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We compare the energies of different electron solids, such as bubble crystals with tri-
angular and square symmetry and stripe phases, to those of correlated quantum liquids
in partially filled intermediate Landau levels. Multiple transitions between these phases
when varying the filling of the top-most partially filled Landau level explain the observed
reentrance of the integer quantum Hall effect. The transitions between electron-solid and
quantum-liquid phases, as well as those between bubble crystals with different number
of electrons per lattice site, are first-order. This leads to a variety of measurable phenom-
ena such as the phase coexistence between a Wigner crystal and a two-electron bubble
phase in a Landau-level filling-factor range 4.16 < v < 4.28, which has recently been
investigated in transport measurements under micro-wave irradiation.
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1. Introduction

Two-dimensional electrons in a perpendicular magnetic field B have attracted much
interest during the last two decades since the discovery of the integer and fractional
quantum Hall effects (IQHE and FQHE, respectively). In spite of the similarity
between the two effects, their origin is quite different: on the one hand, the IQHE
is a manifestation of the energy quantization of electrons (mass m and charge —e)
in highly degenerate Landau levels (LLs), with a level separation of fieB/m. The
ratio v = ne;/np between the electronic density ne; and the density of states per
level, ng = B/(h/e), determines the filling of the LLs, and the IQHE occurs if
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v = N, with integral N. Electrons promoted to a higher LL when varying the
magnetic field, become localized by impurities and therefore do not contribute to
the electronic transport. This leads to a plateau in the Hall resistance, accompanied
by a vanishing longitudinal resistance. On the other hand, the FQHE is due to a
strongly correlated quantum liquid' formed by the electrons in a partially filled
LL and occurs at some of the “magical” filling factors v = p/(2ps + 1) [and at
their particle-hole symmetric fillings v = 1 — p/(2ps + 1)], with integral s and p.
Also in the first excited LL, fractional quantum Hall states have been observed at
7 =1/3,2/3,1/5,and 4/5, where 7 = v — N denotes the filling of the topmost level.

In higher LLs, the strong Coulomb repulsion between electrons in the partially
filled level may lead to phases different from quantum liquids: calculations in the
Hartree-Fock approximation have revealed the existence of electron-solid phases,
such as stripes around 7 = 1/2 and bubble crystals with varying electron num-
ber per lattice site.?® A stripe phase has indeed been observed in transport mea-
surements, which show a large anisotropy in the longitudinal magneto-resistance
around v = 9/2,11/2,13/2,.. * Eisenstein et al. have furthermore measured a non-
monotonic behavior of the Hall resistance in the first excited LL n = 1:® the FQHE
at # = 1/3 and 1/5 is surrounded by insulating electronic phases, which cause
an integer quantization of the Hall resistance, as for the neighboring IQHE. This
reentrant IQHE is reminiscent of an effect observed before in the second excited
LL.® We have shown that the effect may be understood in terms of an alterna-
tion between quantum-liquid and electron-solid phases when varying the filling of
the topmost LL.” Here, we furthermore investigate bubble crystals with different
symmetry. Whereas the quantum-liquid phases are favored at 7 = 1/(2s + 1), at
7 # 1/(2s + 1) quasi-particles are excited and raise the energy of the quantum lig-
uids above that of the competing electron solids. The latter are insulating because
they are pinned by residual impurities in the host material.

2. Energy Calculation for the Different Phases

In order to describe the low-energy degrees of freedom, which, at non-zero values
of the partial filling factor v, consist of intra-LL excitations, we adopt a model of
spin-polarized electrons,

N | ~ _ . 2me?

H=33 vn@p(-a)p(@, with w(g)= [Fn ()], (1)

q €4

where only the components of the density operator in the n-th LL are taken into
account, p,(q) = F,(g)p(q).* The LL form factor F,(q) = L,(¢*/2) exp(—g¢*/4) is
given in terms of Laguerre polynomials L, (x). The quantum-mechanical properties
of the model are revealed by the unusual commutation relations for the projected

@We use a system of units, in which the magnetic length g = \/h/eB =1
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density operators, [p(q), p(k)] = 2isin[(q x k). /2] p(q + k). This model allows for
a common description of all LLs.

