoothly at room 

temperature, in toluene, with catalytic iodine.50 Suárez reported that α-hydroxylactones as 

36 undergo decarboxylation when submitted to the DIB/I2 system in non-photochemical 

conditions (Scheme 13).110 However, as outlined by Egushi, with 4-alkynyl-4-

hydroxycyclobutenones, the reaction mechanism then switches from radicalar to ionic.45 
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In contrast to DIB/I2 system, other hypervalent iodine reagents have only been little 

explored. However, on the one hand, Iadonisi has reported the use of hemiketal as 

substrate for a Suárez reaction with (CF3COO)2IPh/I2 as reagent, to produce aldehydo 

tetroses via fragmentation of the generated alkoxyl radical.111 On the other hand, Suárez 

has investigated tandem β-fragmentation/intramolecular cyclization sequences of alkoxyl 

radicals generated by treatment of carbohydrates by the system iodosylbenzene/iodine. 

Thus, while similarly as with DIB/I2, aldotetroses and aldopentoses, resp. furanose and 

pyranose forms of hexuloses were synthesized from simple, resp. C2 hydroxymethylated 

carbohydrate derivatives,112,113 C-C bond forming was achieved in moderate yields from 

carbohydrate lactols as 38 containing a suitable unsaturated ester side-chain, to produce 

cyclopentane derivatives as 39 (Scheme 14).114 
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Diphenylselenium hydroxyacetate/iodine. The diphenylselenium hydroxy acetate/iodine 

system was introduced by Suárez in 1988 as an efficient reagent to generate alkoxyl 

radicals.115 It has proven to be an interesting agent to add to the library of organic 

synthesis.83 Moreover, good yields of 3,4-substituted cyclic imides 41 were cleanly 

obtained by irradiation of a variety of carbinoamides 40 with diphenylselenium  

hydroxyacetate/iodine (Scheme 15, see also Scheme 7).116 
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Mn(III)-reagents. Tris(2-pyridinecarboxylato)manganese117,118 has been reported to 

promote oxidative fragmentation-cyclization of ethynyl cylclobutanol 42, providing an 

efficient route to the methylene-cyclopentanone 43, a key intermediate for the total 

syntheses of (-)-silphiperfol-6-ene and (-)-methyl cantabradienate (Scheme 16).119  
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Further utilization to the generation of β-keto radicals from cyclopropanols as 44 and their 

addition to olefins allowed preparation of compounds such as 1,5-diketones 45 (Scheme 

17).120 Manganese triacetate (Mn(OAc)3) has been used similarly with vinyl 

cyclobutanols121 and 4-hydroxycyclobutenones.44 
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4. Indirect methods of generation 

 

Nitrite esters. After pioneering work on the behavior of the alkoxyl radicals generated by 

photolysis of the corresponding nitrite esters, i.e. intra- and intermolecular H-

abstraction122,123 or, as for cycloalkyl nitrites, C-C bond fission, the free radical chemistry 

of nitrite esters was essentially derived from two reactions. On the one hand, the Barton 

nitrite ester reaction124,16 constituted a starting point in the development of free radicals as 
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useful intermediates in synthetic chemistry but also in allowing the functionalization of 

remote and inactivated positions within steroids. For example, in total synthesis of β-

amyrin, 11-α-hydroxy-β-amyrene 46a was treated with nitrosyl chloride in pyridine and 

the resulting crystalline nitrite 46b photolyzed in benzene solution. After hydrogen atom 

transfer from the methylene carbon to the intermediate alkoxyl radical A, nitrosation of 

the resulting C-centered B radical took place. Tautomerization of the obtained nitroso-

alcohol 47 afforded 11-α-hydroxy-1-oximino-β-amyrene 48 in 50% yield (Scheme 18).6 

The fact that only carbon situated in the position δ to the original OH group becomes 

nitrosated indicate a six-membered transition state for the H-abstraction. 

 

 

On the other hand, nitrite esters of γ,δ–unsaturated alcohols were described as valuable 

precursors of the formation of oxime through photolysis of the corresponding nitrite ester 

and cyclization of the resulting radical onto alkenes.125,42,43 

As a combination of those studies, Petrovic and Cekovic126 managed to functionalize the 

δ–carbon atom of alkyl nitrites 49 by a Michael type alkylation. Indeed, alkoxyl radical A, 

generated by irradiation of 49, undergoes 1,5-hydrogen rearrangement to give δ–carbon 

radical B. In the presence of large excess of electron deficient olefins (Michael acceptors), 
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this is trapped to form a new radical C, which is quenched by NO affording acceptable 

yields of nitroso compound 50 and then oxime 51 (Scheme 19). 
H
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Besides remote functionalization and β-scission, some examples of ring expansions of 

alkoxyl radical deriving from nitrite esters have been reported on bicyclic systems.127,128 

Moreover, Grossi129,130 has recently suggested that also simple alicyclic nitrites can 

undergo a steroid-type ring expansion process. Due to their availability, nitrite esters have 

become attractive reagents for expanding the general repertoire of synthetic reactions.31  

 

Nitrate esters. In contrast with nitrite esters, nitrate esters do not incorporate nitrogen 

oxide units into the product of their reaction. Robust and easily formed, they can be 

removed with tributyltin hydride/AIBN131,132 or by photochemical means.133,134 The 

apparent harsh conditions for their formation, i.e. treatment of the alcohol with fuming 

nitric acid (2 equivalents) and acetic anhydride, are in fact compatible with sensitive 

functional groups.  

Application of this methodology allowed synthesis of complex compounds135-138 as amino 

acids,35 or as lactone-containing macrocycle 54, an intermediate for the preparation of 

semi-synthetic milbemycins.139 Thus, heating of 53 obtained from the corresponding 

alcohol 52, in benzene solution with AIBN and tributyltin hydride resulted in the 

formation of lactone 54 in 53% yields via a probable mechanism involving A-B, as 

showed in Scheme 20.139 Nitrate esters have also been used for reactivity studies.35,140 
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An original utilization of nitrate esters was reported by Murphy.137,138 Indeed, reaction of 

alkyl nitrate 55 with tributyltin hydride generated an intermediate alkoxyl radical A 

which, upon fragmentation, afforded the dioxolanyl radical B. Cyclization of the latter 

gave products cis-56 and trans-56 in 84% and 8% yields respectively, after reduction of 

radical C (Scheme 21).137 
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N-alkoxypyridine-2-thiones. Inspired by Barton’s chemistry, N-alkoxypyridine-2-thione A 

utilization as alkoxyl radical precursor was introduced by Beckwith and Hay in 

1988.141,142,36 Prepared by treatment of a salt of 2-mercaptopyridine-N-oxide with one 

molar equivalent of a suitable alkyl halide in DMF, they generate alkoxyl radicals after 

homolysis of the N-O bond when heated under argon in the dark, at 80°C, in dilute 

solution of benzene containing tributylstannane and AIBN.142 The utility of these 

precursors in radical chain reaction is based on the observation that the formation of the 

strong Sn-S bond and the restoration of pyridine aromaticity should provide sufficient 

driving force to effect generation of alkoxyl radicals by attack of tributyltin radical on the 

precursor A (Figure 2).141,143 
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N-alkoxypyridine-2-thiones have shown to be very useful compounds for the generation 

of alkoxyl radicals in mechanistic studies.144 Thus, besides Beckwith work, aimed 

essentially at studying kinetic of H-abstraction versus β-scission of alkoxyl radicals,141,36 

Hartung studies gave data on substituted pentenoxy radical cyclization rate and 

mechanism,12,27 which constitutes a new entry to the stereoselective synthesis of 

substituted tetrahydrofurans. As a matter of fact, investigation of the photoreaction of N-

alkoxypyridine-2-thiones 57 in the presence of reactive hydrogen donors allowed to 

determine the stereo- and regioselectivities of the radical reactions A-58 and A-59, the 

degree of conversion of 57 and the yields of alkoxyl radical products 58, 59 and 60 

(Figure 3).  

Drawback associated with the use of N-alkoxypyridine-2-thiones are not related to their 

efficiency in radical reactions, but rather to the mediocre yield of their preparation and to 

their physical properties. Indeed, generally obtained as thermally labile yellow oils, they 

often decompose upon storage at temperatures higher 5°C or rearrange into the 

thermodynamically more stable 2-(alkylsulfanyl)pyridine N-oxide.12,145 

 



Review : Generation and Application of Alkoxyl Radicals in Organic Synthesis 
 
 
 

21

O R3

R2

R1

O
R3

R1

R2

OR1
R2
R3

R2R1

R3OH

N

S

O

R1

R3

R2

Bu3SnH
or NpSH

A

6-endo

57
5-exo

cis or trans
58

59

60

[H]

hν

Figure 3  
 

N-Alkoxy-4-(p-chlorophenyl)thiazole-2(3H)-thiones. To overcome the drawbacks of the 

pyridinethione chemistry, novel sources of alkoxyl radicals that take advantage of their 

useful properties have been developed. Inspired by Barton’s finding146 that O-acyl 

derivatives of N-(hydroxy)-4-phenylthiazole-2(3H)-thione (62, Z=H) and its methyl 

derivative are less sensitive to visible light than the respective N-(acyloxy)pyridine-2(1H)-

thiones, Hartung reported recently the preparation of N-(alkoxy)-4-arylthiazolethiones 63 

in good yields and useful quantities, from p-substituted acetophenones 61, and their 

efficient use as alkoxyl radicals precursors.147,148,143 Based on the result of their studies, 

they selected the p-chlorophenyl derivatives (62, Z=Cl) for further exploration in alkoxyl 

radical chemistry (Figure 4). 
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N-Alkoxyphthalimides. On the other hand, Kim reported that N-alkoxyphthalimides 65 are 

promising precursors for the generation of alkoxyl radicals. Very stable and easily 

accessible, they were readily prepared by treatment of alkyl halides with the sodium salt 

of N-hydroxyphthalimide (64, M=Na) in DMF or by treatment of alcohols with N-

hydroxyphthalimide (64, M=H), diethyl azodicarboxylate and triphenylphosphine, 

following Mitsunobu procedure. The resulting N-alkoxyphthalimides 65 were refluxed in 

benzene with tributyltin hydride/AIBN to afford alkoxyl radical (Figure 5).149 
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An interesting application of Kim’s methodology was published by Crich, Huang and 

Newcomb. Indeed, tetrahydrofurans, as 67 obtained in 95% yield, were synthesized by the 

reaction of a series of 5-(N-phthalimidoxy)-1-phenyl-1-(diphenylphosphatoxy)pentanes 

(66) with triphenyltin hydride and AIBN. The intermediate alkoxyl radicals A undergoes 

1,5-hydrogen atom abstraction to give β–(phosphatoxy)alkyl radicals B. Conversion into 

the products 67 presumably proceeds via a stepwise fragmentation of the β-

(phosphatoxy)alkyl radical B to give a styrene radical cation/phosphate anion pair C 

which cyclizes onto the more stable benzylic radical D. (Scheme 22).150,151 

Very recently, Suárez brought a contribution to the carbohydrate synthetic chemistry 

making use of N-phthalimido glycofuranosides and glycopyranosides as alkoxyl radical 

precursors.152 
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Ether derivatives of Se-phenyl benzohydroximate. An other recent precursor to alkoxyl 

radical introduced by Kim is the phenylselenohydroximate derivative 69, prepared in high 

yield by treatment of an alkyl bromide with 68 and cesium carbonate in DMF at 0°C.  

Alkoxyl radicals were generated efficiently from 69 under the standard radical conditions 

(Bu3SnH/AIBN) (Figure 6).153 
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Arylsulfenic acid O-esters. Essentially developed for mechanistic studies,154,155,24,25 

arylsulfenic acid O-esters 70 were prepared by treatment of alcohols with sulfenyl 

chloride in the presence of triethylamine (Figure 7)156,12 and used under different radical 

conditions to afford alkoxyl radicals. For example, photolysis of alkylbenzenesulfenates 

by high pressure mercury lamp, with tributyltin hydride and in the presence of excess of 

electron deficient olefins allowed formation of a δ-carbon radical, arisen by 1,5-hydrogen 

migration to alkoxyl radical, which was intercepted by the radicophilic olefin in a 

Michael-type alkylation.126 When hexabutylditin was used as a catalytic reagent, 

irradiation of alkylbenzenesulfenates157 or primary, secondary and even tertiary 4-

nitrobenzenesulfenates158-160 resulted in a free radical phenylthio transfer from oxygen to 

the non-activated δ-carbon atom and δ-phenylthio alcohols were obtained. However, by 

increasing the substitution at the carbinol atom and enhancing the stability of the formed 

carbon radical, product of β-scission or of cyclization of the alkoxyl radical were 

obtained.161,162,158 
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Moreover, while Hartung studied mechanistic aspects of the cyclization of alkoxyl 

radicals generated photochemically or thermally, by treatment of benzenesulfenic acid O-

esters in presence of tributyltin hydride,12 Guindon reported a stereoselective synthesis of 

2,3-trans-disubstituted tetrahydrofurans 72 by treatment of the alkylbenzenesulfenate 

precursors 71 with tributyltin hydride and triethylborane. The reaction takes place through 
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a tandem process which features intramolecular addition of oxygen radical A to an α,β-

unsaturated ester and hydrogen transfer to the resultant carbon-based radical B, creating 

two new contiguous stereogenic centers with high levels of 1,2-induction in both tandem 

steps and good yields (Scheme 23).28 
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In a promising approach, we were recently able to generate alkoxyl radicals of tertiary 

allylic benzene sulfenates. Indeed, allylic sulfoxides, which are easily obtained from the 

corresponding alcohols, are known to rearrange thermally to sulfenate esters by a 

[2,3]sigmatropic process. 
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Thus, treatment of sulfoxide 73 with tributyltin hydride and AIBN afforded the alkoxyl 

radical A derived from the rearranged sulfenate 74, which was transformed into cis-

bicyclo[4.3.0]non-7-en-3-one (75) in about 40% yield via the sequence of fragmentation-

cyclization-trapping A-C (Scheme 24).49 

Product analysis and spin trapping techniques have shown that photolysis of dialkoxyl 

disulfides ROSSOR, easily and safely prepared with any kind of R group by reacting the 

appropriate alcohol with ClSSCl,163,164 generates alkoxyl radicals RO·, along with radicals 

ROS· and ROS·=O (Eq. 2).165 

 

Equation 2

2  ROH + ClSSCl ROSSOR

ROSSOR 2  RO

 
 

Alkyl peroxyboranes. Research for new stable radical initiators of polymerization systems 

resulted in the development of alkyl peroxyboranes 77. Indeed, treatment of adducts of 

alkyl-9-BBN 76 with oxygen at ambient temperature, furnished peroxyborane 77 that, 

decomposing homolitically by itself, generated an alkoxyl radical and a borinate radical 

78 (Figure 8). In presence of free radical-polymerizable monomers such as methacrylates, 

vinyl acetate, acrylonitrile, etc., the alkoxyl radical was able to initiate radical 

polymerization.166 
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Cyclopropyltrimethylsilyl ethers and iron(III). In 1976, Saegusa reported that treatment of 

cyclopropyltrimethylsilyl ethers with anhydrous ferric chloride in dimethylformamide 

gave rise to β-chloroketones.167-169 Inspired by those results, Booker-Milburn developed 

and extended the reaction,170,171 demonstrating the utility of alternative iron salts in the 
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procedure,172 showing that the carbon-centered radical resulting from the C-C bond 

cleavage can be cyclized onto pendant unsaturated side-chains173 and applying the 

reaction to alternative types of substrates.174 For example, he found a rapid construction of 

diastereomerically pure [n.3.0]bicyclic chloro ketone 80, with 64% yield, from 

[n.1.0]cyclopropyl trimethylsilyl ether 79 by a tandem ring expansion-cyclisation 

procedure.175 Studies of the reaction mechanism have shown that the cyclopropane ring is 

an essential part of it: prior ring opening is required to initiate a free radical process which 

is thought to proceed via an intermediate cyclopropyl alkoxyl radical A (Scheme 25).175  
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Further extension of the method was recently provided by Simpkins, who developed a two 

carbon ring expansion protocol utilizing iron-mediated bond cleavage reactions of bis-

cyclopropane 81, affording β,γ-unsaturated ketone 83 acceptable yields, or bicyclic 

alcohol 82 in 63% yield, depending on the reaction conditions (Scheme 26).176 
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Oxaziridines and ketyl radicals. Studies on the photoinduced rearrangements of 

oxaziridines177 have shown that photosensitization of oxaziridines as 84 with the classical 

triplet sensitizer (benzophenone) resulted in the formation of ring-opened amide 85 and 

cyclohexanone (86). The proposed mechanism involves a ketyl radical A, formed by the 
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photolysis of benzophenone, which transfers a hydrogen atom to the oxaziridine nitrogen. 

Concomitant cleavage of the N-O bond generated an alkoxyl radical B that is further 

transformed into the products via C (Scheme 27).178 
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Hypochlorites. Hypochlorites constitute one of the oldest knew precursor of alkoxyl 

radicals. Their reactions provided a very convenient means of pioneering studies of 

alkoxyl radical reactions19 since these are chain carriers both in hypochlorite 

decomposition involving the sequence shown in Eq. 3a, and in their use as chlorinating 

agents33 via the chain depicted in Eq. 3b. 
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Moreover, alkyl hypochlorites containing a side chain of at least four carbons are readily 

converted to δ–chloro alcohols upon irradiation179,180 or by ferrous and other one-electron 

oxidizable metal ion induced decomposition.181 Extensive studies showed that, while in 

the reaction of tertiary alkyl hypochlorites, β-fragmentation competes with intramolecular 

δ-chorination, five- and six-membered tertiary cycloalkyl hypochlorites fragments into ω–

chloro ketones.182,183,181,135,184 For example, preparation of 5-chloropentan-2-one (89) was 

achieved in 98% converted yield by treatment of methylcyclobutanol (87) with Ca(OCl)2, 

followed by decomposition of the hypochlorite 88 thus obtained in the presence of Fe(II) 

salt.185 The probable mechanism involves one-electron reduction of the hypochlorite 88 to 

afford 1-methylbutoxyl radical (A), which fragments into 4-oxopent-1-yl radical (B). 

Abstraction of a chlorine atom from the starting hypochlorite 88 or from the Fe(III) salt 

gives the ketone 89 (Scheme 28).185 

In 1977, Hargis and Hsu reported a direct partial kinetic resolution of 2-phenylbutane by 

taking advantage of the difference in the rate of H-abstraction reaction of the two 

enantiomers with optically active 2-phenyl-2-butoxyl radical.186 
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Dialkyl peroxides and alkyl hydroperoxides decomposition. Although the chemistry of 

dialkyl peroxides and alkyl hydroperoxides has been extensively investigated, their use as 

alkoxyl radical precursors for synthetic organic purposes has only been scarcely reported. 

Homolysis of the O-O bond can be achieved thanks to photoirradiation, thermal means or 

low valent transition metal-catalysis. Nevertheless, due to its flexibility, the latter method 

has provided the most effective route to alkoxyl radicals,187-189 iron(II) systems being 
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generally used as initiators. Formation of the oxygen-centered radicals is a well-known 

reaction that occurs via electron transfer from the metal ion to the peroxide and cleavage 

of the O-O bond (Eq. 4).190 

 

RO OR Mn+ RO RO M(n+1)++ ++

Equation 4

-

 
 

Hydrogen atom abstraction of 2-hexyloxyl radical generated from the parent 2-hexyl 

hydroperoxide 90 with iron(II) sulfate and copper(II) salts, has been reported by Cekovic 

to afford δ-olefinic alcohol 92 in 60% yield along with a 10% of the γ-unsaturated alcohol 

91, or good yields of δ-functionalized alcohol 93 depending on the reaction conditions 

(Scheme 29).191,192 
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While application of the method for ring opening reaction by alkoxyl radical 

fragmentation of α-hydroxy and α-alkoxyl hydroperoxides 94, has provided a route to 

carboxylic acids 95 (Scheme 30a, R = H)193-195 and esters 95 (Scheme 30a, R = 

TBDMS196 or CH3
197), dimer dicarboxylic acids 97 have been prepared from α-silyloxy 

hydroperoxides 96 (Scheme 30b).196 
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Other examples of fragmentation have led to the synthesis of ring expanded products198-

201,195 as the macrocyclic lactone (±)-recifeiolide 99 (Scheme 30c), synthesized in 96% 

yield from 98 by Schreiber.202 
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In a modified one-pot procedure reported by Sato, photolytic cleavage of trisubstituted 

olefins 100 in presence of metal salts such as FeCl3 gives chlorine-containing ketones. 

The reaction proceeds via β-chloro hydroperoxide, which transforms to chloro ketones 

102 and 103 by homolytic O-O and C-C bonds breaking (Scheme 31a).203-205 Extension of 

this strategy allowed synthesis of keto nitrile 101 by the pathway depicted in Scheme 

31b.206 

In an example of cyclization reaction, 3-(p-methylphenyl)propan-1-oxy radical generated 

from the corresponding hydroperoxyde with Fe(II) and Cu(II) was described by McCleland 

to undergo competing 1,5- and 1,6-cyclization.207 

 

O

EtO2C

MeO

O

EtO2C

MeO

OMeO

MeO O

EtO2C
O

(CH2)4CO2Me

(CH2)4CO2Me

O

O

Scheme 32

β-scission

B

A

C

105

104

 
 

Following his studies on homolytically induced decompositions of unsaturated peroxy 

derivatives,208-210 Maillard has described a new method for the preparation of oxygenated 

heterocycles. In particular, he has developed a tricky synthesis of glycidic esters. The 

strategy consists in a chain process, where generation of alkyl radical B by β-

fragmentation from 1-alkoxyalkyloxy radical A precludes its addition to the double bond 

of “acrylic” peroxyketal 104 to provide alkyl radicals C. The latter promotes induced 
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decomposition of the peroxyketal moiety to afford glycidic ester 105 in 88% yield, along 

with alkoxyl radical A (Scheme 32).211 

 

5. Generation from a C-centered radical 

 

Epoxide fragmentation. Homolysis of the carbon-oxygen bond of an epoxide by an 

adjacent carbon centered radical A, happening with lower rate limit rate of 10-8-10-10 M-1 s-

1,212 constitutes a useful strategy for the generation of alkoxyl radical B, which can 

undergo further rearrangements by cyclization, β-scission or hydrogen transfer. Evidences 

for the reversibility of the reaction have been reported.213-215,107,108,56,212,216 Product derived 

from the C-O bond cleavage normally predominates, those derived from the C-C bond 

cleavage being formed when the resultant carbon centered radical C is stabilized (R2 = 

aryl, vinyl or acyl) (Figure 9).217-220 However, Marples recently reported that, even if no 

products of C-C bond cleavage are obtained, the C-C bond cleavage in aryl substituted 

oxiranylcarbinyl radicals is reversible.220 

 

R2 R1

O
R2

R1
O

R2 O
R1

C-C
cleavage

C-O
cleavage

A B

C

Figure 9  
 

One of the first applications of epoxide ring opening by an oxicarbinyl radical was 

reported by Barton, who described a tetrahydrofuran ring formation, by the 5-exo 

cyclization of an alkoxyl radical.221 Thus, generation of the oxiranylcarbinyl radical from 

thiocarbonylimidazolide 106 was followed by ring opening to the alkoxyl radical, which 

could either abstract an hydrogen atom to afford 107 in 18% yield, or undergo cyclization 
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to the remote double bond in the 5-exo sense, to afford the tetrahydrofuran ring 108 in 

16% yield (Scheme 33).  
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While further developments of the method were brought by Murphy11 and Walton,222 

Rawal21 introduced a method that combines fragmentation with intramolecular hydrogen 

abstraction, affording the bicyclic product 110 in 69% yield (Scheme 34).21 

 

O

CO2Me

O

S
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C6H6

69%

109 110
Scheme 34  

 

By a similar methodology, following Marples’s work,223,217 Rawal224 devised a sequence 

of epoxide fragmentation/β-scission of several bicyclic compounds as 111 providing 

access to functionalized medium sized ring compounds as 112. By selecting the reaction 

conditions, he was able to favor formation of either the medium ring 112, a hydrazulene 

113, or the simple epoxide fragmentation-reduction product 114 (Scheme 35).224 
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Beside thiocarbonylimidazolide precursors, vinyl epoxides, which are readily prepared by 

the reaction of cycloalkanones with allyl sulfur ylides derived from allyl sulfonium salt, 

have proven to be efficient precursors for alkoxyl radicals. 
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As reported by Kim,225 radical ring expansion of vinyl epoxides as 115 were originally 

initiated by n-Bu3Sn radical addition to the vinyl epoxide, but Ph3Sn and PhS radicals 

were found to promote also the reaction. Subsequent epoxide fragmentation yielded 

alkoxyl radical A, that β-fragmented to produce the carbon-centered radical B. 5-Exo 
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cyclization, 6-endo cyclization or direct reduction of the latter provided good yields of 

product 116, along with small quantities of 117 and 118 respectively (Scheme 36). 

Extension of this strategy to 1,5-hydrogen atom transfer from the generated cyclic alkoxyl 

radical and subsequent cyclization of the resulting carbon centered radical, afforded 

bicyclic alcohols.29 Moreover, by treatment of a non-cyclic ether analogue of a DNA 

ribose containing a vinyl epoxide, with thiyl radical, modeling of the hydrogen atom 

abstraction from DNA sugar was accomplished by Murphy.226 The variety of tested 

substrates included acetoxyalkenyl epoxides,227 epoxy silyl enol ethers228 and epoxy 

ketones.229,230  

 

H H

O O

O
O

R

R

O

R

OSnBu3 R

O

R

O R
SnBu3

R R
OHRROH

Bu3SnH

AIBN

1,5-Bu3Sn transfer

+

119

120 121

A

B

Scheme 37

R = H
R = Me

31%
26%

  9%
15%

C6H6

 
 

As a variation on the 1,5-hydrogen transfer strategy, Kim introduced an original ring-

forming radical reaction of vinyl epoxides,29 resp. of epoxyketones,229 based on the 1,5-

shift of tributyltin group. Thus, addition of Bu3Sn radical to the substrates 119, is followed 

by epoxide fragmentation onto the alkoxyl radical A. Tri-n-butyltin transfer to the latter 

yields an alkyl radical B that cycles on the olefin to form the products 120 and 121 in 

modest yields (Scheme 37). 
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In 1993, Galatsis reported a ring expansion strategy making use of iodo spiroepoxides, to 

synthesize medium sized carbocycles.56 Thus, after homolysis of the epoxide 122, β-

scission of the formed alkoxyl radical A yields a primary radical B, which, upon endo or 

exo cyclization to the olefin, gives moderate yields of two-carbon 123 or one-carbon 124 

ring expansion products, along with small quantities of direct reduction compound 125 

(Scheme 38). 
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The methodology was successfully applied by Ziegler on linear bromo epoxides for 

kinetic studies.212 Recently, we extended its scope by developing a general method for the 

stereoselective synthesis of bicyclic compounds 127 in 29-59% yields, starting from 

bridged bicyclic derivatives 126 (Scheme 39).49 
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Bromoalkynyloxiranes 128 have shown to be interesting precursors of alkoxyl radicals 

involved in the synthesis of an original class of compounds, allenylidenetetrahydrofurans 

129.231 Indeed, when submitted to classical radical reaction conditions, they underwent 

sequential carbocyclization, epoxide fragmentation and reduction of the resulting alkoxyl 

radical via A-B to give the products 129 in 25-30% yields (Scheme 40). 
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Intramolecular addition of radical to carbonyl groups. Intramolecular addition of radical 

to carbonyl groups constitutes an indirect but very efficient way of generating alkoxyl 

radicals which can then undergo further reactions. Application of this strategy for ring 

expansion processes has been reviewed in detail first by Dowd and Zhang,232 and very 

recently by Yet,233 who have shown its potential for the synthesis of medium and large 

rings (Figure 10).  

 

O O

(CH2)n (CH2)n

Figure 10  
 

Thus, one carbon ring expansion of cyclic ketones is a straightforward, broadly based 

procedure with many potential applications. Brominated β-keto esters as 130 have been 
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developed first,234,235 but the corresponding iodides and selenides236 also undergo ring 

expansion, selenophenyl derivatives being of special value in the reaction of heterocyclic 

compounds.237 In addition, organocobalt complexes have been reported as substrates.238,239 

Besides tributyltin hydride and AIBN, organocobaloximes240,241 and electroreductive 

conditions,242 have been used to initiate the reaction. Moreover, tri-n-butyltin adducts 

have been employed in a modification leading to olefinic products243 and in a reaction of 

penam conversion into cepham.30 The mechanism is believed to involve formation of a 

primary radical A which, upon attack on the ketone carbonyl, yields an intermediate 

cyclopropyloxy radical B, that fragments into the ring expanded product 131 in 71% yield 

from 130, via the radical C (Scheme 41). Tandem sequences involving one carbon ring 

expansion have been reported.244-246 
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As a logical consequence, the method found extension in larger increment ring 

expansions. In contrast with two-carbon ring expansions, that are not feasible because of 

the low rate of 4-exo ring closure, three- and four-carbon ring expansion were successfully 

developed.236,235Their scope includes bromides and iodides as substrates, the latter giving 

generally better results,247 but addition of tin hydrides to alkynes and other indirect 

methods have also been described.248,249 However, in the benzocyclic ketones series, 

conjugated ketones afford only non-ring-expansion reduction products.250 Detailed studies 

on free radical-based ring expansion of fused cyclobutanones251-255 and of spiro-

cyclobutanones256,257 have been reported by Dowd and Zhang. The mechanism of 
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multicarbon ring expansion proceeds like the postulated pathway for one-carbon ring 

expansion, i.e. by radical addition to the carbonyl group, followed by bond cleavage of the 

intermediate alkoxyl radical leading to the enlarged ring (see Scheme 41).  

The library of molecules synthesized by the ring expansion via an alkoxyl radical strategy 

includes medium rings234,236,235,237 that may contain heteroatoms,250 macrocycles,258 

simple bicycles and polycycles,245,259,253,248,249,260 benzannelated bicycles,250 spiro-

bicycles,256,257 bridged bicycles,246,49 and polycyclic bridged ring systems.261,254 However, 

if aldehydes and ketones are good radical acceptors, ester and amide carbonyl groups are 

usually not reactive enough to undergo cyclization.  

