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Abstract 1 

Detailed studies on mammals and birds have shown that the effects of climate variation 2 

on population dynamics often depend on population composition, because weather affects 3 

different subsets of a population differently. It is presently unknown whether this is also true for 4 

ectothermic animals such as reptiles. Here we show such an interaction between weather and 5 

demography for an ectothermic vertebrate by examining patterns of survival and reproduction in 6 

six populations of a threatened European snake, the asp viper (Vipera aspis), over six to 17 years. 7 

Survival was lowest among juvenile and highest among adult snakes. The estimated annual 8 

probability for females to become gravid ranged from 26% to 60%, and was independent of 9 

whether females had reproduced in the year before or not. Variation in juvenile survival was 10 

strongly affected by winter temperature, whereas adult survival was unaffected by winter 11 

harshness. A matrix population model showed that winter weather affected population dynamics 12 

predominantly through variation in juvenile survival, although the sensitivity of the population 13 

growth rate to juvenile survival was lower than to adult survival. This study on ectothermic 14 

vipers revealed very similar patterns to those found in long-lived endothermic birds and 15 

mammals. Our results thus show that climate and life history can interact in similar ways across 16 

biologically very different vertebrate species, and suggest that these patterns may be very general. 17 

18 
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Introduction 18 

Stochastic variation in weather and climate increases the temporal variation in fitness 19 

components, thereby affecting the dynamics and extinction risk of a population (Andrewartha and 20 

Birch 1954, Lande 1993). Recent studies have revealed that weather does not affect all age 21 

classes and both sexes in the same way (Leirs et al. 1997, Coulson et al. 2001). For example, 22 

temperature fluctuations explained a large proportion of the variance in juvenile but not adult 23 

survival in barn owls (Altwegg et al. 2003). The effect of environmental variability on 24 

fluctuations in population numbers therefore critically depends on the demographic composition 25 

of the population and the life history of the species (Sæther et al. 2002).  26 

The effect of variation in a particular fitness component on variation in population 27 

numbers depends on how sensitive the population growth rate is to changes in that component 28 

(Caswell 2001). In large herbivores and long-lived birds, for example, the population growth rate 29 

is least sensitive to variation in reproduction and survival of young individuals (Sæther 1997, 30 

Gaillard et al. 2000). Yet, those fitness components that have the least effect on population 31 

growth rate tend to be the most variable ones (Gaillard et al. 2000), whereas traits more closely 32 

linked to population dynamics tend to be less variable (Sæther and Bakke 2000). This pattern 33 

may be due to selection for reduced variance, acting most strongly on those traits that are closely 34 

linked to fitness (Gillespie 1977, Stearns and Kawecki 1994, Pfister 1998). 35 

Stochastic environmental factors may thus affect populations through complex 36 

interactions with demography. However, only detailed individual-based studies of natural 37 

populations can unravel such processes. Although such data sets have begun to accumulate for 38 

large mammals and birds, where individuals can be followed relatively easily throughout their 39 

lives (Gaillard et al. 1998, Sæther and Bakke 2000), there is almost no information on the 40 
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interplay between demography and environmental stochasticity in ectothermic vertebrates. Yet, 41 

the insights gained from endothermic mammals and birds may not be readily applicable to 42 

ectothermic vertebrates for two reasons. First, the activity patterns of ectotherms such as reptiles 43 

and amphibians depend more on ambient temperature than those of mammals and birds. Second, 44 

the low energy requirements make ectotherms less susceptible in terms of survivorship to long 45 

periods of weather-caused food shortage (Pough 1980, Peterson et al. 1993). Thus, to understand 46 

how weather affects fitness and population dynamics of ectothermic vertebrates, we need long-47 

term individual-based studies. 48 

Here we illustrate the interaction between weather and demography in a threatened 49 

ectothermic vertebrate, the asp viper (Vipera aspis L.). We monitored 415 individuals in six 50 

populations located in the Jura mountains in northern Switzerland for 6 to 17 years (see also Flatt 51 

and Dummermuth 1993, Flatt et al. 1997). First, we estimated age- and sex-specific survival rates 52 

and the reproductive rate of females using capture-mark-recapture models (Lebreton et al. 1992). 53 

Second, we used the same methods to relate temporal variation in these fitness components to 54 

active-season and winter weather. Finally, we estimated the sensitivity of the population growth 55 

rate to changes in each of the fitness components using matrix population models and calculated 56 

the effects of weather-caused variation on population growth (Caswell 2001). Several studies 57 

estimated survival rates in snakes (e.g. Saint Girons 1957, Viitanen 1967, Gregory 1977, Brown 58 

and Parker 1984), and examined the effect of weather or climatic conditions on various aspects of 59 

reptile ecology (e.g., Moser et al. 1984, Peterson et al. 1993, Daltry et al. 1998, Flatt et al. 2001, 60 

Sun et al. 2001, Lourdais et al. 2004, and references therein). Our study extends these findings in 61 

two important ways. First, we account for variation in detection probability, which is likely to be 62 

lower for juvenile than for adult snakes, and may depend on the weather during the surveys. 63 

Second, we explicitly model the life cycle of our study organism, and thus estimate the impact of 64 
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external factors (such as weather) on population dynamics through variation in a particular fitness 65 

component. An explicit representation of the life cycle is necessary because similar changes in 66 

two different fitness components will not necessarily have similar effects on overall fitness and 67 

population dynamics (Ehrlén 2003). 68 

Methods 69 

Field methods 70 

Between 1986 and 2002, we monitored six isolated populations of asp vipers. Flatt and 71 

