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Abstract

Understanding the mechanisms that promote coexistence among species is a fundamental problem in evolutionary ecology. Such

mechanisms include environmental noise, spatial population structure, density dependence, and genetic variation. In natural

populations such factors may exert combined effects on coexistence. Thus, to disentangle the contribution of several factors to

coexistence, their effects have to be considered simultaneously. Here we investigate the effects of Ricker-type density dependence,

genetic variation, and the frequency of sex on host–parasite coexistence, using Nicholson–Bailey models with and without host

density dependence. Interestingly, a low frequency of sex (and the genetic variation induced by sex) is the most important factor in

explaining the stability of the host–parasite interaction. However, the carrying capacity K and the frequency of sex interact in

affecting coexistence. If K is low (strong density regulation), coexistence is easily attained in the density-dependent model,

independently of the frequency of sex. In contrast, for high values of K (weak density regulation), low frequencies of sex

considerably improve coexistence. Thus, our results suggest that coexistence among species may strongly depend on interactions

among several stabilizing factors. These results seem to be robust since they remain qualitatively unchanged if one assumes (1)

Beverton–Holt-type or genotype-specific rather than Ricker-type density dependence in the host, or (2) different genotype-specific

susceptibilities of hosts to their parasites, or if one adds (3) moderate levels of environmental stochasticity.
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1. Introduction

The conditions promoting coexistence among species
are a central issue in evolutionary ecology (e.g.
Anderson et al., 1992; Jansen and Sigmund, 1998;
Abrams, 2001; Vandermeer et al., 2002). For instance,
early microcosm experiments demonstrated that a
predator–prey system consisting of predatory ciliates
and bacteriophagous Paramecium exhibited diverging
oscillations, leading to the extinction of the predator or
the whole system (Gause, 1934). Similarly, simple
predator–prey and host–parasite models showed un-
stable dynamics causing extinction (e.g. Nicholson and
Bailey, 1935). These findings prompted a search for
mechanisms that prevent or promote coexistence. For

instance, theory has shown that spatio-temporal envir-
onmental heterogeneity, density dependence, interfer-
ence among parasitoids, spatial aggregation of
predators in areas of high prey density, dispersal, and
genetic variation may promote coexistence (e.g. Hassell
and May, 1973, 1974; Beddington et al., 1975, 1978;
Hassell, 1978; Chesson and Murdoch, 1986; Hassell
et al., 1991; Doebeli and Koella, 1994; Doebeli, 1995,
1997; Weisser et al., 1997). Some of these findings have
received empirical support. For instance, a field study by
Walde et al. (1992) on a herbivorous mite and its
predator shows that spatial structure promotes persis-
tence, and work by Holyoak and Lawler (1996)
demonstrates that asynchronous metapopulation dy-
namics can lead to coexistence in a protist predator–
prey system.

Although many factors promoting coexistence have
been investigated, it is not clear which of them actually
operate in natural populations. For example, long-term
studies by Murdoch and collaborators on the coex-
istence between the red scale (Aonidiella aurantii) and its
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parasitoid Aphytis melinus have failed to demonstrate
the effect of any tested single mechanism (reviewed in
Murdoch, 1994). One potential reason for the difficulty
in detecting the action of such single factors is that
several of them may interact, exerting combined effects
on the persistence of species interactions. Thus, to
disentangle the contributions of several factors to
coexistence, their effects must be considered simulta-
neously (e.g. Hilborn and Stearns, 1982). However, this
has only rarely been attempted.