Interesting contributions to this methodology, are the synthesis of ring-expanded lactams 

and lactones. Indeed, on the one hand, Kim262 reported the use of azido alkehydes and 

ketones as aminyl radical precursors to produce ring-expanded lactams. His work was 

extended by Benati263 to reaction of acyclic, monocyclic, benzocyclic and bicyclic α-

azido-β-keto esters. Thus, treatment of the substrates 132 with tributyltin hydride and 

AIBN afforded a variety of medium sized lactams 133 via A, as a result of 3-exo 

cyclization of a transient (tributylstannyl)aminyl radical onto the ketone moiety and 

prompt regiospecific β-scission of the derived alkoxyl radical (Scheme 42). 
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 On the other hand, Suginome69 took advantage of his procedure (treatment of alcohol 134 

with HgO/Iodine) to generate an alkoxyl radical A which, upon addition to the carbonyl 

group of the substrate, gave the alkoxyl radical B that fragmented via C to afford lactone 

135 (Scheme 43). 
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Worth to note is that the explorations of free radical expansion led in several cases to the 

formation of ring contracted by-products as 138, derived from precursor 136.236,264,258 The 

process is generally initiated by a 1,5-hydrogen abstraction and, like the ring expansion 

process, occurs via an intermediate alkoxyl radical (Scheme 44).236 

 

 

With simple cyclizations,265-267 the chemistry of intramolecular addition to carbonyl group 

provides alternatives to the ring expansion methodology. Nevertheless, only 5-exo and 6-

exo cyclizations have up to day been successful, the problem associated with cyclization 

onto carbonyl group being their reversibility, fragmentation being much faster than 

cyclization,36,37 and the consequent difficulty to trap the closed product.268 The strategies 

devised to overcome this drawback divide in two main types: the fast and irreversible 
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trapping of the intermediate alkoxyl radical and the β-scission of a suitable group, 

allowing restoration of the carbonyl functionality (Figure 11). 

Although radical cyclizations onto carbonyl groups with organostannanes have been 

demonstrated, due to high affinity of the stannyl radical for carbon-centered radicals, their 

efficiency remains very low.269 So, another straightforward method described by Batey, 

takes advantage of greater selectivity of organosilanes as H-atom donor for trapping of 

oxygen-centered radicals.270 5-Exo-trig and 6-exo-trig cyclization of halocarbonyl 

compounds were accomplished using phenylsilylane and tristrimethylsilylsilane, to afford 

cyclopentanols and cyclohexanols (Figure 11: X = CH2Br; Z = H; T = H; n = 1 or 2). 

Along the same line, Fu devised a tributyltin hydride-mediated pinacol coupling of 1,5- 

and 1,6-dicarbonyl compounds.271 
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Following Brown’s observation272 of the affinity of alkoxyl radical toward trialkylboron 

derivatives, triethylborane was investigated as a radical quencher for alkoxyl radicals. 

Thus, Malacria273,274 developed an efficient synthesis of cyclopentanols and cyclohexanols 

by intramolecular 5-exo resp. 6-exo cyclization of ω-iodoaldehydes or ketones, with 

triethylborane as a radical initiator and terminator, no tin mediator being necessary. The 

effective product of the reaction is a dimeric boronic ester A, which hydrolyses to the 



Review : Generation and Application of Alkoxyl Radicals in Organic Synthesis 
 
 
 

43

alcohol upon aqueous treatment (Figure 11: X = CH2I or CH(Br)=CH2; Z = H or Me; T = 

BR3; n = 2). As a Lewis acid triethylborane played an additional role in increasing the 

reactivity of the carbonyl group toward cyclization. 

An alternative approach, based on the previously known deoxygenation of alkoxyl 

radicals with organophosphorous(III) compounds275 devised by Kim276 involves trapping of 

the alkoxyl radical by triphenylphosphine to give B, which, upon elimination of 

triphenylphosphine oxide, triggers deoxygenation, providing a cycloalkyl radical C 

(Figure 11: X = CH2I or CH(Br)=CH2; Z = H; T = ·PPh3; n = 1 or 2). Products derived 

from reduction, intermolecular addition to olefins or tandem reaction of the cycloalkyl 

radical C, could be synthesized in good yields. 
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A tricky method to trap cyclized alkoxyl radicals was developed by Tsai.269,277 The idea 

relies on radical-Brook rearrangement of β-silyloxyl radicals resulting from the 

cyclization of acylsilane, to afford α-silyloxyl radicals by a quick and most likely 

irreversible silyl migration (Figure 11, X = CH2I or CH2SePh or CH(Br)=CH2; Z = T = 

SiR3; n = 1 or 2). The method278 provides access to cyclopentyl silyl ethers by successful 

5-exo and somewhat less efficient 6-exo cyclization of primary and secondary radicals on 

acylsilanes. 6-Exo cyclizations have shown to be more sensitive to the size of the silyl 

group and to proceed more slowly. Intramolecular cyclization of vinyl radicals with 

acylsilane constitutes a new regiospecifical route to cyclic silyl enol ethers.  
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As an alternative, those, isolated as their dinitrophenylhydrazone derivative 140 in high 

yields, could be obtained by sequential cyclization, radical Brook’s rearrangement and β-

scission of α-stannyl radicals generated from acylsilanes 139 (Scheme 45).279 

Parallely to Tsai’s study of acylsilanes, Curran developed the radical chemistry of 

acylgermanes.280,281,268,282 In this system, the cyclized α-germyl alkoxyl radical undergoes 

a β-scission reaction to afford cyclic ketone with concomitant formation of a germyl 

radical which carries on the chain reaction (Figure 11, X = CH2I or CH2Br; Z = GeR3; n = 

1 or 2). 5-Exo and 6-exo cyclizations showed good to excellent scopes but as for the other 

systems, parent cyclization in other modes failed. However, 3-exo cyclization resulted in a 

1,2-acyl shift, which can be conducted alone or in tandem with a subsequent cyclization to 

the rearranged acyl german. 

Reminiscent to the acylgerman system, Kim and Jon283,284 recently reported the radical 

cyclization of thioesters and selenoesters (Figure 11, X = CH2I or CH2Br; Z = SPh or 

SePh; n = 1 or 2). Instead of a catalytic cycle, as in the acylgerman system, the thioester 

and selenoester systems require the use of 1.1 equivalents of hexabutylditin. The β-

scission process involved in these reactions serves to drive the carbonyl cyclization to the 

right-hand side. 

 

6. Conclusion 

 

Known from more than a half century, alkoxyl radicals have received an increasing 

interest, which has lightened their unique characteristics. The variety of developed 

methods for their generation and their peculiar reactivity has brought them into the library 

of intermediates possessing a great synthetic potential. Further study and use of alkoxyl 

radical will with no doubt be reported. 
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β-Scission of Bicyclo[2.2.1]hept-5-en-2-ols Promoted by LTA : Study and 

Application to the Synthesis of Carbanucleoside Analogues 
 

 

1. Introduction 

 

Over the past decades, interest for free-radical chemistry as a synthetic tool has known a 

remarkable upsurge focused primarily on the use of carbon-centered1-4 and nitrogen-

centered5,6 radical processes, alkoxyl radicals receiving much less attention. 

Nevertheless, interest for alkoxyl radical in synthetic organic chemistry has increased,7 

as witnessed by the number of synthetic approaches involving them as intermediates in 

transformations like ring-closure reactions,8 hydrogen-atom abstraction9 and remote 

functionalization of non-activated carbon-hydrogen bonds.10 As well, extensive studies 

of β-scission reactions have allowed development of a powerful methodology for the 

synthesis of medium sized compounds by ring expansion processes,11,12 but relatively 

little attention has been paid to other processes involving β-scission reactions.13  

Our own interest in this field led us to envisage fragmentation of alkoxyl radicals I from 

bridged bicyclic norbornenol derivatives for stereocontrolled synthesis of polysubstituted 

cyclopentanes. Indeed, while norbornenols are readily available compounds, in racemic 

or optically active forms, this approach constituted a promising route toward products of 

biological interest, cyclopentene ring being the precursor of a variety of biologically 

active compounds. The ionic variant of this strategy has been successfully developed, 

but is limited by the harsh condition needed for fragmentation, i.e. strongly alkaline,14,15 

acid,16 or oxidizing media.17  

In norbornenoxyl β-scission, relief of ring strain and formation of a stabilized carbon-

centered allylic radical II was expected to drive regioselective opening of the bicyclic 

skeleton. The fixed structure of the starting molecule would induce total stereocontrol on 

the ketone containing side-chain and presumably influence the stereochemical outcome 

of the side-chain resulting from trapping of the allylic C-centered radical II (Figure 1). In 
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this paper, we present our work directed toward efficient generation of alkoxyl radicals 

from 2-substituted bicyclo[2.2.1]hept-5-en-2-ols and its application to the synthesis of 

carbanucleoside analogues. As 6’-modified nucleosides have showed significant antiviral 

activities,18 we decided to prepare 6’-hydroxyethyl carbocyclic precursors. 

 

O

R
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R

O

R

O

R

O
R

O

Y

Y

II

Figure 1  
 

2. Results and Discussion 

 

Synthesis of 2-substituted bicyclo[2.2.1]hept-5-en-2-ols. All the alcohols were 

synthesized nearly exclusively as their endo-epimer, which demonstrate the preferential 

attack of the reagents on the sterically less encumbered exo-face of the substrate,19 from 

norbornenone (bicyclo[2.2.1]hept-5-en-2-one, 2). This was prepared according to a 

slightly modified literature procedure:20 Diels-Alder reaction of 2-chloroacrylonitrile and 

cyclopentadiene in refluxing ether afforded the crude chloronitrile adduct 1, which was 

hydrolyzed to the ketone 2 in a hot aqueous solution of KOH in DMSO, with an overall 

yield of 58% (Scheme 1a). 

Norbornenol (3a) was obtained in a 59% yield by sodium borohydride reduction of 

norbornenone 2. While treatment of 2 with the appropriate Grignard reagent afforded 2-

methyl, 2-phenyl and 2-vinylbicyclo[2.2.1]hept-5-en-2-ols (resp. 3b, 3d, and 3e)15 in 

resp. 94%, 93% and 69% yields, 2-t-butylbicyclo[2.2.1]hept-5-en-2-ol 3c was prepared 

in a 83% yield from t-butyl lithium addition to 2 (Scheme 1b). Due to competing 
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reduction of the substrate by hydride transfer from the reagent,21 t-butylmagnesium 

chloride treatment afforded only traces of 3c, along with large quantity of norbornenol 

(3a). 

 

OH

R

3

Cl

CN

O
Cl CN

O

R

Scheme 1

Et2O

35°C, 24 h

KOH, DMSO

70°C
(a) +

(b)
reagent

1 2

58%

2

Entry Reagent Yield

3a
3b
3c
3d
3e

H

Me

t-Bu

Ph

C2H3

NaBH4

MeMgBr

t-BuLi

PhMgBr

C2H3MgBr

59%

94%

83%

93%

69%

 
 

Radical reactions. Norbonenol (3a) was chosen as adduct for preliminary studies, 

because its fragmentation was expected to afford an easily identifiable aldehydic 

cyclopentene (see Figure, R = H). In order to test the feasibility of the fragmentation 

reaction, various methods for the generation of alkoxyl radicals, were investigated. 

However, while treatment of benzenesulfenate precursor,22,23 synthesized in 46% yield 

from 3a,24 in radical conditions resulted in a sluggish reaction mixture. The low 6% yield 

obtained in synthesis of the N-alkoxypyridinethione precursor25 from secondary alcohol 

3a let no hope for efficient formation of tertiary precursors. Consequently other hindered 

systems were not investigated. Thus, our attempts to generate the requisite alkoxyl 

radical concentrated essentially on direct treatment of the alcohol. To this purpose, 

several potentially effective reagents were tested. Utilization of manganese triacetate,26 

ceric ammonium nitrate,26 lead dioxide,27 all reported to promote homolysis of the C-O 

bond, as well as application of Suarez’s conditions (diacetoxyiodobenzene/I2)28 and 

Macdonald’s29 or Suginome’s30 conditions (HgO/I2), only resulted in recovery or 

destruction of the starting material. Likewise, in situ formation and decomposition of the 

hypochlorite31 did not lead to any result.  
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Finally, action of lead tetraacetate (LTA, 2 equiv.)26 on norbornenol (3a) in dry benzene 

at room temperature during 24 h gave a 86% isolated yield of the wanted aldehydes, as 

an unstable mixture of the four possible isomers 4a (cis and trans) and 5a (cis and trans) 

in a GC ratio of 77:15:7:<1 (Scheme 2a). Along with the mixed isomers, work up and 

chromatography afforded a small quantity of pure major isomer, which could be 

characterized as the 1,5-cis compounds 4a, and a new product that was identified as the 

cyclized hemiacetal 8a derived from cis-4a (Scheme 2b).  
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(b)

cis-4a 8a

acidic conditions

 
 

To investigate the scope and limitations of the reaction, compounds 3b-e were submitted 

to the same reaction conditions, affording complex reaction mixtures whose composition 

are summarized in Schemes 3 and 5. The low yields partially reflect the instability of 

products. Indeed, most of them decomposed to tarry mixtures on standing at room 

temperature on the bench.  

The reaction of 3b-e with LTA gave two classes of compounds: fragmented products and 

oxidation products. Expected ketones 4 and 5 resulted from β–scission of the alkoxyl 

radical and oxidation compounds 6-7 arose directly from the substrates. However the 

harsh reaction conditions, i.e. an acidic and oxidizing medium, led to partial 

transformation of cis-4 into acetalyzed derivatives 8, 9 and 10 (Scheme 5). 
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aA benzene solution of LTA (2 equiv.) and substrate was reacted during 24 h. bThe cis/trans ratio were determined by 1H-NMR integration. cIsolated yield. 
dNo products were detected.

fragmented products oxidation products

 
 

Although the mechanism of LTA action on alcohols has been extensively studied, it has 

been poorly discussed for the case of β–scission of unsaturated alcohols and remains 

speculative in most of the cases. Very dependent on the reaction conditions, it can follow 

radical, ionic as well as mixed pathway, affording different compounds.32-34 Thus, while 

compounds similar to 6 have already been reported as the result of ethylenic alcohols 

cyclization with LTA,33 7 are best explained by Wagner-Meerwein type rearrangements. 

Formation of the expected cyclopentenes 4 and 5 shows an interesting selectivity, in all 

the cases, the 1,5-cis compound being the major one. According to Eguchi’s report,26 a 

possible mechanism for the synthesis of 4 and 5 is depicted in Scheme 4. Its first step 

involves reversible formation of alkoxyl-lead(IV) acetate A which is readily 

homolytically cleaved to generate alkoxyl radical B. β–Scission affords the allylic 

carbon-centered radical C that is trapped, giving lead(IV) intermediates D-G. These 

collapse into the products 4 (cis/trans) and 5 (cis/trans) via reductive elimination of 

lead(II) acetate. The surprising observed selectivity in favor of the 1,5-cis compounds 4 

may be explained by chelation between the carbonyl oxygen and the lead(IV), followed 

by intramolecular acetate transfer from the lead triacetate moiety to the cyclopentenyl 
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moiety. Thus formation cis-six-membered chelated D ring is favored over that of the 

more strained trans-six-membered ring E and the bridged cis-seven-membered ring F. 

For strain reasons, no chelation seems possible in the 1,4-trans-case G (Scheme 4).  

Nevertheless, steric as well as stereoelectronic factors which remain unexplained must 

govern the reaction. Worth to note is that, for the 2-vinylbicyclo[2.2.1]hept-5-en-2-ol 3e, 

intermolecular trapping of the allylic radical C seems faster than Michael-type 

intramolecular cyclization onto the α,β-unsaturated ketone intermediate (Scheme 4, R = 

CH=CH2). No product of tandem β-scission/cyclization has been detected.  
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Transformation of cis-4 into 8, 9 and 10 is attributed to the combination of acidic and 

oxidizing reaction conditions. It occurs presumably via a sequence of acetate 
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deprotection, acetalyzation and over-oxidation. Compounds cis-4a-d afforded the 

bicycles 8 and 9 (Scheme 5a), and the never isolated vinyl ketone 4e, which was never 

isolated, gave bicyclic derivatives 10e1-5 with total destruction of the ethylenic moiety 

(Scheme 5b). Interestingly, diacetylation of the double bond by LTA was predominant 

and furnished vicinal diacetates 10e1-3. In the case of reaction products from t-butyl 

precursor 3c, an observation should be outlined: column chromatography of by-product 

8c transformed it partially into an epoxide (18% yield from 8c) as the result of 

intramolecular substitution of the acetate group (R1) by the alcohol function (Scheme 

5a). The stereochemistry of bicycles 8, 9 and 10 shows undoubtedly that they derive 

exclusively from cis-4.  
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Combination of the yields of fragmented products 4 and 5 with those of by-products 8, 9 

and 10 shows undoubtedly the efficiency of the alkoxyl radical generation and 

fragmentation processes from substrates 3, as well as its selectivity in favor of the 1,5-cis 

compound.  

Synthesis of carbanucleoside analogues. Selective synthesis of compounds cis-4 opens 

a direct route to the preparation of carbanucleosides by simples transformations as 

Baeyer-Villiger oxidation of the ketonic moiety and appropriate functionalization of the 

double bond (Figure 2). 

 

X

O

X

OTBDMS

AcO

BaseHO

HO

Figure 2

4b

X = CH2  
X = O

carbanucleoside
nucleoside

 
 

To demonstrate the potential of the developed method for the preparation of versatile 

cyclopentene synthons, synthesis of a variety of carbanucleoside analogue precursors 13, 

14, 16 and 17 was achieved from cis-5-acetylmethyl-2-cyclopentyl acetate (cis-4b) 

(Scheme 6). Selective reduction of ketone cis-4b with NaBH4 (1.5 equiv.) in cold 

methanol afforded a 1.2:1 mixture of both epimeric corresponding alcohols, which were 

silylated with t-butyldimethylsilyl chloride. Deprotection of the acetate group with 

methanolic potassium carbonate, and lobar column separation gave diastereomeric 

compounds 11 in 70% yield. Configuration of the silyloxy-bearing center was not 

determined.  

Different transformations were achieved on this intermediate 11. On the one hand, 

stereoselective epoxidation of the minor isomer 11 with t-butyl hydroperoxide and 

catalytic vanadyl acetyl acetonate (VO(acac)2) following Teranishi’s procedure35 

produced cis-epoxide 12 as a single isomer, in 95% yield. Then, either Mitsunobu’s 

reaction of 12 with adenine36 allowed formation of compound 13 in 60% yield, or regio- 

and stereoselective epoxide opening with triethylaluminium azide generated in situ by 
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addition of triethylaluminium chloride to a sodium azide suspension in toluene37 

furnished a 80% yield of the azido diol 14. An isomer of 14, formed in about 1:7 ratio, 

was detected in NMR spectrum of 14. 
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OsO4
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1.5 : 1
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TBHP
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On the other hand, upon treatment with sodium hydride and trichoroacetonitrile, major 

isomer of alcohol 11 was converted to its trichloroacetimidate derivative 15. Due to its 

instability, the latter was used without purification. When refluxed in xylene for 2 h, it 

underwent regio- and stereoselective [3,3]-sigmatropic rearrangement38 onto the 

trichloroacetamide 16 with 50% yield from 11. Dihydroxylation with catalytic osmium 
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tetroxide and N-methyl morpholine oxide (NMO) gave access to diol compounds 17 in a 

1.5:1 ration in favor of the all-cis isomer, with 68% yield.  

Functionalized cyclopentanes 13, 14, and 17 as well as cyclopentene 16 can be very 

easily further derivatized to a big number of potentially biologically active compounds. 

 

3. Conclusion 

 

The β-fragmentation of alkoxyl radicals generated by treatment of norbornenol 

derivatives with lead tetraacetate, has proven to afford efficiently 5-substituted 

cyclopentenyl acetate with a surprising high selectivity in favor of the 1,5-cis 

compounds. The reaction pathway was assumed to involve a cyclic transition state were 

the lead, chelating the ketone oxygen, transferred intramolecularly an acetate group to 

the allylic carbon radical intermediate.  

Despite its limitations due to the strongly oxidizing conditions which led to formation of 

over-oxidation by-products, the developed methodology demonstrated its high potential 

in short syntheses of a variety of carbanucleoside precursors, starting from the versatile 

cyclopentene cis-4b.  

 

4. Experimental Section 

 

THF was freshly distilled from K under N2; CH2Cl2, DMF and benzene were distilled 

from CaH2 under N2; Et2O was distilled from Na/benzophenone and toluene from Na 

under N2. Solvents for chromatography were distilled. Flash chromatography (FC) and 

filtration were performed with Baker silica gel (0.063-0.200 mm). TLC were run on 

Merck silica gel 60 F254 analytical plates; detection was carried out with either UV, 

iodine, spraying with solution of phosphomolybdic acid (25 g), Ce(NH4)2(NO3)6·4H2O 

(10 g), concd H2SO4 (60 ml) and water (940 ml), or with a solution of KMnO4 (3 g), 

K2CO3 (20 g), water (300 ml) and 5% NaOH (5 ml), with subsequent heating. Mps, not 

corrected, were determined on a Büchi-Tottoli apparatus. IR spectra were recorded on a 

Mattson Unicam 5000 spectrophotometer, in cm-1. NMR spectra were recorded on a 
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Varian Gemini 200 (1H 200 MHz and 13C 50.3 MHz), a Bruker AM 360 (1H 360 MHz) 

or a Bruker Avance DRX-500 (1H 500 MHz and 13C 125.77 MHz); for 1H δ are given in 

ppm relative to CDCl3 (7.27 ppm), for 1C δ are given in ppm relative to CDCl3 (77.1 

ppm), and coupling constant J are given in Hz. 1H NMR splitting pattern abbreviations 

are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. 13C NMR 

multiplicities were determined by the APT and DEPT sequences, abbreviations are: q, 

CH3; t, CH2; d, CH; s, quaternary carbons. Assignments were confirmed by NOE or 

NOESY, COSY and HETCOR experiments. MS spectra were recorded on a Vacuum 

Generator Micromass VG 70/70E DS 11-250; EI (70 eV), CI (CH4 gas); m/z (%). 

Elemental analysis were performed by Ilse Beetz, Microanalytisches Laboratorium, D-

96301 Kronach, Germany, and Ciba Geigy Mikrolabor, Marly, Switzerland. 

 

Norbornenone (bicyclo[2.2.1]hept-5-en-2-one) (2). To a solution of 2-

chloroacrylonitrile (41.6 g, 0.63 mol) stabilized with hydroquinone (2-3 mg) in dry ether 

was added freshly distilled cyclopentadiene (55 g, 0.63 mol). The mixture was refluxed 

for 24 h. Evaporation of the volatiles afforded the crude chloronitrile adduct 1 in 98% 

yield, as a slightly yellow oil which solidified when cooled.  

A hot solution of KOH (79 g, 1.41 mol) in 70 ml H2O added to a stirred solution of 1 

(94.4 g, 0.61 mol) in DMSO. The resulting dark mixture was heated at 70°C for 7 h and 

let for 15 h at rt, before being poured on iced water (600 ml). Extraction with hexane 

(6x250 ml), drying (MgSO4) and evaporation of the solvent gave the crude product, 

which was purified by distillation under reduced pressure to afford 2 as a colorless oil in 

58% yield; bp 51°C/10 Torr. 1H NMR (CDCl3, 200 MHz) δ 6.55 (dd, J = 5.5 Hz, 3.0 Hz, 

1 H, CH=CH), 6.18-6.02 (m, 1 H, CH=CH), 3.25-3.12 (m, 1 H, CH), 3.07-2.93 (m, 1 H, 

CH), 2.25-1.82 (m, 4 H, CH2). Compound 2 has already been described in the literature 

(see ref. 15). 

 

Norbornenol (3a). To a solution of ketone 2 (10.8 g, 0.1 mol) in MeOH (100 ml) under 

N2 at –10°C, was added in small portions NaBH4 (4.0 g, 0.1 mol). The mixture was 

stirred for a further 30 min and allowed to warm up to rt After evaporation of the MeOH, 
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the crude product was dissolved in AcOEt (100 ml), washed with water (100 ml) and the 

aqueous phase extracted with AcOEt (2 x 100 ml). The combined organic layers were 

dried (MgSO4) and evaporated in vacuo. The residue was purified by FC 

(Hexane/AcOEt 8:2) to yield 6.47 g (59%) of alcohol 3a as a white solid. IR (KBr) 3580, 

3440, 3060, 2970, 1752, 1220, 763. 1H NMR (CDCl3, 200 MHz) δ 6.45 (dd, J = 5.7 Hz, 

3.0 Hz, 1 H, CH=CH), 6.04 (dd, J = 5.7 Hz, 3.0 Hz, 1 H, CH=CH), 4.48-4.44 (m, 1 H, 

CH-OH), 3.00-2.97 (m, 1 H, CH), 2.82-2.80 (m, 1 H, CH), 2.11 (ddd, J = 12.1 Hz, 8.3 

Hz, 4.0 Hz, 1 H, CH2), 1.51-1.44 (m, 1 H, CH2), 1.31-1.26 (m, 1 H, CH2); 1.12 (s, 1 H, 

OH), 1.81-1.72 (m, 1 H, CH2). 13C NMR (CDCl3, 50.3 MHz) 140.59 (d), 130.94 (d), 

72.63 (d), 48.42 (t), 48.23 (t), 43.03 (d), 37.97 (d). CI-MS 110 (7, M+), 67 (10), 66 (100), 

65 (11). Anal. Calcd for C7H8O (110.15): C, 76.33; H, 9.15; Found: C, 76.27; H, 9.22. 

 

2-Methylbicyclo[2.2.1]hept-5-en-2-ol (3b). A solution of 2 (2 g, 18.5 mmol) in Et2O (8 

ml) was added dropwise to a solution of CH3MgBr (3 M in Et2O; 7.4 ml, 22.2 mmol) 

under N2 at rt. The mixture was let for 30 min after addition, hydrolyzed at 0°C with 

saturated aqueous NH4Cl (80 ml), extracted with Et2O (4 x 80 ml) and dried (MgSO4). 

Evaporation of the solvent and FC (Hexane/Et2O 1:1) afforded pure 3b (2.16 g, 94%) as 

a pale yellow liquid. IR (film) 3400, 3060, 2870, 1280, 1260, 1070, 838, 770. 1H NMR 

(CDCl3, 200 MHz) δ 6.44 (dd, J = 5.7 Hz, 3.0 Hz, 1 H, CH=CH), 6.20 (dd, J = 5.7 Hz, 

3.0 Hz, 1 H, CH=CH), 2.84 (m, 1 H, CH), 2.67 (m, 1 H, CH), 1.82 (dd, J = 12.3 Hz, 3.7 

Hz, 1 H, CHH), 1.60-1.43 (m, 2 H, CH2), 1.51 (s, 3 H, CH3), 1.16 (dd, J = 12.3 Hz, 3.2 

Hz, 1 H, CHH). 13C NMR (CDCl3, 50.3 MHz) 140.01 (d), 133.52 (d), 82.61 (s), 53.89 

(d), 49.52 (t), 44.97 (t), 43.08 (d), 28.23 (q). CI-MS 124 (7, M+), 81 (5), 66 (100), 58 (8), 

43 (18). Anal. Calcd for C8H12O (124.74): C, 77.38; H, 9.74; Found: C, 77.25; H, 9.70. 

 

2-t-Butylbicyclo[2.2.1]hept-5-en-2-ol (3c). A solution of 2 (1 g, 9.25 mmol) in Et2O (10 

ml) was added dropwise via a syringe to a t-BuLi solution (1.5 M in hexane; 6.17 ml, 

9.25 mmol) at –78°C under N2. The reaction mixture was let for 15 min at –78°C and for 

45 min at rt. After hydrolysis with aqueous saturated Na2CO3 (50 ml) at 0°C and 

extraction with Et2O (4 x 50 ml), the organic phase was dried (MgSO4) and the solvent 
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evaporated. FC (Hexane/AcOEt 9:1) of the crude afforded pure 3c (1.28 g, 83%) as a 

colorless liquid. IR (film) 3600, 3070, 2970, 1726. 1H NMR (CDCl3, 200 MHz) δ 6.49 

(dd, J = 5.7 Hz, 2.9 Hz, 1 H, CH=CH), 6.29 (dd, J = 5.7 Hz, 3.2 Hz, 1 H, CH=CH), 2.91 

(m, 1 H, CH), 2.85 (m, 1 H, CH), 1.99 (dd, J = 12.8 Hz, 3.7 Hz, 1 H, CHH), 1.64-1.45 

(m, 2 H, CH2), 1.02 (s, 9 H, CH3), 0.95 (dd, J = 12.8 Hz, 3.7 Hz, 1 H, CHH). 13C NMR 

(CDCl3, 50.3 MHz) 141.32 (d), 137.05 (d), 86.00 (s), 50.77 (d), 49.03 (t), 42.91 (t), 

40.65 (d), 37.78 (s), 27.51 (q). Anal. Calcd for C11H18O (166.26): C, 79.46; H, 10.92; 

Found: C, 79.62; H, 11.12. 

 

2-Phenylbicyclo[2.2.1]hept-5-en-2-ol (3d). A solution of 2 (1 g, 9.25 mmol) in Et2O (4 

ml) was added dropwise to a solution of PhMgBr (3 M in Et2O; 3.7 ml, 11.1 mmol) 

under N2 at rt. The mixture was refluxed for 1 h after addition, cooled and hydrolyzed 

with saturated aqueous NH4Cl (50 ml), extracted with Et2O (3 x 50 ml) and dried 

(MgSO4). Evaporation of the solvent and FC (Hexane/Et2O 7:3) afforded pure 3d (1.60 

g, 93%) as a pale yellow liquid. IR (film) 3450, 2880, 1500, 1445, 1340, 1270, 1172, 

1130, 990, 730, 700, 660. 1H NMR (CDCl3, 200 MHz) δ 7.59-7.20 (m, 5 arom. H) 6.55 

(dd, J = 5.7 Hz, 3.0 Hz, 1 H, CH=CH), 6.28 (dd, J = 5.7 Hz, 3.0 Hz, 1 H, CH=CH), 3.19 

(m, 1 H, CH), 2.95 (m, 1 H, CH), 2.48 (dd, J = 12.5 Hz, 3.8 Hz, 1 H, CHH), 1.88 (s, 1 H, 

OH), 1.60 (m, 2 H, CH2), 1.50-1.41 (m, 1 H, CHH). 13C NMR (CDCl3, 50.3 MHz) 

147.02 (s), 141.14 (d), 133.55 (d), 128.16 (d), 126.96 (d), 126.38 (d), 82.12 (s), 53.10 

(d), 49.21 (t), 44.69 (t), 43.25 (d). CI-MS 186 (3, M+), 120 (98), 105 (33), 91 (3), 77 

(23), 66 (100). Anal. Calcd for C13H14O (186.25): C, 83.83; H, 7.58; Found: C, 83.99; H, 

7.25. 