The electron-solid phases are characterized by an order parameter A(q), which
determines the density profile of the phase, given by the local filling factor o(r).
The latter is related to the order parameter by Fourier transformation, A(q) =
(p(q))/npA = [ d*ri(r)exp(iq-r)/A, and the cohesive energy of the electron-solid
phases becomes in the Hartree-Fock approximation?:3>7

Ezoh(ni7) = 50 > ull" (@ A@), (2)
q
where the Hartree-Fock potential u'F (q) takes into account quantum-mechanical
exchange effects.

The bubble crystal with an arbitrary lattice symmetry is characterized by the
local filling factor 7(r) = ©(rp — [r —R;|), where O(z) is the step function, and R;
are the lattice vectors. The volume of the elementary lattice cell A,, = 2nM /v is
determined by the partial filling factor and the bubble radius 75 = v/2M containing
M electrons. The order parameter of the bubble crystal

Aﬁ( ) 271—\/— Q\/— Z ezq R;

yields the cohesive energy

Ecoh(n M, V) %ﬁ ZUEF(GZ)%, (3)

1
where the lattice symmetry is specified only by the reciprocal lattice vectors G;. The
term G; = 0 is omitted from the sum because it is canceled by the homogeneous
background if one supposes overall charge neutrality of the system.
In the case of stripes with width a oriented parallel to the y-direction, the ansatz
7(r) = ©(a/2 — |z — x;|) leads to the order parameter,

As(q) _ sin (gzAs/2) Zeiq”jAS,

2
2 500
L, " s -

where Ag = a/7 is the stripe periodicity. This yields the cohesive energy

. 2/
ESniAs.9) = g Yttt (= 300) 2, @
1#0
which is to be minimized with respect to the variational parameter Ag.
The quantum-liquid phases, which may not be characterized by an or-
der parameter, are well described by Laughlin’s wave functions.! Their co-
hesive energy is given in terms of Haldane’s pseudopotentials® V% .,

(27/A) 3q vn(a) Lam+1(q?) exp(—4¢*/2),

Ef,;,(n;5,7) Z Gmt1Vamtr +[P(2s +1) = 1JA™(s), (5)

mO



//doc.rero.ch

http

June 25, 2004 15:3¢ WSPC/INSTRUCTION FILE proceedingsRIQHE

4 M. O. Goerbig

where the expansion coefficients cj,, ,, specify the Laughlin wave function. The
second term in Eq. (5) takes into account the energies A™(s) of the excited quasi-
particles of charge 1/(2s+1) [at # > 1/(2s+1)] and quasi-holes of charge —1/(2s+1)
[at 7 < 1/(2s + 1)], in units of the electronic charge. They may be calculated
analytically in the Hamiltonian theory of the FQHE, established by Murthy and
Shankar.?

3. Results

Here, we concentrate on some aspects of the phases in the first and second ex-
cited LLs, n = 1 and n = 2, respectively. A more detailed discussion, including a
quantitative study of the role of impurities, may be found in Ref. 7.

Fig. 1(a) shows the energies for different electronic phases in n = 1. The
quantum-liquid phases are favored around 7 = 1/3 and 1/5, whereas in an inter-
mediate range, 0.23 < 7 < 0.3, a Wigner crystal (WC, M = 1) has a lower energy.
In this range, one therefore observes an integer quantization of the Hall resistance,
whereas one finds the FQHE around # = 1/3 and 1/5.> Above # ~ 0.38, the FQHE
disappears because the quantum liquid has a higher energy than a two-electron
bubble crystal, which competes with a stripe phase. The latter has a lower energy
as one approaches half-filling. Experimentally, however, an anisotropic longitudinal
resistance, which is the signature of stripe phases,* has only been observed in a
tilted magnetic field.!° Our energy calculations suggest that quantum-liquid phases
may also be found below 7 = 1/5 in the absence of impurities. However, the energy
of the WC is lowered by impurities, due to the deformation of its lattice structure.
This effect is most relevant in the dilute limit of small 7, and the FQHE is therefore
not stable in this limit,” where one observes the IQHE.? The energies for the bubble
crystals are shown both in the case of a triangular (continuous lines) and a square
lattice symmetry (broken lines). The energy difference between these two cases is
extremely tiny (on the order of 1%). From classical considerations, one would ex-
pect that a triangular lattice has a lower energy than a square lattice.!! OQur energy
calculations indicate that this is correct in the low-7 limit, whereas at larger den-
sities a WC with square-lattice symmetry has a lower energy than the triangular
one. A similar behavior is found for the two-electron bubble crystal. However, this
change of symmetry occurs at filling-factor values, where other phases have a lower
energy; the square-lattice symmetry of the WC, e.g, is favored only above 7 ~ 0.3,
where quantum-liquid, two-electron bubble, and stripe phases are the ground state.
Even if our results thus suggest that square electron crystals are not stable, they
may be favored if the host material has exactly this symmetry, such as in GaAs
heterostructures.

