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The effect of the abiotic stress hormone abscisic acid on plant

disease resistance is a neglected field of research. With few

exceptions, abscisic acid has been considered a negative

regulator of disease resistance. This negative effect appears to

be due to the interference of abscisic acid with biotic stress

signaling that is regulated by salicylic acid, jasmonic acid and

ethylene, and to an additional effect of ABA on shared

components of stress signaling. However, recent research

shows that abscisic acid can also be implicated in increasing

the resistance of plants towards pathogens via its positive

effect on callose deposition.
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Introduction
The plant hormone abscisic acid (ABA) plays important

roles in many aspects of plant development, in the regula-

tion of stomatal aperture, and in the initiation of adaptive

responses to various environmental conditions. Adaptation

to drought, low temperature and salinity is regulated by

the combinatorial activity of interconnected ABA-depen-

dent and ABA-independent signaling pathways [1]. By

contrast, the plant hormones salicylic acid (SA), jasmonic

acid (JA) and ethylene (ET) play major roles in disease

resistance. These biotic stress hormones do not control

isolated linear signaling pathways but are part of a complex

network of synergistic and antagonistic interactions [2,3].

Although ABA-controlled and biotic-stress signaling

appear to share many common elements, the role of

ABA in plant disease resistance is not well defined. Abiotic

and biotic stress signaling have remained mostly separate

fields of research despite the awareness that plants have to

cope with and adapt to situations in which they are

simultaneously exposed to several stresses in their natural

environment. Recent evidence suggests the existence of a

significant overlap between signaling networks that con-

trol abiotic stress tolerance and disease resistance.

The role of ABA in disease resistance
On the basis of experiments with exogenous application

of ABA, inhibition of ABA biosynthesis and/or the use of

ABA-deficient mutants it has been shown that enhanced

ABA levels correlated with increased susceptibility and

that a reduction below wildtype (WT) levels increased

resistance to many pathogens [4–12,13�,14,15]. Changes
in ABA concentration following the inoculation of plants

with pathogens were rarely measured in these experi-

ments. Reduced ABA levels were observed in beans upon

inoculation with rust [16]. In soybeans that were inocu-

lated with Phytophthora, a decrease in ABA concentration

occurred only in the incompatible reaction [17]. By con-

trast, viral infection of tobacco led to an increase in ABA

concentration [18]. The observed changes in ABA con-

centration were, however, modest compared to the dra-

matic changes in SA, JA and/or ET production during

pathogenesis.

Abiotic stress has a strong effect on ABA accumulation

and is known to influence the outcome of plant–pathogen

interactions [19]. The susceptibility of rice plants to

Magnaporthe grisea was increased by application of ABA

and following cold stress [15]. Inhibition of ABA synthesis

prevented the cold-induced susceptibility; hence, ABA is

a key factor in the suppression of disease resistance to

M. grisea. With regard to ABA-induced susceptibility, it is

worth noting that several fungal pathogens can produce

ABA [20,21].

There are also reports of a positive correlation between

ABA levels and disease resistance. Viral infection

increased ABA concentrations in tobacco, and treatment

with ABA increased virus resistance [18,22]. Interestingly,

ABA inhibited the transcription of a basic b-1,3-glucanase
[23] that can degrade the b-1,3-glucan callose, forming a

physical barrier to viral spread through plasmodesmata.

Plants that were deficient in basic b-1,3-glucanase were

more resistant than WT plants to viral infection [24]. The

downregulation of b-1,3-glucanase by ABA can function

therefore as a resistance factor in plant–virus interactions

but also has the potential to compromise basic resistance

towards fungal and oomycete pathogens.

In Arabidopsis, ABA treatment or simulated drought stress

that resulted in a large increase in ABA concentrations

increased susceptibility to avirulent bacteria [13�]. These

treatments did not affect the interaction with an avirulent
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isolate of the oomycete Hyaloperonospora parasitica, but
inoculation of the ABA-deficient mutant aba1-1 with

virulent isolates of H. parasitica resulted in partial resis-

tance. In contrast to the WT, aba1-1 mutants developed

necrotic spots at the site of inoculation. Sexual reproduc-

tion was suppressed and asexual reproduction was mark-

edly reduced in aba1-1 mutants when infected with

virulent H. parasitica. The ABA-insensitive mutant abi1-
1 remained susceptible to virulent isolates ofH. parasitica.
Thus, the concentration of ABA rather than the presence

of a functional ABA-signaling pathway is important for the

development of disease susceptibility in Arabidopsis. This

suggests that ABA interferes indirectly with disease resis-

tance by interacting with biotic stress signaling.

How does ABA influence disease resistance?
Little is known about the primary causes of ABA-induced

disease susceptibility. ABA does not directly stimulate or

inhibit fungal growth [4,12]. The possibility that ABA

could influence disease resistance through its control of

stomatal aperture and water relations is not discussed in

this review.