 

2-Vinylbicyclo[2.2.1]hept-5-en-2-ol (3e). A solution of 2 (1 g, 9.25 mmol) in THF (2 

ml) was added dropwise during 45 min, to a solution of vinylmagnesium bromide (1 M 

in THF; 11.1 ml, 11.1 mmol) under N2 at 0°C. The mixture was let warm to rt, and 

cooled to 0°C for hydrolysis with saturated aqueous NH4Cl (20 ml). The product was 

extracted with Et2O (3 x 20 ml), the combined organic layers were washed with 2% 

aqueous NaHCO3 (10 ml) and water (10 ml), dried (MgSO4) and evaporated. FC 
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(Hexane/AcOEt 8:2) of the crude afforded pure 3e (0.865 g, 69%) as a volatile pale 

yellow liquid. IR (film) 3450, 3070, 1640, 1340, 1280, 1175, 915, 838, 722. 1H NMR 

(CDCl3, 200 MHz) δ 6.46-6.44 (m, 1 H, CH=CH), 6.23-6.17 (m, 1 H, CH=CH), 6.16 

(dd, J = 17.3 Hz, 10.7 Hz, 1 H, CH=CH2), 5.33 (dd, J = 17.3 Hz, 1.4 Hz, 1 H, 

CH=CHHtrans), 5.08 (dd, J = 10.7 Hz, 1.4 Hz, 1 H, CH=CHHcis), 2.89 (m, 1 H, CH), 2.75 

(m, 1 H, CH), 2.02 (dd, J = 12.5 Hz, 3.8 Hz, 1 H, CHH), 1.81 (s, 1 H, OH), 1.56-1.53 

(m, 2 H, CH2), 1.20-1.12 (m, 1 H, CHH). 13C NMR (CDCl3, 50.3 MHz) 144.18 (d), 

140.21 (d), 133.13 (d), 111.64 (t), 80.30 (s), 53.26 (d), 48.54 (t), 43.18 (t), 42.95 (d). CI-

MS 136 (5, M+), 119 (100), 109 (8), 95 (19), 69 (20). Anal. Calcd for C9H12O (136.19): 

C, 79.37; H, 8.88; Found: C, 79.62; H, 8.80. 

 

General procedure for reaction of alcohols 3 with LTA. A solution of alcohol (9.1 

mmol) and LTA (18.2 mmol) in dry benzene (45 ml) under N2 was stirred at rt for 24 h. 

The reaction mixture was poured into water (45 ml) and insoluble material, when 

present, were filtered off on cellite. The filtrate was extracted with Et2O (1 x 50 ml and 2 

x 25 ml) and dried (MgSO4). Evaporation of the solvents afforded the crude products, 

which were separated by successive FC. 

 

Reaction of norbornenol (3a). According to general procedure. From 3a (1.00 g, 9.1 

mmol) and LTA (8.05 g, 18.2 mmol). FC (Hexane/AcOEt 8:2, 1% Et3N) gave unstable 

aldehyde cis-4a (0.20 g, 13%), along with both the alkoxyl epimers of hemiacetal 8a 

derived from 4a (69 mg, 6%) and a mixture of aldehydes trans-4a and cis/trans-5a (298 

mg, 21%). 

Data of cis-5-formylmethylcyclopent-2-enol 1-O-acetate (cis-4a). Pale yellow liquid. 
1H NMR (CDCl3, 500 MHz) δ 9.80 (t, J = 1.4 Hz, 1 H, CHO), 6.07-6.03 (m, 1 H, 

CH=CH), 5.78-5.75 (m, 1 H, CH=CH), 5.45-5.42 (m, 1 H, CHOAc), 2.90-2.83 (m, 2 H, 

CHHCHO, CHHtrans), 2.68-2.61 (m, 1 H, CHCH2CHO), 2.56 (ddd, J = 16.7 Hz, 9.3 Hz, 

1.4 Hz, 1 H, CHHCHO), 2.07 (s, 3 H, CH3), 2.02-1.95 (m, 1 H, CHHcis). 13C NMR 

(CDCl3, 125.77 MHz) 201.17 (s), 171.16 (s), 136.37 (d), 128.52 (d), 84.86 (d), 48.16 (t), 

37.99 (d), 37.75 (t), 21.19 (q). CI-MS 137 (7), 125 (15), 109 (100), 81 (25).  
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Data of 8a (mixture of diastereomers). Pale yellow liquid. 1H NMR (CDCl3, 500 

MHz) δ 5.92-5.89 (m, 1 H, CH=CH, minor), 5.89-5.86 (m, 1 H, CH=CH, minor), 5.81-

5.78 (m, 1 H, CH=CH, major), 5.76-5.73 (m, 1 H, CH=CH, major), 5.54 (dd, J = 5.2 Hz, 

1.6 Hz, 1 H, CHexoOH, minor), 5.50 (d, J = 4.4 Hz, 1 H, CHendoOH, major), 5.29 (d, J = 

7.5 Hz, 1 H, CHO-, major), 5.16 (d, J = 7.5 Hz, 1 H, CHO-, minor), 3.12-3.04 (m, 1 H, 

CH, major), 2.97-2.89 (m, 1 H, CH, minor), 2.71-2.64 (m, 1 H, CH=CHCHHexo, minor), 

2.63-2.56 (m, 1 H, CH=CHCHHexo, major), 2.48-2.41 (m, 1 H, CH=CHCHHendo, minor) 

2.28 (ddd, J = 13.4 Hz, 10.10 Hz, 5.22 Hz, 1 H, CHHexo, minor), 2.21 (dd, J = 12.7 Hz, 

8.7 Hz, 1 H, CHHexo, major), 2.16 (m, 1 H, CH=CHCHHendo, major), 1.83 (ddd, J = 13.4 

Hz, 2.9 Hz, 1.7 Hz, 1 H, CHHendo, minor), 1.54 (ddd, J = 12.7 Hz, 9.2 Hz, 4.4 Hz, 1 H, 

CHHendo, major). 13C NMR (CDCl3, 125.77 MHz) 134.11 (d, minor), 133.11 (d, major), 

132.41 (d, minor), 130.77 (d, major), 100.22 (d, minor), 98.70 (d, major), 90.15 (d, 

minor), 89.06 (d, major), 41.67 (t, minor), 41.35 (t, major), 40.18 (t, minor), 38.40 (d, 

minor), 38.21 (t, major), 37.45 (d, major). CI-MS 125 (6, [M-1]+), 109 (100), 107 (3), 81 

(7). 

 

Reaction of 2-methylbicyclo[2.2.1]hept-5-en-2-ol (3b). According to general 

procedure. From 3b (850 mg, 6.84 mmol) and LTA (6.07 g, 13.69 mmol). FC 

(CH2Cl2/Et2O 9:1 to 97:3 and Hexane/AcOEt 8:2) gave compounds cis-4b  (810 mg, 

65%), 6b (62 mg, 5%), 7b (116 mg, 7%), and 9b (114 mg, 7%). 

Data of cis-5-acetylmethylcyclopent-2-enol 1-O-acetate (cis-4b). Colorless liquid. IR 

(film) 2928, 1728, 1361, 1244, 1020. 1H NMR (CDCl3, 500 MHz) δ 6.04-6.00 (m, 1 H, 

CH=CH), 5.74-5.71 (m, 1 H, CH=CH), 5.40-5.38 (m, 1 H, CHOAc), 2.88 (dd, J = 16.4 

Hz, 3.8 Hz, 1 H, CHHCOCH3), 2.86-2.78 (m, 1 H, CHHtrans), 2.63-2.54 (m, 1 H, 

CHCH2COCH3), 2.52 (dd, J = 16.4 Hz, 9.8 Hz, 1 H, CHHCOCH3), 2.15 (s, 3 H, 

OCOCH3), 2.04 (s, 3 H, OCOCH3), 1.94-1.88 (m, 1 H, CHHcis). 13C NMR (CDCl3, 

125.77 MHz) 206.48 (s), 170.10 (s), 135.36 (d), 127.45 (d), 83.84 (d), 46.77 (t), 38.10 

(d), 36.85 (t), 29.02 (q), 20.15 (q). CI-MS 183 (0.3, [M+1]+), 151 (4), 124 (11), 123 

(100), 81 (7). Anal. Calcd for C10H14O3 (182.22): C, 65.91; H, 7.74; Found: C, 65.81; H, 

7.82. 
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Data of 6b. Yellow liquid. IR (film) 2963, 2926, 1746, 1236, 1030. 1H NMR (CDCl3, 

500 MHz) δ 4.96 (s, 1 H, CHOAc), 4.37 (dd, J = 4.4 Hz, 2.0 Hz, 1 H, CHO), 3.28 (dddd, 

J = 4.4 Hz, 1.5 Hz, 1.5 Hz, 1.5 Hz, 1 H, CH), 2.81-2.78 (m, 1 H, CH), 2.02 (s, 3 H, 

OCOCH3), 1.95 (ddd, J = 13.0 Hz, 2.4 Hz, 0.9 Hz, 1 H, CHH), 1.77-1.72 (m, 1 H, 

CHH), 1.44 (dd, J = 13.0 Hz, 3.8 Hz, 1 H, CHH), 1.40-1.36 (m, 1 H, CHH), 1.35 (s, 3 H, 

CH3). 13C NMR (CDCl3, 125.77 MHz) 169.95 (s), 80.15 (d), 77.30 (d), 76.98 (s), 48.05 

(d), 41.79 (t), 41.72 (d), 33.50 (t), 23.17 (q), 21.09 (q). CI-MS 183 (24, [M+1]+), 153 (7), 

123 (33), 93 (10). Anal. Calcd for C10H14O3 (182.22): C, 65.91; H, 7.74; Found: C, 

66.20; H, 7.78. 

Data of 7b. Yellow liquid. IR (film) 3451, 2972, 1736, 1368, 1246, 1059. 1H NMR 

(CDCl3, 500 MHz) δ 5.18-5.16 (m, 1 H, CHOAc), 4.59 (ddd, J = 7.5 Hz, 3.6 Hz, 1.0 Hz, 

1 H, CHOAc), 2.55 (d, J = 5.2 Hz, 1 H, CH), 2.17-2.14 (m, 1 H, CH), 2.10-2.01 (m, 1 H, 

CHH), 2.02 (s, 3 H, OCOCH3), 2.00 (s, 3 H, OCOCH3), 1.84-1.76 (m, 2 H, CHH, CHH), 

1.27 (d, J = 14.0 Hz, 1 H, CHH), 1.25 (s, 3 H, CH3). 13C NMR (CDCl3, 125.77 MHz) 

170.88 (s), 170.58 (s), 80.04 (d), 75.73 (d), 73.77 (s), 51.46 (d), 44.14 (d), 41.46 (t), 

31.43 (t), 26.35 (q), 21.36 (q), 21.26 (q). CI-MS 239 (5), 225 (26), 184 (10), 183 (100), 

179 (10), 165 (23), 123 (88). Anal. Calcd for C12H18O5 (242.27): C, 59.49; H, 7.49; 

Found: C, 59.45; H, 7.20. 

Data of 9b. Colorless liquid. IR (film) 3451, 2940, 1739, 1373, 1248, 1047. 1H NMR 

(CDCl3, 500 MHz) δ 5.96-5.93 (m, 1 H, CH=CH), 5.74-5.71 (m, 1 H, CH=CH), 5.66-

5.63 (m, 1 H, CH), 5.39 (d, J = 1.0 Hz, 1 H, CH=C), 4.60 (d, J = 0.9 Hz, 2 H, CH2OAc), 

3.10-3.04 (m, 1 H, CHHexo), 2.79-2.77 (m, 1 H, CHHendo), 2.10 (s, 3 H, CH3), 2.04 (s, 3 

H, CH3), 2.04 (s, 3 H, OCOCH3). 13C NMR (CDCl3, 125.77 MHz) 170.27 (s), 170.18 (s), 

156.00 (s), 134.92 (d), 127.19 (d), 102.17 (d), 95.65 (s), 95.06 (d), 58.77 (t), 44.90 (t), 

21.52 (q), 20.72 (q). CI-MS 238 (12, M+), 237 (12, [M-1]+), 180 (11), 178 (100), 137 

(14), 123 (15), 119 (15). Anal. Calcd for C12H14O5 (238.24): C, 60.50; H, 5.92; Found: 

C, 60.35; H, 7.91. 

 

Reaction of 2-t-butylbicyclo[2.2.1]hept-5-en-2-ol (3c). According to general procedure. 

From 3c (1.00 g, 6.01 mmol) and LTA (5.33 g, 12.02 mmol). FC (CH2Cl2/Et2O 9:1 to 
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10:0 and Hexane/AcOEt 8:2 to 7:3) gave unseparable compounds cis- and trans-4c in a 

8:1 ratio (135 mg, 27%), compounds 6c (94 mg, 7%) and 7c (120 mg, 7%), along with 

unstable 8c (about 202 mg, 17%), which partially decomposed on the column to give an 

epoxide (33 mg, 3%). 

Data of cis- and trans-4c. Colorless liquid. IR (film) 2970, 1735, 1706, 1367, 1243, 

1059, 1017. 1H NMR (CDCl3, 500 MHz) δ 6.10-6.08 (m, 1 H, CH=CH, trans), 6.00-5.99 

(m, 1 H, CH=CH, cis), 5.91-5.89 (m, 1 H, CH=CH, trans), 5.81-5.79 (m, 1 H, CH=CH, 

cis), 5.64-5.61 (m, 2 H, CHOAc, cis, trans), 3.13-3.07 (m, 1 H, CH, cis), 2.87-2.76 (m, 2 

H, CH, trans, CHHCOt-Bu, trans), 2.68-2.52 (m, 5 H, CHHCOt-Bu, trans, CH2COt-Bu, 

cis, CHHtrans, cis, CHHcis, trans), 2.03 (d, J = 8.6 Hz, 1 H, CHHtrans, trans), 2.03 (s, 3 H, 

OCOCH3, cis), 1.99 (s, 3 H, OCOCH3, trans), 1.31 (ddd, 1 H, J = 14.3 Hz, 4.3 Hz, 4.3 

Hz, 1 H, CHHcis, cis), 1.16 (s, 9 H, CH3, trans), 1.14 (s, 9 H, CH3, cis). 13C NMR 

(CDCl3, 125.77 MHz) 214.68 (s, cis), 214.56 (s, trans), 170.74 (s, cis), 170.44 (s, trans), 

140.46 (d, cis), 137.39 (d, trans), 129.60 (d, trans), 129.46 (d, cis), 79.52 (d, cis), 79.43 

(d, trans), 43.94 (s, trans), 43.88 (s, cis), 43.05 (t, cis), 39.31 (d, cis), 37.29 (t, trans), 

36.67 (t, cis), 36.28 (t, trans), 35.65 (d, trans), 26.52 (q, trans), 26.24 (q, cis), 21.23 (q, 

cis), 21.08 (q, trans). CI-MS 223 (0.5, [M-1]+), 165 (100), 85 (12), 57 (10). Anal. Calcd 

for C13H20O3 (224.30): C, 69.61; H, 8.99; Found: C, 69.07; H, 8.97. 

Data of 6c. Yellow liquid. IR (film) 2964, 1740, 1373, 1365, 1240, 1043. 1H NMR 

(CDCl3, 500 MHz) δ 4.95 (s, 1 H, CHOAc), 4.31 (dd, J = 4.6 Hz, 2.1 Hz, 1 H, CHO), 

3.38 (dddd, J = 4.6 Hz, 1.5 Hz, 1.5 Hz, 1.5 Hz, 1 H, CH), 2.83-2.81 (m, 1 H, CH), 2.02 

(s, 3 H, OCOCH3), 1.80 (ddd, J = 12.9 Hz, 2.3 Hz, 1.0 Hz, 1 H, CHH), 1.75 (dddd, J = 

11.5 Hz, 1.9 Hz, 1.9 Hz, 1.9 Hz, 1 H, CH), 1.69 (dd, J = 12.9 Hz, 4.0 Hz, 1 H, CHH), 

1.30-1.36 (dddd, J = 11.5 Hz, 1.3 Hz, 1.3 Hz, 1.3 Hz, 1 H, CHH), 0.89 (s, 9 H, CH3). 13C 

NMR (CDCl3, 125.77 MHz) 169.91 (s), 96.45 (s), (d), 79.16 (d), 42.62 (d), 41.06 (d), 

36.02 (t), 33.96 (s), 33.75 (q), 24.41 (q), 21.05 (q). CI-MS 225 (6, [M+1]+), 179 (9), 165 

(75), 147 (19), 137 (16), 107 (100). Anal. Calcd for C13H20O3 (224.30): C, 69.61; H, 

8.99; Found: C, 68.98; H, 9.10. 

Data of 7c. Yellow solid. Mp 84-84.5°C. IR (KBr) 3515, 2960, 1726, 1368, 1244. 1H 

NMR (CDCl3, 500 MHz) δ 5.33 (s, 1 H, CHOAc), 4.67 (dd, J = 6.5 Hz, 4.4 Hz, 1 H, 
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CHOAc), 2.61 (d, J = 5.2 Hz, 1 H, CH), 2.46 (dd, J = 14.4 Hz, 7.4 Hz, 1 H, CHH), 2.40 

(d, J = 3.1 Hz, 1 H, CH), 2.05 (s, 3 H, OCOCH3), 2.00 (s, 3 H, OCOCH3), 1.82 (ddd, J = 

14.4 Hz, 4.3 Hz, 4.3 Hz, 1 H, CHH), 1.72 (d, J = 14.2 Hz, 1 H, CHH), 1.55 (dd, J = 14.2 

Hz, 5.2 Hz, 1 H, CHH), 1.13 (s, 1 H, OH), 1.02 (s, 9 H, CH3). 13C NMR (CDCl3, 125.77 

MHz) 170.81 (s), 170.55 (s), 80.85 (d), 76.87 (s), 75.66 (d), 50.53 (d), 42.24 (d), 37.69 

(s), 35.42 (t), 30.43 (t), 26.74 (q), 21.02 (q). CI-MS 225 (28), 207 (16), 165 (100), 147 

(17), 107 (29), 85 (16), 57 (22). Anal. Calcd for C15H24O5 (284.35): C, 63.36; H, 8.51; 

Found: C, 63.69; H, 8.42. 

Data of 8c. Yellow liquid. 1H NMR (CDCl3, 200 MHz) δ 5.90-5.70 (m, 2 H, CH=CH), 

5.30-5.20 (m, 1 H, CHO), 5.10 (d, J = 8.0 Hz, 1 H, CHOAc), 3.00-2.80 (m, 1 H, CH), 

2.70-2.00 (m, 2 H, CH2), 2.18 (s, 3 H, OCOCH3), 0.95 (s, 9 H, CH3).  

Data of epoxide. Yellow solid. Mp 115°C. IR (KBr) 3454, 3057, 2960, 1724. 1H NMR 

(CDCl3, 500 MHz) δ 5.83-5.81 (m, 1 H, CH=CH), 5.77-5.75 (m, 1 H, CH=CH), 5.14-

5.11 (m, 1 H, CHO), 3.83 (d, J = 7.1 Hz, 1 H, CHOepox.), 2.75 (ddd, J = 15.0 Hz, 7.6 Hz, 

1.4 Hz, 1 H, CH), 2.66-2.56 (m, 1 H, CHHendo), 2.49-2.44 (m, 1 H, CHHexo), 0.99 (s, 9 H, 

CH3). 13C NMR (CDCl3, 125.77 MHz) 132.8 (d), 131.80 (d), 106.71 (s), 85.61 (d), 79.71 

(d), 47.77 (d), 37.00 (s), 36.54 (t), 24.94 (q). CI-MS 181 (53, [M+1]+), 163 (100), 96 

(15), 67 (18). Anal. Calcd for C11H16O2 (180.24): C, 73.30; H, 8.95; Found: C, 73.36; H, 

8.61. 

 

Reaction of 2-phenylbicyclo[2.2.1]hept-5-en-2-ol (3d). According to general 

procedure. From 3d (1.00 g, 5.37 mmol) and LTA (4.76 g, 10.74 mmol). FC 

(Hexane/AcOEt 8:2 and Hexane/Et2O 6:4 to 9:1) gave unseparable cis- and trans-4d in a 

52:1 ratio (700 mg, 53%), unseparable cis- and trans-5d in a 4:1 ratio (131 mg, 10%), 

along with unseparable 8d OH-epimers in a 2.7:1 ratio (252 mg, 18%), 9d1 (99 mg, 

10%), and unstable 9d2 (260 mg, 20%). 

Data of cis-4d. Pale yellow liquid. IR (film) 3062, 2930, 1731, 1686, 1242. 1H NMR 

(CDCl3, 500 MHz) δ 8.00-7.45 (m, 5 H, arom. H), 6.07-6.04 (m, 1 H, CH=CH), 5.77 

(dddd, J = 5.8 Hz, 2.2 Hz, 2.2 Hz, 2.2 Hz, 1 H, CH=CH), 5.54-5.52 (m, 1 H, CHOAc), 

3.44 (dd, J = 17.1 Hz, 4.3 Hz, 1 H, CHHCOPh), 3.04 (dd, J = 17.1 Hz, 10.1 Hz, 1 H, 
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CHHCOPh), 2.89 (ddddd, J = 17.4 Hz, 8.0 Hz, 2.3 Hz, 2.3 Hz, 2.3 Hz, 1 H, CHHtrans), 

2.79-2.73 (m, 1 H, CHCH2COPh), 2.05 (s, 3 H, OCOCH3), 2.03-1.98 (m, 1 H, CHHcis). 
13C NMR (CDCl3, 125.77 MHz) 198.96 (s), 171.24 (s), 136.86 (s), 136.70 (d), 133.08 

(d), 128.58 (d), 128.48 (d), 128.01 (d), 85.16 (d), 42.90 (t), 39.66 (d), 38.08 (t), 21.24 

(q). CI-MS 244 (2, M+), 201 (14), 199 (43), 185 (100), 169 (45), 155 (11), 105 (99). 

Anal. Calcd for C15H16O3 (244.29): C, 73.75; H, 6.60; Found: C, 73.45; H, 6.16. 

Data of cis-5d. Pale yellow liquid. IR (film) 3064, 2971, 1731, 1685, 1243. 1H NMR 

(CDCl3, 500 MHz) δ 8.04-7.42 (m, 5 H, arom. H), 6.10 (ddd, J = 5.6 Hz, 2.2 Hz, 1.1 Hz, 

1 H, CH=CH), 5.86 (ddd, J = 5.6 Hz, 2.1 Hz, 2.1 Hz, 1 H, CH=CH), 5.68-5.65 (m, 1 H, 

CHOAc), 3.30-3.23 (m, 1 H, CHCH2COPh), 3.17 (dd, J = 17.1 Hz, 6.4 Hz, 1 H, 

CHHCOPh), 3.07 (dd, J = 17.1 Hz, 8.0 Hz, 1 H, CHHCOPh), 2.68 (ddd, J = 14.4 Hz, 7.9 

Hz, 7.9 Hz, 1 H, CHHcis), 1.60 (s, 3 H, OCOCH3), 1.49 (ddd, J = 14.4 Hz, 4.1, 4.1 Hz, 1 

H, CHHtrans). 13C NMR (CDCl3, 125.77 MHz) 198.80 (s), 170.81 (s), 140.27 (d), 136.89 

(s), 133.15 (d), 129.81 (d), 128.62 (d), 128.03 (d), 79.56 (d), 45.02 (t), 39.73 (d), 36.71 

(t), 21.30 (q). CI-MS 243 (0.4, [M-1]+), 185 (100), 189 (33), 121 (7), 105 (50). Anal. 

Calcd for C15H16O3 (244.29): C, 73.75; H, 6.60; Found: C, 73.86; H, 6.71. 

Data of 8d. White solid. Mp 144°C. IR (KBr) 3366, 2917, 1743, 1366, 1235, 1063, 

1022, 912. 1H NMR (CDCl3, 500 MHz) δ 7.65-7.25 (m, 5 H, arom. H, minor), 7.55-7.28 

(m, 5 H, arom. H, major), 5.99 (dd, J = 5.2 Hz, 2.4 Hz, 1 H, CH=CH, minor), 5.93 (dd, J 

= 5.2 Hz, 2.2 Hz, 1 H, CH=CH, minor), 5.90 (s, 2 H, CH=CH, major), 5.41 (d, J = 6.6 

Hz, 1 H, CHO, major), 5.38-5.35 (m, 1 H, CHO, minor), 5.32-5.29 (m, 1 H, CHOAc, 

major), 5.06 41 (d, J = 8.7 Hz, 1 H, CHOAc, minor), 3.52-3.47 (m, 1 H, CH, major), 

3.36-3.31 (m, 1 H, CH, minor), 3.04 (s, 1 H, OH, major), 2.90 (s, 1 H, OH, minor), 2.77-

2.71 (m, 1 H, CHHendo, minor), 2.44-2.39 (m, 1 H, CHHexo, major), 2.38-2.31 (m, 1 H, 

CHHexo, minor), 2.21-2.17 (m, 1 H, CHHendo, major), 2.14 (s, 3 H, COCH3, minor), 1.38 

(s, 3 H, COCH3, major). 13C NMR (CDCl3, 125.77 MHz) 169.69 (s, major, minor), 

139.13 (s, major, minor), 135.83 (d, minor), 134.93 (d, major), 131.49 (d, minor), 129.86 

(d, major), 128.26 (d, minor), 127.66 (d, major), 126.88 (d, major), 126.05 (d, minor), 

125.42 (d, minor), 108.00 (s, major, minor), 89.18 (d, major), 88.14 (d, minor), 79.74 (d, 

minor), 78.03 (d, major), 42.39 (d, major), 40.20 (d, minor), 32.45 (t, minor), 31.38 (t, 
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major), 20.89 (q, minor), 20.29 (q, major). CI-MS 259 (3, [M-1]+), 199 (12), 183 (100), 

123 (17), 105 (50), 61 (22). Anal. Calcd for C15H16O4 (260.29): C, 69.22; H, 6.20; 

Found: C, 69.23; H, 6.25. 

Data of 9d1. White solid. Mp 99°C. 1H NMR (CDCl3, 500 MHz) δ 7.38-7.20 (m, 5 H, 

arom. H), 6.04 (ddd, J = 5.7 Hz, 2.4 Hz, 2.4 Hz, 1 H, CH=CH), 5.95 (dddd, J = 5.7 Hz, 

2.2 Hz, 2.2 Hz, 2.2 Hz, 1 H, CH=CH), 5.48 (ddd, J = 7.1 Hz, 2.2 Hz, 2.2 Hz, 1 H, CHO), 

4.25 (d, J = 10.5 Hz, 1 H, CH=C), 3.45-3.39 (m, 1 H, CH), 2.23 (dddd, J = 18.1 Hz, 9.0 

Hz, 2.3 Hz, 2.3 Hz, 1 H, CHHexo), 2.03 (dddd, J = 18.1 Hz, 4.8 Hz, 4.8 Hz, 2.3 Hz, 1 H, 

CHHendo). 13C NMR (CDCl3, 125.77 MHz) 176.83 (s), 135.45 (s), 129.08 (d), 128.54 (d), 

128.21 (d), 127.33 (d), 87.10 (d), 49.31 (d), 41.34 (d), 34.13 (t). CI-MS 183 (7, [M-1]+), 

173 (22), 155 (100), 135 (19), 129 (21), 105 (20), 91 (31). Anal. Calcd for C13H12O 

(184.24): C, 84.75; H, 6.57; Found: C, 84.36; H, 6.96. 

Data of 9d2. White solid. Mp 142°C. IR (KBr) 3416, 3063, 2932, 1723, 1240, 1024, 

700. 1H NMR (CDCl3, 500 MHz) δ 7.55-7.20 (m, 5 H, arom. H), 6.08 (dddd, J = 5.8 Hz, 

2.3 Hz, 2.3 Hz, 1.1 Hz, 1 H, CH=CH), 5.81 (dddd, J = 5.8 Hz, 4.3 Hz, 4.3 Hz, 2.2 Hz, 1 

H, CH=CH), 5.65-5.62 (m, 1 H, CHO), 4.07 (ddd, J = 9.0 Hz, 6.4 Hz, 3.1 Hz, 1 H, CH), 

2.53-2.50 (m, 2 H, CH2), 2.23 (s, 3 H, OCOH3). 13C NMR (CDCl3, 125.77 MHz) 168.86 

(s), 138.98 (s), 135.01 (d), 130.17 (s), 129.67 (s), 129.10 (d), 128.40 (d), 128.32 (d), 

125.52 (d), 88.26 (d), 43.64 (d), 35.91 (t), 20.08 (q). CI-MS 243 (27, [M+1]+), 242 (19, 

M+), 199 (81), 183 (100), 164 (74), 105 (61). 

 

Reaction of 2-vinylbicyclo[2.2.1]hept-5-en-2-ol (3e). According to general procedure. 

From 3e (500 mg, 3.67 mmol) and LTA (3.26 g, 7.34 mmol). FC (Hexane/Et2O 8:2 to 

1:1 and CH2Cl2/Et2O 92:8 to 96:4) gave unseparable cis- and trans-4e in a 99:1 ratio 

(385 mg, 54%) which unfortunately transformed totally into compounds 10e1 (119 mg, 

12%) in a 7.7:2.3:1.9:1 ratio, unseparable AcO-epimers of 10e2 in a 1.3:1 ratio (278 mg, 

30%), unseparable AcO-epimers of 10e3 (68 mg, 6%), along with unseparable mixture of 

10e4 and 10e5 in a 2:1 ratio (34 mg, 6%). 

Data of 10e1. Pale yellow liquid. IR (film) 3455, 2959, 2919, 1745, 1372, 1231, 1042. 
1H NMR (CDCl3, 500 MHz) 5.93-5.72 (m, 6 H, CH=CH, CH=CH, others), 5.81 (m, 1 H, 
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CH=CH, major), 5.71-5.69 (m, 1 H, CH=CH, major), 5.30-5.15 (m, 6 H, CHO, CHOAc, 

others), 5.29-5.27 (m, 1 H, CHO, major), 5.18 (dd, J = 7.2 Hz, 2.9 Hz, 1 H, CHOAc, 

major), 4.54-4.15 (m, 6 H, CH2OAc, others), 4.49 (dd, J = 12.1 Hz, 2.9 Hz, 1 H, 

CHHOAc, major), 4.15 (dd, J = 12.1 Hz, 7.3 Hz, 1 H, CHHOAc, major), 3.17-3.09 (m, 1 

H, CH, major), 3.08-1.43 (m, 15 H, CH2, CH, others), 2.61-2.54 (m, 1 H, 

CH=CHCHHexo, major), 2.28-2.17 (m, 2 H, CHHexo, CH=CHCHHendo, major), 2.14 (s, 3 

H, OCOH3, others), 2.13 (s, 3 H, OCOH3, others), 2.12 (s, 3 H, OCOH3, others), 2.09 (s, 

3 H, OCOH3, major), 2.08 (s, 3 H, OCOH3, others), 2.05 (s, 3 H, OCOH3, others), 2.05 

(s, 3 H, OCOH3, major), 2.04 (s, 3 H, OCOH3, others), 1.63 (dd, J = 12.6 Hz, 9.7 Hz, 1 

H, CHHendo, major). 13C NMR (CDCl3, 125.77 MHz) 170.78 (s, major), 170.15 (s, 

major), 132.73 (d, major), 130.76 (d, major), 105.32 (s, major), 90.10 (d, major), 73.03 

(d, major), 63.13 (t, major), 41.64 (t, major), 38.14 (d, major), 37.71 (t, major), 20.93 (q, 

major), 20.82 (q, major). CI-MS 269 (10, [M-1]+), 253 (57), 227 (14), 209 (33), 193 

(100), 151 (52), 125 (35), 61 (56). Anal. Calcd for C13H18O6 (270.28): C, 57.77; H, 6.71; 

Found: C, 58.01; H, 6.75. 