The Nicholson–Bailey model (Nicholson and Bailey,
1935) offers an ideal model system to address the
question of whether and how multiple mechanisms
affect coexistence. It is one of the simplest two-species
models to study discrete-time predator–prey, host–
parasite, or host–parasitoid dynamics (e.g. Hassell,
1978). Furthermore, since coexistence is impossible in
the classical model, the effects of various factors on
coexistence have been particularly well investigated in
model extensions of the classical version (e.g. Bedding-
ton et al., 1975, 1978; Hassell and May, 1974; Doebeli,
1997; Flatt et al., 2001). First, as shown by Beddington
et al. (1975), including host density dependence can lead
to coexistence in the Nicholson–Bailey model. Second,
by incorporating quantitative genetic variation, coex-
istence becomes possible in the classical and is improved
in the density-dependent Nicholson–Bailey model
(Doebeli, 1997). Third, sexual reproduction dynamically
stabilizes a genetic and density-dependent version of the
Nicholson–Bailey model, the effects critically depending
on the frequency of sexual reproduction (Flatt et al.,
2001). However, if considered simultaneously, do
these factors interact in promoting coexistence and, if
so, how?

Here we extend the theory on these single factors by
examining their effects on coexistence simultaneously.
First, we consider two ways of taking host density
dependence into account: (1) the classical model without
host density dependence (Nicholson and Bailey, 1935),
and (2) the model version with host density dependence
(Beddington et al., 1975). Second, to investigate how
genetics influence coexistence, we introduce genetic
variation by assuming that the susceptibility of hosts
to parasites is genetically determined. Third, we
investigate how different frequencies of sex (cf. Flatt
et al., 2001) affect coexistence in these models. We show
that a low frequency of sex (and the genetic variation at
one diallelic locus induced by sex) generally induces or
improves coexistence. However, the magnitude of this
effect critically depends on the strength of host density
dependence. Thus, our results highlight the importance
of simultaneously considering multiple factors promot-
ing coexistence. This is particularly important because
the mechanistic details of interactions among such
factors may be complex and difficult to predict from
their effects considered separately.

2. Models of the Nicholson–Bailey type

2.1. Classical Nicholson–Bailey model

We start by describing the classical model of
Nicholson and Bailey (1935). This deterministic model
is set in discrete time and can be applied quite generally
to organisms with non-overlapping generations. Let Ht

and Pt be the host and parasite densities at time t. Then,
the model has the form

Htþ1 ¼ Htl expð�aPtÞ;

Ptþ1 ¼ cHtð1� expð�aPtÞÞ: ð1Þ

Here l is the host population growth rate, and, in
absence of the parasite (Pt=0), the host population
grows exponentially at rate l. Thus, there is no host
density dependence. The parameter a is the parasite’s
searching efficiency, and the term exp(�aPt) is the
probability that a host individual escapes parasitism.
This exponential term corresponds to the zeroth term
of a Poisson distribution, describing the number of
encounters of a host facing a population of Pt parasites
with searching efficiency a. In contrast, a particular host
individual is parasitized and converted with probability
[1�exp(�aPt)], the probability of not escaping parasit-
ism, into c parasite individuals. Thus, c is the conversion
rate of attacked hosts into parasites, i.e. a measure of the
parasite’s fecundity in terms of the average number of
parasites emerging from a successfully attacked host.
The model has a (non-zero) unstable equilibrium at

H� ¼
l ln l

ðl� 1Þa
and P� ¼

ln l
a

: ð2Þ

(The other fixed point is H��=P��=0.) Because of the
instability of the fixed point H�, P�, the size of the host–
parasite oscillations increases rapidly so that the parasite
goes extinct after a few generations. The host either also
goes extinct (since H��=P��=0 is a stable fixed
point) or increases without bounds. Thus, there is no
coexistence.

2.2. The host density-dependent Nicholson–Bailey model

The rather unrealistic classical model can be modified
by incorporating Ricker-type density dependence of the
host population (Beddington et al., 1975):

Htþ1 ¼ Ht expðln lð1�Ht=KÞÞ expð�aPtÞ

which can be rewritten as

Htþ1 ¼ Htl expð�Ht ln l=KÞ expð�aPtÞ

and

Ptþ1 ¼ cHtð1� expð�aPtÞÞ; ð3Þ

where K represents the host’s carrying capacity. The
dynamics of this system can range from unstable and
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stable equilibria to limit cycles and chaos (Beddington
et al., 1975). The dynamics are mainly determined by l,
a, and the quantity q=H�/K, where H� is the host
density at equilibrium (Beddington et al., 1975). The
host dynamics can then undergo a series of period-
doubling bifurcations as l increases, and the dynamics
can be chaotic if l is large enough (Beddington et al.,
1975). Here we are interested in the parameter range
for which coexistence is possible, which is illustrated in
Fig. 1a.