ABA treatment has been shown to suppress phytoalexin

synthesis and to inhibit the activity and transcript accu-

mulation of phenylalanine ammonium lyase [4,8,11]. The

ABA-deficient sitiens mutant of tomato has increased

resistance to infection by Botrytis cinerea [12]. Application
of ABA restored the susceptibility of sitiens and increased

the susceptibility of WT plants to B. cinerea. In contrast to

Arabidopsis, the resistance of tomato against B. cinerea
depended on SA and not on JA/ET signaling. Increased

activity of phenylalanine ammonium lyase was measured

in sitiens plants upon inoculation. Treatment with the SA

functional analog benzothiadiazole induced higher levels

of PR1 protein and restored resistance to B. cinerea in WT

plants. The sitiens mutant had greater SA-mediated

responses and was more resistant to P. syringae pv. tomato
thanWTplants [14]. These results suggest an antagonistic

effect of ABA on SA-mediated defense signaling. Thus,

high ABA concentrations interfere with resistance against

pathogens controlled by the SA signaling pathway.

There is overwhelming evidence that ABA interacts

with ET- and sugar-mediated signaling [25]. High ABA

concentrations inhibit ET production [26], and the ABA

and ET signaling pathways interact mostly antagonisti-

cally in plant development [27,28] and in vegetative

tissues [29��]. Mutant screens for ET insensitivity or

for enhanced response to ABA led to the identification

of the same gene (ETHYLENE INSENSITIVE2 [EIN2]/
ENHANCED RESPONSE TO ABA3 [ERA3]) thus iden-
tifying the encoded protein as a point of convergence in

ABA and ET signaling [28]. The ein2 mutant overpro-

duces ABA and it is therefore not clear whether ethylene

insensitivity and/or ABA overproduction causes its sus-

ceptibility to necrotrophic pathogens.

Synergistic and antagonistic effects were reported for

the interaction of the ABA and JA signaling pathways

[30,31]. The complex interplay was recently analyzed in

Arabidopsis by Anderson et al. [29��]. High ABA concen-

trations strongly reduced the transcript levels of JA- or

ET-responsive defense genes, whereas ABA-deficient

mutants showed a corresponding increase. Interestingly,

the inhibitory effect of ABA could not be overcome by the

application of methyl-JA or ET. This suggests that abiotic

stress signaling has the potential to override biotic stress

signaling in situations of simultaneous stress.

Disruption of the transcription factor AtMYC2, which is a

positive regulator of ABA signaling [32��], resulted in

elevated levels of basal and induced expression from

JA- and ET-responsive defense genes [29��]. Analysis
of the jasmonate-insensitive jin1 mutant revealed that

JIN1 is allelic to AtMYC2 [33��]. AtMYC2 activates genes

that are involved in JA-mediated systemic responses to

wounding but represses JA-mediated genes that are

involved in defense against pathogens. AtMYC2 is a late

point of convergence of ABA and JA signaling: it activates

ABA-regulated gene expression and inhibits a subset of

JA-regulated defense genes. Consequently, jin1, knock-
out mutants of AtMYC2 and the ABA-biosynthetic mutant

aba2-1 were more resistant to various fungal pathogens

[29��,33��]. Resistance to these pathogens was previously

shown to be JA- and ET-dependent [34].

ABA and biotic-stress signaling do not always have op-

posing effects. The Arabidopsis MYB-related protein

BOTRYTIS SUSCEPTIBLE1 (BOS1) shows high

sequence similarity to AtMYB2, which functions as a

transcriptional activator in ABA signaling [35�]. The

expression of BOS1 was induced by B. cinerea via the

jasmonate pathway, and the promoter of BOS1 contained

ABA-responsive elements. BOS1 appears to control the

expression of a subset of jasmonate- and ABA-inducible

target genes whose expression is important for the estab-

lishment of abiotic and biotic stress tolerance. Loss of

BOS1 function caused enhanced susceptibility to necro-

trophic pathogens and impaired tolerance towards water

deficit, salinity, and oxidative stress.

The rapidly accumulating data from large-scale expres-

sion profiling strongly supports the existence of regulatory

networks. Biotic and abiotic stress, as well as ABA, SA, JA

and ET, control the expression of different but over-

lapping sets of genes. A detailed comparison of the down-

stream targets of ABA and biotic stress signaling is beyond

the scope of this review.

ABA and biotic stress signaling share
additional elements
The signaling responses of plants to ABA and biotic

stress share many similarities that might act as additional

nodes of competitive or synergistic interaction. The rapid
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generation of reactive oxygen species (ROS) is a central

component of disease resistance responses and of ABA

signaling [36,37]. The same NADPH-dependent respira-

tory burst oxidase homologs seem to be implicated in

ROS generation in both systems [38,39]. Similarly, nitric

oxide has emerged as an important mediator of plant

defense responses and as a component of ABA-signaling

in the control of stomatal aperture and in adaptive plant

responses to drought stress [40,41].

Ca2+ signaling is important in the expression of disease

resistance and in ABA-controlled stomatal movements

and responses to dehydration [42,43]. Klüsner et al. [44]
presented evidence that fungal elicitors activate a branch

of the signaling network that is shared with ABA signaling

in the regulation of plasma-membrane-localized Ca2+

channels. The expression of various calcium-dependent

protein kinases (CDPKs) of tobacco was upregulated by

ABA, JA, pathogens, fungal elicitors and abiotic stress

(reviewed in [45]). Similarly, CaCDPK3 was induced by

abiotic stress factors, ABA, SA, ET, JA and an avirulent

bacterial pathogen [46].