Data of 10e2. Pale yellow liquid. IR (Film) 3475, 2927, 1746, 1372, 1241, 1226, 1047. 
1H NMR (CDCl3, 500 MHz) δ 5.96-5.92 (m, 2 H, CH=CH, major, minor), 5.70-5.67 (m, 

2 H, CH=CH, major, minor), 5.59-5.31 (m, 4 H, CHO, CHOAc, major, minor), 4.82 (d, J 

= 2.5 Hz, 1 H, C=CH, major), 4.78 (d, J = 2.5 Hz, 1 H, C=CH, minor), 4.29-4.24 (m, 2 

H, CHHOAc, major, minor), 4.18-4.11 (m, 2 H, CHHOAc, major, minor), 3.63-3.57 (m, 

2 H, CH, major, minor), 2.59-2.53 (m, 2 H, CHHexo, major, minor), 2.26-2.20 (m, 2 H, 

CHHendo, major, minor), 2.05 (s, 3 H, OCOCH3, major), 2.05 (s, 3 H, OCOCH3, minor), 

1.99 (s, 3 H, OCOCH3, minor), 1.99 (s, 3 H, OCOCH3, major). 13C NMR (CDCl3, 

125.77 MHz) 170.40 (s, major, minor), 169.80 (s, major), 169.76 (s, minor), 150.53 (s, 

minor), 150.29 (s, major), 134.79 (d, major), 134.69 (d, minor), 129.11 (d, major), 

129.10 (d, minor), 104.04 (d, major), 103.12 (d, minor), 91.56 (d, major), 91.55 (d, 

minor), 67.17 (s, minor), 67.03 (s, major), 63.36 (t, minor), 63.34 (t, major), 43.72 (d, 

minor), 43.69 (d, major), 39.30 (t, major), 39.27 (t, minor), 20.86 (q, major), 20.82 (q, 

minor), 20.62 (q, major, minor). CI-MS 252 (2, M+), 193 (85), 151 (100), 135 (26), 133 
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(68), 107 (14), 79 (11). Anal. Calcd for C13H16O5 (252.27): C, 61.90; H, 6.39; Found: C, 

61.82; H, 6.52. 

Data of 10e3. Pale yellow liquid. IR (film) 3062, 2930, 1731, 1686, 1242. 1H NMR 

(CDCl3, 360 MHz) δ 5.94-5.91 (m, 1 H, CH=CH), 5.68 (dddd, J = 6.1 Hz, 1.8 Hz, 1.8 

Hz, 1.8 Hz, 1 H, CH=CH), 5.63-5.60 (m, 2 H, C=CH, CHOAc), 5.39 (d, J = 6.0 Hz, 1 H, 

CHO), 4.32 (dd, J = 11.9 Hz, 3.4 Hz, 1 H, CHHOAc), 4.21 (dd, J = 11.9 Hz, 7.3 Hz, 1 

H, CHHOAc), 3.06 (dddd, J = 18.0 Hz, 1.8 Hz, 1.8 Hz, 1.8 Hz, 1 H, CHHendo), 2.75 

(dddd, J = 18.0 Hz, 2.5 Hz, 2.5 Hz, 0.9 Hz, 1 H, CHHexo), 2.12 (s, 3 H, OCOCH3), 2.05 

(s, 3 H, OCOCH3), 2.03 (s, 3 H, OCOCH3). 13C NMR (CDCl3, 50.3 MHz) 170.37 (s), 

170.12 (s), 169.62 (s), 155.99 (s), 134.98 (d), 127.13 (d), 101.80 (d), 95.39 (s), 95.00 (d), 

67.15 (d), 63.22 (t), 44.95 (t), 21.47 (q), 20.79 (q), 20.60 (q). CI-MS 311 (3, [M+1]+), 

310 (2, M+), 256 (26), 191 (82), 149 (100), 137 (20), 131 (21), 123 (37), 101 (35), 95 

(25). Anal. Calcd for C15H18O7 (310.31): C, 58.06; H, 5.85; Found: C, 57.98; H, 6.02. 

Data of 10e4. Pale yellow liquid. 1H NMR (CDCl3, 500 MHz) δ 6.23 (ddd, J = 5.6 Hz, 

2.4 Hz, 2.4 Hz, 1 H, CH=CH), 5.98-5.96 (m, 1 H, CH=CH), 5.64 (d, J = 9.5 Hz, 1 H, 

C=CH), 5.40 (ddd, J = 6.6Hz, 2.2 Hz, 2.2 Hz, 1 H, CHO), 3.41-3.35 (m, 1 H, CH), 2.59-

2.53 (m, 1 H, CHHendo), 2.45 (dddd, J = 18.0 Hz, 9.1 Hz, 2.7 Hz, 1.9 Hz, 1 H, CHHexo), 

2.21 (s, 3 H, OCOCH3). 13C NMR (CDCl3, 125.77 MHz) 169.78 (s), 140.12 (d), 127.98 

(d), 86.24 (d), 69.71 (d), 39.12 (d), 31.49 (t), 20.51 (q). 

Data of 10e5. Pale yellow liquid. 1H NMR (CDCl3, 500 MHz) δ 6.10 (dddd, J = 5.7 Hz, 

2.4 Hz, 2.4 Hz, 0.9 Hz, 1 H, CH=CH), 5.89 (dddd, J = 5.7 Hz, 4.3 Hz, 2.2 Hz, 2.2 Hz, 1 

H, CH=CH), 5.54-5.52 (m, 1 H, CHO), 3.18-3.11 (m, 1 H, CH), 2.84 (dd, J = 18.4 Hz, 

10.5 Hz, 1 H, CHH), 2.80-2.74 (m, 1 H, CHH), 2.33 (dd, J = 18.4 Hz, 5.8 Hz, 1 H, 

CHH), 2.34-2.29 (m, 1 H, CHH). 13C NMR (CDCl3, 125.77 MHz) 172.05 (s), 136.85 

(d), 129.05 (d), 89.61 (d), 39.57 (t), 36.04 (t), 35.09 (d). 

 

Alcohol (11). NaBH4 was added by small portions over 45 min. to a solution of cis-5-

acetylmethylcyclopent-2-enol 1-O-acetate (cis-4b) (2.5 g, 13.72 mmol) in dry MeOH (15 

ml) at 0°C, under N2. The mixture was stirred for a supplementary 5-10 min, until gas 

emission stopped, and hydrolyzed with water (25 ml). The product was extracted with 
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AcOEt (4 x 30 ml), dried over MgSO4 and the solvent evaporated to afford the crude 

alcohols (2.25 g, 89%) as pale yellow liquid containing a 1.2:1 mixture of isomers.  

To a solution of this (2.16 g, 11.72 mmol) and imidazole (1.76 g, 25.79 mmol) in dry 

DMF (10 ml) at rt, was added t-butyldimethylsilyl chloride (TBDMSCl). The resulting 

solution was let at rt for 19 h and poured over Et2O/H2O 4:1 (250 ml). The phases were 

separated and the organic layer washed with H2O (2 x 50 ml). The combined organic 

layers were dried (MgSO4). Evaporation of the solvent gave the crude product (3.39 g, 

97%) as a pale yellow liquid. 

These (3.29 g, 11.0 mmol) were dissolved in MeOH (100 ml). After addition of K2CO3 

(3.8 g, 27.55 mmol), the solution was stirred at rt for 1 h, before neutralizing with a 1 M 

solution of HCl. The reaction mixture was concentrated, extracted with AcOEt (1 x 100 

ml and 2 x 70 ml) and dried (MgSO4). Evaporation of the solvent afforded the crude 

alcohols 11. Lobar chromatography (Hexane/AcOEt 9:1) allowed separation of the t-

butyldimethylsilyloxyl epimers, giving sequentially minor and major 11 isomers in 81% 

yield as pale yellow liquids.  

11-Minor: 1H NMR (CDCl3, 360 MHz) δ  5.84-5.78 (m, 2 H, CH=CH), 5.53-5.50 (m, 1 

H, CHOH), 4.19-4.11 (m, 1 H, CHOTBDMS), 3.58 (br, 1 H, OH), 2.57-2.49 (m, 1 H, 

CHH), 2.26-2.16 (m, 1 H, CH), 1.96 (ddddd, J = 16.2 Hz, 8.6 Hz, 2.1 Hz, 2.1 Hz, 2.1 Hz, 

1 H, CHH), 1.76 (ddd, J = 14.0 Hz, 9.8 Hz, 4.6 Hz, 1 H, CHH), 1.66 (ddd, J = 14.0 Hz, 

4.1 Hz, 4.1 Hz, 1 H, CHH), 1.22 (d, J = 6.4 Hz, 3 H, CH3), 0.92 (s, 9 H, C(CH3)3), 0.11 

(s, 3 H, SiCH3), 0.11 (s, 3 H, SiCH3). 13C NMR (CDCl3, 50.3 MHz) 133.97 (d), 131.87 

(d), 83.10 (d), 68.42 (d), 44.39 (d), 42.08 (t), 38.50 (t), 25.86 (q), 22.40 (q), 18.19 (s), -

4.76 (q), -4.98 (q).  

11-Major: 1H NMR (CDCl3, 360 MHz) δ  5.89-5.87 (m, 1 H, CH=CH), 5.76 (dddd, J = 

5.8 Hz, 1.8 Hz, 1.8 Hz, 1.8 Hz, 1 H, CH=CH), 4.47-4.45 (m, 1 H, CHOH), 3.97-3.88 (m, 

1 H, CHOTBDMS), 2.62 (ddddd, J = 16.5 Hz, 7.9 Hz, 2.1 Hz, 2.1 Hz, 2.1 Hz, 1 H, 

CHH), 2.14-2.04 (m, 1 H, CH), 1.95 (ddddd, J = 16.5 Hz, 6.1 Hz, 2.1 Hz, 2.1 Hz, 2.1 Hz, 

1 H, CHH), 1.76 (ddd, J = 13.4 Hz, 7.7 Hz, 5.8 Hz, 1 H, CHH), 1.43 (ddd, J = 13.4 Hz, 

8.9 Hz, 4.6 Hz, 1 H, CHH), 1.18 (d, J = 6.1 Hz, 3 H, CH3), 0.89 (s, 9 H, C(CH3)3), 0.07 

(s, 3 H, SiCH3), 0.06 (s, 3 H, SiCH3). 13C NMR (CDCl3, 50.3 MHz) 133.40 (d), 133.30 
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(d), 83.76 (d), 67.44 (d), 45.03 (d), 44.29 (t), 37.75 (t), 25.91 (q), 24.27 (q), 18.10 (s), -

4.21 (q), -4.63 (q).  

Mixed isomers: IR (film) 3368, 3057, 2930, 1472, 1377, 1256, 1053, 837. CI-MS 257 

(14, [M+1]+), 139 (41), 159 (5), 119 (7), 107 (100), 79 (7). Anal. Calcd for C14H28O2Si 

(256.46): C, 65.57; H, 11.00; Found: C, 65.55; H, 10.85. 

 

Epoxide (12).35 To a solution of allylic alcohol mino-11 (200 mg, 780 µmol) and 

vanadyl acetylacetonate (VO(acac)2) (1 mg, 4 µmol) in dry benzene (3 ml) under N2 at 

rt, was added t-BuOOH (5.5 M in nonane; 0.17 ml, 936 µmol) dropwise. The resulting 

solution was stirred at 40°C for 20 h. Then, an additional 0.3 eq. of t-BuOOH (5.5 M in 

nonane; 43 µl, 234 µmol) was dropped into the mixture to complete the reaction which 

was let for 4 h more at 40°C. Evaporation of the solvent, filtration of the residue on a 

Florisil column with Et2O to remove the metal complex and evaporation of the eluent 

afforded the crude epoxide. FC (Hexane/AcOEt 8:2) gave pure epoxide 12 (201 mg, 

95%) as a colorless liquid. IR (film) 3435, 2932, 2251, 1738, 1464, 1256, 1074, 910, 

735. 1H NMR (CDCl3, 360 MHz) δ  4.31 (br, 1 H, OH), 4.13-4.06 (m, 1 H, 

CHOTBDMS), 3.78 (d, J = 7.6 Hz, 1 H, CHOH), 3.50 (m, 1 H, CHO), 3.37 (d, J = 3.0 

Hz, 1 H, CHO), 2.18 (dd, J = 14.0 Hz, 7.4 Hz, 1 H, CHH), 1.90-1.80 (m, 1 H, CH), 1.56-

1.53 (m, 2 H, CH2), 1.32 (dd, J = 14.0 Hz, 10.0 Hz, 1 H, CHH), 1.16 (d, J = 6.6 Hz, 3 H, 

CH3), 0.88 (s, 9 H, C(CH3)3), 0.08 (s, 3 H, SiCH3), 0.07 (s, 3 H, SiCH3). 13C NMR 

(CDCl3, 50.3 MHz) 78.86 (d), 68.44 (d), 58.24 (d), 53.69 (d), 41.21 (t), 33.76 (d), 33.68 

(t), 25.72 (q), 21.89 (q), 18.07 (s), -4.91 (q), -5.15 (q). CI-MS 273 (44, [M+1]+), 257 

(24), 215 (25), 197 (26), 141 (100), 123 (49), 81 (24). Anal. Calcd for C14H28O3Si 

(272.46): C, 61.72; H, 10.36; Found: C, 61.68; H, 10.18. 

 

Adenine derivative 13.36 To a suspension of 12 (30 mg, 110 µmol), adenine (30 mg, 

220 µmol) and PPh3 (58 mg, 220 µmol) in dry dioxane (3 ml) under N2 at rt, was added a 

solution of DEAD (38 mg, 220 µmol) in dry dioxane (1.5 ml) over a period of 1 h. The 

resulting mixture was stirred at rt for 24 h and concentrated. FC of the residue 

(CH2Cl2/MeOH 30:1 to 20:1) afforded 13 (26 mg, 60%) as a white solid. Mp 164°C. IR 
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(KBr) 3430, 3344, 3154, 2930, 1655, 1603, 1254, 1072, 841. 1H NMR (CDCl3, 500 

MHz) δ  8.36 (d, J = 3.7 Hz, 1 H, arom. H), 7.67 (s, 1 H, arom. H), 5.91 (s, 2 H, NH2), 

5.22 (d, J = 6.7 Hz, 1 H, CHAd), 3.82 (d, J = 2.3 Hz, 1 H, CHO), 3.74-3.68 (m, 1 H, 

CHOTBDMS), 3.62 (d, J = 2.5 Hz, 1 H, CHO), 2.48-2.42 (m, 1 H, CH), 2.39 (dd, J = 

13.9 Hz, 7.6 Hz, 1 H, CHH), 1.73 (dd, J = 13.9 Hz, 10.4 Hz, 1 H, CHH), 1.02-0.89 (m, 2 

H, CH2), 0.86 (d, J = 6.0 Hz, 3 H, CH3), 0.84 (s, 9 H, C(CH3)3), 0.06 (s, 3 H, SiCH3), 

0.02 (s, 3 H, SiCH3). 13C NMR (CDCl3, 125.77 MHz) 155.12 (s), 153.22 (d), 149.49 (s), 

148.06 (s), 119.00 (s), 66.97 (d), 57.38 (d), 56.90 (d), 56.16 (d), 38.50 (t), 35.53 (d), 

32.93 (t), 25.84 (q), 24.04 (q), 17.99 (s), -4.27 (q), -4.61 (q). CI-MS 390 (27, M+), 332 

(15), 279 (60), 201 (14), 136 (23), 119 (100), 105 (13), 57 (12). Anal. Calcd for 

C19H31O2SiN5 (389.57): C, 58.58; H, 8.02; Found: C, 58.10; H, 7.74. 

 

Azide 14.37 Diethylaluminium azide was prepared in situ by dropwise addition of 

Et2AlCl (1 M in Hexane; 0.16 ml, 155 µmol) to a suspension of NaN3 (11 mg, 171 

µmol) in dry toluene (1 ml) under N2 at rt. The resulting mixture was stirred at rt for 4 h 

and cooled to –78°C. A solution of epoxide 12 (30 mg, 78 µmol) in dry toluene (1 ml) 

was then added dropwise. The reaction mixture was let warm to rt and stirred during 40 

h. After dilution with Et2O (20 ml) and quenching with MeOH (500 µl), Na2SO4·10H2O 

(300 mg) was added, the resulting mixture filtered on cellite and the solvents removed. 

FC (Hexane/AcOEt 8:2) afforded compound 14 (28 mg, 80%) as a white solid. Mp 80-

81°C. IR (KBr) 3383, 2930, 2361, 2342, 2099, 1256, 1086, 837, 775, 669. 1H NMR 

(CDCl3, 500 MHz) δ  4.93 (d, J = 1.6 Hz, 1 H, OH), 4.20-4.15 (m, 1 H, CHOTBDMS), 

4.01 (m, 1 H, CHOH), 3.82 (dd, J = 7.5 Hz, 2.5 Hz, 1 H, CHN3), 3.66 (ddd, J = 8.1 Hz, 

5.4 Hz, 1.5 Hz, 1 H, CHOH), 2.90 (d, J = 1.7 Hz, 1 H, CHOH), 2.34-2.23 (m, 2 H, CH, 

CHH), 1.71 (ddd, J = 14.4 Hz, 3.0 Hz, 3.0 Hz, 1 H, CHH), 1.59 (dd, J = 14.4 Hz, 4.0 Hz, 

1 H, CHH), 1.26-1.23 (m, 1 H, CHH), 1.21 (d, J = 6.3 Hz, 3 H, CH3), 0.92 (s, 9 H, 

C(CH3)3), 0.14 (s, 3 H, SiCH3), 0.13 (s, 3 H, SiCH3). 13C NMR (CDCl3, 125.77 MHz) 

77.34 (d), 76.94 (d), 68.36 (d), 65.02 (d), 41.84 (t), 37.51 (d), 34.76 (t), 25.76 (q), 21.84 

(q), 18.14 (s), -4.87 (q), -5.10 (q). CI-MS 316 (100, [M+1]+), 273 (17), 258 (15), 184 
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(15), 156 (26), 141 (33), 138 (27), 72 (23). Anal. Calcd for C14H29O3SiN3 (315.49): C, 

53.30; H, 9.27; Found: C, 53.44; H, 9.29. 

 

Trichloroacetimidate 15.38 To hexane washed 55% NaH (189 mg, 4.32 mmol) under 

N2, were added a solution of major alcohol 11 in CH2Cl2 (8 ml), and trichloroacetonitrile 

(446 mg, 2.06 mmol). The reaction was stirred at rt for 4 days, and NaH (0.2 equiv.) and 

trichloroacetonitrile (0.2 equiv.) added each 24 h. The reaction mixture was then filtered 

on cellite, the cellite washed with CH2Cl2 (10 ml) and the solvent evaporated to afford 

crude trichloroacetimidate 15 as a yellow liquid. 1H NMR (CDCl3, 360 MHz) δ  8.25 (s, 

1 H, NH), 6.08 (dddd, J = 5.7 Hz, 2.5 Hz, 2.5 Hz, 0.9 Hz, 1 H, CH=CH), 5.90 (dddd, J = 

5.7 Hz, 2.1 Hz, 1 H, CH=CH), 5.5 (m, 1 H, CHO), 3.92-3.83 (m, 1 H, CHOTBTMS), 

2.72 (ddddd, J = 17.1 Hz, 7.9 Hz, 2.4 Hz, 2.4 Hz, 2.4 Hz, 1 H, CHH), 2.54-2.45 (m, 1 H, 

CH), 2.06-1.99 (m, 1 H, CHH), 1.84 (ddd, J = 13.4 Hz, 7.3 Hz, 6.1 Hz, 1 H, CHH), 1.45 

(ddd, J = 13.4 Hz, 9.3 Hz, 4.6 Hz, 1 H, CHH), 1.17 (d, J = 6.10 Hz, 3 H, CH3), 0.87 (s, 9 

H, C(CH3)3), 0.15 (s, 3 H, SiCH3), 0.14 (s, 3 H, SiCH3). 13C NMR (CDCl3, 50.3 MHz) 

162.62 (s), 137.14 (d), 128.23 (d), 112.32 (s), 91.02 (d), 66.97 (d), 44.52 (t), 40.20 (d), 

37.64 (t), 25.85 (q), 23.99 (q), 18.06 (s), -4.22 (q), -4.84 (q). 

 

Trichloroacetamide 16. A solution of crude 15 (40 mg, 100 µmol) in xylene (4 ml) was 

heated to reflux under N2 for 5 h. Evaporation of the solvent under high vacuum for one 

night afforded the crude 16 which was purified by FC (Hexane/AcOEt 9:1) to afford 

trichloroacetamide 16 (20 mg, 50% from major 11) as a slightly yellow solid. Mp 106-

107°C. IR (KBr) 3297, 2928, 2857, 1686, 1524, 1258, 824. 1H NMR (CDCl3, 360 MHz) 

δ  6.55 (d, J = 6.71 Hz, 1 H, NH), 6.02 (ddd, J = 5.8 Hz, 2.1 Hz, 1.5 Hz, 1 H, CH=CH), 

5.72 (ddd, J = 5.8 Hz, 2.1 Hz, 2.1 Hz, 1 H, CH=CH), 4.00-4.93 (m, 1 H, CHN), 3.89-

3.80 (m, 1 H, CHOTBDMS), 3.07-2.98 (m, 1 H, CH), 1.99 (ddd, J = 13.9 Hz, 7.9 Hz, 

5.5 Hz, 1 H, CHH), 1.9 (ddd, J = 13.9 Hz, 7.4 Hz, 3.7 Hz, 1 H, CHH), 1.64 (ddd, J = 

13.4 Hz, 8.5 Hz, 4.9 Hz, 1 H, CHH), 1.26 (ddd, J = 13.4 Hz, 9.5 Hz, 3.7 Hz, 1 H, CHH), 

1.15 (d, J = 6.1 Hz, 3 H, CH3), 0.89 (s, 9 H, C(CH3)3), 0.06 (s, 3 H, SiCH3), 0.05 (s, 3 H, 

SiCH3). 13C NMR (CDCl3, 50.3 MHz) 161.17 (s), 142.1 (d), 128.31 (d), 92.00 (s), 67.09 
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(d), 57.38 (d), 45.26 (t), 40.89 (d), 37.76 (t), 25.85 (q), 24.36 (q), 18.05 (s), -4.20 (q), -

4.76 (q). CI-MS 125 (32), 107 (100), 74 (94). Anal. Calcd for C16H28O2Cl3SiN (400.84): 

C, 47.94; H, 7.04; Found: C, 47.80; H, 6.96. 

 

Diols 17. To a solution of 16 (20 mg, 50 µmol) in THF/H2O (95:5, 1 ml) were added 

sequentially NMO (7 mg, 55 µmol), p-toluenesulfonic acid (p-TSA) (10 mg, 52 µmol) 

and a small OsO4 crystal. The resulting solution was stirred at rt for 18 h and diluted 

with AcOEt (4 ml). Na2SO4 (1.5 g) and p-TSA (15 mg) were added before the mixture 

was filtered on silice and the solvents evaporated. FC (Hexane/AcOEt 7:3) of the crude 

afforded pure diols 17 as a colorless liquid containing a 1.5:1 ratio of both cis-diols, the 

all-cis compound being the major one. IR (KBr) 3389, 2930, 2859, 1703, 1516, 1256, 

1072, 824. 1H NMR (CDCl3, 500 MHz) δ  7.65 (d, J = 7.3 Hz, 1 H, NH, major), 6.80 (d, 

J = 3.1 Hz, 1 H, NH, minor), 4.28-4.23 (m, 1 H, CHNH, major), 4.14-4.05 (m, 3 H, 

CHOH, major, CHNH, minor, CHOH, minor), 4.00 (m, 1 H, CHOH, minor), 3.94-3.84 

(m, 2 H, CHOTBDMS, major, minor), 3.73 (dd, J = 8.0 Hz, 4.3 Hz, 1 H, CHOH, major), 

3.62 (d, J = 4.2 Hz, 1 H, OH, minor), 3.46 (s, 1 H, OH, major), 3.04 (s, 1 H, OH, minor), 

2.92 (s, 1 H, OH, major), 2.27-2.11 (m, 3 H, CHH, minor, CHH, minor, CH, major), 

1.94 (ddd, J = 14.0 Hz, 9.4 Hz, 4.9 Hz, 1 H, CHH, major), 1.84-1.75 (m, 2 H, CHH, 

minor, CHH, major), 1.72-1.61 (m, 2 H, CHH, minor, CHH, major), 1.55-1.48 (m, 2 H, 

CH, minor, CHH, major), 1.20 (d, J = 6.1 Hz, 3 H, CH3, major), 1.18 (d, J = 6.0 Hz, 3 H, 

CH3, minor), 0.90 (s, 9 H, C(CH3)3, major), 0.90 (s, 9 H, C(CH3)3, minor), 0.10 (s, 3 H, 

SiCH3, minor), 0.10 (s, 3 H, SiCH3, major), 0.09 (s, 3 H, SiCH3, major), 0.09 (s, 3 H, 

SiCH3, minor). 13C NMR (CDCl3, 125.77 MHz) 163.24 (s, minor), 161.57 (s, major), 

93.41 (s, minor), 92.66 (s, major), 80.16 (d, minor), 78.70 (d, major), 73.89 (d, minor), 

72.35 (d, major), 68.30 (d, major), 68.14 (d, minor), 58.54 (d, minor), 51.45 (d, major), 

43.43 (t, major), 39.72 (t, minor), 39.57 (d, major), 37.06 (d, minor), 35.72 (t, major), 

34.70 (t, minor), 25.91 (q, major), 25.90 (q, minor), 24.56 (q. major), 24.53 (q, minor), 

18.15 (s, major), 18.08 (s, minor), -4.10 (q, minor), -4,17 (q, major), -4.33 (q, major), -

4.54 (q, minor). FAB-MS 435 (18, M+), 301 (40), 284 (29), 239 (28), 197 (71), 159 
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(100). Anal. Calcd for C16H30O4Cl3SiN (434.86): C, 44.19; H, 6.95; Found: C, 44.36; H, 

6.85. 
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Unusual Radical Cyclization-Fragmentation-Ring Expansion of the 

Norbornanone Framework : A New Access to  

Medium-Sized Bridged Bicycles 
 

 
1. Introduction 

 

Over the past decade, fragmentation of the norbornane framework along the a-bond has 

been plenty investigated as a powerful method for the stereoselective formation of 

functionalized cyclopentane synthons.1-3 However, the idea of taking advantage of the 

existing skeleton for ring expansion along the b-bond would bring a new method for the 

formation of medium sized-bridged bicycles. Those represent a useful but often hardly 

accessible class of compound, as witnessed by the famous example of taxol synthesis.4,5 

Radical cyclization represents a well-known strategy for ring expansion processes.6,7 It 

involves addition of a carbon radical to a carbonyl group and leads to the formation of an 

intermediate alkoxyl radical,8 which undergoes β-fragmentation. To our knowledge, the 

only example of scission of the b-bond of a bridged bicycle has been reported by Kim9,10 

and by Benati.11 It concerns the synthesis of amides and lactams by cyclization of a 

(tributylstannyl)aminyl radical onto a carbonyl moiety and subsequent fragmentation of 

the derived alkoxyl radical. Studies on the stereochemical outcome of intramolecular 

carbon radical cyclization to carbonyl groups of bridged bicyclo[2.2.2]octenones and 

octanones have been reported by Dowd12 but led to no ring expanded products. 

With those ideas in mind, our intent was to explore the intramolecular free radical 

addition of carbon-centered radical A derived from bicyclic ketonic precursor 4 to the 

carbonyl group, anticipating that this would lead to β-scission of alkoxyl radical B along 

its b-bond, yielding the bicyclic ring-expanded radical C (Figure). In this paper, we 

report the synthesis of radical precursor 4 in 6 steps and 37% overall yield starting from 

norbornenone, and its radical reactions. As a readily available compound in its racemic13 
and optically active14,15 forms, norbornenone represented a starting material of choice. 
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2. Results and discussion 

 

The radical precursor 4 was synthesized from norbornenone. Thus, one the one hand, 

dihydroxylation of norbornenone with osmium tetroxide/N-methylmorpholine N-oxide 

and p-toluenesulfonic acid as additive to avoid retro-aldol reaction of the cis-diol onto 

the trans-isomer, gave a 94% yield of 5,6-dihydroxybicyclo[2.2.1]heptan-2-one, which 

was protected with 2,2-dimethoxypropane, affording 5,6-

(isopropylidenedioxy)bicyclo[2.2.1]heptan-2-one 1 in 88% yield. On the other hand, 3-

tert-butyldimethylsilyloxypropan-1-al 2 was prepared in 46% overall yield by mono-

silylation of propan-1,3-diol with tert-butyldimethylsilyl chloride (TBDMSCl)16 and 

Swern oxidation of the resulting tert-butyldimethylsilyloxypropanol.17 
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Aldol coupling of ketone 1 with aldehyde 2 produced adduct 3 as a 9:1 exo/endo-mixture 

of isomers, as determined by NMR-coupling patterns. The configuration of the OH-

bearing center was not determined. However, as suggested by the study of aldol 

reactions of bicyclo[2.2.1]heptan-2-one derivatives,18 we assumed that only the threo 

adduct had been formed. In the presence of tetrabutylammonium fluoride (TBAF) in a 

cold THF solution, 3 underwent desilylation in 82% yield. Then, treatment of the diol 

with 1.06 equiv. of p-toluenesulfonyl chloride (p-TsCl) in the presence of triethylamine 
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and catalytic diethylaminopyridine (DMAP) allowed selective tosylation of the primary 

alcohol in 68% yield. Nevertheless, due to the basic conditions, the side-chain was 

observed to rearrange partially, obviously via a retro-aldol reaction, to furnish a final 

3.3:1 exo/endo-ratio of tosylates. This side-reaction, leading also to some decomposition, 

explains the mediocre yield of this step. Finally, displacement of the tosylate with a large 

excess of solid potassium iodide (KI) in DMSO19 gave radical precursor 4 in 81% yield 

(Scheme 1). 

