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Abstract

The Mott metal-insulator transition is investigated as a quantum phase transition. The
U —t—t" model at half-filling is considered as a paradigm; the sign of ¢’ is not relevant and is
taken to be positive. The phase diagram presents two Mott insulating phases with distinct
symmetries and one global metallic phase which is presumed to be a Luttinger liquid for
the charge degrees of freedom. We identify the bond order parameter of the large—t' Mott
phase (dimerization). There are intriguing similarities with the phase diagram of the one-
dimensional quantum sine-Gordon model.

At t' < %, the critical point is the same as in the simple Hubbard model, U, = 0 and the
metallic phase lies exclusively in the negative-U part of the phase diagram. On the other
hand, for ¢’ > %, there exists a metallic phase with repulsive U. Using the Density Matrix
Renormalization Group (DMRG) we find that the electric susceptibility x, finite for an
insulator and infinite for a metal, diverges continuously as one approaches the critical point
from the insulating side. This is the dielectric catastrophe predicted by Mott. By application
of a detailed fitting procedure, we find that y always diverges exponentially exactly the
same way, whatever the value of t': it is an infinite-order transition. Simultaneously we
have determined the transition line U,.(¢') and further shown that the correlation length &
is proportional to the fluctuations of polarization, which are determined by the DMRG as
well. £ also diverges, and one finds x ~ £2. The hyperscaling hypothesis is satisfied, i. e.
physical quantities may be expressed in terms of universal functions of L/{,. In particular
&(L) = LS(L/€y), which means that £(L)/L has a universal jump at the metal-insulator
transition. This latter quantity might be related to the Drude weight itself. This prediction
was confirmed by DMRG calculations for several values of ¢'.

We also investigated analytically the band-insulator-to-metal transition. The electric
susceptibility and the correlation length both have a power-law divergence, implying a second
order transition. Hyperscaling is satisfied and the universal jump can be calculated exactly.
We find again that x ~ £2 as for the Mott transition. This may be a universal result, since it
is in agreement with many experiments on metal-insulator transitions at zero temperature,
where both correlation and disorder have an essential role.



Résumé

La transition métal-isolant de Mott est étudiée en tant que transition de phase quantique.
Le modele U —t — ¢’ a demi-remplissage est choisi comme paradigme; le signe de ¢’ n’est pas
pertinent et nous le prendrons positif. Le diagramme de phase présente deux phase isolantes
de type Mott, avec des symétries distinctes, et une phase métallique globale, pressentie
comme liquide de Luttinger pour les degrés de liberté de charge. Nous déterminons le
parametre d’ordre de lien de la phase de Mott a grand ¢ (dimérisation). Tout porte a croire
qu’il s’agit la de la classe d’universalité du modele de sine-Gordon quantique.

At < %, le point critique est le méme que dans le modele de Hubbard standard, U. =0
et la phase métallique se situe exclusivement dans la partie attractive du diagramme de
phase (U négatif). Pour ¢’ > % par contre, il y a une phase métallique pour une interaction
U répulsive. Grace a GRMD (Groupe de Renormalisation de la Matrice Densité) nous
obtenons une susceptibilité x finie pour un isolant et infinie pour un métal, et qui diverge
contintiment lorsque 1’on approche le point critique depuis la phase isolante. Ce n’est rien
d’autre que la catastrophe diélectrique prédite par Mott. Une procédure de fit réalisée avec
précaution révele que x diverge exponentiellement et ce, toujours exactement de la méme
fagon, quelque soit t': il s’agit d’une transition d’ordre infini. La ligne de transition U.(t')
est déterminée en méme temps. Par la suite, nous montrons que la longueur de corrélation
& est proportionelle aux fluctuations de polarisation et nous la calculons en utilisant GRMD
également. ¢ diverge aussi, et x ~ £2. L’hypothése de hyperscaling est satisfaite, c’est-a-
dire que les quantités physiques peuvent étre exprimées en termes de fonctions universelles
de L/¢. En particulier, £(L) = LS(L/&x), ce qui signifie que £(L)/L présentera un saut
universel a la transition métal-isolant. Cette prédiction fut confirmé par les calculs du GRMD
pour de nombreuses valeurs de t'.