The expression and activity of the rice mitogen-activated

protein kinase OsMAPK5 was activated by ABA, various

abiotic stresses and pathogen attack [47��]. OsMAPK5

inversely modulates broad-spectrum disease resistance

and abiotic stress tolerance. Suppression of OsMAPK5
expression resulted in constitutive expression of

PATHOGENESIS-RELATED (PR)-proteins and in

increased disease resistance. However, the plants in

which OsMAPK5 expression was suppressed showed

reductions in drought, salt and cold tolerance. By contrast,

the overexpression of OsMAPK5 kinase activity had the

opposite effect.

Overexpression of ACTIVATED DISEASE RESIS-
TANCE1 (ADR1), which encodes a coiled-coil (CC)–

nucleotide binding site (NBS)–leucine-rich repeat (LRR)

gene, caused enhanced resistance to virulent pathogens

and to drought stress but decreased tolerance towards

thermal and salinity stress. The drought tolerance estab-

lished by ADR1 was dependent on ABI1 function and

components of SA signaling [48�].

ABA-dependent priming of biotic and abiotic
stress tolerance
Plants that have been treated with the non-protein amino

acid b-aminobutyric acid (BABA) develop an enhanced

capacity to resist biotic and abiotic stresses. This BABA-

induced resistance (BABA-IR) is associated with an

increased capacity to express defense responses in stress

situations, a phenomenon called priming [49,50]. Inter-

estingly, the treatment of plants with BABA has the

potential to prime the expression of both SA- and

ABA-regulated genes, thus suggesting that BABA affects

a shared signaling component. Mutants that are impaired

in the production of or in sensitivity to ABA were found to

be blocked in BABA-induced priming of biotic and abio-

tic stress tolerance ([51�]; G Jakab BMauch-Mani, unpub-

lished). The Arabidopsis mutant impaired BABA-induced
sterility3 (ibs3) is defective in the ABA-biosynthetic zeax-

anthin epoxidase gene and showed reduced levels of

BABA-IR against H. parasitica and decreased callose

deposition [52��]. Arabidopsis mutants that had impaired

ABA sensitivity and the callose-deficient mutant powdery
mildew resistant4-1 ( pmr4-1) did not express BABA-IR

against necrotrophic fungi [51�]. The link between

ABA and callose is further strengthened by the fact that

the application of ABA mimicked the effect of BABA

treatment on both callose deposition and resistance

against necrotrophic fungi [51�,53]. However, the

observed link might also be an indirect one due to the

interference of callose synthase with other proteins impli-

cated in cell wall integrity.

Mutants such as ibs3, aba1-5 and abi4-1 are not impaired

in basal but in primed callose deposition upon pathogen

attack. The molecular mechanism of ABA-mediated

priming is not known. Callose production is a secretory

process and the fusion of the involved secretory vesicles

with the plasma membrane is mediated by SNARE

(soluble N-ethyl-maleimide-sensitive fusion protein

attachment protein receptor) proteins. During cell-plate

formation, callose synthase is transported in vesicles to

the location where its function, the synthesis of callose, is

required [54]. Interestingly, SNAREs have repeatedly

been implicated in ABA-dependent responses to abiotic

stress and to pathogen resistance [55,56]. An additional

mutant that is impaired in BABA-IR has a defect in a

SNARE gene, suggesting that ABA is involved in callose

deposition through the regulation of specific SNAREs

(V Flors, B Mauch-Mani, unpublished).

Conclusions
Current evidence suggests that ABA affects disease resis-

tance mainly negatively by interfering at different levels

with biotic stress signaling. The involvement of ABA in

primed callose production is one of the few examples of a

positive role of ABA in disease resistance. It has become

increasingly clear that the previously isolated abiotic

signaling network that is controlled by ABA and the biotic

network that is controlled by SA, JA and ET are inter-

connected at various levels (Figure 1). Whether all of the

potential connections and shared nodes are actually used

for cross-talk remains to be determined.

The analysis of this combined network is a difficult task.

The concept of marker genes whose expression is

believed to be regulated by individual hormones does

not do justice to the nature of the network. The apparent

cross-talk in stress-hormone signaling makes it difficult to

assign a marker gene or a mutant phenotype to a specific

hormone-controlled pathway. The signaling network into
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which the four stress hormones and other signals feed is

apparently designed to allow plants to adapt optimally to

specific situations by integrating possibly conflicting

information from environmental conditions, biotic stress,

and developmental and nutritional status. The responses

of this complex network to naturally occurring changes

are not expected to be digital at any level but rather

graded, thus allowing a fine-tuning of adaptive gene

expression. The nature of the network cannot be com-

pletely understood by overstimulating signal input or by

mutational knockout of individual components. These

situations tend to produce an extreme out-of-balance

state that might occur only rarely in nature. To further

progress our understanding of the complex interactions

between ABA-induced signaling and biotic-stress signal-

ing it will be necessary to produce more quantitative data

at all levels under natural conditions.
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