2.3. Polymorphic Nicholson–Bailey models

To study how genetic variation and different frequen-
cies of sex affect coexistence, we extend systems (1) and
(3) by including simple Mendelian population genetics.
Let the genetics of host and parasite be governed by one
diallelic locus. This simplifying assumption rests on
the observation that susceptibility and resistance
are often determined by single loci (e.g. Richards,
1970). Furthermore, work by Doebeli and Koella
(1994) and Flatt et al. (2001) shows that genetic
variation at a single locus is sufficient for observing

stabilizing effects on the dynamics of single- and
multiple-species models. Thus, for simplicity, we con-
sider a single- rather than a multi-locus model (cf.
Doebeli (1997) for a multilocus model). We further
assume, using a diploid matching-alleles model, that the
three host genotypes produce three different pheno-
types, each of them being susceptible to a specialized
parasite. The host genotypes AA, Aa and aa are
susceptible to parasite genotypes BB, Bb, and bb,
respectively. Thus, in all other host–parasite genotype
combinations the parasite is assumed to be ineffective.
This matching-alleles model is based on the assumption
that different parasite genotypes will be specifically
adapted to particular host genotypes, i.e. no parasite
genotype can be optimally adapted to two or more host
genotypes (e.g. Parker (1994), Frank (1996), see Carius
et al. (2001) for empirical evidence supporting this
assumption). Other models of host–parasite resistance
and susceptibility (e.g. gene-for-gene interaction) may
change the effects of genetics and sexual reproduction
on the dynamics, but this is not the focus of our
attention here. Furthermore, we assume in all three
genetic models that different host and parasite geno-
types only differ in their compatibility to each other, but
not in their demographic parameters. Finally, we
assume that only females contribute to population
growth, independently of the relative abundance of
males (Charlesworth, 1994).

Let HAA;t; HAa;t; Haa;t; and PBB;t; PBb;t; Pbb;t; be
the densities of host and parasite genotypes at time t.
At the beginning of each generation, three pairs
of recursion equations determine the host–parasite
interaction. Each pair consists of the equations for
the population dynamics of the parasite genotype
IJ (I=B, b; J=B, b) and its respective susceptible
host genotype ij ði ¼ A; a; j ¼ A; aÞ; where ðA; aÞ
designate the two alleles at the A locus of the host
and ðB; bÞ the alleles at the B locus of the parasite. With
this definition, we specify the polymorphic model
versions:

H 0
ij ¼ Hijl expð�aPIJ Þ;

P0
IJ ¼ cHijð1� expð�aPIJ ÞÞ; ð4Þ

defines the set of three pairs of equations for the model
without density dependence, and

H 0
ij ¼ Hijl expð�H ln l=KÞexpð�aPIJ Þ;

P0
IJ ¼ cHijð1� expð�aPIJ ÞÞ; ð5Þ

defines the set of three pairs of equations for the model
with density dependence, where H ¼ HAA þHAa þHaa

is the total host density before selection. Note that we
have omitted the subscript t in Eqs. (4) and (5), where
the superscript 0 denotes densities after selection. After
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Fig. 1. (a) The monomorphic Nicholson–Bailey model with host

density dependence. As compared to the monomorphic density-

independent model, host–parasite coexistence becomes possible due

to density dependence, even in the absence of genetic variation. (b) The

polymorphic Nicholson–Bailey model with host density dependence,

but without sex. Cases a and b are qualitatively similar for low values

of K. Panels a and b show the proportion of cases in which the parasite

coexists with its host as a function of l and K. Since the occurrence of

coexistence depends on the initial conditions, the plots show average

densities, averaged over 1000 randomly chosen initial host and parasite

densities. Host genotype densities were chosen randomly from the

interval [0,10]; parasite genotype densities were chosen from the

interval [0,1]. The other parameters were c=1, a=0.45.
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selection, reproduction occurs in both host and parasite.
Allele frequencies change due to selection only, i.e. we
do not allow for mutation.