Nous étudiames également la transition métal-isolant de bande, par des méthodes analy-
tiques cependant. La susceptibilité électrique et la longueur de corrélation divergent toutes
deux avec une loi de puissance, ce qui donne une transition de deuziéme ordre. Le hyper-
scaling est également satisfait et le saut universel peut cette fois étre déterminé exactement.
Nous retrouvons la relation y ~ &2, tout comme pour la transition de Mott. Il pourrait
s’agir la d’un résultat universel, puisqu’il est en accord avec de nombreuses expériences sur
des transitions métal-isolant a température nulle, ou corrélation et désordre jouent tous deux
des roles essentiels.
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Chapter 1

Introduction:
Talking about Transitions

At the beginning of the 19th century, science, especially physics, was dominated by a per-
vasive positivism: the outlook that everything can and will be humanly known resonated
as a universally acclaimed axiom. The subsequent discovery of quantum mechanics soon
shattered this limited world view. In the following hundred years further developments re-
peatedly played such an iconoclastic role. Physics rediscovered an age-old socratic virtue:
science is more about asking the right questions, about fruitful astonishment in the face of
intricate puzzles, about opening minds rather than confining them in definitive and sterile
solutions.

Such a revolution occurred in the study of phase transitions in the 1960s and 1970s. Old
questions such as why does a magnet lose its properties when it is sufficiently heated, what is
the origin of the liquid-gas transition and what determines the percolation threshold, could
be addressed using a new paradigm. A realm of fascinating perspectives had just been opened
up: the apparent stillness of a state of matter does not guarantee the immobility of its various
properties. Drastic and abrupt changes may occur when the values of some parameters are
varied in a particular way. Earlier theories sowed the premises for following ones: scaling
ideas were introduced and the renormalization group was borrowed from quantum field
theory [1]. While singular flashes of insight were provided by exact solutions, they were
rather isolated, providing a lesson of humility for the physicist. However, success stories
were plentiful; they kept enriching the fertile soil in which the theory of classical phase
transitions was growing. Fascinating riddles still abound today: one could mention for
example self-organized criticality or critical phenomena far from equilibrium, both domains
in their infancy.

On the experimental side, the absolute zero of temperature was being approached. In this
limit the entropy vanishes, as predicted by the third law of thermodynamics'. The system
is in a unique quantum state, namely the ground state of the Hamiltonian H governing it.
Is a phase transition possible at all without thermal fluctuations? However, total quiescence
is nonsense at 1" = 0 because quantum fluctuations are inevitably present. These quantum

Lalso called the “Nernst theorem”



4 CHAPTER 1. INTRODUCTION: TALKING ABOUT TRANSITIONS

fluctuations will take over the role of the thermal fluctuations and can trigger a quantum
phase transition, as introduced by Hertz in his pioneering work of 1975 [2]. The inspiration
for the the study of quantum phase transitions came from the theory of classical phase
transitions. After a solid basis was built?, some reviews based on particular points of view
and focusing on a few models were published [3, 4, 5]. The first complete presentation of
the theory of quantum phase transitions, summarizing the past 20 years of research, was
still lacking. A very nice book by Sachdev — which we highly recommend — published
quite recently [6] filled this gap: quantum phase transitions are treated comprehensively
rather than as cumbersome oddities. They are portrayed in terms of the standard theory
of critical phenomena, compared with classical phase transitions. Subsequently, aspects of
their quantum nature are investigated deeply.

The metal-insulator transition at zero temperature is one interesting class of quantum
critical phenomena. However, it does not completely follow the general trends described
above: no order parameter characterizing the metallic “ordered” phase has been identified
and the applicability of scaling ideas is still a delicate issue [7]. Very much in the spirit de-
scribed above, we would now like to try to ask the right questions in order to obtain a deeper
understanding of the transition. The most fundamental question is: what distinguishes a
metal from an insulator? “Its response to an applied electric field £” would be a starting
point for a correct answer. But how is this response expressed? The answer is through
the emergence of a polarization P(FE), which diverges in a metal and remains finite in an
insulator. One may justifiably claim that the introduction of the electric field is artificial
and that explicit dependence on it should be removed. How can we then characterize the
transition? The answer is by looking at the linear response, valid for a vanishingly small
electric field E:

P =yxE. (1.1)

The quantity x is called the electric susceptibility and shares some properties with the po-
larization: it remains finite for an insulating state and is infinite in the thermodynamic limit
for a metal. However, unlike the polarization, it is not explicitly dependent on the applied
electric field. How does the transition occur? Does the system go abruptly from an insulator
with a finite x to a metal with an infinite one? The transition would then be discontinuous,
e.g. first-order. Or will x grow and eventually diverge in the insulating phase when ap-
proaching the metal? Mott put forward such a continuous scenario for the metamorphosis,
which he named the dielectric catastrophe [8].

What now complicates the understanding is that experimental realizations of continuous
T = 0 metal-insulator transitions are quite scarce [7]. Doped semi-conductors like Si:P
are among the best studied systems: experiments are plentiful and quite exhaustive. Both
the electric susceptibility and the correlation length have been measured. The results are
in accordance with the dielectric catastrophe hypothesis (as will be seen in Egs. 2.15 and
2.13). Unfortunately for the theoretician, materials like Si:P are extremely delicate to deal

2Note that the advent of computational physics freed this emerging field of research from the iron collar
of the usual analytic approaches



with: both disorder (Anderson) and electronic interactions (Mott) play distinct and equally
important roles in the transition. The metal-insulator in these materials should thus be of
the Anderson-Mott type [9] and a first real understanding is still far away, not to mention a
determination of the electric susceptibility. Even the “simpler” Mott transition still lacks a
complete and concise description in any dimension, despite numerous claims found here and
there in the literature. The issue of the dielectric catastrophe itself has never been properly
addressed, and calculations of the electric susceptibility are unheard of. This is exactly the
point we would like to focus our attention on. Strongly correlated electron systems — the
Hubbard model and certain avatars — will be thoroughly investigated in one dimension to
determine the behavior of the electric susceptibility and of its companion, the correlation
length. The Density Matrix Renormalization Group (DMRG) will be extensively used to
reach this goal.

Our results will confirm Mott’s intuition: there is a dielectric catastrophe at the Mott
transition in one dimension. The transition will be found to be infinite order, irrespective of
the microscopic details of the underlying Hamiltonian. Thus evidence for a possible unique
universality class will be provided. Deeper investigation will reveal that hyperscaling is
satisfied, which is far from obvious for metal-insulator transitions [7].

The results covered in Chapters 3 and 6 have already been published [10, 11], while
Chapter 7 contains the material of a forthcoming publication [12].
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Chapter 2

Metal-to-Insulator Transition:
a Critical Phenomenon

Metal-insulator transitions form a broad class of fascinating problems that have attracted a
lot of attention in the past century, and in fact, still do today as many relevant questions
remain unresolved. While there are many intriguing aspects of this problem for the interested
physicist, the fact that intuition won in the study of one type of transition is often of little use
in understanding another type can be discouraging. A serious reader interested in learning
more about this vast field should consider investigating in detail Mott’s own contribution [8]
which reviews a life-long study of the problem, as well as an extensive review by Imada et
al. [13].

Rather than getting lost in a jungle of material-related details, one should concentrate
on extracting the general features characterizing possibly quite dissimilar metal-insulator
transitions: this means searching for universal behavior, which is usually found close to the
transition, in the critical region. Should success occur, there is hope that simple theoretical
models, i.e. without superfluous features, may be relevant to the understanding of many
metal-insulator transitions, which in turn could be divided into a limited number of univer-
sality classes. Finding such a classification may be thought of as the Holy Grail of phase
transition theory.

2.1 The Transition in Si:P

We devote ourselves here to the study of the metal-to-insulator transition driven by quan-
tum, rather than thermal, fluctuations [6]: this means the transition occurs at 7' = 0. A
confrontation with any experiment may seem at first awkward, if not impossible altogether,
since the absolute zero of temperature is clearly out of reach! However, experimentalists can
deal with extremely low temperatures', where many physical quantities, such as the zero-
frequency (di)electric susceptibility on the insulating side or the zero-frequency conductivity
on the metallic side, have already attained asymptotic behavior [6]. A convincing example

Lin the millikelvin range; the relevant scale here is kT (energy of low-lying excitations).