In order to test its reactivity, compound 4 was submitted to the different radical 

conditions with the results summarized in Table (Scheme 2). 
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Table. Radical reaction of radical precursor 4 (exo/endo ratio 3.3:1) 

Reductor Solvent Temperature % Yieldc of 5 % Yieldc of 6 
(exo/endo ratio)d

Bu3SnHa C6H6 80°C - 65 (1:1.7) 

Bu3SnHb C6H6 80°C 30 56 (1:1.1) 

(TMS)3SiHb C6H6 80°C 31 54 (1:2.7) 

Bu3SnHb C6H5CH3 110°C 40 60 (1:1.9) 
aOne pot addition of reductor and a catalytic amount of AIBN. bSyringe pump addition of reductor and a catalytic amount of AIBN 
over 12 h. cYields of isolated and purified products. dNMR determined exo/endo ratio. 
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In all the cases, only two products were observed: the expected ring expansion product 5 

along with a diastereomeric mixture of direct reduction product 6. Exclusive scission 

along the b-bond at the expense of a-bond cleavage is best explained by strain release 

due to three-carbon ring expansion and formation of a larger [5.2.1] bicycle. 

One pot addition of tributyltin hydride in the presence of AIBN in refluxing benzene led 

only to direct reduction, no product of β-scission being detected then. The 3.3:1 

endo/exo ratio of starting compound 4 was preserved and 6 was obtained in 65% yield. 

Formation of the expected product 5 needed slow addition of reductor, the process being 

otherwise no competitive with H-abstraction of Bu3SnH from the primary C-centered 

radical. Thus syringe pump addition (12 h) of Bu3SnH (1.1 equiv.) and AIBN (cat.) to 4 

in refluxing benzene gave a 30% yield of 5, along with a 1.1:1 endo/exo diastereomeric 

mixture of 6 in 56% yield. With the aim of enhancing the alkoxyl radical reactivity, other 

parameters were varied. Utilization of a poor H-donor, tris(trimethylsilyl)silane 

((TMS3)SiH),20 in the same conditions did not improve significantly the fragmentation 

reaction. However, the endo/exo ratio of 6 turned to 2.7:1. Finally, augmentation of the 

temperature by running the reaction in toluene, with Bu3SnH/AIBN, afforded a 40% of 

ring expanded 5 and a 60% of reduced 6 in a 1.9:1 endo/exo ratio. Beside the increase of 

total yield, the improvement of the β-scission process can be explained by the higher 

reactivity of intermediate alkoxyl radical B at 110°C and its consequent quicker 

fragmentation.  

Nevertheless, the observed variation of the endo/exo ratio of 5 shows that the exo isomer 

of starting compound 4 is more reactive toward radical cyclization than its endo epimer, 

which reacts maybe not at all. This is best explained by steric reasons. Indeed, less 

accessible for intramolecular cyclization than the exo face, the more crowded endo face 

of 4 reacts very slowly or presumably not. These explanations are consistent with 

Dowd’s observations that, in the bicyclic [2.2.2]octanone series, radical precursors are 

unreactive toward cyclization.12 They are supported by the study of simple nucleophilic 

additions to the carbonyl group of norbornanone derivatives. For instance, reactions of 

norbonenone with a variety of Grignard reagents afford the product of exo attack with a 
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very high stereocontrol (>10:1) in favor of the endo alcohol.1 Thus, exclusive reaction of 

the exo epimer of 4 should lead to higher yields of ring expanded compound 5. 

 

3. Conclusion 

 

In summary, we have presented a new and promising approach to the synthesis of 

medium sized bridged bicycles with good yields, that takes advantage of the existence of 

readily available norbornenone derivatives and involves a novel radical intramolecular 

cyclization/β-fragmentation sequence. As a matter of fact, radical precursors can be 

straightforward synthesized in high yield, optically active compound being also easily 

available. Moreover, the smooth conditions needed for the radical reaction are 

compatible with a number of sensitive functional groups and no protection is needed for 

hydroxyl groups. 

 

4. Experimental Section 

 

THF was freshly distilled from K under N2; CH2Cl2, DMF and benzene were distilled 

from CaH2 under N2; Et2O was distilled from Na/benzophenone and toluene from Na 

under N2. Solvents for chromatography were distilled. Flash chromatography (FC) and 

filtration were performed with Baker silica gel (0.063-0.200 mm). TLC were run on 

Merck silica gel 60 F254 analytical plates; detection was carried out with either UV, 

iodine, spraying with solution of phosphomolybdic acid (25 g), Ce(NH4)2(NO3)6·4H2O 

(10 g), concd H2SO4 (60 ml) and water (940 ml), or with a solution of KMnO4 (3 g), 

K2CO3 (20 g), water (300 ml) and 5% NaOH (5 ml), with subsequent heating. Mps, not 

corrected, were determined on a Büchi-Tottoli apparatus. IR spectra were recorded on a 

Mattson Unicam 5000 spectrophotometer, in cm-1. NMR spectra were recorded on a 

Varian Gemini 200 (1H 200 MHz and 13C 50.3 MHz), a Bruker AM 360 (1H 360 MHz) 

or a Bruker Avance DRX-500 (1H 500 MHz and 13C 125.77 MHz); for 1H δ are given in 

ppm relative to CDCl3 (7.27 ppm), for 1C δ are given in ppm relative to CDCl3 (77.1 

ppm), and coupling constant J are given in Hz. 1H NMR splitting pattern abbreviations 
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are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. 13C NMR 

multiplicities were determined by the APT and DEPT sequences, abbreviations are: q, 

CH3; t, CH2; d, CH; s, quaternary carbons. Assignments were confirmed by NOE or 

NOESY, COSY and HETCOR experiments. MS spectra were recorded on a Vacuum 

Generator Micromass VG 70/70E DS 11-250; EI (70 eV), CI (CH4 gas); m/z (%). 

Elemental analysis were performed by Ilse Beetz, Microanalytisches Laboratorium, D-

96301 Kronach, Germany, and Ciba Geigy Mikrolabor, Marly, Switzerland. 

 

5,6-(Isopropylidenedioxy)bicyclo[2.2.1]heptan-2-one (1).  A solution of norbornenone 

(6.0 g, 55.5 mmol) in THF/H2O (95:5, 100 ml) under N2 at rt was treated sequentially 

with N-methylmorpholine N-oxide (8.3 g, 61.0 mmol), p-toluenesulfonic acid hydrate 

(11.1 g, 58.3 mmol) and a solution of osmium tetroxide (282 mg, 1.11 mmol) in THF 

(5.6 ml). After 46 h, when the reaction was completed, AcOEt (360 ml), Na2SO4 (144 g) 

and p-toluenesulfonic acid hydrate (1.45 g) were added to the green mixture. Filtration 

over silica, elution with AcOEt and evaporation of the solvent afforded a green oil, 

which was purified by FC (AcOEt) to give 7.04 g (94%) of 5,6-

dihydroxybicyclo[2.2.1]heptan-2-one. 1H NMR (CDCl3, 360 MHz): δ = 4.01-3.95 (m, 2 

H, CHOH), 3.58 (s, 1H, OH), 2.69-2.65 (m, 1 H, CH), 2.63 (s, 1 H, CH), 2.25-2.19 (m, 1 

H, CHHCO), 2.11 (ddd, J = 18.6 Hz, 5.2 Hz, 0.9 Hz, 1 H, CHH), 1.78 (dd, J = 18.6 Hz, 

4.3 Hz, 1 H, CHH), 1.73-1.67 (m, 1 H, CHHCO). 13C NMR (CDCl3, 50.3 MHz): δ = 

217.00 (s), 72.88 (d), 68.97 (d), 58.54 (d), 42.50 (d), 41.58 (t), 31.49 (t). IR (film) 3416, 

2976, 2922, 1746, 1059. CI-MS: m/z (%) =143 (28, [M+1]+), 125 (72), 107 (36), 83 

(100). Anal. Calcd for C7H10O3 (142.15): C, 59.14; H, 7.09. Found: C, 58.82; H, 7.39. 

The diol (7.01 g, 49.3 mmol) was dissolved in 2,2-dimethoxypropane (100 ml, 809 

mmol) at rt. After addition of p-toluenesulfonic acid hydrate (~10 mg), the mixture was 

stirred for 1.5 h. Filtration on neutral alox and evaporation afforded the crude 6 which 

was purified by FC (Hexane/AcOEt 3:7), giving 7.89 g (88%) of a white solid. Mp = 

75.5-76°C. 1H NMR (CDCl3, 360 MHz): δ = 4.34 (dd, J = 5.5 Hz, 1.2 Hz, 1 H, CHO), 

4.28 (d, J = 5.5 Hz, 1 H, CHO), 2.76-2.71 (m, 2 H, CH), 2.19-2.13 (m, 1 H, CHH), 2.09 

(ddd, J = 18.3 Hz, 4.9 Hz, 0.9 Hz, 1 H, CHH), 1.70-1.64-2.19 (m, 1 H, CHH), 1.69 (dd, J 
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= 18.3 Hz, 4.6 Hz, 1 H, CHH), 1.50 (s, 3 H, CH3), 1.32 (s, 3 H, CH3). 13C NMR (CDCl3, 

50.3 MHz): δ = 213.68 (s), 111.18 (s), 81.19 (d), 77.17 (d), 55.29 (d), 39.47 (d), 39.29 

(t), 31.09 (t), 25.41 (q), 25.26 (q). IR (KBr) 2984, 2936, 1751, 1208, 1057. CI-MS: m/z 

(%) = 183 (100, [M+1]+), 167 (37), 125 (79), 101 (51). Anal. Calcd for C10H14O3 

(142.15): C, 65.92; H, 7.74. Found: C, 65.78; H, 7.61. 

 

3-tert-Butyldimethylsilyloxypropan-1-al (2). A solution of propane 1,3-diol (9.7 g, 

127.5 mmol) and imidazole (7.23 g, 106.2 mmol) in DMF (30 ml) was cooled to –25°C 

and tert-butyldimethylsilyl chloride (8.0 g, 53.1 mmol) was added in portions. After 1 h, 

the mixture was stirred at 0°C for 4 h. Then it was diluted with pentane (150 ml), washed 

with water (6 x 30 ml) and dried on MgSO4. Evaporation of the solvent afforded the 

crude 3-tert-butyldimethylsilyloxypropan-1-ol which was purified by column 

chromatography (Hexane/AcOEt 8:2) to afford 5 g (49%) of the alcohol as a colorless 

liquid. To a solution of oxalyl chloride (2.68 ml, 30.21 mmol) in dry CH2Cl2 (100 ml) at 

–78°C was added DMSO (4.29 ml, 60.41 mmol) in dry CH2Cl3 (25 ml). After 15 min, 3-

tert-butyldimethylsilyloxypropan-1-ol (5 g, 2.63 mmol) in dry CH2Cl2 (100 ml) was 

added. After 1.25 h, Et3N (10.25 ml, 73.54 mmol) was added. The mixture was let warm 

to rt during 2 h, quenched with H2O and extracted with CH2Cl2 (3 x 250 ml). The 

combined organic phases were washed with 1% HCl, water, 5% NaHCO3 and water 

before drying (MgSO4) and evaporation of the solvent. FC (Hexane/AcOEt 5:1) afforded 

pure 3-tert-butyldimethylsilyloxypropan-1-al (5) (4.65 g, 94%) as a colorless liquid. 

Aldehyde 2 was used quickly after its preparation. 1H NMR (CDCl3, 200 MHz): δ = 9.79 

(t, J = 2.0 Hz, 1 H, C1-H), 3.97 (t, J = 6.0 Hz, 2 H, C3-H2), 2.58 (dt, J = 6.0 Hz, 2.0 Hz, 2 

H, C2-H2), 0.88 (s, 9 H, SiC(CH3)3), 0.03 (s, 6 H, Si(CH3)2). 13C NMR (CDCl3, 50.3 

MHz): δ = 201.59 (s), 57.35 (t), 46.52 (t), 25.74 (q), 18.13 (s), -5.53 (q). 

 

3-(3--tert-Butyldimethylsilyloxypropan-1-ol-1-yl)-5,6-

(isopropylidenedioxy)bicyclo[2.2.1] heptan-2-one (3). Lithium diisopropylamine was 

prepared by addition of n-butyl lithium (2.71 ml, 5.71 mmol of a 2.1 M solution in 

hexane), to dry diisopropylamine (0.85 ml, 6.04 mmol) in dry THF (10 ml) at –78°C 
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under N2. After 15 min, ketone 1 (1.00 g, 5.49 mmol) dissolved in dry THF (10 ml) was 

dropped into the LDA solution with a syringe during 30 min. The mixture was kept at –

78°C for 30 min before a solution of aldehyde 2 (3.33 g, 17.56 mmol) in dry THF (10 

ml) was added. After 15 min, the reaction was quenched at –78°C with acetic acid (1 

equiv., 0.37 ml), diluted with aqueous saturated NaHCO3 (20 ml) and let warm to rt. 

Water (80 ml) and Et2O (50 ml) were added. The phases were separated. The aqueous 

phase was further extracted with Et2O (3 x 100 ml), the combined organic layers were 

dried over MgSO4 and the solvents were evaporated. FC (Hexane/AcOEt 8:2) of the 

crude afforded pure aldol adduct 3 (2.01 g, 99%) as a colorless liquid. 1H NMR (CDCl3, 

500 MHz): δ = 4.33 (d, J = 5.1 Hz, 1 H, CHO), 4.30 (d, J = 5.1 Hz, 1 H, CHO), 4.01-

3.97 (m, 1 H, CHOH), 3.86-3.76 (m, 2 H, CH2OTBDMS), 2.70 (s, 1 H, CH), 2.62 (d, J = 

1.5 Hz, 1 H, CH), 2.09-2.06 (m, 1 H, CHH), 1.94-1.91 (m, 1 H, CHH), 1.83-1.76 (m, 1 

H, CHHCH2OTBDMS), 1.74-1.68 (m, 1 H, CHHCH2OTBDMS), 1.62 (dd, J = 7.4 Hz, 

3.5 Hz, 1 H, CHCHOH), 1.48 (s, 3 H, CH3), 1.32 (s, 3 H, CH3), 0.88 (s, 9 H, C(CH3)3), 

0.06 (s, 6 H, Si(CH3)2). 13C NMR (CDCl3, 122.77 MHz): δ = 216.11 (s), 111.27 (s), 

81.73 (d), 76.73 (d), 69.96 (d), 60.75 (t), 55.37 (d), 52.92 (d), 42.64 (d), 37.56 (t), 29.11 

(t), 25.86 (q), 25.21 (q), 24.11 (q), 18.18 (s), -5.48 (q). IR (film) 3493, 2957, 2858, 1748, 

1383, 1059, 837. CI-MS: m/z (%) = 371 (26, M+), 221 (23), 167 (39), 125 (100), 101 

(56), 95 (23), 79 (34). Anal. Calcd for C19H34O5Si (370.56): C, 61.58; H, 9.25. Found: C, 

61.55; H, 9.07. 

 

3-(3-Iodopropan-1-ol-1-yl)-5,6-(isopropylidenedioxy)bicyclo[2.2.1]heptan-2-one (4). 

Tetrabutylammonium fluoride (5.71 ml, 5.71 mmol of a 1 M solution in THF) was 

dropped to a solution of aldol adduct 3 (1.92 g, 5 19 mmol) in dry THF (50 ml), at 0°C 

under N2. After 30 min, the reaction was quenched by addition of water (100 ml). 

Extraction with water (4 x 100 ml), filtration over MgSO4 and evaporation of the 

solvents gave the crude desilylated diol. FC (Hexane/AcOEt 1:9) afforded the pure diol 

(1.09 g, 82%) as a colorless liquid.  

Monotosylation was accomplished by treatment of a solution of diol (1.02 g, 3.98 

mmol), dimethylaminopyridine (15 mg, 0.119 mmol) and triethylamine (0.67 ml, 4.78 
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mmol) in CH2Cl2 (40 ml) under N2 at rt. After 18 h, the reaction mixture was poured on 

water (80 ml). Separation of the phases, extraction with AcOEt (3 x 80 ml), filtration of 

the combined organic layers over MgSO4, evaporation of the solvent and FC 

(Hexane/AcOEt) of the crude afforded the pure tosylate (1.22 g, 68%) which was used 

quickly after preparation. 

To a solution of tosylate (1.22 g, 2.97 mmol) in DMSO (50 ml), solid KI (45.4 g, 273.4 

mmol) was added. The resulting yellow mixture was stirred at rt during 24 h, before the 

reaction was quenched with aqueous saturated NaCl (180 ml) and solid Na2S2O3 until 

discoloration of the solution. Extraction with Et2O (3 x 120 ml), filtration over MgSO4, 

evaporation of the solvents and FC (Hexane/AcOEt 8:2) of the crude gave a 3.3:1 

exo/endo mixture of pure iodide 4 (882 mg, 81%) as a white solid. Mp = 95.5°C. 1H 

NMR (CDCl3, 360 MHz): δ = 4.96 (d, J = 5.2 Hz, 1 H, CHO, minor), 4.36 (d, J = 5.2 Hz, 

1 H, CHO, major), 4.33 (d, J = 5.2 Hz, 1 H, CHO, major), 4.25 (d, J = 5.1 Hz, 1 H, 

CHO, minor), 4.17-4.09 (m, 1 H, CHOH, minor), 3.87-3.80 (m, 1 H, CHOH, major), 

3.46 (m, 1 H, OH), 3.36-3.24 (m, 4 H, CH2I, major, minor), 2.85 (d, J = 2.8 Hz, 1 H, CH, 

minor), 2.79 (s, 1 H, CH, minor), 2.76 (s, 1 H, CH, major), 2.54 (d, J = 1.2 Hz, 1 H, CH, 

major), 2.23 (dd, J = 4.9 Hz, 4.9 Hz, 1 H, CHCHOH, minor), 2.19 (d, J = 11.0 Hz, 1 H, 

CHH, minor), 2.14-1.91 (m, 5 H, CHH, major, CH2, major, minor), 1.85 (ddd, J = 11.6 

Hz, 1.5 Hz, 1.5 Hz, 1 H, CHH, major), 1.60 (dd, J = 9.2 Hz, 3.4 Hz, 1 H, CHCHOH, 

major), 1.52 (ddd, J = 10.7 Hz, 1.4 Hz, 1.4 Hz, 1 H, CHH, minor), 1.49 (s, 6 H, CH3, 

major, minor), 1.33 (s, 3 H, CH3, major), 1.32 (s, 3 H, CH3, minor). 13C NMR (CDCl3, 

122.77 MHz): δ = 216.57 (s, major), 214.25 (s, minor), 111.45 (s, major), 110.85 (s, 

minor) 81.49 (d, major, minor), 77.76 (d, minor), 77.64 (t, minor), 77.01 (t, major), 

70.42 (d, major), 68.70 (d, minor), 56.87 (d, minor), 55.83 (d, minor), 55.23 (d, major), 

52.10 (d, major), 42.23 (d, minor), 42.09 (d, major), 39.29 (t, major), 38.26 (t, minor), 

30.57 (t, minor), 29.30 (t, major), 25.22 (q, major, minor), 24.22 (q, major), 24.16 (q, 

minor). IR (KBr) 3520, 2986, 2903, 1744, 1375, 1209, 1061, 856. CI-MS: m/z (%) = 367 

(2, [M+1]+), 349 (10), 119 (10), 94 (44), 81 (55), 73 (73), 61 (100). Anal. Calcd for 

C13H19O4I (366.20): C, 42.64; H, 5.23. Found: C, 42.49; H, 5.33. 
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General procedure (GP). Radical reactions. A degassed solution of radical precursor 4 

(1.00 mmol) in solvent (20 ml) was heated to reflux under an inert atmosphere, treated 

by one pot or dropwise (syringe pump) addition over 12 h with a solution of reductor and 

2,2’-azobis(isobutyronitrile) (AIBN; 16 mg, 0.10 mmol) in solvent (20 ml) and kept 

under reflux for 4 additional h. The solution was cooled to rt, treated with KF (500 mg, 

8.61 mmol) for 24 h and the solvent was evaporated. The residue was dissolved in 

hexane (5 ml) and filtered on FC (hexane 150 ml and then AcOEt 100 ml). The AcOEt-

containing fraction was evaporated and purified by FC (Hexane/AcOEt). 

 

According to GP. From 4 (200 mg, 0.546 mmol), Bu3SnH (0.16 ml, 0.601 mmol) and 

AIBN (9 mg, 0.055 mmol) added one pot, in benzene (11 ml). FC (Hexane/AcOEt 8:2) 

gave 6 (85 mg, 65%) as a 1:1.7 exo/endo mixture of isomers. 

According to GP. From 4 (100 mg, 0.273 mmol) in benzene (5.5 ml), and Bu3SnH (0.09 

ml, 0.300 mmol) and AIBN (5 mg, 0.055 mmol) in benzene (5.5 ml) added dropwise. FC 

(Hexane/AcOEt 7:3) gave 5 (20 mg, 30%) along with 6 (36 mg, 56%) as a 1:1.1 

exo/endo mixture of isomers. 

According to GP. From 4 (150 mg, 0.410 mmol) in benzene (8 ml), and (TMS)3SiH 

(0.19 ml, 0.614 mmol) and AIBN (7 mg, 0.041 mmol) in benzene (8 ml) added 

dropwise. FC (Hexane/AcOEt 7:3) gave 5 (30 mg, 31%) along with 6 (53 mg, 54%) as a 

1:2.7 exo/endo mixture of isomers. 

According to GP. From 4 (150 mg, 0.410 mmol) in toluene (8 ml), and Bu3SnH (0.12 

ml, 0.451 mmol) and AIBN (7 mg, 0.041 mmol) in toluene (8 ml) added dropwise. FC 

(Hexane/AcOEt 7:3) gave 5 (39 mg, 40%) along with 6 (59 mg, 60%) as a 1:1.9 

exo/endo mixture of isomers. 

 

5-Hydroxy-8,9-(isopropylidenedioxy)bicyclo[5.2.1]decan-2-one (5). White solid. Mp 

= 62.5°C. 1H NMR (CDCl3, 500 MHz): δ = 4.69 (m, 1 H, CHOH), 4.65 (ddd, J = 6.9 Hz, 

6.9 Hz, 3.9 Hz, 1 H, CHO), 4.25 (dd, J = 7.4 Hz, 7.4 Hz, 1 H, CHO), 3.42 (dd, J = 2.2 

Hz, 2.2 Hz, 1 H, OH), 2.65-2.60 (m, 1 H, CHCHHCHOH), 2.48 (ddd, J = 19.0 Hz, 11.7 

Hz, 9.1 Hz, 1 H, CHHCO), 2.27 (dd, J = 19.0 Hz, 9.2 Hz, 1 H, CHHCO), 2.19-2.15 (m, 1 
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H, CHHCH2CO), 2.13-2.05 (m, 2 H, CHCHHCH, CH), 2.04-2.00 (m, 1 H, 

CHHCH2CO), 1.96 (dd, J = 10.7 Hz, 4.2 Hz, 1 H, CHCO), 1.87-1.80 (m, 1 H, 

CHCHHCH), 1.50 (s, 3 H, CH3), 1.38-1.30 (m, 1 H, CHCHHCHOH), 1.32 (s, 3 H, CH3). 
13C NMR (CDCl3, 122.77 MHz): δ = 218.34 (s), 113.23 (s), 85.06 (d), 79.74 (d), 71.94 

(d), 58.87 (d), 42.83 (d), 34.91 (t), 30.24 (t), 30.09 (t), 28.54 (t), 27.49 (q), 25.12 (q). IR 

(KBr) 3451, 2926, 1738, 1379, 1211, 1028, 878. CI-MS: m/z (%) = 241 (74, [M+1]+), 

225 (47), 193 (32), 183 (89), 165 (100), 147 (16), 125 (13), 83 (17). Anal. Calcd for 

C13H20O4 (240.30): C, 64.98; H, 8.39. Found: C, 65.04; H, 8.32. 

 

3-(propan-1-ol-1-yl)-5,6-(isopropylidenedioxy)bicyclo[2.2.1]heptan-2-one (6). White 

solid. Mp = 61°C. 1H NMR (CDCl3, 360 MHz): δ = 4.99 (d, J = 5.0 Hz, 1 H, CHO, 

minor), 4.36 (d, J = 5.0 Hz, 1 H, CHO, major), 4.33 (ddd, J = 5.4 Hz, 1.3 Hz, 1.3 Hz, 1 

H, CHO, major), 4.25 (ddd, J = 5.3 Hz, 1.4 Hz, 1.4 Hz, 1 H, CHO, minor), 3.91 (dddd, J 

= 8.3 Hz, 4.9 Hz, 4.9 Hz, 4.9 Hz, 1 H, CHOH, minor), 3.70 (dddd, J = 9.1 Hz, 7.7 Hz, 

3.1 Hz, 1.7 Hz, 1 H, CHOH, major), 3.33 (m, 1 H, OH), 2.89-2.87 (m, 1 H, CH, minor), 

2.78-2.77 (m, 1 H, CH, minor), 2.74 (s, 1 H, CH, major), 2.54 (m, 1 H, CH, major), 2.22 

(dd, J = 5.0 Hz, 5.0 Hz, 1 H, CHCHOH, minor), 2.18 (ddd, J = 10.9 Hz, 1.1 Hz, 1.1 Hz, 

1 H, CHH, minor), 2.11-2.08 (m, 1 H, CHH, major), 1.83-1.80 (m, 1 H, CHH, major), 

1.71-1.57 (m, 3 H, CHCHOH, major, CH2CH3, minor), 1.52-1.32 (m, 3 H, CHH, minor, 

CH2CH3, major), 1.49 (s, 3 H, CH3, major), 1.48 (s, 3 H, CH3, minor), 1.34 (s, 3 H, CH3, 

major), 1.32 (s, 3 H, CH3, minor), 0.97 (t, J = 7.4, 3 H, CH2CH3, major), 0.92 (t, J = 7.4, 

3 H, CH2CH3, minor). 13C NMR (CDCl3, 122.77 MHz): δ = 217.69 (s, major), 215.38 (s, 

minor), 111.38 (s, major), 110.72 (s, minor) 81.61 (d, major), 78.01 (d, minor), 77.77 (d, 

minor), 76.47 (d, major), 71.49 (d, major), 70.48 (d, minor), 57.03 (d, minor), 55.69 (d, 

minor), 55.27 (d, major), 52.21 (d, major), 42.10 (d, major), 41.94 (d, minor), 30.57 (t, 

minor), 29.26 (t, major), 28.10 (t, minor), 27.97 (t, major), 25.23 (q., minor), 25.21 (t, 

major), 24.17 (q, minor), 24.13 (q, major), 10.23 (q, minor), 8.87 (q, minor). IR (KBr) 

3488, 2986, 2938, 1746, 1377, 1209, 1055, 968, 868. CI-MS: m/z (%) = 241 (36, 

[M+1]+), 223 (100), 205 (11), 183 (17), 165 (97), 147 (16), 107 (11). Anal. Calcd for 

C13H20O4 (240.30): C, 64.98; H, 8.39. Found: C, 65.05; H, 8.42. 
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Stereoselective Synthesis of Functionalized Bicyclic Ketones via Tandem  

Radical Induced Epoxyde Fragmentation-β-Scission-Cyclization Sequences 

 

 

1. Introduction 

 

Due to their peculiar reactivity, alkoxyl radicals have unique characteristic properties, 

which makes them powerful intermediates in modern organic chemistry.1 Their typical 

transformations include ring closure reactions,2,3 selective hydrogen abstractions,4-6 

remote functionalization of non-activated carbon-hydrogen bonds,7 as well as ring 

expansion of cycloaliphatic compounds by β-scission.8,9 However, such processes 

depend a great deal on the efficiency of alkoxyl radical generation. For example, radical-

induced epoxide fragmentation reaction followed by β-scission of the resulting alkoxyl 

radical has proven to provide10 a useful access to functionalized medium sized 

compounds.11,12 

 
X

O

X
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X

O

X

O O

XH

H

Scheme 1

1 2

3 4

 
 

We recently described radical fragmentation of the norbornene framework as a powerful 

method for the stereoselective formation of functionalized cyclopentane synthons13 or 

for the synthesis of medium size bridged bicycles.14 As part of our ongoing research in 
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this area, we devised to take advantage of the epoxide fragmentation methodology to 

generate alkoxyl radical 2 from oxiranylcarbinyl radical 1. Upon β-scission and 

cyclization of the resulting allylic carbon radical 3, this was expected to afford bicyclic 

radical 4 (Scheme 1), opening a new entry into the synthesis of functionalized bicyclic 

ketones which are known to be the precursors of a variety of natural products.15-18 

 

2. Results and discussion 

 

Radical precursors 7a-c were synthesized by a four steps synthesis from norbornenone 

(5a),13 7-oxabicyclo[2.2.1]hept-5-en-2-one (5b)19 and bicyclo[2.2.2]oct-5-en-2-one 

(5c)20 respectively. Thus, Wittig-Horner-Emmons reaction of the starting ketones 5a-c 

was followed by reduction of the formed esters with AlH3, to afford allylic alcohols 6a-c 

in a 49-75% yield.21 Then, selective epoxidation of the allylic double bond with m-

chloroperbenzoic acid,22 and halogenation of the alcohol functionality with carbon 

tetrabromide and triphenylphosphine23 gave radical precursors 7a-c as mixtures of the 

possible isomers, in a 41-55% yield (Scheme 2). 

 

X X

X

O

O CH2OH

Br

Scheme 2

5a   X = CH2
5b   X = C2H4
5c   X = O

6a   75% 
6b   49%
6c   49%

7a    55%
7b    41%
7c    51%

1) (EtO)2P(O)CH2CO2Et
     NaH, THF, -78°C       r.t.

2) AlH3, THF, 0°C       r.t.

1) m-CPBA, CH2Cl2, 0°C

2) PPh3, CBr4, CH2Cl2, r.t.
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To investigate the reactivity of compounds 7a-c as radical precursors, different radical 

conditions were tested. Tributyltin hydride, tributyltin deuteride or tributyltin allyl 

derivatives and 2,2’-azobis(isobutyronitrile) (AIBN) were added to degassed solutions of 

precursor in benzene. While syringe pump addition was chosen for tributyltin hydride 

and deuteride, allylic tributylstannanes were added one pot, along with AIBN. All the 

reaction resulted in exclusive formation of the expected bicycles 8-12 in moderate to 

good yields. Results of the radical reactions are summarized in Schemes 3 and 5. 

 

X

O Br

n-Bu3SnR, AIBN

O

XH

H
R

Scheme 3

7a-c

C6H6

8 or 9
cis / trans

Entry

1
2
3
4
5

Substrate

7a
7a
7a
7b
7c

R

Hb

Db

Da,c

Hb

Db

Product

8a
9a
9a
8b
9c

Yieldd (cis/trans)

48%
48%    (1.8:1)
  -        (2.1:1)
29%
85%e   (2.9:1)

aOne pot addition of reductor. bSyringue pump addition of reductor over 12h. cReaction was conducted at 
5°C under irradiation with a Phillips sun lamp.dIsolated yields. eMixed with compound 13.

X

CH2
CH2
CH2
C2H4

O

 
 

The first series of reactions was run on compound 7a (Scheme 3, Entries 1-3). After a 

preliminary experiment in thermal conditions, to observe the reaction outcome, 

deuteration was conducted to measure the cis/trans selectivity of the final reduction step. 

