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Possible Reentrance of the Fractional Quantum Hall Effect in the Lowest Landau Level
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In the framework of a recently developed model of interacting composite fermions, we calculate the
energy of different solid and Laughlin-type liquid phases of spin-polarized composite fermions. The
liquid phases have a lower energy than the competing solids around the electronic filling factors � �
4=11; 6=17, and 4=19 and may thus be responsible for the fractional quantum Hall effect at � � 4=11.
The alternation between solid and liquid phases when varying the magnetic field may lead to reentrance
phenomena in analogy with the observed reentrant integral quantum Hall effect.
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Recent experiments by Eisenstein et al. have revealed a
reentrance of the integer quantum Hall effect (IQHE)
when the two spin branches of the lowest Landau level
(LL) are completely filled and the first excited LL (n � 1)
starts to be populated [1]. This phenomenon arises when
the partial filling of the topmost LL is varied, and it is due
to an alternation of electron-solid phases, such as the
Wigner crystal (WC) or a bubble crystal, and quantum
liquids, which display the fractional quantum Hall effect
(FQHE) [2]. Both liquid and solid phases have their origin
in the Coulomb interaction between the electrons, which
is the relevant energy scale when the last occupied LL is
not completely filled. In this case, intra-LL excitations
coupling states with the same kinetic energy are possible,
in contrast to the case of completely filled LLs, where
such excitations are prohibited by the Pauli principle.
Electrons in the completely filled lower LLs may then
be considered as an inert homogeneous background.

The FQHE in the lowest LL occurs at the filling factors
� � nel=nB � p=�2ps� 1�, where nel denotes the elec-
tronic and nB � eB=h the flux density. It may be inter-
preted as an IQHE of a new type of particle, a so-called
composite fermion (CF) [3], which consists of an electron
and a vortexlike object, which carries s pairs of flux
quanta. Because of its reduced coupling �eB�� � eB=
�2ps� 1� to the magnetic field B, p CF LLs are com-
pletely filled when �� �p, where the CF-LL filling factor
�� is related to the electronic one by � � ��=�2s�� � 1�.
The similarity between the IQHE and the FQHE natu-
rally raises the question whether a phenomenon analogous
to the reentrant IQHE may occur for CFs when a higher
CF LL (p � 1) is partially filled. In this case, residual
interactions between CFs may lead to the formation of
CF-solid phases, such as stripes and bubbles [4], or to
incompressible liquids, which may be interpreted in terms
of a second generation of CFs (C2Fs) [5–7]. The existence
of an incompressible CF liquid is supported by the re-
cent observation of a FQHE at � � 4=11, which corre-
sponds to a CF filling factor �� � 1� 1=3, by Pan et al.
[7]. Such a state had been conjectured before by Mani and

v. Klitzing based on arguments concerning the self-
similarity of the Hall-resistance curve [8].

In this Letter, we investigate several spin-polarized CF
solid and liquid states in a recently developed model of
interacting CFs in a partially filled CF LL [5], which
incorporates the self-similarity of the FQHE [8] by an
iterative projection of the dynamics to a single CF LL.
The form of the CF interaction has been derived in the
framework of the Hamiltonian theory, proposed by
Murthy and Shankar [9]. The basic assumptions are that
the degenerate CF LLs remain stable in the presence of
the residual CF interactions and that the low-energy de-
grees of freedom are described by intralevel excitations,
in agreement with complementary studies in the wave-
function approach [4,10,11]. The energies of the compet-
ing phases are calculated directly in the thermodynamic
limit. In contrast to prior investigations by Lee et al. [4],
our energy calculations suggest the possibility of incom-
pressible Laughlin-type liquid states of CFs. Such states
have a lower energy than CF solids at certain filling
factors also in higher CF LLs (p � 1), e.g., at � �
4=11; 6=17; 4=19, and 11=27. An alternation between
these liquid and CF-solid phases with varying CF filling
occurs in our energy studies and may lead to observable
reentrance phenomena in the FQHE regime.

The model Hamiltonian of CFs, the dynamics of which
are restricted to the pth CF LL, is given by [5]

Ĥ�s; p� � 1

2A

X
q
vCF
s;p�q� ��CF��q� ��CF�q�; (1)

with the measure
P

q � A
R
d2q=�2��2 in terms of the

total area A and the CF-interaction potential (lB 	 1)

vCF
s;p�q� � 2�e2

�q
e�q2l�2B =2

�
Lp

�
q2l�2B c2

2

�

� c2e�q2=2c2Lp

�
q2l�2B
2c2

��
2
; (2)

where c2 � 2ps=�2ps� 1� is the vortex charge,
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l�B � 1=