7
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Figure 2.1: Real and imaginary parts of the electric susceptibility as a function of tem-
perature for the insulating Si:P. This material is Silicon doped with randomly distributed
Phosphorus atoms that act as donors; n = 3.110'8 em™2 is their concentration.

is given in Fig. 2.1 (taken from [14]).

A linear extrapolation from low-temperature data then yields the 7" = 0 value, a proce-
dure called finite-temperature scaling.? From now on, we shall restrict ourselves to T = 0
values, and concentrate on the experimental observation of quantum phase transitions and
on their interpretation.® We are interested in quantities which separately characterize the
metallic and the insulating phases: an insulator, also called a dielectric, has a finite dielectric
constant € [15], which is related to the (real part of the zero-frequency) electric susceptibilityx

e =1+4my, (2.1)

but a vanishing conductivity [15], whereas a metal has a finite (zero-frequency) conductivity
0(0) and an infinite dielectric constant. How does the transition occur? Does the electric
susceptibility diverge continuously when approaching the transition from the insulating side
and does the electric conductivity drop continuously to zero when coming from the other
side? Or is there any discontinuity? This can be answered, provided that one can measure
sufficiently close to the transition point — i.e. enter the critical region. (Here, however,
finite-temperature scaling may become impossible [16, 17, 14, 18, 6].) Early experiments in

2Tt is closely related to finite-size scaling [6] which consists of extrapolating large-size data to obtain the
infinite-size value, a procedure mainly used to obtain relevant bulk quantities out from numerical simulations
of finite-size systems. See Chapter 5.

30f course, the discussion of finite-temperature effects is extremely interesting in its own right, see [6].
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Figure 2.2: Divergence of the T = 0 electric susceptibility 47y for Si:P in the insulator
(solid circles from [14]; open circles from [17]; solid line: fit from Eq. 2.2) and the 7 = 0
conductivity o(0) in the metal (solid circles from [20, 22]; open circles from [21]; solid line,
fit from Eq. 2.3) as a function of P donor density n. Figure taken from [14].

1956 [19] were only able to demonstrate a large enhancement in y at microwave frequencies
and at 4.2 K for doped Ge. Fortunately, in a series of more recent experiments, beginning
in the 1970’s [16, 17, 20, 14, 21] (for a short review, see [18]), the critical behavior of a
metal-insulator transition could be observed. The material used was Si doped with a donor
like P, As or Sb [16]. At T = 0, pure Si is an insulator.* In Si:P (or equivalently in Si:As,
Si:Sb), the donors are randomly distributed. Let n = Np be their concentration: as n is
increased, the wave functions of the “free” donor electrons begin to overlap, until metallic
coherence can be achieved throughout the material (and not only at a smaller length scale)
at a critical concentration n. beyond which the system remains metallic. However, it is not
a simple band-insulator-to-metal transition. As soon as Si is doped, the band theory picture
breaks down and electrons cannot be treated as non-interacting anymore. Disorder as well
certainly plays a major role. In any case we face here a pretty complex transition that
has not been very well understood yet, even though the metamorphosis of Si into a metal
through doping may seem intuitively clear. The summarized measurements are presented in
Fig. 2.2 [14].

4Due to filled bands which correspond to closed atomic shells
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Figure 2.3: Electric susceptibility of Si doped with Sb, P and As as a function of donor
concentration.

The electric susceptibility diverges as n approaches n. from below, following a power-law

X ~ (ne—n)" (2.2)

with v ~ 1.15 according to the fit in Fig. 2.2. This divergence was termed the dielectric
catastrophe by Mott [8] and the dielectric anomaly by Imry [23]. The replacement of P by
other donors like As or Sb changes only the value of n. without affecting the strength of the
divergence, as can be seen in Fig. 2.3 [16]. The same holds for doping with acceptors like
Boron [24].

The conductivity o(0) goes continuously to zero, following a different power-law

a(0) ~ (n—nc)” (2.3)

with v ~ 0.5 according to the fit in Fig. 2.2. There is no minimum metallic conductivity
(see the position of the hypothetical o, on Fig. 2.1), contradicting Mott’s conjecture for
metal-insulator transitions in general [8].