While at reflux of benzene, a 1.8:1 cis/trans ratio was observed, irradiation of the 

reaction mixture at 5°C led to a small improvement of the selectivity, which reached a 

2.1:1 cis/trans ratio.  

Successful experiences with substrates 7b and 7c proved the general scope of the 

reaction. Nevertheless, the mediocre 29% yield of 8b obtained with 7b (Scheme 3, Entry 
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4) and the contrasting high 85% yield of 8c purchased with 7c outlined the influence of 

the radical precursor on the reaction (Scheme 3, Entry 5). These results find an 

explanation in the β-scission step, where strain release by fragmentation of the 

intermediate alkoxyl radical 2, constitutes a driving force of the reaction. Consequently, 

opening of the larger less strained bicyclo[2.2.2]oct-5-en-bicycle of 7b promotes the 

radical process less efficiently than cleavage of smaller and more strained 

bicyclo[2.2.1]hept-5-en-bicycles of 7a and 7c. On the other hand, thanks to its ability at 

stabilizing carbon radicals in β-position, the oxygen atom of precursor 7c favors the 

formation of allylic radical 3 and so, all the radical process. However, enolic compound 

9c (X = O) was found to be unstable; upon work up and column, it partially transformed 

into 13, as the result of acid catalyzed hydrolysis and elimination (Scheme 4). 

 

O

O

H

H

O

CHO

H+

Scheme 4

9c 13

 
 

Changes on the nature of the stannane substituent R have shown only a limited effect on 

the reaction outcome (Scheme 5). As reaction of 7a with [2-(methyl)prop-2-

enyl]tributylstannane afforded a 1.5:1 cis/trans ratio of 10a in 59% yield (Scheme 5, 

Entry 1), and reaction of 7a with [2-(trimethylsilyl)prop-2-enyl]tributylstannane gave a 

1.5:1 cis/trans ratio of 12a in 44% yield (Scheme 5, Entry 3), addition of methyl 2-

[(tributylstannyl)methyl]propenoate to 7a yielded only a 32% of 11a in a higher 3.6:1 

ratio (Scheme 5, Entry 2). In the last case, although the increase of selectivity could be 

attributed to the presence of an electron-withdrawing group (CO2Me) on the stannane, it 

cannot be excluded that a degradation of trans-11a is responsible for it. Variation in the 

size of the tributylstannanes, at reflux of benzene, showed no effect on the reaction 

selectivity and yield of 7a as well as of 7b. 
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X

O Br

, AIBNSnBu3

R O

XH

H
R

Scheme 5

7a-b

C6H6

10, 11 or 12
cis / trans

Entry

1
2
3
4

Substrate

7a
7a
7a
7b

R

Mea

CO2Mea

SiMe3
a

Mea

Product

10a
11a
12a
10b

Yieldb (cis/trans)

59%    (1.5:1)
32%    (3.6:1)
44%    (1.5:1)
21%    (2.4:1)

aOne pot addition of reductor. bIsolated yields.

X

CH2
CH2
CH2
C2H4

 
 

Finally, the total observed selectivity in favor of bicycles 8-12 can be explained by three 

factors. 1° Formation of the highly stabilized allylic radical upon β-scission 3 excludes 

fragmentation along the other possible bonds. 2° Due to strain increase, cyclization of 3 

into a bridged bicycle is strongly disfavored. 3° Allylic radical 3 cyclized by an attack to 

the α,β-unsaturated ketone moiety in an “intramolecular radical Michael-type addition” 

 

X

O H
H

Scheme 6

exo-attack

endo-attack

4

 
 

In addition, bimolecular rate constants of oxiranylcarbinyl radical 1 opening (>108 M-1 s-

1) and that of alkoxyl radical 2 β-scission (>108 M-1 s-1) are higher than rate constants of 

alkoxyl radical 2 cyclization into epoxide 1 (about 103 M-1 s-1) and than that of 
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oxiranylcarbinyl radical 1 trapping (10-6 M-1 s-1).24,25 Consequently, direct reduction of 1 

was detained and did not happen. Formation of a cis junction in the bicycle is well 

established and attributed to preferential cyclization toward the less strained transition 

states.26-28 Global preferential cis-trapping of radical 4 is well explained by steric factors: 

the folded geometry of intermediate radical 4 makes its endo face of more hindered but 

not inaccessible to trapping agents (Scheme 6). Thus, the observed preference for the exo 

attack, giving cis-compound, showed to be higher for the more bent [4,4]bicycle of 10b 

(Scheme 5, Entry 4) than for was [4,3]bicycle of 10a (Scheme 5, Entry 1). Geometries of 

compounds 8-12 were attributed after noe-diff NMR experiments or by comparison with 

original spectra.  

 

3. Conclusion 

 

Further studies on the application of this new approach to functionalized bicyclic ketones 

are currently underway and will be reported on in due course. 

 

4. Experimental Section 

 

THF was freshly distilled from K under N2; CH2Cl2 and benzene were distilled from 

CaH2 under N2. Solvents for chromatography were distilled. Flash chromatography (FC) 

and filtration were performed with Baker silica gel (0.063-0.200 mm). TLC were run on 

Merck silica gel 60 F254 analytical plates; detection was carried out with either UV, 

iodine, spraying with solution of phosphomolybdic acid (25 g), Ce(NH4)2(NO3)6·4H2O 

(10 g), concd H2SO4 (60 ml) and water (940 ml), or with a solution of KMnO4 (3 g), 

K2CO3 (20 g), water (300 ml) and 5% NaOH (5 ml), with subsequent heating. Mps, not 

corrected, were determined on a Büchi-Tottoli apparatus. IR spectra were recorded on a 

Mattson Unicam 5000 spectrophotometer, in cm-1. NMR spectra were recorded on a 

Varian Gemini 200 (1H 200 MHz and 13C 50.3 MHz), a Bruker AM 360 (1H 360 MHz) 

or a Bruker Avance DRX-500 (1H 500 MHz and 13C 125.77 MHz); for 1H δ are given in 

ppm relative to CDCl3 (7.27 ppm), for 1C δ are given in ppm relative to CDCl3 (77.1 
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ppm), and coupling constant J are given in Hz. 1H NMR splitting pattern abbreviations 

are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. 13C NMR 

multiplicities were determined by the APT and DEPT sequences, abbreviations are: q, 

CH3; t, CH2; d, CH; s, quaternary carbons. Assignments were confirmed by NOE or 

NOESY, COSY and HETCOR experiments. MS spectra were recorded on a Vacuum 

Generator Micromass VG 70/70E DS 11-250; EI (70 eV), CI (CH4 gas); m/z (%). 

Elemental analysis were performed by Ilse Beetz, Microanalytisches Laboratorium, D-

96301 Kronach, Germany, and Ciba Geigy Mikrolabor, Marly, Switzerland. 

 

General procedure (GP1). Bicyclo[2.2.n]alk-5-en-2-ylidene-acetic acid ethyl ester. A 

solution of triethyl phosphonoacetate (16.7 ml, 83.2 mmol) in dry THF (40 ml) was 

added dropwise to a suspension of NaH (8.5 g, 194.2 mmol) in dry THF, (3 ml) at 0°C, 

under N2. The mixture was stirred at room temperature for 30 min and cooled to –78°C. 

Then, ketone (5) (27.7 mmol) dissolved in dry THF (10 ml) was added over 10 min. The 

resulting mixture was let warm gently. After 20 h, it was poured into cold ether/aqueous 

saturated NH4Cl (1:1, 200 ml) and the phases were separated. The organic layer was 

washed with water and the combined aqueous phases were extracted with Et2O (3 x 100 

ml). The combined extracts were dried over MgSO4, filtered and concentrated under 

reduced pressure to afford the crude product. Flash chromatography (hexane and then 

hexane/AcOEt) afforded pure E/Z mixture of isomers of bicyclo[2.2.n]alk-5-en-2-

ylidene-acetic acid ethyl ester. 

 

Bicyclo[2.2.1]hept-5-en-2-ylidene-acetic acid ethyl ester. According to GP1. From 5a 

(3.0 g, 27.7 mmol), triethyl phosphonoacetate (16.7 ml, 83.2 mmol) and NaH (8.5 g, 

194.2 mmol). FC (Hexane/AcOEt 9:1) gave a 2.8:1 E/Z mixture of bicyclo[2.2.1]hept-5-

en-2-ylidene-acetic acid ethyl ester isomers (4.34 g, 88%) as a colorless oil. IR (film) 

2982, 1711, 1184, 1040. 1H NMR (CDCl3, 360 MHz) δ 6.29 (dd, J = 5.5 Hz, 2.9 Hz, 1 

H, CH=CH, E-isom.), 6.25 (dd, J = 5.5 Hz, 2.6 Hz, 1 H, CH=CH, Z-isom.), 6.09 (ddd, J 

= 5.5 Hz, 3.3 Hz, 0.7 Hz, 1 H, CH=CH, Z-isom.), 6.02 (ddd, J = 5.5 Hz, 3.3 Hz, 0.7 Hz, 

1 H, CH=CH, E-isom.), 5.93-5.91 (m, 1 H, CHCO2Et, E-isom.), 5.69-5.67 (m, 1 H, 
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CHCO2Et, Z-isom.), 4.55-4.52 (m, 1 H, CH, Z-isom.), 4.18 (q, J = 7.0 Hz, 2 H, 

CO2CH2CH3, Z-isom.), 4.14 (q, J = 7.0 Hz, 2 H, CO2CH2CH3, E-isom.), 3.34-3.31 (m, 1 

H, CH, E-isom.), 3.12-3.08 (s, 1 H, CH, E-isom.), 3.05-2.98 (m, 1 H, CH, Z-isom.), 

2.64-2.57 (m, 1 H, CHH, E-isom.), 2.41-2.34 (m, 1 H, CHH, Z-isom.), 2.33 (ddd, J = 

17.3 Hz, 3.7 Hz, 2.2 Hz, 1 H, CHH, E-isom.), 1.93 (ddd, J = 15.8 Hz, 3.7 Hz, 1.5 Hz, 1 

H, CHH, Z-isom.), 1.78-1.73 (m, 1 H, CHH, Z-isom.), 1.72-1.67 (m, 1 H, CHH, E-

isom.), 1.60-1.45 (m, 2 H, CHH, E/Z-isom.), 1.30 (t, J = 7.0 Hz, 3 H, CH3, Z-isom.), 

1.27 (t, J = 7.0 Hz, 3 H, CH3, E-isom.). 13C NMR (CDCl3, 50.3 MHz) 166.84 (s, E-

isom.), 166.21 (s, Z-isom.), 166.08 (s, E-isom.), 165.33 (s, Z-isom.), 139.21 (d, E-isom.), 

138.57 (d, Z-isom.), 133.13 (d, Z-isom.), 132.44 (d, E-isom.), 111.28 (d, Z-isom.), 

110.92 (d, E-isom.), 59.39 (t, E/Z-isom.), 52.28 (d, E-isom.), 50.69 (t, E-isom.), 50.18 (t, 

Z-isom.), 47.72 (d, Z-isom.), 41.73 (d, E-isom), 40.46 (d, Z-isom.), 36.23 (t, Z-isom.), 

35.76 (t, E-isom.), 14.29 (q, E/Z-isom). CI-MS 179 (100, [M+1]+), 178 (11, M+), 151 

(32), 133 (33), 105 (11). Anal. Calcd for C11H14O2 (178.23): C, 74.13; H, 7.92; Found: 

C, 74.16; H, 7.94. 

 

Bicyclo[2.2.2]oct-5-en-2-ylidene-acetic acid ethyl ester. According to GP1. From 5b 

(5.34 g, 43.7 mmol), triethyl phosphonoacetate (26.2 ml, 131.1 mmol) and NaH (13.4 g, 

305.97 mmol). FC (Hexane/AcOEt 95:5) gave a 2.7:1 E/Z mixture of bicyclo[2.2.2]oct-

5-en-2-ylidene-acetic acid ethyl ester isomers (5.7 g, 68%) as a colorless oil. IR (film) 

3050, 2947, 2870, 1711, 1645, 1209, 1152, 1042, 702. 1H NMR (CDCl3, 360 MHz) δ 

6.40-6.35 (m, 2 H, CH=CH, E/Z-isom.), 6.20 (dd, J = 6.7 Hz, 6.7 Hz, 2 H, CH=CH, E/Z-

isom.), 5.68 (dd, J = 2.3 Hz, 2.3 Hz, 1 H, CHCO2Et, E-isom.), 5.58 (dd, J = 1.8 Hz, 1.8 

Hz, 1 H, CHCO2Et, Z-isom.), 4.76-4.75 (m, 1 H, CH, Z-isom.), 4.13 (q, J = 7.0 Hz, 2 H, 

CO2CH2CH3, Z-isom.), 4.12 (q, J = 7.0 Hz, 2 H, CO2CH2CH3, E-isom.), 3.16-3.14 (m, 1 

H, CH, E-isom.), 2.84 (s, 1 H, CH, E-isom.), 2.73 (s, 1 H, CH, Z-isom.), 2.66 (ddd, J = 

19.2 Hz, 2.1 Hz, 2.1 Hz, 1 H, CHH, E-isom.), 2.47 (dddd, J = 19.2 Hz, 2.8 Hz, 2.8 Hz, 

2.8 Hz, 1 H, CHH, E-isom.), 2.29 (ddd, J = 17.7 Hz, 1.8 Hz, 1.8 Hz, 1 H, CHH, Z-

isom.), 2.11 (dddd, J = 17.7 Hz, 2.8 Hz, 2.8 Hz, 2.8 Hz, 1 H, CHH, Z-isom.), 1.63-1.24 

(m, 14 H, CH2, CH3, E/Z-isom.). 13C NMR (CDCl3, 50.3 MHz) 166.91 (s, E/Z-isom.), 
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166.83 (s, E/Z-isom.), 135.73 (d, E-isom.), 135.60 (d, Z-isom.), 131.20 (d, Z-isom.), 

130.54 (d, E-isom.), 111.09 (d, Z-isom.), 110.73 (d, E-isom.), 59.23 (t, E/Z-isom.), 42.23 

(d, E-isom.), 37.31 (t, Z-isom.), 36.00 (t, E-isom.), 34.41 (d, Z-isom.), 31.23 (d, E-isom), 

30.87 (d, Z-isom.), 25.44 (t, E-isom.), 24.75 (t, Z-isom.), 24.61 (t, Z-isom.), 24.48 (t, E-

isom.), 14.28 (q, E/Z-isom). CI-MS 193 (100, [M+1]+), 165 (21), 147 (40), 119 (11). 

Anal. Calcd for C12H16O2 (192.26): C, 74.97; H, 8.39; Found: C, 74.92; H, 8.11. 

 

7-Oxabicyclo[2.2.1]hept-5-en-2-ylidene-acetic acid ethyl ester. According to GP1. 

From 5c (2.0 g, 18.2 mmol), triethyl phosphonoacetate (10.9 ml, 54.5 mmol) and NaH 

(5.6 g, 127.1 mmol). FC (Hexane/AcOEt 9:1) gave a 1.6:1 E/Z mixture of 7-

oxabicyclo[2.2.1]hept-5-en-2-ylidene-acetic acid ethyl ester isomers (2.30 g, 70%) as a 

colorless oil. IR (film) 2982, 2940, 1711, 1676, 1371, 1204. 1H NMR (CDCl3, 360 MHz) 

δ 6.50 (dd, J = 5.7 Hz, 1.7 Hz, 1 H, CH=CH, E-isom.), 6.44 (s, 2 H, CH=CH, Z-isom.), 

6.33 (dd, J = 5.7 Hz, 1.3 Hz, 1 H, CH=CH, E-isom.), 6.12 (s, 1 H, CH, Z-isom.), 5.97-

5.95 (m, 1 H, CHCO2Et, E-isom.), 5.78-5.77 (m, 1 H, CHCO2Et, Z-isom.), 5.20-5.18 (m, 

1 H, CH, E-isom.), 5.13-5.11 (m, 2 H, CH, E/Z-isom.), 4.22-4.09 (m, 4 H, CO2CH2CH3, 

E/Z-isom.), 2.76 (dddd, J = 16.5 Hz, 4.0 Hz, 2.2 Hz, 0.7 Hz, 1 H, CHH, E-isom.), 2.56 

(dddd, J = 15.1 Hz, 4.0 Hz, 1.8 Hz, 0.7 Hz, 1 H, CHH, Z-isom.), 2.44 (ddd, J = 16.5 Hz, 

1.8 Hz, 0.7 Hz, 1 H, CHH, E-isom.), 2.02 (d, J = 15.1 Hz, 1 H, CHH, Z-isom.), 1.32-1.24 

(m, 6 H, CH3, E/Z-isom.). 13C NMR (CDCl3, 50.3 MHz) 166.00 (s, E-isom.), 165.31 (s, 

Z-isom.), 157.48 (s, E-isom.), 156.76 (s, Z-isom.), 137.73 (d, E-isom.), 136.55 (d, Z-

isom.), 132.65 (d, E-isom.), 131.86 (d, Z-isom.), 111.65 (d, E-isom.), 111.49 (d, Z-

isom.), 81.68 (d, E-isom.), 79.66 (d, Z-isom.), 78.16 (d, E-isom.), 76.99 (d, Z-isom.), 

59.42 (t, E/Z-isom.), 33.71 (t, E-isom.), 33.39 (t, Z-isom.), 13.81 (q, E-isom., Z-isom). 

CI-MS 181 (66, [M+1]+), 151 (14), 135 (100), 107 (48), 79 (25), 68 (12). Anal. Calcd for 

C10H12O3 (180.20): C, 66.65; H, 6.71; Found: C, 66.74; H, 6.98. 

 

General procedure (GP2). Bicyclo[2.2.n]alk-5-en-2-ylidene-ethanol (6). To a stirred 

solution of AlH3 prepared in situ by the addition of LiAlH4 (5.5 g, 146.1 mmol) to a 

solution of AlCl3 (6.5 g, 48.7 mmol) in dry THF (40 ml) at 0°C, under N2, was added a 
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solution of ester 6 (24.4 mmol) in dry THF (20 ml) with a syringe, within ca. 20 min, at 

0°C. The mixture was stirred for further 1 h and quenched with MeOH (10 ml). Water 

was added and the insoluble residues were filtered off. The aqueous layer was extracted 

with Et2O (1 x 200 ml and 2 x 100 ml), the combined organic phases dried over MgSO4 

and the solvent evaporated. The resulting crude product was purified by flash 

chromatography (hexane/AcOEt) to yield pure E/Z-6.  

Bicyclo[2.2.1]hept-5-en-2-ylidene-ethanol (6a). According to GP2. From 

bicyclo[2.2.1]hept-5-en-2-ylidene-acetic acid ethyl ester (4.3 g, 24.4 mmol), LiAlH4 (5.5 

g, 146.1 mmol) and AlCl3 (6.5 g, 48.7 mmol). FC (Hexane/AcOEt 7:3) gave pure E/Z-6a 

(2.82 g, 85%) as a slightly yellow oil. IR (film) 3343, 2978, 1450, 1063. 1H NMR 

(CDCl3, 360 MHz) δ 6.16-6.11 (m, 2 H, CH=CH, E/Z-isom.), 6.05 (ddd, J = 5.5 Hz, 3.1 

Hz, 0.6 Hz, 1 H, CH=CH, E-isom.), 6.01 (ddd, J = 5.5 Hz, 3.1 Hz, 0.6 Hz, 1 H, CH=CH, 

Z-isom.), 5.66-5.59 (m, 1 H, CHCH2OH, E-isom.), 5.44 (t, J = 7.0 Hz, 1 H, CHCH2OH, 

Z-isom.), 4.27-4.15 (m, 2 H, CH2OH, Z-isom.), 4.06 (d, J = 7.0 Hz, 2 H, CH2OH, E-

isom.), 3.54-3.50 (m, 1 H, CH, Z-isom.), 3.18-3.15 (m, 1 H, CH, E-isom.), 3.00 (s, 1 H, 

CH, E-isom.), 2.97 (s, 1 H, CH, Z-isom.), 2.33-2.19 (m, 2 H, CHH, E/Z-isom.), 1.77 

(ddd, J = 15.0 Hz, 2.1 Hz, 2.1 Hz, 2 H, CHH, E/Z-isom.), 1.66-1.61 (m, 1 H, CHH, Z-

isom.), 1.61-1.56 (m, 1 H, CHH, E-isom.), 1.39 (d, J = 8.2 Hz, 2 H, CHH, E/Z-isom.), 

1.35 (s, 2 H, OH, E/Z-isom.). 13C NMR (CDCl3, 50.3 MHz) 145.57 (s, Z-isom.), 145.04 

(s, E-isom.), 136.69 (d, Z-isom.), 136.39 (d, E-isom.), 133.91 (d, E-isom.), 133.38 (d, Z-

isom.), 118.27 (d, Z-isom.), 117.86 (d, E-isom.), 60.89 (t, E-isom.), 60.10 (t, Z-isom.), 

50.47 (d, E-isom.), 49.79 (t, E-isom.), 49.53 (t, Z-isom.), 45.17 (d, Z-isom.), 41.49 (d, E-

isom.), 40.87 (d, Z-isom.), 33.66 (t, Z-isom.), 30.81 (t, E-isom.). CI-MS 136 (8, M+), 119 

(10), 118 (17), 91 (12). Anal. Calcd for C9H12O (136.19): C, 79.37; H, 8.88; Found: C, 

79.61; H, 8.66. 

Bicyclo[2.2.2]oct-5-en-2-ylidene-ethanol (6b). According to GP2. From 

bicyclo[2.2.2]oct-5-en-2-ylidene-acetic acid ethyl ester (5.28 g, 27.5 mmol), LiAlH4 

(6.25 g, 164.8 mmol) and AlCl3 (7.32 g, 54.9 mmol). FC (Hexane/AcOEt 8:2) gave pure 

E/Z-6b (2.98 g, 72%) as a colorless oil. IR (film) 3345, 3046, 2942, 1669, 1427, 1003, 

698. 1H NMR (CDCl3, 360 MHz) δ 6.32-6.17 (m, 2 H, CH=CH, Z-isom.), 6.24 (dd, J = 
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4.6 Hz, 3.1 Hz, 2 H, CH=CH, E-isom.), 5.36 (ddt, J = 6.7 Hz, 6.7 Hz, 2.4 Hz, 1 H, 

CHCH2OH, E-isom.), 5.32 (ddt, J = 7.3 Hz, 7.3 Hz, 1.8 Hz, 1 H, CHCH2OH, Z-isom.), 

4.13 (d, J = 7.3 Hz, 2 H, CH2OH, Z-isom.), 4.02 (dddd, J = 6.7 Hz, 1.1 Hz, 1.1 Hz, 1.1 

Hz, 1 H, CH2OH, E-isom.), 3.43-3.41 (m, 1 H, CH, Z-isom.), 2.98-2.95 (m, 1 H, CH, E-

isom.), 2.73-2.68 (s, 1 H, CH, E-isom.), 2.64 (m, 1 H, CH, Z-isom.), 2.23-2.12 (m, 2 H, 

CHH, E/Z-isom.), 2.04-1.96 (m , 2 H, CHH, E/Z-isom.), 1.90 (s, 2 H, OH, E/Z-isom.), 

1.64-1.27 (m, 8 H, CH2, E/Z-isom.). 13C NMR (CDCl3, 50.3 MHz) 145.29 (s, Z-isom.), 

144.46 (s, E-isom.), 134.99 (d, Z-isom.), 134.05 (d, E-isom.), 132.70 (d, E-isom.), 

132.05 (d, Z-isom.), 118.29 (d, E/Z-isom.), 59.66 (t, E-isom.), 58.56 (t, Z-isom.), 40.91 

(d, E/Z-isom.), 35.67 (t, Z-isom.), 33.72 (d, Z-isom.), 31.99 (t, E-isom.), 31.04 (d, E-

isom.), 26.13 (t, E-isom.), 25.96 (t, Z-isom.), 24.99 (t, E/Z-isom.). CI-MS 150 (27, M+), 

133 (100), 104 (16). Anal. Calcd for C10H14O (150.22): C, 79.96; H, 9.39; Found: C, 

79.88; H, 9.21. 

7-Oxabicyclo[2.2.1]hept-5-en-2-ylidene-ethanol (6c). According to GP2. From 7-

oxabicyclo[2.2.1]hept-5-en-2-ylidene-acetic acid ethyl ester (2.22 g, 12.3 mmol), LiAlH4 

(2.80 g, 73.7 mmol) and AlCl3 (3.28 g, 24.6 mmol). FC (Hexane/AcOEt 9:1) gave pure 

E/Z-6c (1.18 g, 70%) as a slightly yellow oil. IR (film) 3420, 2934, 1721, 1680, 1267, 

1011, 737. 1H NMR (CDCl3, 360 MHz) δ 6.35 (s, 2 H, CH=CH, E-isom.), 6.34 (s, 2 H, 

CH=CH, Z-isom.), 5.74-5.70 (m, 1 H, CHCH2OH, E-isom.), 5.56-5.51 (m, 1 H, 

CHCH2OH, Z-isom.), 5.38 (s, 1 H, CH, Z-isom.), 5.13 (d, J = 4.6 Hz, 1 H, CH, E-isom.), 

5.09 (d, J = 4.3 Hz, 1 H, CH, Z-isom.), 5.01 (s, 1 H, CH, E-isom.), 4.27-4.03 (m, 4 H, 

CO2CH2CH3, E/Z-isom.), 2.49-2.39 (m, 2 H, CHH, E/Z-isom.), 1.91.1.87 (m, 2 H, CHH, 

E/Z-isom.), 1.84 (s, 2 H, OH, E/Z-isom.). 13C NMR (CDCl3, 50.3 MHz) 138.23 (s, E-

isom.), 138.13 (s, Z-isom.), 135.91 (d, E-isom.), 135.69 (d, Z-isom.), 134.02 (d, E-

isom.), 133.82 (d, Z-isom.), 120.42 (d, Z-isom.), 120.19 (d, E-isom.), 82.32 (d, E-isom.), 

78.68 (d, Z-isom.), 78.58 (d, Z-isom.), 61.41 (t, E-isom.), 60.34 (t, Z-isom.), 32.38 (t, Z-

isom.), 30.17 (t, E-isom.). CI-MS 137 (7, [M-1]+), 121 (23), 109 (30), 93 (100), 81 (16), 

79 (19). Anal. Calcd for C8H10O2 (138.17): C, 69.55; H, 7.30; Found: C, 69.54; H, 7.15. 
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General procedure (GP3). Spiro[bicyclo[2.2.n]alk-5-en-2,2’-(3’-

bromométhyl)oxirane] (7). m-Chloroperbenzoic acid (m-CPBA) (3.84 g, 15.57 mmol) 

was added by portions to a solution of allylic alcohols 6 (15.57 mmol) in CH2Cl2 (60 ml) 

at 0°C. The reaction mixture was let overnight at 0°C and aqueous saturated Na2S2O4 (60 

ml) was added. The phases were separated and the aqueous layer was further extracted 

several times with AcOEt. The combined organic layers were dried on MgSO4 and the 

solvents evaporated to afford the crude epoxy alcohols. 

To a solution of crude epoxy alcohols in dry CH2Cl2 (110 ml) at 0°C, were added CBr4 

(6.69 g, 20.16 mmol) and triphenylphosphine (5.29 g, 20.16 mmol) by portions. The 

reaction mixture was let warm gently and stirred until completion of the reaction (3-12 

h). Evaporation of the solvent and FC (hexane/AcOEt) of the crude afforded epoxy 

bromides 7 as mixtures of isomers. 

Spiro[bicyclo[2.2.1]hept-5-en-2,2’-(3’-bromométhyl)oxirane] (7a). According to GP3. 

From 6a (2.12 g, 15.57 mmol), m-CPBA (3.84 g, 15.57 mmol) and then CBr4 (6.69 g, 

20.16 mmol) and PPh3 (5.29 g, 20.16 mmol). FC (Hexane/AcOEt 98:2) gave a 

2.8:2.3:1:1 mixture of pure 7a-isomers (1.84 g, 55%) as a slightly yellow oil. IR (film) 

3059, 2980, 2870, 1726, 1437, 1265, 1120. 1H NMR (CDCl3, 500 MHz) δ 6.45-6.30 (m, 

4 H, CH=CH, isom. 1-4), 6.21-6.08 (m, 4 H, CH=CH, isom. 1-4), 3.67-3.05 (m, 12 H, 

CHCH2Br, isom. 1-4), 3.00-2.36 (m, 8 H, CH, isom. 1-4), 2.06-1.12 (m, 16 H, CH2, 

isom. 1-4). 13C NMR (CDCl3, 125.77 MHz) 140.44 (d), 140.34 (d), 139.48 (d), 138.77 

(d), 133.12 (d), 132.93 (d), 132.78 (d), 132.36 (d), 73.34 (s), 72.98 (s), 72.94 (s), 72.63 

(s), 60.17 (d), 60.12 (d), 59.30 (d), 58.64 (d), 49.49 (t), 49.10 (t), 48.96 (d), 48.95 (t), 

48.84 (t), 47.56 (d), 45.38 (d), 42.88 (d), 42.03 (d), 41.58 (d), 40.92 (d), 40.75 (d), 35.34 

(t), 34.81 (t), 31.41 (t), 31.30 (t), 31.06 (t), 30.91 (t), 30.81 (t), 35.43 (t). CI-MS 217 (17, 

M+), 215 (18, M+), 151 (17), 149 (18), 135 (100), 107 (23), 93 (16), 91 (19), 67 (82). 

Anal. Calcd for C9H11BrO (215.09): C, 50.26; H, 5.15; Found: C, 50.03; H, 5.38. 

Spiro[bicyclo[2.2.2]oct-5-en-2,2’-(3’-bromométhyl)oxirane] (7b). According to GP3. 