��������������
1� c2

p
is the CF magnetic length, and Lp�x�

denotes a Laguerre polynomial [9]. The potential takes
into account the form of CFs in the pth CF LL. The
projected CF-density operators satisfy the Girvin-
MacDonald-Platzman algebra [12], 
 ��CF�q�; ��CF�k�� �
2i sin
�q� k�zl�2B =2� ��CF�q� k�, if one replaces the elec-
tronic by the CF magnetic length. This model of interact-
ing CFs is similar to the one of interacting electrons in a
single LL, and this property allows for the use of the
standard theoretical approaches to describe the different
phases. Note that we consider an ideal two-dimensional
electron gas. Finite width and impurity effects are not
taken into account. In contrast to Ref. [5], where the
activation gaps of C2F states have been discussed, we
neglect inter-CF-LL mixing, which may in principle be
included in a dielectric function and which screens the
CF-interaction potential [5].

The energies of the different CF-solid phases are cal-
culated in the Hartree-Fock approximation (HFA), in
analogy with the electron-solid phases in higher LLs
[2,13,14]. We concentrate on triangular bubble crystals
with M CFs per bubble and CF-stripe phases, which
become relevant at half-filled levels. The CF WC is
formally treated as a bubble crystal with M � 1. The
Hamiltonian (1) may be rewritten in the HFA,

ĤHF�s; p� � 1

2A

X
q
uHFs;p�q�h ��CF��q�i ��CF�q�;

with the Hartree-Fock potential

uHFs;p�q� � vCF
s;p�q� � 1

n�BA
X
p
vCF
s;p�p�e�i�pxqy�pyqx�l�2B ;

where n�B � 1=2�l�2B is the renormalized flux density.
The second term takes into account quantum-mechanical
exchange effects. The average h ��CF�q�i plays the role
of an order parameter, ���q� � h ��CF�q�i=n�BA �R
d2r ����r�eiq
r=A, and is related to the local CF filling

factor ����r� of the pth CF LL by Fourier transformation.
In terms of the order parameter, the cohesive energy
Ecoh � hĤHF�s; p�i= ���n�BA of the CF-solid phases, with
the partial CF filling factor ��� � A�1

R
d2r ����r�, is

ECF�solid
coh �s; p; ���� � n�B

2 ���
X
q
uHFs;p�q�j���q�j2: (3)

The order parameter for the CF-bubble crystal is given in
terms of the Bessel function J1�x�,

��
B�q� �

2�
��������
2M

p
l�B

Aq
J1�q

��������
2M

p
l�B�

X
j

eiq
Rj ;

where Rj are the lattice vectors of the triangular lattice
with a lattice spacing �B � �4�M=

���
3

p
����1=2l�B. One thus

obtains for the cohesive energy of the CF-bubble crystal

ECF�B
coh �s; p;M; ���� � n�B ���

M

X
Gl�0

uHFs;p�Gl� J
2
1�

��������
2M

p jGljl�B�
jGlj2l�2B

;

(4)

where Gl are the vectors of the reciprocal lattice. The
order parameter of the CF-stripe phase,

��
S�q� �

2

Lx
�qy;0

sin�qx�S ���=2�
qx

X
j

eiqxj�S ;

with the system extension Lx in the x direction, yields the
cohesive energy

ECF�S
coh �s;p;�S; ����� n�B

2�2 ���
X
j�0

uHFs;p

�
q�2�

�S
j
�
sin2�� ���j�

j2
:

(5)

The stripe periodicity �S is a variational parameter with
respect to which the energy is minimized. It scales with
the CF cyclotron radius R�

C � l�B
���������������
2p� 1

p
, and one finds

�S�s � 1; p � 1� � 1:95R�
C, �S�s � 1; p � 2� � 1:8R�

C,
and �S�s � 2; p � 1� � 1:9R�

C for the optimal stripe pe-
riodicity at ��� � 1=2.

The cohesive energy of the CF solids has to be com-
pared to the energy of Laughlin-type quantum liquids,
which may occur around the ‘‘magical’’ filling factors
��� � 1=�2~s� 1�, with integral ~s. Because of their strong
correlations, these liquid phases cannot be treated in the
HFA, and one has to use Laughlin’s wave functions [15],
generalized to an arbitrary LL [16]. Their cohesive energy
is given by

EL
coh�s; p; ~s� �

���

�

X1
m�0

c~s2m�1V2m�1�s; p�; (6)

with Haldane’s pseudopotentials [17] V2m�1�s; p� �
�2�=A�Pqv

CF
s;p�q�L2m�1�q2l�2B � exp��q2l�2B =2�, and the ex-

pansion coefficients c~s2m�1 characterize the wave function.
In contrast to Ref. [4], where a few number of pseudopo-
tentials which have been determined numerically were
used to construct a CF-interaction potential, here they are
obtained to arbitrary order from the analytical expression
of the CF-interaction potential (2). As pointed out by the
authors of Ref. [4], the construction of an interaction
potential from pseudopotentials is not unique. The expan-
sion coefficients c~s2m�1 are derived from sum rules
[12,18], which are considered as a set of linear equations
[19]. This method yields results deviating less than 1%
from numerical studies and is thus sufficiently accurate
for the present investigations.