A similar transition may also be triggered by applying an uniaxial stress S at fixed donor
concentration. The transition would then occur at a critical value S, [21, 14, 18, 25]. The

finite-temperature conductivity in the critical region may then even be described by a scaling
form [25]

o(5,T) = o.(T) FI(S = 5.)*/T] (2.4)



2.1. THE TRANSITION IN SI:P 11

10- UL AR L
L SiP
N=3.2110' cm™
metallic
S
A
E :
b L
10_1 3 3
102 | 3
! E
104 _ insulating i
10° I el

0.01 0.1 1
(S-S,) / S, T3+ (K:0:34)

Figure 2.4: Scaling plot of o(S,T)/o(S,,T) vs |S — S.|/(S.T'/#) with S, = 1.75 kbar and
1/(zv) = 0.34. N is the P concentration and S is the applied uniaxial stress.

where o.(T) = o(S.,T) ~ T'? and F is a universal function. In Fig. 2.4 [25] values
of 0(S,T)/o.(T) measured at several stresses S and temperatures T are plotted against
|S — S.|/(S.T"#"), where zv ~ 2.94 has been chosen to achieve the best collapse of all the
data onto a single curve.

Note that similar scaling is observed in Si:B (acceptor doped Si), although with different
exponents [26, 27, 28]. See also [29] for Si:Nb. Eq. 2.4 enables us to identify an elementary
energy scale

A~ |S— S (2.5)

which vanishes at the transition [6]. Thus, there is a unique relevant energy scale, or, equiv-
alently, a unique relevant length scale close to the transition: this means that hyperscaling
should be valid [6]. In that case, the electric susceptibility can also be expressed directly
in terms of A close to the transition. This relation was indeed observed quite early in the
donor-concentration-driven transition, and the corresponding relation is [17]

1
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(See also Ref. [24] for more details on Si:B). This transition thus appears to be completely
continuous, with well-developed critical behavior.

2.2 A Universal relation?

In the beginning of this chapter, we evoked the quest for universal relations, which can
arise for example between the exponents characterizing the divergence of various physical
quantities [1, 6]. Such a relation may then exist between v and v, the exponents of x and
o(0), respectively (see (2.2) and (2.3))

v= 2v, (2.7)

and it has been indeed experimentally probed for some metal-insulator transitions, including
Si:P [14, 18], Si:B [24], Ge:As [30] and Ge:Ga [31].

This relation has also been observed in the Anderson model in three dimensions [32,
33|, where increasing disorder localizes the wave functions of the independent electrons,
eventually turning the system into an insulator at a critical disorder strength. It is tempting
to try this model to understand the metal-insulator transition in Si:P. Disorder certainly plays
a major role (the donors are randomly distributed). But it should be kept in mind that, unlike
in the Anderson model, in Si:P an increase of the disorder (the donor concentration) turns
the insulating semi-conductor into a metal! We will nevertheless outline the interpretation of
Si:P [18] with the scaling theory of Anderson localization [34]. In the localization problem,
it can be shown that [33, 35, 23]

o(0) ~ 1/¢ (2.8)

where £ is the unique relevant length scale of the system, also called localization (or correla-
tion) length. This readily gives [8, 33, 35, 23]

X ~ & (2.9)

via

£~ lg—gd™, (2.10)

where g is the tuning parameter and g, its critical value. While the scaling theory predicts
v =1 [34, 33], there is little consensus for experimental values in doped semi-conductors:
v ranges from ~ 0.3 [31] to ~ 0.5 [20, 21, 14, 30, 18, 36] and even to 1.3 [25] and 1.6
[26, 27, 28]. This is in clear contradiction with the elementary scaling theory of localization
and highlights the following point: the metal-insulator transition in Si:P (and related doped
semi-conductors) is far more complicated than a problem of independent disordered electrons.
Interactions should clearly be treated on equal footing with the disorder [9]. However, this
just turns the problem into a very difficult one.
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2.3 Critical behavior

Maybe you noticed that the transitions we reviewed in the previous sections all share a
common feature: the singular behavior (either divergence or vanishing) of physical quantities
in a parameter regime surrounding the transition point. This zone is called the critical region
and the singular behavior is called the critical behavior.