Dummermuth (1993) and Flatt et al. (1997) provide a description of the natural history of the asp 72 

viper and methodological details of fieldwork. Sample sizes and short descriptions of the study 73 

sites are given in Appendix I. We visited each site between one and 35 times per year during the 74 

entire activity period, from mid-March to mid-October, but 74% of the observations were made 75 

between Mai and September. Snakes were located from a distance with telephoto lenses, 76 

binoculars or by sight while walking slowly through the terrain. Identification of known 77 

individuals was based on photographs and detailed drawings of the head and neck coloration 78 

made at first encounter. We used overall coloration, dorsal colour pattern, scars and other 79 

distinctive marks for identification. In most cases, individuals were clearly identifiable from close 80 

distance and were only hand-captured if their identity was in doubt (10-20% of the cases). For 81 

each individual we recorded at every encounter the age class, sex, sight-estimated size, and 82 

reproductive status for females. Gravid female asp vipers recognisably change their body 83 

proportions within a few weeks after copulation. In doubtful cases, the snake was captured and its 84 

reproductive status verified by hand-scanning the body. We avoided capture whenever possible in 85 

order to minimise the disturbance of these threatened animals. Comparisons using captive 86 
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animals showed that our estimates of body size are within 10% of the measured size (SD, 87 

unpublished data). 88 

Age determination of individuals at first encounter was based on approximate body size. 89 

We classified individuals smaller than 30 cm as juvenile, individuals between 30 and 50 cm as 90 

subadult, and larger individuals as adult. In our populations, female vipers generally start 91 

reproducing at 50 cm and in their 4th or 5th year (SD, personal observation). Males may start 92 

reproducing earlier, but their reproductive status could not be assessed in the field. Since the 93 

subadult stage usually takes three years to complete, we assigned individuals to yearly age classes 94 

based on their size at first encounter, assuming similar growth rates among individuals over the 95 

first four years of life (first year subadult: < 37 cm, second year: between 37 and 44 cm, third 96 

year: > 44 cm). Growth may vary with food abundance, and our size estimates may be less 97 

accurate than if we had been able to hand-measure each individual. We therefore estimated the 98 

impact of potential errors in age determination on our survival estimates for population B, which 99 

is the smallest population with age effects, and thus potentially most affected by errors. We 100 

generated ten data sets that were equal to the original one, except that we added a substantial 101 

amount of random error to the estimates of body size. The errors were drawn from a normal 102 

distribution with standard deviation equal to 10% of the estimated body size. The ten data sets 103 

with artificially increased error yielded survival rates that were almost identical to the ones 104 

obtained from the original data set. The most extreme value for any survival rate was within 70% 105 

of the standard error of the original estimate, and our estimates are therefore robust to errors in 106 

age and size determination. 107 

Statistical methods 108 

We used basic capture-mark-recapture (CMR) methods (Lebreton et al. 1992) to estimate 109 

recapture and survival rates. CMR methods allow modelling of the recapture rate (probability that 110 
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an individual was recaptured or resighted at time i, given that it was alive and in the study area at 111 

that time) independently of the survival rate. We can therefore examine factors affecting the 112 

recapture rate (e.g. effort in the field) and the survival rate separately, and CMR gives unbiased 113 

estimates of survival even if a proportion of the individuals was not observed at every recapture 114 

occasion. Mortality here includes both death and permanent emigration. In terms of the 115 

population ecology of vipers in our area, death and emigration are essentially equivalent, since 116 

we only observed two adult males who successfully moved between populations and there are no 117 

other populations nearby where emigrants could establish. Second, we used multi-state 118 

extensions of CMR models to calculate reproductive probabilities of females (Nichols et al. 119 

1994). CMR models assume that all individuals within one group have the same probability of 120 

survival and recapture in each time step, and that all individuals are identified correctly (Lebreton 121 

et al. 1992). We verified that our data met these assumptions using a goodness-of-fit test provided 122 

by the program RELEASE (Test 2+3, Burnham et al. 1987) and found that a general time 123 

dependent model described the data well (each population tested separately: A: χ2= 33.30, df= 124 

29, P= 0.27; B: χ2= 25.72, df= 23, P= 0.22; C: χ2= 9.07, df= 6, P= 0.17; D: χ2= 15.51, df= 18, 125 

P= 0.63; E: χ2= 15.70, df= 12, P= 0.21; F: χ2= 19.23, df= 17, P= 0.32). The other models are 126 

generalisations or simplifications of these models and do therefore also meet the assumptions. 127 

We are, however, violating the additional assumption that recaptures are instantaneous in time, 128 

and this may lead to overestimating survival. Hargrove and Borland (1994) estimated this bias to 129 

be <5% in situations comparable to ours. 130 

Because the sample sizes precluded fitting large numbers of models or overly complex 131 

models, we limited our analyses to a few factors that seemed most likely on biological grounds, 132 

and a minimal number of models. These models form our set of candidate models. Additional 133 

models, coming up as interesting alternatives during analysis, were fitted a posteriori and are 134 
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marked in the tables accordingly. All models were fitted using maximum-likelihood methods 135 

implemented in the program MARK (White and Burnham 1999). To compare models we used 136 

the sample-size adjusted Akaike's Information Criterion (AICc; Burnham and Anderson 2002). 137 