Most previous models investigating the effects of
population genetics on population dynamics have
assumed obligate sexuality (but see Flatt et al., 2001).
However, asexuality and sexuality are only two end-
points of a continuum of varying degrees of sexual
reproduction. Considering the effects of the full range
of different frequencies of sexual reproduction, from
asexuality to sexuality, is important because many
species, including many hosts and parasites, may not
be either strictly asexual or sexual (e.g. Hebert, 1987;
Maynard Smith et al., 1993; Hurst and Peck, 1996;
Birky, 1999; Seger, 1999). To investigate the effects of the
frequency of sex on coexistence we introduce the control
parameter W, determining the amount of sexual repro-
duction (Flatt et al., 2001). The parameter W is defined as
the frequency of sex, its values ranging between pure
asexuality (W=0), partial sexuality (0oWo1), and pure
sexuality (W=1). If W>0, sex is assumed to occur through
random mating. Thus, hosts and parasites may be
asexual, periodically sexual, or fully sexual. The para-
meter Wh and Wp determine the frequency of sex in host
and parasite, respectively. With this parameterization
understood the model becomes completely defined and
we can consider the dynamics of the change of allele
frequencies in host and parasite for systems (4) and (5).
Note that the following equations are identical for both
polymorphic models considered. In the host, the
frequency of allele A after selection, p0, is given by

p0 ¼
H 0

AA þ ðH 0
Aa=2Þ

H 0 ; ð6Þ

whereH 0
AA andH 0

Aa are given by Eq. (4) or (5) and where
H0 is the total host density after selection. Under
Mendelian segregation of alleles, the new densities of
the host genotypes AA, Aa and aa at time t+1 after
random mating are given by

HAA;tþ1 ¼ ð1� WhÞH 0
AA þ Whp02H 0;

HAa;tþ1 ¼ ð1� WhÞH 0
Aa þ Wh2p0ð1� p0ÞH 0;

Haa;tþ1 ¼ ð1� WhÞH 0
aa þ Whð1� p0Þ2H 0: ð7Þ

The total density at time t+1 is Htþ1 ¼ H 0 ¼ HAA;tþ1 þ
HAa;tþ1 þHaa;tþ1: Similarly for the parasite, let

q0 ¼
P0
BB þ ðP0

Bb=2Þ
P0 ð8Þ

be the frequency of allele B after selection and P0 the
total density of the parasite. Then,

PBB;tþ1 ¼ ð1� WpÞP0
BB þ Wpq02P0;

PBb;tþ1 ¼ ð1� WpÞP0
Bb þ Wp2q0ð1� q0ÞP0;

PBb;tþ1 ¼ ð1� WpÞP0
Bb þ Wpð1� q0Þ2P0 ð9Þ

give the densities of the parasite genotypes at time t+1.
The total parasite population density at time t+1 is
Ptþ1 ¼ P0 ¼ PBB;tþ1 þ PBb;tþ1 þ Pbb;tþ1:

3. Numerical methods

We studied the dynamics of these systems numerically
by examining a wide range of parameter combinations.
The existence and stability of fixed points in the
monomorphic models depend on l and, in the case
of density dependence, on the product acK (e.g. Brown
and Rothery, 1993). Thus, there are only two in-
dependent parameters, l and acK, in the system.
Therefore it is sufficient to investigate the dynamics
as a function of l and, in the case of density dependence,
as a function of l and K for fixed values of ac (or, if K is
fixed, as a function of l, and ac). We let a given system
run for 1100 generations to remove transient effects
and recorded the host and parasite population densities
for the next 100 generations. Exploratory simulations
showed that increasing the number of generations
above 1100 does not qualitatively change our results.
In all simulations initial allele frequencies for host
and parasite were randomized to avoid starting the
system at an unstable fixed point (e.g. p ¼ 0:5) and
to find the different stable attractors with their basins
of attraction. We considered host and parasite to
coexist if their densities were larger than a defined
small positive value after some time (cf. Hofbauer
and Sigmund, 1998); the populations were assumed
to be extinct if their densities fell below 10�14.
The percentage of cases where densities are greater
than the extinction threshold is a rough measure
for coexistence under deterministic conditions (i.e.
demographic stochasticity is assumed to be un-
important). Exploratory simulations showed that in-
creasing the threshold (e.g. to 10�5) does not qualita-
tively change the results. Finally, we checked the
robustness and generality of our results by assuming
a generalized Beverton–Holt-type and a geno-
type-specific Ricker-type density dependence for the
host, by changing the genotype-specific susceptibilities
of hosts to their parasites, and by adding environmental
stochasticity.