From 6b (2.89 g, 19.24 mmol), m-CPBA (4.74 g, 19.24 mmol) and then CBr4 (8.29 g, 

25.01 mmol) and PPh3 (4.41 g, 25.01 mmol). FC (Hexane/AcOEt 95:5) gave a 7.9:1 

mixture of pure 7b-isomers (1.80 g, 41%) as a slightly yellow oil. IR (film) 3050, 2947, 
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2866, 2361, 1445, 1225, 891. 1H NMR (CDCl3, 500 MHz) δ 6.47-6.39 (m, 2 H, CH=CH, 

major, minor), 6.29-6.24 (m, 2 H, CH=CH, major, minor), 3.59 (dd, J = 10.1 Hz, 4.9 Hz, 

1 H, CHHBr, major), 3.54(dd, J = 10.4 Hz, 6.1 Hz, 1 H, CHHBr, minor), 3.39 (dd, J = 

10.4 Hz, 7.3 Hz, 1 H, CHHBr, minor), 3.29 (dd, J = 7.3 Hz, 6.1 Hz, 1 H, CHCH2Br, 

minor), 3.15 (dd, J = 8.9 Hz, 4.9 Hz, 1 H, CHCH2Br, major), 2.99 (dd, J = 10.1 Hz, 8.9 

Hz, 1 H, CHHBr, major), 2.77-2.68 (m, 2 H, CH, major, minor), 2.33-2.30 (m, 1 H, CH, 

minor), 2.10-2.07 (m, 1 H, CH, major), 1.90-1.22 (m , 12 H, CH2, major, minor). 13C 

NMR (CDCl3, 125.77 MHz) 136.08 (d, minor), 135.28 (d, major), 131.09 (d, major), 

130.72 (d, minor), 67.98 (s, major, minor), 59.79 (d, major, minor), 38.32 (d, major), 

37.19 (t, minor), 33.12 (d, minor), 31.98 (t, major), 30.78 (t, major), 30.38 (d, minor), 

30.12 (d, major), 29.25 (t, minor), 24.01 (t, minor), 23.76 (t, major), 22.55 (t, major), 

22.37 (t, minor). CI-MS 231 (18, M+), 229 (19, M+), 149 (100), 121 (29), 107 (35), 91 

(22), 81 (21). Exact Mass Calcd for C10H13BrO (229.12): 229.0222514; Found: 

229.0220030. 231.0202044; Found: 231.0203280. 

Spiro[7-oxabicyclo[2.2.1]hept-5-en-2,2’-(3’-bromométhyl)oxirane] (7c). According to 

GP3. From 6c (1.10 g, 7.96 mmol), m-CPBA (1.96 g, 7.96 mmol) and then CBr4 (3.43 g, 

10.35 mmol) and PPh3 (2.71 g, 10.35 mmol). FC (Hexane/AcOEt 7:3) gave a 

9.9:2.0:1.7:1 mixture of pure 7c-isomers (0.88 g, 51%) as a yellow oil. IR (film) 3009, 

2947, 2363, 2342, 1736, 1437, 1244, 1020, 905. 1H NMR (CDCl3, 500 MHz) δ 6.68-

6.47 (m, 8 H, CH=CH), 5.94-4.98 (m, 4 H, CH), 4.58-4.45 (m, 4 H, CH), 4.09-2.73 (m, 

12 H, CHCH2Br), 2.35-1.30 (m, 8 H, CH2). Major isomer: 1H NMR (CDCl3, 500 MHz) 

δ 6.59 (dd, J = 5.6 Hz, 1.6 Hz, 1 H, CH=CH), 6.42 (dd, J = 5.6 Hz, 1.7 Hz, 1 H, 

CH=CH), 5.14 (ddd, J = 4.5 Hz, 1.3 Hz, 1.3 Hz, 1 H, CH), 4.43 (s, 1 H, CH), 3.53 (dd, J 

= 10.3 Hz, 5.5 Hz, 1 H, CHHBr), 3.32 (ddd, J = 7.7 Hz, 5.5 Hz, 0.5 Hz, 1 H, CHCH2Br), 

3.04 (dd, J = 10.3 Hz, 7.7 Hz, 1 H, CHHBr), 1.90 (dd, J = 12.1 Hz, 4.5 Hz, 1 H, CHH), 

1.69 (d, J = 12.1 Hz, 1 H, CHH).  13C NMR (CDCl3, 125.77 MHz) 139.78 (d), 132.88 

(d), 82.13 (d), 78.15 (d), 71.16 (s), 55.78 (d), 30.59 (t), 29.22 (t). CI-MS 219 (5, M+), 

217 (5, M+), 173 (23), 171 (23), 137 (100), 109 (69), 95 (84), 81 (29). Exact Mass Calcd 

for C8H9BrO2 (217.06): 216.9858654; Found: 216.9861030. 218.9838184; Found: 

218.9836200. 



Chapter 3 : Stereoselective Synthesis of Functionalized Bicyclic Ketones via Tandem Radical… 
 
 
 

114

General procedure (GP4). Radical reactions. A degassed solution of radical precursor 

7a-c (0.93 mmol) in benzene (20 ml) was heated at reflux under an inert atmosphere, 

treated by one pot or dropwise (syringe pump) addition with a solution of stannane and 

2,2’-azobis(isobutyronitrile) (AIBN; 16 mg, 0.10 mmol) in benzene (20 ml), and kept 

under reflux for some additional hours. The solution was cooled to rt, treated with KF 

(500 mg, 8.61 mmol) for 24 h and the solvent was evaporated. The residue was dissolved 

in hexane (5 ml) and filtered on. FC (hexane 150 ml and then AcOEt 100 ml). The 

AcOEt-containing fraction was evaporated and purified by FC (Hexane/AcOEt). 

Bicyclo[4.3.0]non-7-en-3-one (8a). According to GP4. From 7a (200 mg, 0.93 mmol), 

Bu3SnH (0.31 ml, 1.15 mmol) and AIBN (16 mg, 0.10 mmol) added dropwise during 18 

h, and 8 additional hours of reflux. FC (Hexane/AcOEt 7:3) gave 8a (60 mg, 48%) as a 

colorless liquid. IR (film) 3416, 2930, 1711, 756. 1H NMR (CDCl3, 500 MHz) δ 5.77-

5.73 (m, 1 H, C(8)-H), 5.60-5.56 (m, 1 H, C(7)-H), 3.10-3.00 (m, 1 H, C(6)-H), 2.83-

2.75 (m, 1 H, C(1)-H), 2.72-2.64 (m, 1 H, C(9)-Hexo), 2.48 (dd, J = 15.4 Hz, 6.1 Hz, 1 H, 

C(2)-Hexo), 2.32 (dd, J = 15.4 Hz, 6.9 Hz, 1 H, C(2)-Hendo), 2.25 (dd, J = 5.5 Hz, 1.8 Hz, 

1 H, C(4)-Hendo), 2.23 (d, J = 5.5 Hz, 1 H, C(4)-Hexo), 2.08-1.95 (m, 2 H, C(5)-Hexo, 

C(9)-Hendo), 1.76-1.69 (m, 1 H, C(5)-Hendo). 13C NMR (CDCl3, 122.77 MHz) 213.91 (s), 

133.31 (d), 130.32 (d), 43.57 (t), 42.99 (d), 40.32 (t), 37.07 (t), 33.66 (d), 25.44 (t). CI-

MS 137 (19, [M+1]+), 135 (95), 107 (19), 95 (16). Exact Mass Calcd for C9H12O 

(136.19): 137.0960904; Found: 137.0960060. 

4-(2H)Bicyclo[4.3.0]non-7-en-3-one (9a). Thermal reaction. According to GP4. From 

7a (50 mg, 0.23 mmol), Bu3SnD (0.09 ml, 0.35 mmol) and AIBN (8 mg, 0.05 mmol) 

added dropwise during 12 h, and 5 additional hours of reflux. FC (Hexane/AcOEt 7:3) 

gave 9a (15 mg, 48%) in a 1.8:1 in favor of the all-cis compound, as a colorless liquid. 
1H- and 13C data correspond to those of the undeuterated compound. 2H-NMR (106.9 

MHz, CHCl3) δ 2.25 (s, minor), 2.23 (s, major). 

4-(2H)-Bicyclo[4.3.0]non-7-en-3-one (9a). Photochemical reaction. According to GP4. 

From 7a (50 mg, 0.23 mmol) in a cool bath at 5°C, Bu3SnD (0.09 ml, 0.35 mmol) and 

AIBN (8 mg, 0.05 mmol) added dropwise during 12 h under irradiation with a Philips 
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sun lamp, and 5 additional hours of reflux. 2H-NMR of the crude attested the formation 

of 9a in a 2.1:1 ratio in favor of the all-cis isomer. 

Bicyclo[4.4.0]dec-7-en-3-one (8b). According to GP4. From 7b (200 mg, 0.87 mmol), 

Bu3SnH (0.25 ml, 0.96 mmol) and AIBN (16 mg, 0.10 mmol) added dropwise during 12 

h, and 12 additional hours of reflux. FC (Hexane/AcOEt 9:1) gave 8b (33 mg, 25% or 

29% converted yield) as a colorless liquid, along with starting compound 7b (26 mg, 

13%). 

Data of 8b. IR (film) 3408, 3018, 2926, 2868, 1713, 1431. 1H NMR (CDCl3, 500 MHz) 

δ 5.77-5.73 (m, 1 H, C(8)-H), 5.62 (dddd, J = 10.0 Hz, 2.5 Hz, 2.5 Hz, 2.5 Hz, 1 H, 

C(7)-H), 2.54-2.50 (m, 1 H, C(6)-H), 2.42-2.23 (m, 5 H, C(1)-H, C(2)-H2, C(4)-H2), 

2.09-2.05 (m, 2 H, C(9)-H2), 2.00-1.94 (m, 1 H, C(5)-Hexo), 1.89-1.82 (m, 1 H, C(5)-

Hendo), 1.73-1.66 (m, 1 H, C(10)-HH), 1.59-1.52 (m, 1 H, C(10)-HH). 13C NMR (CDCl3, 

122.77 MHz) 212.62 (s), 129.49 (d), 127.68 (d), 44.09 (t), 38.66 (t), 35.97 (d), 34.28 (d), 

30.51 (t), 25.58 (t), 22.82 (t). CI-MS 151 (100, [M+1]+), 133 (21), 91 (8). Exact Mass 

Calcd for C10H14O (150.22): 151.1117404; Found: 151.1118910. 

4-(2H)-9-Oxabicyclo[4.3.0]non-7-en-3-one (9c). According to GP4. From 7c (100 mg, 

0.46 mmol), Bu3SnD (0.18 ml, 0.69 mmol) and AIBN (8 mg, 0.05 mmol) added 

dropwise during 12 h, and 4 additional hours of reflux. FC (Hexane/AcOEt 8:2) gave 9c, 

along with decomposition derivative 13 (in total: 45 mg, 85%).  

Data of 9c. IR (film) 3441, 2932, 1719, 1618, 1140, 1047. 1H NMR (CDCl3, 500 MHz) 

δ 6.03-6.02 (m, 1 H, C(8)-H), 4.36 (ddd, J = 10.1 Hz, 3.6 Hz, 3.6 Hz, 1 H, C(1)-H), 4.31 

(dd, J = 2.7 Hz, 2.7 Hz, 1 H, C(7)-H), 2.60-2.56 (m, 1 H, C(2)-HH), 2.54-2.49 (m, 1 H, 

C(6)-H), 2.09-2.04 (m, 1 H, C(4)-Hexo), 1.97 (dddd, J = 16.7 Hz, 3.7 Hz, 2.0 Hz, 0.7 Hz, 

1 H, C(2)-HH), 1.95-1.92 (m, 1 H, C(4)-Hendo), 1.18 (ddd, J = 14.0 Hz, 14.0 Hz, 5.6 Hz, 

1 H, C(5)-HH), 1.00-0.92 (m, 1 H, C(5)-HH). 13C NMR (CDCl3, 122.77 MHz) 207.38 

(s), 146.70 (d), 146.68 (d), 102.86 (d), 79.21 (d), 41.61 (t), 36.22 (d), 24.41 (t). 2H-NMR 

(106.9 MHz, CHCl3) δ 2.10 (s, major), 1.92 (s, minor). CI-MS 140 (100, [M+1]+), 137 

(11), 122 (16), 85 (12), 81 (26). Exact Mass Calcd for C8H9O2D (139.16): 140.0816314; 

Found: 140.0818520. 
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Data of 13. IR (film) 3430, 2936, 2870, 1719, 1678, 1451, 1061. 1H NMR (CDCl3, 500 

MHz) δ 9.03 (t, J = 1.2 Hz, CHO), 5.99 (dddd, J = 10.2 Hz, 2.8 Hz, 2.8 Hz, 1.4 Hz, 1 H, 

CH=CHCO), 5.83 (dd, J = 10.2 Hz, 2.5 Hz, 1 H, CH=CHCO), 2.26-2.19 (m, 1 H, 

CHCH2CHO), 2.10-2.06 (m, 1 H, CHD), 1.90-1.82 (m, 1 H, CDH), 1.51-1.48 (m, 2 H, 

CH2CHO), 1.27-0.90 (m, 2 H, CH2). 13C NMR (CDCl3, 122.77 MHz) 225.95 (s), 198.57 

(s), 151.42 (d), 151.40 (d), 32.51 (d), 30.13 (d), 28.68 (t). CI-MS 140 (32, [M+1]+), 125 

(94), 97 (100), 93 (13). Exact Mass Calcd for C8H9O2D (139.16): 140.0816314; Found: 

140.0815760. 

 

4-[2’-(Methyl)prop-2’-enyl]bicyclo[4.3.0]non-7-en-3-one (10a). According to GP4. 

From 7a (200 mg, 0.93 mmol), Bu3SnCH2C(CH3)=CH2 (0.48 g, 1.39 mmol) and AIBN 

(16 mg, 0.10 mmol) added one pot and 18 h of reflux. FC (Hexane/AcOEt 9:1) gave 10a 

(104 mg, 59%) in a 1.5:1 ratio in favor of the all-cis isomer, as a colorless liquid. IR 

(film) 3407, 2932, 1711, 1443, 1042, 891. 1H NMR (CDCl3, 500 MHz) δ 5.78 (dddd, J = 

5.8 Hz, 2.3 Hz, 2.3 Hz, 2.3 Hz, 1 H, C(8)-H, major), 5.69 (dddd, J = 5.8 Hz, 2.1 Hz, 2.1 

Hz, 2.1 Hz, 1 H, C(8)-H, minor), 5.64 (dddd, J = 5.8 Hz, 2.0 Hz, 2.0 Hz, 2.0 Hz, 1 H, 

C(7)-H, minor), 5.59 (dddd, J = 5.8 Hz, 2.0 Hz, 2.0 Hz, 2.0 Hz, 1 H, C(7)-H, major), 

4.79-4.75 (m, 2 H, C=CHH, major, minor), 4.68-4.65 (m, 2 H, C=CHH, major, minor), 

3.12 (m, 1 H, C(6)-H, major), 2.95 (m, 1 H, C(6)-H, minor), 2.85-2.78 (m, 1 H, C(1)-H, 

major), 2.74-1.67 (m, 18 H), 1.66 (s, 3 H, CH3, minor), 1.64 (s, 3 H, CH3, major), 1.28-

1.22 (m, 1 H, C(5)-H, minor). 13C NMR (CDCl3, 122.77 MHz) 214.80 (s, major), 214.60 

(s, minor), 143.12 (s, major), 140.53 (s, minor), 133.71 (d, major), 133.65 (d, minor), 

130.75 (d, major), 128.94 (d, minor), 112.17 (t, minor), 112.02 (t, major), 45.68 (d, 

minor), 43.97 (d, minor), 43.45 (t, minor), 43.33 (t, major), 43.06 (d, major), 42.35 (d, 

major), 40.63 (t, major), 39.50 (t, minor), 38.29 (t, minor), 37.71 (t, major), 34.80 (d, 

major), 31.35 (t, minor), 30.83 (t, major), 27.01 (d, minor), 22.00 (q, minor), 21.87 (q, 

major). CI-MS 191 (100, [M+1]+), 173 (32), 133 (12), 93 (10), 81 (19). Exact Mass 

Calcd for C13H18O (190.29): 191.1430404; Found: 191.1438840. 
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4-[2’-(Methyl)prop-2’-enoyl]bicyclo[4.3.0]non-7-en-3-one (11a). According to GP4. 

From 7a (200 mg, 0.93 mmol), Bu3SnCH2C(CO2Me)=CH2 (0.54 g, 1.39 mmol) and 

AIBN (16 mg, 0.10 mmol) added one pot and 18 h of reflux. FC (Hexane/AcOEt 9:1) 

gave 11a (70 mg, 32%) in a 3.6:1 ratio in favor of the all-cis isomer, as a colorless 

liquid. IR (film) 3418, 2980, 2953, 1723, 1441, 1202. 1H NMR (CDCl3, 500 MHz) δ 

6.22 (dd, J = 1.4 Hz, 0.3 Hz, 1 H, C=CHH, minor), 6.20 (dd, J = 1.2 Hz, 0.5 Hz, 1 H, 

C=CHH, major), 5.78 (dddd, J = 5.7 Hz, 2.4 Hz, 2.4 Hz, 2.4 Hz, 1 H, C(8)-H, major), 

5.69 (dddd, J = 5.7 Hz, 2.1 Hz, 2.1 Hz, 2.1 Hz, 1 H, C(8)-H, minor), 5.64 (dddd, J = 5.7 

Hz, 2.1 Hz, 2.1 Hz, 2.1 Hz, 1 H, C(7)-H, minor), 5.58 (dddd, J = 5.7 Hz, 2.1 Hz, 2.1 Hz, 

2.1 Hz, 1 H, C(7)-H, major), 5.56 (dd, J = 2.4 Hz, 1.3 Hz, 1 H, C=CHH, minor), 5.54 

(dd, J = 2.4 Hz, 1.4 Hz, 1 H, C=CHH, major), 3.76 (s, 3 H, CH3, minor), 3.75 (s, 3 H, 

CH3, major), 3.08-3.03 (m, 1 H, C(6)-H, major), 2.99-2.90 (m, 1 H, C(6)-H, minor), 2.96 

(ddd, J = 14.2 Hz, 5.0 Hz, 1.3 Hz, 1 H, CHHC(CO2Me)CH2, minor), 2.90 (ddd, J = 14.5 

Hz, 5.2 Hz, 0.9 Hz, 1 H, CHHC(CO2Me)CH2, major), 2.83-2.76 (m, 1 H, C(1)-H, 

major), 2.74-2.67 (m, 1 H, C(1)-H, minor), 2.67-1.60 (m, 2 H, C(9)-Hexo, major, minor), 

2.52-2.34 (m, 4 H, C(4)-H, major, minor, C(2)-H2, minor), 2.47 (dd, J = 15.1 Hz, 6.3 Hz, 

1 H, C(2)-Hexo, major), 2.32 (dd, J = 15.1 Hz, 6.2 Hz, 1 H, C(2)-Hendo, major), 2.19 (ddd, 

J = 14.5 Hz, 8.6 Hz, 1.0 Hz, 1 H, CHHC(CO2Me)CH2, major), 2.12 (ddd, J = 14.2 Hz, 

8.9 Hz, 0.9 Hz, 1 H, CHHC(CO2Me)CH2, minor), 2.10-2.03 (m, 2 H, C(9)-Hendo, C(5)-

Hexo, minor), 2.00-1.95 (m, 1 H, C(9)-Hendo, major), 1.92 (ddd, J = 14.0 Hz, 4.7 Hz, 3.2 

Hz, 1 H, C(5)-Hexo, major), 1.72 (ddd, J = 14.0 Hz, 12.0 Hz, 6.0 Hz, 1 H, C(5)-Hendo, 

major), 1.29-1.21 (m, 1 H, C(5)-Hendo, minor). 13C NMR (CDCl3, 122.77 MHz) 213.75 

(s, major), 213.55 (s, minor), 167.46 (s, major), 167.40 (s, minor), 138.25 (s, major), 

138.22 (s, minor), 133.72 (d, minor), 133.70 (d, major), 130.92 (d, major), 129.15 (d, 

minor), 127.13 (t, minor), 126.71 (t, major), 51.86 (q, minor), 51.83 (q, major), 46.53 (d, 

minor), 44.26 (d, major), 43.78 (d, minor), 43.41 (t, major), 43.37 (t, minor), 42.62 (d, 

major), 40.83 (t, minor), 40.66 (t, major), 35.69 (d, major), 35.35 (d, minor), 32.48 (t, 

minor), 31.88 (t, major), 31.72 (t, major), 31.64 (d, minor). CI-MS 235 (29, [M+1]+), 

203 (68), 168 (22), 136 (100). Exact Mass Calcd for C14H18O3 (234.29): 235.1328684; 

Found: 235.1325240. 
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4-[2’-(Trimethylsilyl)prop-2’-enyl]bicyclo[4.3.0]non-7-en-3-one (12a). According to 

GP4. From 7a (200 mg, 0.93 mmol), Bu3SnCH2C(SiMe3)=CH2 (0.52 g, 1.39 mmol) and 

AIBN (16 mg, 0.10 mmol) added one pot and 18 h of reflux, before new addition of 

Bu3SnCH2C(SiMe3)=CH2 (1.13 g, 2.79 mmol) with AIBN (16 mg, 0.10 mmol) to 

complete the reaction, and 12 h of reflux. FC (Hexane/AcOEt 9:1) gave 12a (102 mg, 

44%) in a 1.5:1 ratio in favor of the all-cis isomer, as a slightly yellow oil. Lobar 

chromatography (hexane, 3% Et2O) of a sample allowed separation of the two isomers 

for NMR analysis.  

Data of trans-12a. IR (film) 3395, 2953, 1713, 1412, 1248, 839. 1H NMR (CDCl3, 500 

MHz) δ 5.69 (dddd, J = 5.8 Hz, 2.1 Hz, 2.1 Hz, 2.1 Hz, 1 H, C(8)-H), 5.64 (dddd, J = 5.8 

Hz, 2.1 Hz, 2.1 Hz, 2.1 Hz, 1 H, C(7)-H), 5.52 (ddd, J = 3.3 Hz, 1.9 Hz, 1.1 Hz, 1 H, 

C=CHH), 5.40 (ddd, J = 2.7 Hz, 1.2 Hz, 0.6 Hz, 1 H, C=CHH), 2.96-2.89 (m, 1 H, C(6)-

H), 2.86 (dddd, J = 14.6 Hz, 3.7 Hz, 1.8 Hz, 1.4 Hz, 1 H, CHHC=CH2), 2.74-2.66 (m, 1 

H, C(1)-H), 2.66-2.61 (m, 1 H, C(9)-Hendo), 2.40-2.38 (m, 2 H, C(2)-H2), 2.37-2.29 (m, 1 

H, C(4)-Hexo), 2.11 (ddd, J = 13.7 Hz, 6.0 Hz, 4.4 Hz, 1 H, C(5)-Hexo), 2.06 (ddd, J = 4.5 

Hz, 2.2 Hz, 2.2 Hz, 1 H, C(9)-Hexo), 1.88 (dd, J = 14.6 Hz, 10.4 Hz, 1 H, CHHC=CH2), 

1.19 (ddd, J = 13.7 Hz, 12.7 Hz, 12.0 Hz, 1 H, C(5)-Hendo), 0.10 (s, 9 H, Si(CH3)3). 13C 

NMR (CDCl3, 122.77 MHz) 214.57 (s), 149.71 (s), 133.72 (d), 128.98 (d), 125.65 (t), 

46.62 (d), 43.98 (d), 43.49 (t), 39.41 (t), 36.48 (t), 34.85 (d), 31.42 (t), -1.40 (q).  

Data of cis-12a. IR (film) 3395, 2953, 1711, 1441, 1248, 1071 837. 1H NMR (CDCl3, 

500 MHz) δ 5.77 (dddd, J = 5.8 Hz, 2.3 Hz, 2.3 Hz, 2.3 Hz, 1 H, C(8)-H), 5.58 (dddd, J 

= 5.8 Hz, 2.0 Hz, 2.0 Hz, 2.0 Hz, 1 H, C(7)-H), 5.50 (ddd, J = 2.8 Hz, 1.8 Hz, 1.1 Hz, 1 

H, C=CHH), 5.38 (ddd, J = 2.8 Hz, 1.2 Hz, 0.7 Hz, 1 H, C=CHH), 3.10-3.04 (m, 1 H, 

C(6)-H), 2.86 (ddd, J = 14.6 Hz, 3.8 Hz, 1.9 Hz, 1.4 Hz, 1 H, CHHC=CH2), 2.82-2.77 

(m, 1 H, C(1)-H), 2.68-2.61 (m, 1 H, C(9)-Hexo), 2.50 (dd, J = 15.2 Hz, 6.3 Hz, 1 H, 

C(2)-Hexo), 2.33 (dd, J = 15.2 Hz, 5.7 Hz, 1 H, C(2)-Hendo), 2.31-2.25 (m, 1 H, C(4)-

Hendo), 2.00-1.94 (m, 1 H, C(9)-Hendo), 1.94-1.88 (m, 2 H, C(5)-Hendo, CHHC=CH2), 1.64 

(ddd, J = 14.0 Hz, 11.6 Hz, 6.0 Hz, 1 H, C(5)-Hexo), -0.08 (s, 9 H, Si(CH3)3). 13C NMR 

(CDCl3, 122.77 MHz) 214.75 (s), 149.67 (s), 133.85 (d), 130.72 (d), 125.60 (t), 44.00 

(d), 43.37 (t), 42.55 (d), 40.65 (t), 36.09 (t), 35.00 (d), 31.03 (t), -1.40 (q).  
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Data of mixed cis/trans-12a. CI-MS 249 (42, [M+1]+), 233 (100), 188 (30), 177 (45), 

159 (32), 119 (38), 79 (43), 73 (62). Anal. Calcd for C15H24OSi (248.44): C, 72.52; H, 

9.74; Found: C, 72.32; H, 9.79. 

 

4-[2’-(Methyl)prop-2’-enyl]bicyclo[4.4.0]dec-7-en-3-one (10b). According to GP4. 

From 7b (100 mg, 0.44 mmol), Bu3SnCH2C(CH3)=CH2 (0.23 g, 0.66 mmol) and AIBN 

(8 mg, 0.05 mmol) added one pot and 24 h of reflux. FC (Hexane/AcOEt 95:5) gave 10b 

(19 mg, 21%) in a 2.4:1 ratio in favor of the all-cis isomer, as a colorless oil. IR (film) 

3407, 2932, 1711, 1443, 1042, 891. 1H NMR (CDCl3, 500 MHz) δ 5.82 (dddd, J = 10.1 

Hz, 3.3 Hz, 3.3 Hz, 3.3 Hz, 1 H, C(8)-H, major), 5.72-5.68 (m, 1 H, C(8)-H, minor), 

5.67-5.63 (m, 1 H, C(7)-H, minor), 5.57-5.54 (m, 1 H, C(7)-H, major), 4.77 (s, 2 H, 

C=CHH, major, minor), 4.66 (m, 2 H, C=CHH, major, minor), 2.71 (ddd, J = 13.6 Hz, 

6.8 Hz, 1.0  Hz, 1 H, C(2)-HH, minor), 2.58-2.50 (m, 7 H, C(2)-H, major, C(4)-H, C(6)-

H, CHHC=CH2, major, minor), 2.35-2.30 (m, 2 H, C(1)-H, major, minor), 2.26 (dd, J = 

13.5 Hz, 2.5 Hz, 1 H, C(2)-HH, minor), 2.19 (dd, J = 12.9 Hz, 4.8 Hz, 1 H, C(2)-HH, 

major), 2.10-2.05 (m, 5 H, C(5)-HH, minor, C(9)-H2, major, minor), 2.03 (dd, J = 5.0 

Hz, 3.5 Hz, 1 H, C(5)-HH, major), 1.89 (ddd, J = 15.8 Hz, 10.0 Hz, 0.8 Hz, 1 H, 

CHHCCH2, major), 1.88-1.72 (m, 3 H, CHHCCH2, minor, C(10)-HH, major, minor), 

1.70 (m, 3 H, CH3, minor), 1.68 (m, 3 H, CH3, major), 1.59-1.48 (m, 3 H, C(5)-HH, 

major, C(10)-HH, major, minor), 1.29-1.26 (m, 1 H, C(5)-HH, minor). 13C NMR 

(CDCl3, 122.77 MHz) 213.31 (s, major), 212.52 (s, minor), 143.28 (s, major), 143.20 (s, 

minor), 129.93 (d, minor), 129.42 (d, major), 128.14 (d, major), 126.66 (d, minor), 

111.85 (t, minor), 111.66 (t, major), 47.32 (t, minor), 46.82 (d, minor), 42.97 (d, major), 

42.10 (t, major), 37.43 (t, major), 37.10 (d, minor), 36.98 (t, minor), 36.81 (t, major), 

36.74 (d, major), 36.31 (t, minor), 35.56 (d, minor), 33.91 (d, major), 26.42 (t, major), 

25.63 (t, minor), 24.16 (t, minor), 22.39 (q, minor), 22.34 (q, major), 20.74 (t, major). 

CI-MS 205 (100, [M+1]+), 190 (90), 162 (14), 89 (16), 75 (36), 73 (70). Exact Mass 

Calcd for C14H20O (204.31): 205.1586904; Found: 205.158490. 
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The Evans-Mislow Rearrangement : A New Approach 

for the Generation of Alkoxyl Radicals 
 

 

1. Introduction 

 

Studied in the sixties by Mislow,1-4 the thermal racemization of allyl sulfoxides 1 and the 

thermal rearrangement of allyl sulfenates 2, were shown to be both manifestations of the 

same process: the concerted, reversible, and intramolecular interconversion of 1 and 2 in 

a [2,3]sigmatropic rearrangement, by the way of a five-membered transition state 

(Scheme 1). The sulfoxide-sulfenate equilibrium concentration was proven to be 

dependent upon electronic as well as size effect, no sulfenate ester being generally 

observable in NMR spectra.4 The first application of this process allowed transformation 

of simple allylic alcohols into rearranged allylic sulfoxides via their sulfenate ester, in 

high yields.3,4 Further work by Evans5,6 gave access to the reverse transformation, i.e. 

that of sulfoxide into rearranged allylic alcohol, which was accomplished by heating the 

allylic sulfoxide in the presence of a suitable thiophile. Other studies and synthetic 

applications of the rearrangement attested its general feature and usefulness.7-13 

However, to our knowledge, no paper has so far reported the use of the sulfoxide-

sulfenate rearrangement in radical chemistry.  