Away from the magical filling factors, the energy of the
CF-liquid phases is raised by the excited quasiparticles
[for ��� > 1=�2~s� 1�] or quasiholes [for ��� < 1=�2~s� 1�],
which are separated by a gap from the incompressible
liquid state. They may be interpreted as C2Fs or C2F holes
promoted to the next higher C2F level [5,6]. Their energy
is calculated analytically in the framework of the
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Hamiltonian theory [9]. One finds

�qp
s;p�~s; ~p� � 1

2A

X
q
vCF
s;p�q�h~pj �����q� ����q�j~pi � 1

A

X
q
vCF
s;p�q�

X~p�1

j0�0

jh~pj ����q�jj0ij2

for the quasiparticle energies and

�qh
s;p�~s; ~p� � � 1

2A

X
q
vCF
s;p�q�h~p� 1j �����q� ����q�j~p� 1i � 1

A

X
q
vCF
s;p�q�

X~p�1

j0�0

jh~p� 1j ����q�jj0ij2

for the quasihole energies, where ����q� denotes the one-CF density operator, and the matrix elements (j � j0) are
given by

hjj ����q�jj0i �
������
j0!
j!

s ��i�qx � iqy�~l ~c���
2

p
�
j�j0

e�q2~l2~c2=4
�
Lj�j0
j0

�
q2~l2~c2

2

�
� ~c2�1�j�j0�e�q2=2~c2Lj�j0

j0

�
q2~l2

2~c2

��
;

with the C2F magnetic length ~l � l�B=
��������������
1� ~c2

p
, in terms of the C2F-vortex charge ~c2 � 2~p ~s =�2~p ~s�1� [5]. Here, we are

interested only in states from the Laughlin series (~p � 1), and one finds

�qp�~s � 1� �qp�~s � 2� �qh�~s � 1� �qh�~s � 2�
s � 1; p � 1 0.04172 0.030 65 �0:015 67 �0:013 09
s � 1; p � 2 0.023 30 0.019 58 �0:012 77 �0:009 67
s � 2; p � 1 0.017 27 0.013 91 �0:008 59 �0:006 72

in units of e2=�lB. The cohesive energy of the CF-liquid
phases thus becomes

ECF�liquid
coh �s; p; ~s; ���� � EL

coh�s; p; ~s� � 
 ����2~s� 1� � 1�
� �qp=qh

s;p �~s; ~p � 1�; (7)

where the residual C2F interactions have been neglected.
This approximation is valid in the vicinity of the magical
filling factors, i.e., at low C2F density. The complete
energy curve for the quantum-liquid phases would re-
quire a full account of these interactions, which is beyond
the scope of the present studies.

The results for the cohesive energies of the different CF
phases, given by Eqs. (4), (5), and (7), are shown in Fig. 1
for three specific CF LLs. Figure 1(a) shows the results for
CFs carrying two flux quanta (s � 1) in the first excited
CF LL (p � 1). The discussion is limited to the CF filling
factor range 0< ���<1=2, which corresponds to a range of
the electronic filling factor 1=3<�<3=8. In analogy
with the electronic case, the range 1=2< ��� < 1 is related
to the shown part by the particle-hole symmetry. Our en-
ergy calculations suggest that a spin-polarized Laughlin-
type quantum liquid of CFs has a lower energy than the
competing CF-solid phases around ��� � 1=3 and 1=5,
which correspond to � � 4=11 and 6=17, respectively. Es-
pecially the 4=11 state is found to be largely favored, as
expected from the form of the pseudopotentials; one finds
that V3�s � p � 1� is smaller than its neighboring pseu-
dopotentials [5]. This stabilizes the ~s � 1 Laughlin state,
which has its largest weight at the corresponding angular
momentum and which screens V1 completely [17].
Indeed, a spin-polarized FQHE at ��4=11 has been
observed by Pan et al. [7]. The CF WC becomes stable
at lower densities, ��� & 0:15, as well as at larger values,

��� *0:4. At ��� � 1=2, the CF-stripe phase has the lowest
energy, which may lead to the anisotropic longitudinal
resistance at � � 13=8, recently observed by Fischer et al.
[20]. Contrary to the electronic case in the first excited LL
[2], a CF-bubble crystal with two CFs (M � 2) per lattice
site never has a lower energy than the CF WC (M � 1).
Although screening of the CF-interaction potential af-
fects the activation gaps [5] and may modify the transi-
tion points between the different phases, the investigated
reentrance phenomenon persists in 1=3< �< 3=8. The
effect of screening, finite sample width, and impurities on
these phases will be discussed elsewhere [21].