4. Results

Our extensive simulations show that (4.1) whether
and how genetic variation improves coexistence depends
on the frequency of sex, (4.2) coexistence is affected by
an interaction between the strength of density depen-
dence and the frequency of sex, and (4.3) these results
appear to be general and robust.
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4.1. Frequency of sex

In both models, the coexistence-improving effects
depend considerably on the frequency of sex, determin-
ing the degree of genetic coupling among genotypes.
Fig. 2 illustrates the effects of different frequencies of
sex in host and parasite on coexistence in the poly-
morphic density-independent and the polymorphic host
density-dependent Nicholson–Bailey model. Generally,
small frequencies of sex in host and parasite improve
coexistence most. Yet, in the absence of sex, coexistence
is typically not possible (also see Fig. 1b). Note that for
Wh>0.2 (not shown), the results do qualitatively not
change, suggesting that the effects of changing Wh and Wp
are not symmetrical.

For the case of the density-independent model, an
analysis of the distributions of the times to extinction
(simulations not shown; using l=10, a ¼ 0:45; c ¼ 1;
and Hij, PIJ picked from [0, 10] and [0, 1], respectively)
shows that there is no coexistence if host and parasite
are asexual (Wp ¼ Wh ¼ 0; also see Fig. 2a). This is
because, if Wp=Wh=0, there is no genetic coupling
among the three host–parasite genotype pairs. Similarly,
there is no density-dependent coupling among the host–
parasite oscillators. Thus, each pair of oscillators
exhibits the dynamics of the unstable monomorphic
Nicholson–Bailey model. Typically, coexistence is lar-
gest (up to 2%, depending on parameter settings) if the
frequencies of sex in host and parasite are low, but much
smaller for higher frequencies of sex (see Fig. 2a).

For the density-dependent model (cf. Figs. 1b, 2b,
and 3), if host and parasite are asexual (Wp ¼ Wh ¼ 0; see
Fig. 1b), there is no random mating among genotypes,
and the system is similar to the monomorphic case,
which, depending on parameter settings, allows coex-
istence due to density dependence (cf. Figs. 1b and 1a).
The system shown in Fig. 1b is similar to the
monomorphic case (Fig. 1a) in the sense that there is
no genetic coupling among genotypes (i.e., the system
does not include sex and segregation). Yet, in contrast to

the monomorphic case, even in the absence of genetic
coupling (i.e., Wp ¼ Wh ¼ 0), there are three host–parasite
oscillators that are linked due to density dependence
(Fig. 1b). Consequently, depending on parameter
settings, the dynamics may be different from the purely
monomorphic case consisting of only a single host–
parasite oscillator.