Generalizing this concept, Sachdev [6] identifies any point of non-analyticity (read: sin-
gularity) g. in the ground state energy of a system as a quantum critical point. In general, g
is a set of parameters g = (g1, g2, ...) in the Hamiltonian governing the system that can be
tuned, e.g. the interaction strength or the density of electrons. For a continuous transition,
there is a characteristic energy scale of fluctuations above the ground state that vanishes as
g — g.. We name it A, which correctly suggests you that this energy scale is nothing but
a gap in the excitation spectrum®. In the critical region, the gap behaves as a power-law,
provided the transition is second order:

A~ fg—g” (2.11)

Here zv is a critical exponent; this matches Eq. 2.5. An exponential opening of the gap at g,

A ~ eGEr (2.12)

with some constant A and some exponent o is also possible. In this case we will talk about
an infinite order transition.

Continuous quantum phase transitions also invariably have a diverging characteristic
length scale, the correlation length [6]

£~ lg—gl™. (2.13)
(See Egs. 2.8 and 2.10.) The scales of energy and length are related by
& ~ A% (2.14)

where z is called the dynamical critical exponent. z = 1 corresponds to a system in which
energy — i.e. time — and space are on equal footing, i.e. where relativistic invariance is
satisfied. The susceptibility then diverges as well with the form

X~ 19— g™ (2.15)
for a second-order transition. In the particular case of the metal-insulator transition, y is
the electric susceptibility, and Eq. 2.15 is the dielectric catastrophe, that we already came in
contact with in the experiments (see Eqs. 2.2, 2.6 and 2.9).

All the other well-known critical exponents may be defined in analogy with their classical
counterpart. The whole set of critical exponents are expected to be universal and excep-
tions to this rule can be explained by well tested theories in the context of classical phase
transitions.®

Sfor non-critical gapless systems see [6]
6Like the effect of marginal operators for instance.
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Chapter 3

Electric Susceptibility: Theoretical
Basics

As emphasized in the previous chapter, the electric susceptibility x is ideal for experimental
investigation of the insulating side of the transition. On the other side many theoreticians
have concentrated their efforts on the conductivity

o(w) = 21 D6(w) + Oreg(w) (3.1)

both on the insulating (see e.g. [37, 38, 39, 40]) and on the metallic (see e.g. [41, 42,
43, 44, 45]) sides. In the metal, a non-vanishing Drude weight D characterizes an ideal
conductor and is per force absent in experiments, while it represents, for theoreticians, the
static quantity to study a perfectly metallic phase. It can be determined via Kohn’s formula
[46, 47]

Lo%E,
2 902 |,_,

(3.2)

Here the system forms a ring of length L with ground state energy FE, and is pierced by a
magnetic flux ®: this is equivalent to probing the sensitivity of the wavefunction in the ring
towards a change in the boundary conditions. D has thus also been named charge stiffness.

On the other hand, theoretical studies of the electric susceptibility are scarce: one finds
scaling theories of disorder-driven transitions [35, 48] and numerical investigations (the clas-
sical Coulomb gas in 2D [49], the Anderson insulator with Coulomb — i. e. long-ranged —
interactions in 3D [50]). These studies are the first of their kind and have the great merit
of emphasizing that x is the susceptibility relevant for the metal-insulator transition [50]
rather than the charge susceptibility that nearly everybody has in mind [51, 47]. Indeed, the
charge susceptibility is proportional to the charge compressibility and vanishes identically in
an incompressible insulating state [13].

15
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3.1 Open boundary conditions

Let us take as a starting point a crystal of L¢ atoms (lattice constant @ = 1) whose electronic
degrees of freedom are described by a Hamiltonian H. We consider open boundary conditions
(OBCQ), i.e. the connections terminate at the edges. We point out that this is the natural
choice for a direct comparison with the experiments. Our system should undergo a quantum
metal-insulator transition if one or more parameters of H are properly tuned. Our purpose
is to study how this occurs.