The model with the lowest AICc value is best supported by the data. For each model, we also 138 

calculated Akaike weights (w) to assess the relative support from the data for a particular model 139 

as compared to the other models in the set (Burnham and Anderson 2002). Model selection 140 

identifies the model that best describes the structure in a data set, and favours the model that 141 

provides the best balance between overfitting (hence loss of precision) and underfitting (hence 142 

bias, see Burnham and Anderson 2002). Like with any statistical method, smaller effects need 143 

larger sample sizes to be detected, and smaller data sets therefore tend to select simpler models 144 

than large data sets. 145 

Modelling and estimation of recapture and survival probabilities. �� We proceeded in 146 

three steps. First, we investigated sex- and age-differences, and temporal variation in survival and 147 

recapture rates for each of the six populations separately. Second, we analysed differences 148 

between populations in age-specific survival and recapture in a single analysis. It turned out that 149 

sex effects were always weaker than age effects, with opposite trends across populations. In order 150 

to simplify the modelling procedure, we therefore did not examine sex differences at this second 151 

step. Third, we related age-specific survival to weather variation, using data provided by 152 

MeteoSwiss meteorological stations. An initial analysis with the largest data set (population F) 153 

showed that variation in survival and recapture was best represented by positive linear 154 

relationships with age, and we used this relationship for the rest of the analysis. As a 155 

consequence, estimates for subadults always lay between the estimates for adults and juveniles, 156 

and we do not always report the former separately. We also investigated whether recapture effort, 157 

i.e. the number of visits to a field site, affected the recapture rate in all populations. If a 158 
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population was not visited at all in a particular year, the recapture rate was set to zero for that 159 

year. Daily mean temperatures were measured at Wynau (UTM coordinates: 626400/233860, 422 160 

m above sea level, for populations A to E) and Neuchâtel (563110/205600, 487 m a.s.l., for 161 

population F) and monthly precipitation was measured at Balsthal (619250/240860, 502 m a.s.l., 162 

for populations A to E) and Yverdon (539840/181450, 433 m a.s.l., for population F). We 163 

considered separate models for the effect of winter and active-season weather. The winter effect 164 

consisted of the mean temperature measured on the coldest day and the number of days with 165 

mean temperature below 0°C. The active-season effect consisted of the linear and quadratic 166 

effects of mean daily temperature and mean monthly precipitation between 1 April and 31 167 

October. Quadratic effects were included in the active-season effect because snakes may be 168 

sensitive to extreme weather conditions at both ends of the scale (e.g., Saint Girons 1952, 1981). 169 

Each of the climate effects entered the models either as a main effect or as an interaction with the 170 

age effect. As none of the weather variables were significantly correlated with each other, we did 171 

not attempt to reduce their number by principal components analysis. 172 

Analysis of probability of reproduction. �� We estimated the probabilities for females to 173 

reproduce in a given year using multi-state models (Nichols et al. 1994). We defined two states 174 

that sexually mature females could assume: gravid versus non-gravid. The transition probabilities 175 

between these states were then 1) the probability of becoming gravid in the following year for a 176 

currently non-gravid female (ψnr); 2) the probability for a non-gravid female to remain in this 177 

condition (1-ψnr); 3) the probability of not being gravid in the following year for a currently 178 

gravid female (ψrn); and 4) the probability for a gravid female to be gravid again in the following 179 

year (1-ψrn). These transitions are conditional on survival, i.e. an individual has to survive the 180 

time interval before it can change its state. We further make the presently untestable assumption 181 

that all individuals with a particular state are equally likely to change from one state into the 182 
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other. The analysis of reproductive probability included only adult individuals, even though some 183 

of the individuals classified as 3rd year subadult may have reproduced in rare cases. Due to the 184 

large data requirements of multi-state models, we pooled the data of the populations in close 185 

proximity to each other (A to E) and only considered the period between 1994 and 1999 during 186 

which all these populations were studied simultaneously. Population F yielded enough data to be 187 

analysed separately. We examined the effects of temporal variation and active-season weather on 188 

both transition probabilities. We did not consider quadratic effects of active-season weather as in 189 

the survival analysis because the smaller sample size and the shorter time span did not warrant 190 

more complex effects. 191 

Matrix population modelling 192 

We used Leslie matrices to estimate the sensitivity of the population growth rate (λ) to 193 

variation in vital rates. Methods exist to estimate sensitivity from CMR data directly (Nichols et 194 

al. 2000). However, with strongly age-dependent survival as in our data set, these methods are 195 

not applicable. The matrix entries were the age-specific survival rates taken from the CMR 196 

models and reproductive rates (Appendix II). The latter are the product of the probability for 197 

females to reproduce, litter size, the sex ratio within the litter, and the survival probability of 198 

new-born from birth in late fall until next spring. Whereas the probability of reproducing was 199 

also obtained from the CMR models (see above), data on the other components of recruitment 200 

could not be estimated from the data directly. We therefore used data obtained from the literature, 201 

supported by occasional observations in our study populations. We used a mean litter size of ten, 202 

a 1:1 sex ratio (Saint Girons 1952, Flatt and Dummermuth 1993), and set the survival of new-203 

born equal to the survival of juvenile individuals. Due to the uncertainty in the estimate of 204 

reproductive rates, we did not further examine variation in this trait. First, we assessed the effects 205 
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of variation in fitness components on population growth using sensitivity and elasticity analyses 206 