However, if the host reproduces sexually at a low
frequency and the parasite is asexual ðWh ¼ 0:01;Wp ¼ 0Þ;
the parameter space for coexistence increases signifi-
cantly (Fig. 3a) as compared to the monomorphic and
the asexual case. However, the results change drastically
for the reversed situation ðWh ¼ 0; Wp ¼ 0:01Þ: the para-
site coexists with the host only under restrictive
conditions (Fig. 3b), showing that the effects of sexual
reproduction in host and parasite on coexistence are
asymmetric. Most interestingly, if host and parasite
reproduce sexually at a very low frequency ðWp ¼ Wh ¼
0:01Þ; the parasite persists for a very large range of K

and l values, with the percentage of cases with
persistence ranging between 80% and 100% for a wide
range of K values (Fig. 3c). Thus, low frequencies of sex
in host and parasite allow the polymorphic system to
persist for a much broader range of parameters than the
monomorphic case. Increasing the frequency of sex from
0 to 1 in the host (Wh ¼ 1; Wp ¼ 0:01; Fig. 3d) or the
parasite (Wp ¼ 1;Wh ¼ 0:01; 3e) decreases the parameter
space allowing coexistence as compared to the previous
case, but coexistence is still possible for a much larger
range of parameter space than in the monomorphic
model. A qualitatively similar result holds if both species
are fully sexual (Fig. 3f). Coexistence is improved as
compared to the monomorphic case, but not as strongly
as in the case in which both host and parasite have a low
frequency of sex.

4.2. Density dependence and frequency of sex

As is well known, low K values imply strong density
dependence, and strong-density dependence promotes
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Fig. 2. The effects of varying frequencies of sex in host and parasite on coexistence in both polymorphic Nicholson–Bailey models. The figures show

the proportions of cases in which host–parasite coexistence is possible as a function of Wh and Wp. (a) polymorphic density-independent model. (b)

Polymorphic host density-dependent model, showing the case for which there is no coexistence in the absence of sex (also see Fig. 1b). Generally, the

figures show that low frequencies of sex in host and parasite improve coexistence most. Also note that Wh is shown here only for the interval [0,0.2],

because for Wh>0.2 the results remain qualitatively unchanged, showing that the effects of changing Wh and Wp are not symmetrical. The plots show

average densities, averaged over 1000 randomly chosen initial host and parasite densities. Host genotype densities were chosen randomly from the

interval [0,10], parasite genotype densities from the interval [0,1]. The other parameters used were K ¼ 150; l=20, a=0.45, and c=1.
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stability in the Nicholson–Bailey model (e.g., Bedding-
ton et al., 1975; Doebeli, 1997). Interestingly, the
density-dependent model shows a so-called ‘paradox of
enrichment’: for low K values, the full system undergoes
oscillations of increasing magnitude, and if K is too high
the system goes extinct (e.g., Doebeli, 1997, and
references therein).

Although low values of K typically promote stability,
our results indicate that different degrees of density
dependence and genetic coupling interact in affecting
coexistence. If K values are low (i.e., strong density
regulation) coexistence occurs for a wide range of
parameter settings in the density-dependent model,
independently of the frequency of sex (cf. Fig. 3). Here

the overall coupling due density dependence appears to
be sufficiently strong to improve coexistence as com-
pared to the density-independent case. The genetic
coupling due to sexual reproduction, however, has a
minor effect on coexistence. In contrast, if K values are
high (i.e., weak density regulation), low frequencies of
sex are sufficient and necessary to improve coexistence
as compared to the monomorphic and the asexual case
(Fig. 3).

4.3. Generality and robustness of results

The above results seem to be rather general and robust
since assuming (1) a generalized Beverton–Holt-type
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Fig. 3. Effects of different frequencies of sex on the persistence of the parasite in the polymorphic density-dependent Nicholson–Bailey model. The

graphs show, for different combinations of Wh and Wp, the average proportion of cases in which the parasite can persist as a function of l and K. The

plots show average densities, averaged over 1000 randomly chosen initial host and parasite densities. Host genotype densities were chosen randomly

from the interval [0,10], parasite genotype densities from the interval [0,1]. The other parameters were c ¼ 1; a ¼ 0:45: Although changes are

continuous as a function of Wh and Wp we show only the qualitatively interesting cases: no sex, facultative sex with a low frequency, and obligate sex.