For s � 1 and p � 2 [Fig. 1(b)], i.e., in the range 2=5<
�< 5=12, the CF quantum liquid ceases to be the ground
state at ��� � 1=3, where the CF WC has the lowest
energy. However, an incompressible CF liquid is found
to be stable at ��� � 1=5. In contrast to the CF LL p � 1, a
CF-bubble crystal with M � 2 has a lower energy than
the CF WC around half filling, but a CF-stripe phase is
found to be the ground state at ��� � 1=2. For 1=5< �<
3=14, which corresponds to p � 1 for CFs carrying four
flux quanta (s � 2) [Fig. 1(c)], a ��� � 1=3 Laughlin state
of CFs is the lowest-energy state at � � 4=19, whereas the
liquid state is extremely close in energy to the CF WC at
��� � 1=5. In the presence of impurities, which lower the
energy of the solid phases more significantly than the
quantum-liquid energies [2], a ��� � 1=5 Laughlin-type
state might vanish. Impurities may also affect the 6=17
state. In all cases, an insulating CF WC, which is the
natural ground state at lower densities, has a lower energy
also at rather large filling factors, �� * 0:4. This may lead
to reentrance phenomena, which would be the CF ana-
logue of the reentrant IQHE observed at lower magnetic
fields [1].
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The stability of C2F states has been a controversial
issue during the last decade. Numerical investigations
in the Haldane-Halperin hierarchy [17,22] by Béran and
Morf denied the stability of a spin-polarized 4=11 state,
whereas they found a small gap in the absence of com-
plete spin polarization [23]. Their results have been con-
firmed by Wójs and Quinn [24] and by numerical-
diagonalization studies in the CF wave-function approach
by Mandal and Jain [10] and Chang et al. [25]. However,
more recent studies by Chang and Jain [11], which hint to
a stable 4=11 state, contradict their previous results. The
size of the diagonalized system remains too small to
allow for a conclusive answer of its stability in the ther-
modynamic limit.

In conclusion, we have calculated the energies of com-
peting CF solid and liquid phases in a recently developed
model of interacting CFs [5]. Incompressible quantum

liquids of spin-polarized CFs, which may be interpreted
in terms of C2F [5,6], are found to be stable at � �
4=11; 6=17; 4=19, and 11=27. Around half filling of the
topmost CF LLs, a CF-stripe phase has the lowest energy,
but may compete with a Pfaffian state [26], which has
been omitted in the present studies. The fact that insulat-
ing CF-bubble crystals occur at different filling factors,
which surround the CF-liquid phases, may lead to an
experimentally observable reentrance of the FQHE in
high-quality samples, in analogy to the reentrant IQHE
in the first excited electronic LL [1].
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R. Moessner, R. Morf, and A. Wójs. This work was sup-
ported by the Swiss National Foundation for Scientific
Research under Grant No. 620-62868.00.
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[24] A. Wójs and J. J. Quinn, Phys. Rev. B 61, 2846 (2000).
[25] C.-C. Chang et al., Phys. Rev. B 67, 121305 (2003).
[26] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991);

M. Greiter et al., Phys. Rev. Lett. 66, 3205 (1991); Nucl.
Phys. B374, 567 (1992).

5 10 15 20 25

-0.02

-0.015

-0.01

-0.005

0.005

0.20.1 0.3 0.4 0.5

1/3 3/86/17 4/11
electronic filling factor

M=2M=1

quantum liquid (C  F)
CF stripe

2

− 0.01

− 0.02

co
he

si
ve

 e
ne

rg
y

1/5 1/3

s=1

p=1

partial CF filling factor

(a)

5 10 15 20 25

-0.004

-0.003

-0.002

-0.001

0.001

0.1 0.2 0.3 0.4 0.5

11/27 7/17 5/12

− 0.001

− 0.002

− 0.003

− 0.004

partial CF filling factor

co
he

si
ve

 e
ne

rg
y M=1

M=2

quantum liquid (C  F)

CF
stripe

2

2/5

electronic filling factor

s=1
p=2 1/5 1/3

(b)

5 10 15 20 25

-0.005

-0.004

-0.003

-0.002

-0.001

0.001

2

−0.006

− 0.004

−0.002

0.50.40.30.20.1

4/196/29 3/141/5

CF
stripe

1/5 1/3

s=2
p=1

electronic filling factor(c)

quantum liquid (C  F)

partial CF filling factor

FIG. 1. Cohesive energies of the different CF phases for
(a) s � 1, p � 1, (b) s � 1, p � 2, and (c) s � 2, p � 1 in
units of e2=�lB.
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