(Stearns 1992, Caswell 2001). We calculated 95% confidence limits by generating 1000 matrices 207 

with elements drawn from a normal distribution with mean and variance obtained from the logit 208 

transformed CMR estimates. After being sorted by their magnitude, the 25th and 975th bootstrap 209 

replicates represent the lower and the upper confidence limits. Second, in a retrospective analysis 210 

(Caswell 2000), we asked how much of the weather-caused variance in survival during the 211 

different life stages contributed to variation in λ. To do this, we used survival rates obtained from 212 

the weather-dependent CMR model and multiplied the variances in stage specific survival with 213 

the square of the corresponding sensitivities (Caswell 2001). All matrix analyses were performed 214 

for the pooled populations A to E and for population F using the S-plus-2000 software package 215 

(Insightful Corp., Seattle USA). 216 

Results 217 

Recapture rates 218 

Model selection showed that the recapture probabilities were lower for juvenile than for 219 

adult snakes in populations A, C, D and F and varied with recapture effort or time for all 220 

populations but D. In no population did the recapture rate differ between the sexes. The estimates 221 

ranged from 0.05 to 0.74 in A, 0.25 to 0.90 in B, 0.002 to 0.91 in C, 0.29 to 0.79 in D, 0.27 to 1 222 

in E, and from 0 to 0.89 in F. 223 

Patterns of survival  224 

Model selection showed similar demographic patterns in all populations. AICc favoured 225 

the model incorporating age-dependent survival in populations A, B, E, and F (Table 1). Survival 226 

was lowest for juveniles, higher for subadults, and highest for adults (Fig. 1). Population C 227 

showed a similar pattern, but the confidence intervals for the estimates were large. The best 228 
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estimate of the relationship in population D was very near zero (Fig. 1). The AICc-selected best 229 

models did not include differences between sexes in any population except F. Population F 230 

included the effect of sex and the interaction between age and sex, suggesting higher survival for 231 

adult females compared to adult males, but equal survival of the juveniles of both sexes (Fig. 1). 232 

Survival stayed fairly constant throughout the duration of our study in all populations, and the 233 

models accounting for potential time effects were always poorly supported by the data. 234 

Comparison between populations 235 

We quantitatively compared all populations, A through F, in a single analysis. We used all 236 

data collected between 1986 and 2002 while setting the corresponding recapture rate to zero if a 237 

population was not sampled in a particular year. The best-supported models accounted for the 238 

effects of sampling effort and age on recapture rates (models 2 to 11, Table 2). AICc further 239 

showed that recapture rates differed between populations (models 3 to 11, Table 2). Among the a 240 

priori models (models 1 to 10, Table 2), AICc selected the one allowing for survival differences 241 

between populations and accounting for interactions between age and winter weather (model 8). 242 

A close competitor of model 8 was model 2, excluding the effect of winter weather, while the 243 

other models were poorly supported. A posteriori, we investigated the role of winter harshness by 244 

fitting a reduced winter-weather model including only the effect of the number of days with 245 

temperatures below zero. The AICc value of this model was 3.26 units lower and thus 246 

considerably better supported by the data than the best a priori model, suggesting that juvenile 247 

survival was strongly dependent on winter harshness whereas adult survival was unaffected (Fig. 248 

2). 249 
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Probabilities of reproduction 250 

The multi-state models required pooling populations A to E for calculating the probability 251 

for females to became gravid, but we were able to examine population F separately. Model 252 

selection suggested constant reproductive probabilities over time except that reproducers in 253 

population F were more likely to reproduce again after relatively warm and wet summers (model 254 

1 and model 5, Table 3). Model 1, suggesting constant reproductive probabilities, was a close 255 

competitor to the best model in population F. In populations A to E the probabilities of 256 

reproducing in the following year were 0.27 (95% CI: 0.14 / 0.45) for currently non-reproductive 257 

females and 0.26 (CI: 0.09 / 0.57) for currently reproducing females. In population F the 258 

probabilities of reproducing were 0.40 (95% CI: 0.13 / 0.75) for currently non-reproductive 259 

females and 0.60 (CI: 0.36 / 0.80) for currently reproducing females. 260 

For populations A to F, reproducing females survived better than non-reproducing ones. 261 

Omitting this factor from the best model (model 1, Table 3a) resulted in a poorly fitting model 262 

(K= 4, Deviance = 132.608, AICc= 240.999, ∆ AICc= 2.361). For population F, we found no 263 

evidence for differential survival between the two types of females (adding this factor to model 5, 264 

Table 3b, resulted in a poorly fitting model: K= 7, Deviance = 151.503, AICc= 278.802, ∆ 265 

AICc= 2.163). 266 

Sensitivity of λλλλ to variation in survival and recruitment 267 

The matrix model (Appendix II) yielded an asymptotic population growth rate (λ), i.e. the 268 

growth rate once the population has reached a stable age distribution (Caswell 2001), of 0.873 269 

(95% confidence interval: 0.811 / 0.936) for the pooled populations A to E and 1.057 (0.943 / 270 