(a) Host with a low level of sex, asexual parasite (Wh ¼ 0:01; Wp=0). (b) Parasite with a low level of sex, asexual host (Wp ¼ 0:01; Wh=0). (c) Both host

and parasite reproduce sexually at a low frequency (Wh=0.01, Wp=0.01). (d) Fully sexual host, parasite with a low level of sex (Wh=1, Wp=0.01). (e)

Fully sexual parasite, host with a low level of sex (Wp=1, Wh=0.01). (f) Fully sexual host and parasite (Wh=1, Wp=l). The results suggest that low

frequencies of sex in both host and parasite improve coexistence most. At higher frequencies of sex, coexistence can decrease again, suggesting that a

too strong genetic coupling may be ‘destabilizing’.
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and a genotype-specific Ricker-type density dependence
for the host, (2) different genotype-specific susceptibil-
ities of the hosts to their parasites, and (3) environ-
mental stochasticity does not qualitatively change our
results.

First, we examined a model version in which the host
population is regulated by a generalized Beverton–Holt-
type (Hassell et al., 1976) rather than a Ricker-type of
density dependence. This generalized Beverton–Holt
model (sometimes also called the Hassell model) results
in density dependence having an inverse sigmoidal form
and is defined by

xtþ1 ¼
lxt

½ð1þ xtÞ=K �b
; ð10Þ

where l is the population growth rate and b is a constant
defining the density-dependent feedback term. This
model is dynamically similar to the Ricker model: it
leads to chaotic behavior through period doubling as the
population growth rate increases (Hassell et al., 1976).
When incorporating this generalized Beverton–Holt
type of density dependence into the Nicholson–Bailey
model the host dynamics are described by

Ht ¼
Htl expð�aPtÞ

½ð1þHtÞ=K �b
: ð11Þ

Various simulations (assuming b=5; results not shown)
showed that our results remain qualitatively unchanged
for this type of density dependence, suggesting that our
findings do not depend on the type of density
dependence assumed. Additionally, to further examine
this, we investigated a model with host genotype-specific
density regulation, i.e. we replaced the first equation in
Eq. (5) by

H 0
ij ¼ Hijl expð�Hij ln l=KÞ expð�aPIJÞ: ð12Þ

Again, the results remain qualitatively similar in this
model, except that coexistence is typically largest if the
host is fully sexual and the parasite is only occasionally
sexual ðWh ¼ 1; Wp ¼ 0:01Þ: Why is this the case? Since
this form of genotype-specific density dependence acts
only within genotypes, there is no direct coupling via
density dependence among host genotypes.

Consequently, the total density dependence in this
system is only moderate, and stabilization may require a
stronger genetic coupling.

Second, since we have assumed that homozygote host
genotypes are susceptible to a specific homozygote
parasite genotype and that the heterozygote host
genotype interacts with the heterozygote parasite
genotype (matching-alleles model), we checked how
relaxing this assumption affects our results. Thus, we
assumed that a homozygote host genotype interacts with
a heterozygote parasite genotype (e.g. AA with Bb) and
vice versa (e.g. Aa with bb). Our simulations showed

that this modification does not cause any qualitative
change of our results.

Finally, to check whether adding environmental
stochasticity would alter our conclusions we incorpo-
rated noise into our models by multiplying the right-
hand side of the recursion equations for host and
parasite with the term expðseÞ; where s is the variance
and e is a normally distributed random variable with
variance 1 and mean 0 (Dennis and Taper, 1994; Dennis
et al., 2001). We made the following observations
(results not shown). Adding environmental noise evens
out small fluctuations in population densities. However,
for small and moderately high amounts of noise
ðsP;sHp0:1Þ; our results remain qualitatively the same
as compared to the models without stochasticity. In
contrast, for high levels of noise, dynamical instability
(high l values) causes the extinction of the parasite.
Finally, if noise is strong for both host and parasite
ðsH ¼ sP ¼ 1Þ; host–parasite coexistence is not possible.
Thus, adding environmental stochasticity does typically
not alter our findings, given that the level of noise is not
too high.