The energy results for n = 2 are shown in Fig. 1(b). In contrast to n = 1, a quan-
tum liquid is unstable around 7 = 1/3, where a two-electron bubble crystal has the
lowest energy. Our energy calculations suggest that a FQHE might be found around
7 =1/5 or 1/7. Note, however, that the energies of the quantum-liquid phases are
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Fig. 1. Cohesive energies of the different phases, in units of e2/elp. (a): phases in n = 1. For
the bubble phases, both the triangular (continuous lines) and the square crystal (broken lines) are
shown. (b): phases in n = 2. The gray lines indicate the bubble-crystal energies in the presence of
an impurity potential, and the tangents represent a mixed phase.

very close to that of the WC and, in the case of 7 = 1/5, to a mixed phase of a
WC and a two-electron bubble crystal, which is represented by the tangent. It is
therefore not clear whether the quantum liquid remains stable in the presence of
impurities, which lower the energy of the crystal phases, as shown by the dashed
curves. They have been calculated for an impurity strength Vp/& = 0.005¢2/el%,
where Vj is the characteristic energy of a short-range Gaussian potential with cor-
relation length £.” Experimentally, a small maximum in the longitudinal resistance
around 7 = 1/5 indicates an incipient melting of a crystal phase.® This feature
has recently been studied in more detail by Gervais et al.,'?> who found that this
maximum, which decreases when lowering the temperature 7', splits into two peaks
separated by a small local minimum precisely at 7 = 1/5 with increasing T'. A
reminiscent T-dependent effect has been observed in the WC regime in the lowest
LL.'3 Even if this effect may indicate a quantum-liquid ground state in extremely
pure samples, it may also be understood in different terms: whereas the crystal,
which in this scenario remains the T = 0 ground state, melts at rather low 7' (on
the order of the energy difference between the WC and the quantum-liquid phase),
the quantum coherence of the liquid displaying FQHE features is only destroyed at
higher 7.14

4. Phase Transitions

Our energy calculations suggest that the transitions between the different phases
are first order. The first-order phase transitions between the quantum-liquid and the
insulating bubble crystals may cause a hysteretical behavior in the Hall resistance
around the transition points, which, to the knowledge of the authors, has not been
reported yet. Also the phase transitions between bubble crystals with different M
per site are first order, in agreement with time-dependent Hartree-Fock calculations
by Co6té et al.'> This leads to a phase coexistence, or a mixed phase, around the
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transition points in a filling-factor range, which is described by a tangent on the
energy curves, e.g. at 0.15 <7 < 0.26 in n = 2 [c.f. Fig 1(b)]. Experimentally, there
is evidence for such a mixed phase, which is revealed by a double-peak structure in
transport measurements under micro-wave irradiation, recently performed by Lewis
et al.'®

5. Conclusions

In conclusion, we have performed energy calculations for competing quantum phases
in intermediate LLs. An alternation between insulating electron-solid and quantum-
liquid phases, which display the FQHE, is at the origin of the observed reentrance
of the IQHE in n = 1 and n = 2.5 The transitions between the different phases
are found to be first-order and may lead to a variety of observable phenomena.
In the case of transitions between bubble crystals with different electron number
per site, a phase coexistence is expected.” This scenario is supported by recent
micro-wave experiments, in which a double-peak structure has been observed in
the longitudinal conductivity in a filling-factor range 0.16 < 7 < 0.28,'% in good
agreement our theoretical investigations.”
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