1.152) for population F. These estimates show that populations A to E are projected to decrease 271 

given the estimated fitness components, whereas population F is projected to stay constant. For 272 
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all populations, the sensitivity and elasticity analyses consistently showed that population growth 273 

was most affected by variation in adult survival and least affected by variation in reproduction 274 

(Table 4). However, the retrospective analysis showed that weather affected λ most strongly 275 

through the survival of juveniles as weather caused the largest variation in this life stage (Table 276 

4). 277 

Discussion 278 

This study examined the interactive effects of demography and weather on fitness 279 

components, and their effect on the growth rate of six populations of a threatened European 280 

snake, the asp viper. Despite the large biological differences of the study species, our results 281 

reveal the same patterns reported for mammals and birds (Gaillard et al. 1998, Sæther and Bakke 282 

2000), suggesting that these patterns may be general for terrestrial vertebrates. Our main finding 283 

is that variation in juvenile survival, but not adult survival, was strongly affected by winter 284 

temperature. Winter temperature affected population growth rate predominantly through variation 285 

in juvenile survival, even though the sensitivity of the population growth rate to juvenile survival 286 

was lower than to adult survival.  287 

Climatic variation often affects subsets of a population differently, and in such cases its 288 

effect on population dynamics depends on the current demographic composition of the 289 

population (Leirs et al. 1997, Coulson et al. 2001, Stenseth et al. 2002). For instance, different 290 

responses of the sexes and age classes to climatic variation is one of the factors leading to 291 

different population dynamics in the otherwise ecologically similar red deer and Soay sheep on 292 

Scottish islands (Clutton-Brock and Coulson 2002). If such patterns are common, detailed 293 

knowledge of the demography and differential susceptibility of demographic components of a 294 

population to climatic variation is crucial for a mechanistic understanding of population 295 
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dynamics. Despite the extensive literature on snake population ecology (Parker and Plummer 296 

1987), there are few data on survival under natural conditions (e.g. Turner 1977, Shine and 297 

Charnov 1992, Flatt et al. 1997). This lack of information is one of the major constraints in snake 298 

conservation (Dodd Jr. 1993). 299 

The results presented here suggest that survival of juvenile asp vipers is more susceptible 300 

to harsh winter conditions than are other fitness components. Several factors could lead to these 301 

results: differences between age classes could arise because young individuals are less 302 

experienced in finding suitable winter quarters than adults. Alternatively, juveniles may be more 303 

likely to run out of fat reserves during hibernation than adults. Our results are unlikely to be 304 

affected by differential emigration, as our results would imply greater mobility of young snakes 305 

in colder winters, which seems unlikely for these ectothermic organisms. Substantial winter 306 

losses have also been found in adult garter snakes (Thamnophis sirtalis; winter mortality: 34 to 307 

48%; Gregory 1977), and in the European adder (Vipera berus; juvenile mortality: 47.2%, and 308 

adult mortality: 18.1%; Viitanen 1967). These estimates are probably biased high, however, as 309 

these studies could not account for detection probabilities. 310 

In accordance with the general patterns found in long-lived turtles, birds and mammals 311 

(Crouse et al. 1987, Pfister 1998, Sæther and Bakke 2000, Gaillard et al. 2000), population 312 

growth in our asp viper populations was less sensitive to changes in the more variable juvenile 313 

survival than the less variable adult survival. Yet, winter weather affected population growth 314 

predominantly through juvenile survival because it caused most of the variation in this trait. This 315 

is consistent with the finding that ungulate population dynamics are mostly driven through 316 

variation in juvenile survival despite the relatively low impact of this fitness component on 317 

population growth (Gaillard et al. 2000).  318 
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Our age-specific estimates of survival compare well with earlier estimates on this or 319 

similar species (Parker and Plummer 1987; see also discussion in Flatt et al. 1997). For example, 320 

Flatt et al. (1997) found an average adult survival rate of 0.75 for populations A and B over the 321 

first six and nine years of the study. Our corresponding estimates are 0.74 for populations A to E, 322 

and 0.84 for population F. However, as in our previous study (Flatt et al. 1997), we were unable 323 

to detect temporal variation in survival of adult vipers. In contrast, the studies by Brown and 324 

Parker (1984) and Forsman (1995) have found substantial variation in survival among years. This 325 

result potentially is affected by variable recapture success, for which these studies did not correct. 326 

While it generally appears that juvenile and first-year mortality is higher than adult 327 

mortality among snakes (Saint Girons 1957, Brown and Parker 1984), there is little data on 328 

survival of young age classes, and to our knowledge only one study accounted for the possibly 329 

lower detection probabilities of young snakes (Stanford 2002). Viitanen (1967) found lower 330 

survival in juveniles as compared to adult V. berus, and Saint Girons (1957) estimated a mortality 331 

of over 50% in V. aspis during their first months of life. Consistent with this, Jayne and Bennett 332 

(1990) and Stanford (2002) found that larger body size positively affects survival in garter 333 

snakes, Forsman (1993) demonstrated size-dependent differences in survival of V. berus, and 334 

Baron et al. (1996) showed variation in age-specific survival for Vipera ursinii. In our study, we 335 

used body size at first encounter as a measure of age and assumed similar growth rates for all 336 

snakes during the first four years of their life. We can therefore not strictly distinguish between 337 

age effects and size effects. However, our results are mainly based on contrasts between juveniles 338 

and adults, the two life stages least sensitive to these assumptions. If anything, inaccuracies in 339 

age determination and variation in growth rate would have led to underestimated age effects, and 340 

our results are thus conservative. We further found that potential errors in size determination had 341 

a negligible effect on our results. 342 
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Based on observations that did not take into account variation in detection probabilities, 343 