5. Discussion

5.1. Summary of results

Here we have investigated the effects of genetic
variation, frequency of sex, and host density dependence
on host–parasite coexistence in Nicholson–Bailey host–
parasite models with and without host density depen-
dence. First, we have shown that genetic variation at one
diallelic locus induces coexistence in the model without
density dependence and improves it in the host density-
dependent model. Second, we have found that, for most
parameter settings, a low frequency of sex induces or
improves coexistence more than other frequencies.
Third, we have demonstrated that coexistence critically
depends on interactions among genetic variation, the
frequency of sex, and host density dependence. While
the first two results have been observed previously
(Doebeli and Koella, 1994; Doebeli, 1997; Flatt et al.,
2001), the third result is novel.

5.2. Interaction effects on coexistence

Most previous models studying the mechanisms
stabilizing population dynamics have investigated the
effects of single factors by including them on a one-by-
one basis; the combined effects of several factors are
often predictable from the effects of each factor
considered in isolation (e.g. Hassell, 1978). However,
this may not always be the case. The models presented
here provide examples for interactions among stabilizing
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factors affecting coexistence that cannot easily be
predicted from their single effects.

Interestingly, different degrees of density dependence
and of genetic coupling interact in affecting coexistence
in our models. If density regulation is strong, coex-
istence is possible for a wide range of parameter settings,
independently of the frequency of sex. We hypothesize
that the overall coupling due density dependence is
sufficiently strong to improve coexistence as compared
to the density independent case (cf. Fig. 1 with Fig. 3).
The genetic coupling due to sex, however, apparently
plays a minor role in affecting coexistence. In contrast, if
density regulation is weak, low frequencies of sex are
sufficient and necessary to improve coexistence as
compared to the monomorphic and asexual case.
Although to our knowledge this is the first formal
report of such an interaction, it does not seem very
surprising that coexistence-affecting factors interact
with each other.

Interestingly, however, our results indicate that
genetic coupling and density dependence trade off in
affecting coexistence. In some cases increasing the
frequency of sex from low to higher values does either
not affect coexistence or even decreases it (e.g. cf. Fig. 3a
with f). Interestingly, this suggests that there may be an
optimal frequency of sex that enlarges the parameter
space for coexistence most, although it is at present
mechanistically unclear why this should be the case.
Thus, the overall coupling due to genetics and density
dependence seems to be sufficiently strong for already a
small frequency of sex to improve coexistence. Higher
frequencies of sex, in contrast, may not improve
coexistence further or may even be ‘destabilizing’. This
suggests that, if several factors affect coexistence,
interactions among these factors may be rather complex
and difficult to predict from their effects considered in
isolation.

5.3. Conclusions

In summary, we have confirmed previous results
showing that genetic variation positively affects
coexistence. However, in contrast to previous
work, our simulations show that the coexistence-
promoting effects of genetic variation critically depend
on both the frequency of sex and the strength of
the density-dependent feedback. Although the existence
of such interaction effects is not surprising, our
simulations revealed some unexpected findings: genetic
coupling and density dependence trade off in affecting
coexistence and there is an ‘optimal’ low frequency of
sex which improves coexistence most. Thus, our results
suggest that extrapolating the combined effects of
multiple factors on coexistence from their effects
considered singly (e.g. Hassell, 1978) may not be
justified.

Why is a weak coupling due to sex most stabilizing for
the host–parasite interaction? Interestingly, recent work
on metapopulation and community ecology (see also
Scheuring, 2001 for a discussion) shows that weak
coupling forces may promote coexistence and dynamical
stability more than strong coupling. For instance,
Gyllenberg et al. (1993) have analysed a metapopulation
model of the Ricker-type and found that, if two
populations have high growth rates and little dispersal,
the dynamics remain complex. However, with a some-
what higher dispersal rate, population fluctuations have
decreased amplitudes and the metapopulation dynamics
become stable. Yet, if dispersal rate is even higher, the
subpopulations are fluctuating synchronously, but show
chaotic dynamics. Similarly, McCann et al. (1998) have
found that weak to intermediate strength links promote
stability and community persistence in food webs.
Clearly, the effects of weak coupling forces on the
stability of metapopulations, communities and ecosys-
tems deserve further study.
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