 

R
S
O
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O

R S
O
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1 2

Scheme 1  
 

Benzenesulfenate derivatives 3, which are normally prepared by treatment of the parent 

alcohol with benzenesulfenyl chloride in the presence of triethylamine, are known to be 

good precursors of alkoxyl radicals, under a variety of radical conditions (Scheme 2). 
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First developed essentially for mechanistic studies,14-17 they have soon integrated the 

synthetic radical chemistry.18,19  
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In our work aimed at the development of new methods for the generation of alkoxyl 

radical from norbonenol derivatives, we devised to take advantage of the allylic 

sulfoxide 4 – sulfenate 5 rearrangement to generate 2-vinylbicyclo[2.2.1]hept-5-en-2-

oxyl radical (A). This was expected to undergo β-fragmentation onto an allylic carbon-

centered radical B which, after Michael-type radical addition on the α,β-unsaturated 

ketone moiety and trapping, should afford bicyclo[4.3.0]non-7-en-3-one (6) via C 

(Scheme 3). The interest of this approach relies on the fact that, as reported earlier,20,21 

direct synthesis of the sulfenate 5 from the parent allylic alcohol fails, as it is the case for 

most of the tertiary alcohols. Thus, synthesis of its sulfoxide 4 provides an indirect 

access to radical precursor 5. We describe here our first results in this direction.  
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2. Results and discussion 

 

Sulfoxide 4 was obtained from norbornenone (7)22 via a four steps synthesis described in 

scheme 3. Indeed, Wittig-Horner-Hemmons reaction of norbornenone (7) with triethyl 

phosphonoacetate using sodium hydride as a base in dry THF, followed by reduction of 

the resulting ester 8 with AlH3 prepared in situ by the addition of LiAlH4 to a solution of 

AlCl3 in THF at 0°C furnished allyl alcohol 9 in 75% yield.23 In a one pot sequence, this 

was tosylated by treatment with n-butyl lithium and p-toluenesulfonyl chloride, and the 

formed tosylate displaced by freshly prepared lithium thiophenoxide,24 affording an 

about 1:1 unseparable mixture of sulfurs E/Z-10 and tricycle 11 in 88% yield. The latter 

presumably arose from attack of lithium thiophenoxide on the 5,6-double bond of 

intermediate tosylate, cyclization onto the allylic olefin and elimination of the tosylate 

moiety. Upon standing on the bench, the crude reaction mixture was fully transformed 

into compound 11: only traces of sulfur 10 could be detected in NMR spectra after ten 

days. 
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This transformation allowed isolation of a pure sample 11, which was thus identified and 

characterized. Oxidation of 10 and 11 mixture with m-chloroperbenzoic acid21 gave a 

mixture of wanted sulfoxide 4, as four diastereoisomers along with by-product sulfoxide 

12 as two diastereoisomers, in 87% yield (Scheme 4).  

Radical reactions were performed on the mixed 4 and 12. Initiation by 2,2’-

azobis(isobutyronitrile) (AIBN) in refluxing solvent and syringe-pump addition of 

tributyltin hydride over 12 h to a 0.02 M solution of substrates were chosen as standard 

conditions. However, reaction at reflux of benzene resulted only in recovery of starting 

material. Consequently, the reaction was next tested in refluxing toluene, furnishing an 

about 46% yield of cis-bicyclo[4.3.0]non-7-en-3-one (6) along with a 22% yield of allyl 

alcohol 9 (Scheme 5). Formation of the latter remains unexplained. Due to its probable 

decomposition during the radical reaction, no trace of products deriving from sulfoxide 

12 was detected.  
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3. Conclusion 

 

In summary, we have shown the efficiency of the sulfoxide-sulfenate rearrangement as 

alkoxyl radical precursor provider.  
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4. Experimental Section 

 

THF was freshly distilled from K under N2; CH2Cl2, and benzene were distilled from 

CaH2 under N2, and toluene from Na under N2. Solvents for chromatography were 

distilled. Flash chromatography (FC) and filtration were performed with Baker silica gel 

(0.063-0.200 mm). TLC were run on Merck silica gel 60 F254 analytical plates; detection 

was carried out with either UV, iodine, spraying with solution of phosphomolybdic acid 

(25 g), Ce(NH4)2(NO3)6·4H2O (10 g), concd H2SO4 (60 ml) and water (940 ml), or with a 

solution of KMnO4 (3 g), K2CO3 (20 g), water (300 ml) and 5% NaOH (5 ml), with 

subsequent heating. Mps, not corrected, were determined on a Büchi-Tottoli apparatus. 

IR spectra were recorded on a Mattson Unicam 5000 spectrophotometer, in cm-1. NMR 

spectra were recorded on a Varian Gemini 200 (1H 200 MHz and 13C 50.3 MHz), a 

Bruker AM 360 (1H 360 MHz) or a Bruker Avance DRX-500 (1H 500 MHz and 13C 

125.77 MHz); for 1H δ are given in ppm relative to CDCl3 (7.27 ppm), for 1C δ are given 

in ppm relative to CDCl3 (77.1 ppm), and coupling constant J are given in Hz. 1H NMR 

splitting pattern abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; 

br, broad. 13C NMR multiplicities were determined by the APT and DEPT sequences, 

abbreviations are: q, CH3; t, CH2; d, CH; s, quaternary carbons. Assignments were 

confirmed by NOE or NOESY, COSY and HETCOR experiments. MS spectra were 

recorded on a Vacuum Generator Micromass VG 70/70E DS 11-250; EI (70 eV), CI 

(CH4 gas); m/z (%). Elemental analysis were performed by Ilse Beetz, Microanalytisches 

Laboratorium, D-96301 Kronach, Germany, and Ciba Geigy Mikrolabor, Marly, 

Switzerland. 

 

Bicyclo[2.2.1]hept-5-en-2-ylidene-acetic acid ethyl ester (8). A solution of triethyl 

phosphonoacetate (16.7 ml, 83.2 mmol) in dry THF (40 ml) was added dropwise to a 

suspension of NaH (8.5 g, 194.2 mmol) in dry THF, (3 ml) at 0°C, under N2. The 

mixture was stirred at room temperature for 30 min and cooled to –78°C. Then, 

norbornenone (7) (3 g, 27.7 mmol) dissolved in dry THF (10 ml) was added over 10 min. 

The resulting mixture was let warm gently. After 20 h, it was poured into cold 



Chapter 4 : The Evans-Mislow Rearrangement : A New Approach for the Generation of Alkoxyl Radicals 
 
 
 

127

ether/aqueous saturated NH4Cl (1:1, 200 ml) and the phases were separated. The organic 

layer was washed with water and the combined aqueous phases were extracted with Et2O 

(3 x 100 ml). The combined extracts were dried over MgSO4, filtered and concentrated 

under reduced pressure to afford the crude product. Flash chromatography (hexane and 

then hexane/AcOEt 9:1) afforded pure 2.8:1 E/Z mixture of isomers 8 (4.34 g, 88%) as a 

colorless oil. IR (film) 2982, 1711, 1184, 1040. 1H NMR (CDCl3, 360 MHz) δ 6.29 (dd, 

J = 5.5 Hz, 2.9 Hz, 1 H, CH=CH, E-isom.), 6.25 (dd, J = 5.5 Hz, 2.6 Hz, 1 H, CH=CH, 

Z-isom.), 6.09 (ddd, J = 5.5 Hz, 3.3 Hz, 0.7 Hz, 1 H, CH=CH, Z-isom.), 6.02 (ddd, J = 

5.5 Hz, 3.3 Hz, 0.7 Hz, 1 H, CH=CH, E-isom.), 5.93-5.91 (m, 1 H, CHCO2Et, E-isom.), 

5.69-5.67 (m, 1 H, CHCO2Et, Z-isom.), 4.55-4.52 (m, 1 H, CH, Z-isom.), 4.18 (q, J = 7.0 

Hz, 2 H, CO2CH2CH3, Z-isom.), 4.14 (q, J = 7.0 Hz, 2 H, CO2CH2CH3, E-isom.), 3.34-

3.31 (m, 1 H, CH, E-isom.), 3.12-3.08 (s, 1 H, CH, E-isom.), 3.05-2.98 (m, 1 H, CH, Z-

isom.), 2.64-2.57 (m, 1 H, CHH, E-isom.), 2.41-2.34 (m, 1 H, CHH, Z-isom.), 2.33 (ddd, 

J = 17.3 Hz, 3.7 Hz, 2.2 Hz, 1 H, CHH, E-isom.), 1.93 (ddd, J = 15.8 Hz, 3.7 Hz, 1.5 Hz, 

1 H, CHH, Z-isom.), 1.78-1.73 (m, 1 H, CHH, Z-isom.), 1.72-1.67 (m, 1 H, CHH, E-

isom.), 1.60-1.45 (m, 2 H, CHH, Z-isom., E-isom.), 1.30 (t, J = 7.0 Hz, 3 H, CH3, Z-

isom.), 1.27 (t, J = 7.0 Hz, 3 H, CH3, E-isom.). 13C NMR (CDCl3, 50.3 MHz) 166.84 (s, 

E-isom.), 166.21 (s, Z-isom.), 166.08 (s, E-isom.), 165.33 (s, Z-isom.), 139.21 (d, E-

isom.), 138.57 (d, Z-isom.), 133.13 (d, Z-isom.), 132.44 (d, E-isom.), 111.28 (d, Z-

isom.), 110.92 (d, E-isom.), 59.39 (t, E/Z-isom.), 52.28 (d, E-isom.), 50.69 (t, E-isom.), 

50.18 (t, Z-isom.), 47.72 (d, Z-isom.), 41.73 (d, E-isom), 40.46 (d, Z-isom.), 36.23 (t, Z-

isom.), 35.76 (t, E-isom.), 14.29 (q, E/Z-isom). CI-MS 179 (100, [M+1]+), 178 (11, M+), 

151 (32), 133 (33), 105 (11). Anal. Calcd for C11H14O2 (178.23): C, 74.13; H, 7.92; 

Found: C, 74.16; H, 7.94. 

 

Bicyclo[2.2.1]hept-5-en-2-ylidene-ethanol (9). To a stirred solution of AlH3 prepared in 

situ by the addition of LiAlH4 (5.5 g, 146.1 mmol) to a solution of AlCl3 (6.5 g, 48.7 

mmol) in dry THF (40 ml) at 0°C, under N2, was added a solution of ester 8 (4.3.g, 24.4 

mmol) in dry THF (20 ml) with a syringe, within ca. 20 min, at 0°C. The mixture was 

stirred for further 1 h and quenched with MeOH (10 ml). Water was added and the 
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insoluble residues were filtered off. The aqueous layer was extracted with Et2O (1 x 200 

ml and 2 x 100 ml), the combined organic phases dried over MgSO4 and the solvent 

evaporated. The resulting crude product was purified by flash chromatography 

(hexane/AcOEt 7:3) to yield pure E/Z-9 (2.82 g, 85%) as a slightly yellow oil. IR (film) 

3343, 2978, 1450, 1063. 1H NMR (CDCl3, 360 MHz) δ 6.16-6.11 (m, 2 H, CH=CH, E/Z-

isom.), 6.05 (ddd, J = 5.5 Hz, 3.1 Hz, 0.6 Hz, 1 H, CH=CH, E-isom.), 6.01 (ddd, J = 5.5 

Hz, 3.1 Hz, 0.6 Hz, 1 H, CH=CH, Z-isom.), 5.66-5.59 (m, 1 H, CHCH2OH, E-isom.), 

5.44 (t, J = 7.0 Hz, 1 H, CHCH2OH, Z-isom.), 4.27-4.15 (m, 2 H, CH2OH, Z-isom.), 4.06 

(d, J = 7.0 Hz, 2 H, CH2OH, E-isom.), 3.54-3.50 (m, 1 H, CH, Z-isom.), 3.18-3.15 (m, 1 

H, CH, E-isom.), 3.00 (s, 1 H, CH, E-isom.), 2.97 (s, 1 H, CH, Z-isom.), 2.33-2.19 (m, 2 

H, CHH, E/Z-isom.), 1.77 (ddd, J = 15.0 Hz, 2.1 Hz, 2.1 Hz, 2 H, CHH, E/Z-isom.), 

1.66-1.61 (m, 1 H, CHH, Z-isom.), 1.61-1.56 (m, 1 H, CHH, E-isom.), 1.39 (d, J = 8.2 

Hz, 2 H, CHH, E/Z-isom.), 1.35 (s, 2 H, OH, E/Z-isom.). 13C NMR (CDCl3, 50.3 MHz) 

145.57 (s, Z-isom.), 145.04 (s, E-isom.), 136.69 (d, Z-isom.), 136.39 (d, E-isom.), 133.91 

(d, E-isom.), 133.38 (d, Z-isom.), 118.27 (d, Z-isom.), 117.86 (d, E-isom.), 60.89 (t, E-

isom.), 60.10 (t, Z-isom.), 50.47 (d, E-isom.), 49.79 (t, E-isom.), 49.53 (t, Z-isom.), 45.17 

(d, Z-isom.), 41.49 (d, E-isom.), 40.87 (d, Z-isom.), 33.66 (t, Z-isom.), 30.81 (t, E-isom.). 

CI-MS 136 (8, M+), 119 (10), 118 (17), 91 (12). Anal. Calcd for C9H12O (136.19): C, 

79.37; H, 8.88; Found: C, 79.61; H, 8.66. 

 

2-(1-Phenylthioethenyl)bicyclo[2.2.1]hept-5-ene (10). To a solution of alcohol 9 (2.32 

g, 17.0 mmol) and some crystals of 2,2’-bipyridine in dry THF (40 ml) at –60°C, was 

added a n-BuLi solution (2.5 M in hexane) until the indicator changed color. The 

solution was stirred for some minutes, tosyl chloride (3.57 g, 18.7 mmol) in dry THF (15 

ml) was added, the cooling bath was removed, ant the solution was allowed to warm to 

room temperature during 2.5 h. Meanwhile, a solution of lithium thiophenoxide was 

prepared in a separate flask by adding a solution of n-BuLi (2.5 M in hexane) to a 

solution of thiophenol (2.61 g, 25.6 mmol) and some crystals of 2,2’-bipyridine in THF 

(10 ml) at –60°C until the indicator turned red. The lithium thiophenoxide solution was 

then added at room temperature to the tosylate solution. The reaction mixture was stirred 
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for 2.5 h and poured into water. The aqueous layer was extracted with Et2O (1 x 100 ml 

and 2 x 50 ml). The combined organic phases were washed with 1 M aqueous NaOH, 

dried over MgSO4 and the solvent evaporated. The resulting crude product was purified 

by flash chromatography (hexane) to yield a nearly 1 : 1 mixture of pure E/Z-10 and 11 

(3.42 g, 88%) as a slightly yellow oil. 

Data of compoundE/Z-10. 1H NMR (CDCl3, 360 MHz) δ 7.38-7.13 (m, 10 H, CHarom, 

E/Z-isom.), 6.08-6.05 (m, 2 H, CH=CH, E/Z-isom.), 5.98 (dd, J = 5.4 Hz, 3.3 Hz, 1 H, 

CH=CH, E-isom.), 5.84 (dd, J = 5.4 Hz, 3.3 Hz, 1 H, CH=CH, Z-isom.), 5.52-5.47 (m, 1 

H, CHCH2SPh, E-isom.), 5.30-5.26 (m, 1 H, CHCH2SPh, Z-isom.), 3.69-3.58 (m, 2 H, 

CH2SPh, Z-isom.), 3.44 (d, J = 7.3 Hz, 2 H, CH2SPh, E-isom.), 3.34 (m, 1 H, CH, Z-

isom.), 3.12 (d, J = 1.5 Hz, 1 H, CH, E-isom.), 2.92 (s, 1 H, CH, E-isom.), 2.89 (s, 1 H, 

CH, Z-isom.), 2.25-1.21 (m, 8 H, CH2, E/Z-isom.). 13C NMR (CDCl3, 50.3 MHz) 145.95 

(s, E-isom.), 145.69 (s, Z-isom.), 136.69 (d, E-isom.), 136.51 (s, Z-isom.), 136.48 (s, E-

isom.), 136.32 (d, Z-isom.), 133.86 (d, E-isom.), 133.26 (d, Z-isom.), 130.19 (d, E/Z-

isom.), 128.48 (d, E/Z-isom.), 125.91 (d, E/Z-isom.), 114.02 (d, E/Z-isom.), 50.50 (d, E-

isom.), 49.89 (t, E-isom.), 49.45 (t, Z-isom.), 45.28 (d, Z-isom.), 41.48 (d, E-isom), 41.04 

(d, Z-isom.), 34.21 (t, E-isom.), 33.73 (t, Z-isom.), 31.33 (t, E/Z-isom.). 

Data of isolated compound 11. Colorless liquid. IR (film) 3061, 2994, 2940, 2866, 

1632, 1479, 839, 737. 1H NMR (CDCl3, 500 MHz) δ 7.40-7.13 (m, 5 H, CHarom), 5.78 

(ddd, J = 17.3 Hz, 10.6 Hz, 0.5 Hz, 1 H, CH=CH2), 5.00 (dd, J = 17.3 Hz, 1.7 Hz, 1 H, 

CH=CHHtrans), 4.94 (dd, J = 10.6 Hz, 1.7 Hz, 1 H, CH=CHHcis), 3.35 (dd, J = 1.4 Hz, 

1.4 Hz, 1 H, CHSPh), 2.12 (m, 1 H, CH), 2.02-1.99 (m, 1 H, CH2), 1.54-1.43 (m, 5 H, 

CH, CH2). 13C NMR (CDCl3, 50.3 MHz) 138.03 (d), 136.52 (s), 130.12 (d), 128.79 (d), 

126.04 (d), 111.15 (t), 53.17 (d), 36.04 (d), 34.49 (t), 31.15 (t), 24.96 (d), 20.58 (d). CI-

MS 229 (81, [M+1]+), 195 (42), 167 (90), 139 (72), 119 (100), 111 (36), 91 (20), 57 

(12). Anal. Calcd for C15H16S (228.35): C, 78.90; H, 7.06; Found: C, 78.95; H, 7.20. 

 

2-(1-Phenylsulfinylethenyl)bicyclo[2.2.1]hept-5-ene (4). The 1:1 mixture of sulfides 

10 and 11 (700 mg, 3.07 mmol) and m-chloroperbenzoic acid (756 mg, 3.07 mmol, 70%) 

in CH2Cl2 (10 ml) were stirred at –78°C for 5 h. Water (20 ml) and CH2Cl2 (20 ml) were 
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added and the phases were separated. The organic layer was washed with aqueous 

saturated Na2S2O4 (15 ml), aqueous saturated NaHCO3 (15 ml), and dried over MgSO4. 

Evaporation of the solvent gave the crude sulfoxides which were purified by FC 

(hexane/AcOEt 6:4) to afford unseparable mixture of four diastereoisomeric sulfoxides 4 

and two diastereoisomeric sulfoxides 12 (652 mg, 87%), as a pale yellow oil. 1H NMR 

(CDCl3, 360 MHz) δ 7.7-7.42 (m, 30 H, CHarom), 6.08 (dd, J = 5.5 Hz, 2.8 Hz, 1 H, 

CH=CH, 4), 6.05 (dd, J = 5.5 Hz, 3.1 Hz, 1 H, CH=CH, 4), 6.04-6.00 (m, 2 H, CH=CH, 

4), 5.96-5.93 (m, 2 H, CH=CH, 4), 5.81-5.78 (m, 1 H, CH=CH, 4), 5.78 (dd, J = 17.4 

Hz, 10.7 Hz, 1 H, CH=CH2, 12), 5.69 (dd, J = 5.7 Hz, 3.2 Hz, 1 H, CH=CH, 4), 5.62 (dd, 

J = 17.1 Hz, 10.4 Hz, 1 H, CH=CH2, 12), 5.38-5.27 (m, 2 H, CH=CH2SOPh, 4), 5.10-

4.97 (m, 2 H, CH=CH2SOPh, 4), 4.97 (ddd, J = 17.4 Hz, 6.1 Hz, 1.5 Hz, 1 H, 

CH=CHHtrans, 12), 4.98 (dd, J = 17.4 Hz, 1.5 Hz, 1 H, CH=CHHtrans, 12), 4.96 (dd, J = 

17.1 Hz, 1.5 Hz, 1 H, CH=CHHtrans, 12), 4.94 (dd, J = 10.7 Hz, 1.5 Hz, 1 H, 

CH=CHHcis, 12), 4.90 (dd, J = 10.4 Hz, 1.5 Hz, 1 H, CH=CHHcis, 12), 3.80-0.80 (m, 40 

H, CH, CH2, 4, 12). 

cis-Bicyclo[4.3.0]non-7-en-3-one (6). A degassed solution of radical precursor 4 and by-

product 12 (200mg, 0.818 mmol) in toluene (16 ml) was heated to reflux under an inert 

atmosphere, and treated dropwise (syringe pump) addition over 24 h with a solution of 

Bu3SnH (0.65 ml, 2.46 mmol) and 2,2’-azobis(isobutyronitrile) (AIBN; 16 mg, 0.10 

mmol) in toluene (2 ml). The solution was then cooled to rt, treated with KF (500 mg, 

8.61 mmol) for 12 h and the solvent was evaporated. The residue was dissolved in 

hexane (5 ml) and filtered on FC (hexane 150 ml and then AcOEt 100 ml). The AcOEt-

containing fraction was evaporated and purified by FC (Hexane/AcOEt 8:2) to afford 

bicycle 6 (26 mg, about 46% from 4) along with allyl alcohol 9 (12 mg, about 22% from 

4). 

Data of compound 6. IR (film) 3416, 2930, 1711, 756. 1H NMR (CDCl3, 500 MHz) δ 

5.77-5.73 (m, 1 H, C(8)-H), 5.60-5.56 (m, 1 H, C(7)-H), 3.10-3.00 (m, 1 H, C(6)-H), 

2.83-2.75 (m, 1 H, C(1)-H), 2.72-2.64 (m, 1 H, C(9)-Hexo), 2.48 (dd, J = 15.4 Hz, 6.1 Hz, 

1 H, C(2)-Hexo), 2.32 (dd, J = 15.4 Hz, 6.9 Hz, 1 H, C(2)-Hendo), 2.25 (dd, J = 5.5 Hz, 1.8 

Hz, 1 H, C(4)-Hendo), 2.23 (d, J = 5.5 Hz, 1 H, C(4)-Hexo), 2.08-1.95 (m, 2 H, C(5)-Hexo, 
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C(9)-Hendo), 1.76-1.69 (m, 1 H, C(5)-Hendo). 13C NMR (CDCl3, 122.77 MHz) 213.91 (s), 

133.31 (d), 130.32 (d), 43.57 (t), 42.99 (d), 40.32 (t), 37.07 (t), 33.66 (d), 25.44 (t). CI-

MS 137 (19, [M+1]+), 135 (95), 107 (19), 95 (16). Exact Mass Calcd for C9H12O 

(136.19): 137.0960904; Found: 137.0960060. 
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2-(Phenylselenyl)ethylsulfonate : A New Precursor of Alkoxyl Radicals 
 

 

1. Introduction 

 

As a quite young field of chemistry, radical chemistry has remarkably developed over 

the past decades. From carbon-centered radical processes1-4 to nitrogen-5 and oxygen-

centered6-8 reactions, it has quickly become an unavoidable tool of synthetic organic 

chemistry. However, the utility of this methodology remains limited to the availability of 

the suitable radical precursor for the generation of the wanted radical species. 

As part of our ongoing research of new alkoxyl radical precursors, we came to the idea 

of decomposing vinyl sulfonate derivatives to induce formation of alkoxyl radicals. 

Although the S-O bond of benzenesulfenate derivatives is known to undergo homolytical 

cleavage under a variety of conditions,9-12 to our knowledge, nobody has reported so far 

the use of sulfonates as alkoxyl radical precursors. Thus, we devised that, when treated 

in adequate radical conditions, radical precursor of type 1, obtained from the 

corresponding alcohol, should form carbon-centered radical 2, which, upon sequential 

elimination of ethylene and sulfur dioxide, would generate alkoxyl radical 3 (Scheme 1). 

If simply reduced, this would give back the starting alcohol. 
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2. Results and discussion 

 

In order to test the viability of our approach, we synthesized radical precursor 6 from 

trans-2-phenylcyclohexanol (4) in two steps and 50% non-optimized yield (Scheme 2). 

Treatment of alcohol 4 with 2-chloroethanesulfonyl chloride and triethylamine in 
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dichloromethane following King’s procedure13 afforded phenylcyclohexyl 

ethenesulfonate (5) in 55% yield. Then, attempts to brominate the olefin with refluxing 

bromohydric acid, as well as hydroboration and bromination of the double bond with 

bromine14 failed. Consequently, we decided to prepare selenylated derivative 6 by 

adding 5 to a solution of diphenyldiselenium and sodium borohydride in methanol. 

Phenylselenylethansulfonate 6 was thus obtained in 90% yield (Scheme 2). 

 

OH
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Cl(CH2)2SO2Cl
Et3N, CH2Cl2 O

Ph

S
O O

O

Ph

S
O O

SePh

 0°C     r.t.
 55%

4 5

NaBH4, (PhSe)2
MeOH

90%

6
Scheme 2

 

Radical reactions of 6 were initiated by 2,2’-azobis(isobutyronitrile) (AIBN). Syringe-

pump addition of tributyltin hydride and catalytic AIBN over 12 h to a 0.1 M solution of 

radical precursor 6 in refluxing benzene was tested first. However, these conditions 

resulted in formation of direct reduction product 7 in 30% yield and in partial recovery 

(5% yield) of starting material 6. Only traces of the expected alcohol 4, which could be 

the consequence of hydrolysis of 6 as well as of its radical reaction, were detected in 

NMR spectrum of the crude. Consequently, the reaction was next tested in refluxing 

toluene, with syringe-pump addition of a poorer hydrogen donor, 

tris(trimethylsilyl)silane15 and AIBN over 12 h, affording then a 26% yield of 4 and 

radical precursor 6 in 27% yield (Scheme 3). 
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This experiment constituted an encouraging result in favor of a radical pathway for the 

reaction. 

 

 3. Conclusion 

 

In summary, alkyl phenylselenylethanesulfonates, which are easily obtained from the 

parent alcohol, offer a potential as alkoxyl radical precursors.  

 

4. Experimental Section 

 

trans-2-Phenylcyclohexyl ethenesulfonate (5). To a solution of alcohol 4 (500 mg, 2.84 

mmol) in CH2Cl2 (5 ml) under N2, was added 2-chloroethanesulfonyl chloride. The 

mixture was cooled in an ice bath before dropwise addition of ice-cold triethylamine 

(1.19 ml, 8.52 mmol). The resulting suspension was stirred for 1 h and let warm to r.t. 

overnight. The reaction was worked up by washing with cold 10% aqueous Na2CO3 (3 x 

5 ml), and water (5 ml). Drying of the organic layer with MgSO4, and evaporation of the 

solvent afforded the crude 5. FC (hexane/AcOEt 8:2) purification gave 5 (418 mg, 55%) 

as a white solid. Mp 102.5°C. 1H NMR (CDCl3, 360 MHz): δ = 7.32-7.17 (m, 5 H, 

CHarom.), 5.96 (d, J = 16.5 Hz, 1 H, CHHtrans=CH), 5.49 (d, J = 10.0 Hz, 1 H, 

CHHcis=CH), 5.24 (dd, J = 16.5 Hz, 10.0 Hz, 1 H, CH2=CH), 4.40 (ddd, J = 10.7 Hz, 

10.7 Hz, 4.7 Hz, 1 H, CHOSO2CH=CH2), 2.69 (ddd, J = 14.4 Hz, 10.7 Hz, 3.8 Hz, 1 H, 

CHPh), 2.50-2.42 (m, 1 H, CHH), 2.08-2.35 (m, 7 H, CH2). 13C NMR (CDCl3, 50.3 

MHz): δ = 142.07 (t), 132.49 (d), 128.42 (d), 128.29 (d), 127.61 (s), 127.06 (d), 86.87 

(d), 49.83 (d), 34.24 (t), 32.83 (t), 25.31 (t), 24.85 (t). 

 

trans-2’-Phenylcyclohexyl-2-(phenylselenyl)ethylsulfonate (6). Sodium borohydride 

(34 mg, 0.900 mmol) was added to a solution of diphenyldiselenide (117 mg, 0.375 

mmol) in methanol (2 ml) at 0°C. Vinylsulfonate 5 (200 mg, 0.751 mmol) was then 

added and the reaction mixture was stirred for 5.5 h at r.t. The solution was concentrated 

in vacuo. The residue was dissolved in ether, washed with aqueous saturated NaHCO3 
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and brine, dried with MgSO4, and the solvent evaporated. FC (hexane, 3% Et2O) of the 

crude afforded 6 (286 mg, 90%) as a yellow solid. . 1H NMR (CDCl3, 360 MHz): δ = 

7.38-7.20 (m, 5 H, CHarom.), 4.60 (ddd, J = 11.0 Hz, 11.0 Hz, 4.5 Hz, 1 H, 

CHOSO2(CH2)2SePh), 2.73-1.30 (m, 9 H, CH, CH2). 13C NMR (CDCl3, 50.3 MHz): δ = 

142.32 (s), 132.98 (d), 129.25 (d), 128.66 (d), 127.95 (s), 127.63 (d), 127.32 (d), 86.62 

(d), 51.53 (t), 49.96 (d), 34.46 (t), 33.49 (t), 25.23 (t), 24.71 (t), 17.92 (t). 

 

General procedure (GP). Radical reactions. A degassed solution of radical precursor 6 

(0.314 mmol) in solvent was heated to reflux under an inert atmosphere, treated by 

dropwise (syringe pump) addition over 12 h with a solution of reductor and 2,2’-

azobis(isobutyronitrile) (AIBN; 8 mg, 0.05 mmol) in solvent and kept under reflux for 6 

additional hours. The solution was cooled to r.t., treated with KF (167 mg, 2.87 mmol) 

for 24 h and the solvent was evaporated. The residue was dissolved in hexane (2 ml) and 

filtered on FC (hexane 50 ml and then AcOEt 30 ml). The AcOEt-containing fraction 

was evaporated and purified by FC (Hexane/AcOEt 95:5 to 9:1). 

 

trans-2-Phenylcyclohexyl ethanesulfonate (7). According to GP. From 6 (133 mg, 

0.314 mmol) in benzene (3 ml), and Bu3SnH (0.092 ml, 0.346 mmol) and AIBN (8 mg, 

0.05 mmol) in benzene (3 ml) added dropwise. FC gave some remaining starting 

material 6 (6 mg, 5%), along with direct reduction compound 7 (25 mg, 30%) as a white 

solid. 1H NMR (CDCl3, 360 MHz): δ = 7.34-7.22 (m, 5 H, CHarom.), 4.62 (ddd, 1 H, 

CHOSO2CHCH2), 2.74 (ddd, 1 H, CHPh), 2.45-2.38 (m, 1 H, CHH), 2.41 (dq, 1 H, 

CHHCH3), 2.22 (dq, 1 H, CHHCH3), 1.98-1.31 (m, 7 H, CH2), 0.82 (t, 3 H, CH3). 

 

trans-2-Phenylcyclohexanol (4). According to GP. From 6 (97 mg, 0.230 mmol) in 

benzene (4.6 ml), and (TMS)3SiH (0.11 ml, 0.344 mmol) and AIBN (6 mg, 0.04 mmol) 

in benzene (4.6 ml) added dropwise. FC gave some remaining starting material 6 (25 mg, 

27%), along with alcohol 4 (9 mg, 26%) as a white solid. 1H NMR (CDCl3, 360 MHz): δ 

= 7.38-7.20 (m, 5 H, CHarom.), 3.71-3.60 (m, 1 H, CHOH), 2.48-2.37 (m, 1 H, CHPh), 
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2.17-1.27 (m, 9 H, CH2, OH). 13C NMR (CDCl3, 50.3 MHz): δ = 143.71 (d), 128.77 (d), 

128.12 (s), 126.83 (d), 74.29 (d), 53.18 (d), 34.43 (t), 33.41 (t), 26.06 (t) 25.11 (t). 
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