Saint Girons (1952, 1957) argued that female vipers reproduce every two to four years. Using the 344 

multi-state model, we could quantify the breeding probability and found that the estimated annual 345 

probability for females to become gravid ranged from 26% to 60% in our study populations. This 346 

result suggests that females reproduced on average every second to fourth year (see also Flatt and 347 

Dummermuth 1993), even though the confidence intervals around these estimates were relatively 348 

large. Interestingly, the probability of reproducing did not depend on whether a female had 349 

reproduced in the year before or not. This result contrasts with estimates from an asp viper 350 

population in western France, where females reproduce only after having reached a certain 351 

threshold in body condition, and most of the females were found to reproduce only once in their 352 

life-time (Naulleau and Bonnet 1996, Lourdais et al. 2002, Bonnet et al. 2002). We found at least 353 

two females that were gravid in four consecutive years. Furthermore, we found no evidence for 354 

reduced survival of reproductive females. If anything, they had higher survival than non-355 

reproducers. The difference between these studies suggests that there is considerable geographic 356 

variation in life history of Vipera aspis (see also discussion in Moser et al. 1984). 357 

The effects of weather and microclimatic conditions on many aspects of the ecology of 358 

terrestrial ectothermic vertebrates such as reptiles is well studied (e.g., Moser et al. 1984, 359 

Peterson et al. 1993, Daltry et al. 1998, Flatt et al. 2001, Sun et al. 2001, Lourdais et al. 2004, and 360 

references therein), yet linking this knowledge to population dynamics requires detailed 361 

demographic models. So far, the precise demographic data required to parameterise such models 362 

are rare for reptiles and amphibians (but see  Flatt et al. 1997, Anholt et al. 2003). This is partly 363 

due to the difficulty of observing these mostly secretive and less active ectotherms. Here we 364 

present such a demographic model for the asp viper. While our data permitted us to model age-365 

specific survival, we could not observe reproduction frequently enough to analyse the effects of 366 
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weather on variation in reproductive output. Nevertheless, our study is a step towards a better 367 

understanding of the factors driving the population dynamics of ectothermic vertebrates. For 368 

instance, many Swiss populations of the asp viper have been declining, with some populations 369 

going extinct (Moser et al. 1984, Monney 2001). Except for habitat destruction, the factors 370 

driving the decline or extinction are typically unknown. Only long-term ecological field studies 371 

based on large numbers of populations and individuals can unravel the underlying causes of such 372 

changes in population dynamics. Our study suggests that a complex interplay between climatic 373 

variation and demography may be important for the population dynamics of ectothermic 374 

vertebrates. 375 
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Table 1. Model selection for survival of asp vipers in six populations (A to F) in northern 

Switzerland. The selected models for the recapture probability included the effects of sampling 

effort (A, B, C), age (A, C, D), time (E), and simultaneous effects of age, time and their 

interaction (F) (model selection for recapture not shown). The fit of the models is assessed by 

Akaike's Information Criterion (AICc); lower values indicate better fit. ∆AICc gives the 

difference in AICc between each model and the best model (in bold). The Akaike weights (w) 

assess the relative support that a given model has from the data, compared to the other models in 

the set. K is the number of estimated parameters of a given model. The Deviance is the difference 

in -2 log Likelihood between each model and the saturated model, the saturated model being the 

one with the number of parameters equal to the sample size. 
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Population 
(recapture) 

Factors in survival 
model 

K Deviance AICc ∆ AICc w 

A constant 4 216.276 258.957 1.192 0.244 

(age, effort) time 14 209.912 276.430 18.665 0.000 

 age 5 212.897 257.765 0.000 0.443 
 sex 5 216.260 261.128 3.363 0.082 

 sex, age 6 212.532 259.628 1.863 0.174 

 sex, age, interaction 7 212.517 261.881 4.116 0.057 

      Σ= 1 

B constant 3 166.067 199.409 6.154 0.025 

(effort) time 13 149.595 207.768 14.513 0.000 

 age 4 157.709 193.255 0.000 0.535 
 sex 4 164.448 199.994 6.739 0.018 

 sex, age 5 156.539 194.345 1.090 0.310 

 sex, age, interaction 6 156.272 196.395 3.140 0.111 

      Σ= 1 

C constant 4 76.158 103.687 0.000 0.493 
(age, effort) time 14 74.952 132.181 28.494 0.000 

 age 5 75.105 105.058 1.371 0.248 

 sex 5 76.030 105.983 2.296 0.156 

 sex, age 6 75.087 107.565 3.878 0.071 

 sex, age, interaction 7 74.056 109.168 5.481 0.032 

      Σ= 1 

D constant 3 128.738 215.877 0.000 0.477 
(age) time 10 122.418 225.574 9.697 0.004 

 age 4 128.737 218.032 2.155 0.162 

 sex 4 128.026 217.321 1.444 0.232 

 sex, age 5 127.995 219.488 3.611 0.078 

 sex, age, interaction 6 126.766 220.500 4.623 0.047 

      Σ= 1 
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Table 1, continued. 

 

Population Factors in survival 
model 

K Deviance AICc ∆ AICc w 

E constant 8 121.764 264.84 10.160 0.004 

(time) time 13 119.01 273.741 19.061 0.000 

 age 6 116.039 254.68 0.000 0.646 
 sex 7 121.659 262.502 7.822 0.013 

 sex, age 7 115.736 256.579 1.899 0.250 

 sex, age, interaction 8 115.612 258.687 4.007 0.087 

      Σ= 1 

F constant 11 216.600 523.450 13.505 0.001 

time 14 213.171 526.599 16.654 0.000 (age, time, 
interaction) age 12 206.225 515.252 5.307 0.043 

 sex 12 208.488 517.515 7.570 0.014 

 sex, age 13 199.942 511.162 1.217 0.332 

 sex, age, interaction 14 196.517 509.945 0.000 0.610 

      Σ= 1 
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Table 2. Model selection for the comparison between six populations of the asp viper in 

northern Switzerland. Effort = number of visits to a site per season. Models 7 to 11 examine the 

effects of weather on survival: winter = minimum temperature and number of days below zero, 

active season = mean daily temperature between 1 April and 31 October and mean precipitation 

over the same period (both effects linear and quadratic). Only the a priori models were included 

in the calculation of w, and ∆ AICc is the difference in AICc to the best a priori model. * between 

two effects symbolises interactive effects; � post hoc model including the number of days below 

zero only. See also legend to table 1. 

 

 Factors in survival model Factors in recapture 
model 

K Deviance AICc ∆ AICc w 

1 population, age population, age, time 29 757.040 1557.423 8.190 0.007 

2 population, age population, age, effort 15 778.667 1549.485 0.252 0.346 

3 population, age age, effort 10 795.751 1556.252 7.019 0.012 

4 age population, age, effort 10 794.074 1554.575 5.342 0.027 

5 population population, age, effort 14 804.809 1573.554 24.321 0.000 

6 population * age population, age, effort 20 774.124 1555.386 6.153 0.018 

7 population, age, winter population, age, effort 17 775.896 1550.876 1.643 0.173 

8 population, age * winter population, age, effort 19 770.070 1549.233 0.000 0.393 
9 population, age, active 

season 
population, age, effort 

19 776.126 1555.288 6.055 0.019 

10 population, age * active 
season 

population, age, effort 
23 769.912 1557.501 8.268 0.006 

11 � population, age * days 
below zero 

population, age, effort 
17 770.997 1545.977 -3.256  

       Σ= 1 
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Table 3. Model selection for multi-state models examining the probability of asp vipers to 

reproduce in populations A to E (a, n=51 females), and F (b, n=34 females). We included data 

collected between 1994 and 1999 for populations A to E, and data collected between 1987 and 

1992 for population F. For both data sets the most parsimonious model included constant survival 

and recapture rates, except that reproducers survived better than non-reproducers in populations 

A to E (model selection for these components not shown). K is the number of structural 

parameters, which were all estimable for the best-supported models. See also legend to table 1. 

 

 

 Currently not 
reproducing (ψnr) 

Currently 
reproducing (ψrn) 

K Deviance AICc ∆ AICc w 

a) Populations A to E      

1 constant constant 5 127.977 238.638 0.000 0.522 
2 time constant 9 119.854 240.225 1.587 0.236 

3 constant time 9 124.127 244.498 5.860 0.028 

4 active-season constant 7 125.880 241.265 2.627 0.140 

5 constant active season 7 127.192 242.576 3.938 0.073 

       Σ= 1 

b) Population F      

1 constant constant 4 156.853 277.373 0.734 0.249 

2 time constant 8 153.440 283.096 6.457 0.014 

3 constant time 8 151.249 280.904 4.265 0.043 

4 active season constant 6 156.739 281.730 5.091 0.028 

5 constant active season 6 151.648 276.639 0.000 0.360 

       Σ= 1 
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Table 4. Sensitivity (with 95% confidence limits) and elasticity of the population growth 

rate (λ) of asp vipers in northern Switzerland to variation in fitness components. Both analyses 

ask by how much growth rate is changed by a certain change in a fitness component. The former 

considers absolute changes, whereas the latter considers proportional changes and is thus better 

suited to compare traits that are measured at different scales. The elasticities sum to one over the 

whole life cycle. The retrospective analysis (RA) asks how much the observed variance in 

survival, caused by winter weather, contributed to variance in λ, and is given in % relative to the 

other survival rates. Sample sizes for the retrospective analysis were 16 years for the pooled 

populations A-E and five years for population F. 

 

 Populations A-E Population F 

 Sensitivity Elasticity RA Sensitivity Elasticity RA 

Juvenile survival 0.193 
(0.128/0.266) 

0.094  61.3 0.206 
(0.128/0.273) 

0.114  44.0 

1st year subadult 
survival 

0.159 
(0.107/0.210) 

0.094 28.3 0.180 
(0.112/0.233) 

0.114 24.0 

2nd year subadult 
survival 

0.136 
(0.093/0.179) 

0.094 9.4 0.162 
(0.101/0.206) 

0.114 12.0 

3rd year subadult 
survival 

0.120 
(0.080/0.155) 

0.094 < 1 0.148 
(0.093/0.187) 

0.114 4.0 

Adult survival 0.629 
(0.548/0.728) 

0.531 < 1 0.558 
(0.477/0.695) 

0.430 16.0 

Reproduction* 0.092 
(0.063/0.138) 

0.094  0.100 
(0.061/0.181) 

0.114  

 

* reproduction is the product of the probability of reproducing, litter size, sex ratio within 

litter, and survival of new-born until the spring after birth. 
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Figure 1. Age specific survival in six populations of asp vipers in northern Switzerland. 

The estimates are taken from the age specific model for populations A to E, and from the model 

with interacting age and sex effects for population F. The error bars show the 95% confidence 

interval, which is derived from the linear predictors, on the logit scale. The symbols are slightly 

offset for ease of interpretation. 

 

Figure 2. Interaction between winter harshness, expressed as the number of days with 

average temperatures below zero, and age on survival of asp vipers. The figure shows estimates 

for population B, which has been studied over the longest time. Estimates for the other 

populations differ from those shown by a constant value. The vertical lines show the 95% 

confidence interval, which is derived from the linear predictors, on the logit scale. Estimates from 

model 11, Table 2. 
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Figure 1.  
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Figure 2 
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Appendix I 

Number of captures/resightings (number of newly encountered individuals in parenthesis) in six populations (A to F) of Vipera 

aspis over the years of the study. Total number of captures/resightings is given for each population and year (number of new individuals 

for each year, and total numbers of individuals per population in parenthesis).  

 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Total 

A    5 

(5) 

8 

(6) 

5 

(3) 

16 

(13) 

21 

(11) 

16 

(7) 

10 

(5) 

10 

(1) 

7 

(2) 

3 

(1) 

4 

(2) 

6 

(4) 

4 

(2) 

1 

(0) 

116 

(62) 

B 3 

(3) 

8 

(6) 

7 

(2) 

1 

(0) 

4 

(1) 

5 

(4) 

3 

(1) 

8 

(7) 

6 

(4) 

5 

(0) 

5 

(0) 

3 

(0) 

7 

(3) 

10 

(5) 

5 

(0) 

5 

(4) 

5 

(1) 

90 

(41) 

C      3 

(3) 

5 

(4) 

5 

(2) 

6 

(2) 

6 

(5) 

6 

(2) 

5 

(1) 

6 

(3) 

5 

(1) 

7 

(4) 

1 

(0) 

2 

(1) 

57 

(28) 

D         9 

(9) 

17 

(12) 

13 

(6) 

8 

(2) 

6 

(2) 

18 

(13) 

13 

(4) 

25 

(16) 

13 

(2) 

122 

(66) 

E       2 

(2) 

22 

(20) 

20 

(5) 

35 

(19) 

36 

(16) 

21 

(6) 

14 

(7) 

17 

(7) 

   167 

(82) 

F  49 

(49) 

81 

(50) 

64 

(16) 

55 

(11) 

41 

(7) 

33 

(3) 

          323 

(136) 

 3 

(3) 

57 

(55) 

88 

(52) 

70 

(21) 

67 

(18) 

54 

(17) 

59 

(23) 

56 

(40) 

57 

(27) 

73 

(41) 

70 

(25) 

44 

(11) 

36 

(16) 

54 

(28) 

31 

(12) 

35 

(22) 

21 

(4) 

875 

(415) 
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Notes: Populations A-E are located near Solothurn (coordinates: 607067/229174) and F is 

in Vaud, near Neuchâtel (coordinates: 563110/205600). Because the asp viper is a threatened and 

protected species, we do not give here the exact coordinates and locations of our study sites. Site 

A (approx. 4.6 km from Solothurn) lies on a SSE facing slope 800 to 900 m above sea level. The 

most important area of this site is a stretch approximately 600 m long and 100 m wide that 

includes areas covered with stones and small boulders as well as forested sections (see Flatt and 

Dummermuth 1993). Site B (approx. 4.9 km from Solohthurn) lies on a SE facing rocky forested 

ridge, approximately 700 ml long and 100 m wide, at an altitude of 800 to 920 m above sea level. 

The ridge runs out into a steep rocky slope at the south-eastern end. Site C (approx. 5 km from 

Solothurn) consists of a S to SSE-facing rocky ridge and adjacent boulder and talus strewn areas 

between two quarries at an altitude of 710 to 740 m above sea level and measures approximately 

100 x 60 m. Site D (approx. 8 km from Solothurn) is a stretch approximately 500 m long and 150 

to 200 m wide on a rocky ridge facing S to SE. Forested areas intersect talus and rocky areas. 

With an altitude of 860 to 1�060 m above sea level site D is one of the most elevated viper 

habitats in northern Switzerland. Site E (approx. 18.5 km from Solothurn) lies on an altitude of 

519 to 686 m above sea level and covers a S to SSE facing forested slope interspersed with rock 

walls and talus areas. The site covers a surface of approximately 1000 x 150 m. Site F (approx. 

22 km from Neuchâtel) covers an area of about 6 ha, is mainly SSE facing and lies at an altitude 

of 429 to 475 m above sea level. Half of the surface of this site is covered by oak groves. Most 

vipers live in an old abandoned quarry in the centre of the site and on adjacent talus slopes. 
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Appendix II 

 

Population projection matrix (with 95% confidence limits) for populations A to E: 
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Population projection matrix (with 95% confidence limits) for population F: 
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