Following standard classical electrodynamics [15], the (static) electric susceptibility x of
a medium is defined as

opP
Y =

= o= (3.3)

E=0
where P is its polarization and F is the applied electric field which is constant in time and
space. In a quantum world, Eq. 3.3 remains valid if one replaces P with the ground state
expectation value of the polarization operator P

_ap)

e I (3.4)

E=0

Here P is called macroscopic bulk polarization and is the sum of all the elementary dipoles.
After proper normalization one gets [52] (we set e = a = 1)

1 1

where X is the one-body position operator and L is the size of the system or, equivalently, the
number of atoms (“sites”). The quantity n; is the local density operator and x; denotes the
position of the lattice sites. Putting the origin in the middle of the lattice ensures that the
polarization (Eq. 3.5) will be zero in the absence of electric field,! due to reflection symmetry.
In order to determine y we need to know the ground state wave function as a function of
the applied electric field. This means we have to couple the Hamiltonian H describing the
transition to the electric field E. We take E to be along the z-direction, yielding an electric
potential ®(r) = —Ex. We can then readily write down what must be added to H:

Hexe = / d%r®(r)n(r). (3.6)

The new total Hamiltonian then becomes Moy = H + Hext and n(r) is the continuous density
operator

n(r) = Y ¢*(r —r)b(r — r;)cl,ci (3.7)

ijo

! This is only a matter of convenience, since putting the origin elsewhere will give a non-vanishing but
constant zero-field contribution to the polarization that will disappear when differentiated with respect to
the electric field.
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where the ¢’s are Wannier orbitals. In the tight-binding scheme, their overlap is negligible
and one can write

/ dr ®(r)¢*(r — r)d(r —1;) =~ B(r;)d; (3.8)

provided that the potential ® varies sufficiently slowly. This eventually leads to the discrete
form

Heww = —EY zin; = —EL"P, (3.9)

where the electric field directly couples to the polarization. We can write the following
equation

- _ = 3.10
P= LY OF (3:10)
that together with Eq. 3.4 and the Hellmann-Feynman theorem will give
82 Etot( )
= — 3.11

E=0
For £ — 0 we may apply second-order non-degenerate perturbation theory and write
0| X |Wo)|?

ZI(
T Ll B, - B

(3.12)

where the |®,) are eigenstates of H and E, the corresponding eigenenergies. Here v = 0
denotes the ground state.

As mentioned earlier, (P) = const and may be set to zero in the absence of electric field.
However this in no way means that, as Mother Nature becomes quantum, the fluctuations
of the polarization will vanish at the same time, i.e.

(X% —(X)* # 0. (3.13)

Kudinov, whose work is not very well known, was the first to notice the importance of the
variance of the polarization [53]. Other groups ([54] and [55] for non-interacting electrons)
then followed. Since the fluctuations of the polarization measure the degree of localization,
it is intuitive that Eq. 3.13 should be finite for an insulator and divergent for a perfect metal,
if it is properly normalized [53]:

E = (X% = (X)), (3.14)

or equivalently

E = 2o Y ((nng) — () (ny) (3.15)
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We will see that the quantity € is complementary to the electric susceptibility y in charac-
terizing the metal-insulator transition. It may be thought of as a “second moment” of the
polarization, with P being the first. The fluctuation-dissipation theorem relates them in a
very elegant way, but only at a finite temperature 7" [50]

X = % (3.16)

Unfortunately, the equivalent theorem for 7' = 0 is not so easy to deal with [6] and no
relation corresponding to Eq. 3.16 has yet been found. However, a 7" = 0 inequality may
be derived from Eq. 3.12: let A be the lowest excitation energy for which the dipole matrix
element (®,|X|®) does not vanish (A is called the charge gap). We immediately get

<%

3.17
X < 3 (3.17)
Let 6 be the exponent of the divergence of €. Eq. 3.17 then yields the inequality

v < O+z2v. (3.18)

between exponents (see Eqs.2.11 and 2.15). While the interpretation of f in arbitrary di-
mension d is awkward, & has the dimension of a length in d = 1. As is well known from
the theory of classical [1, 56] and quantum [6] phase transitions, there is a unique relevant
length scale in the vicinity of the critical point below the upper critical dimension d.. We
might hope? that d} > 1, in which case any divergent length must be the correlation length
itself, at least in the critical region. This guess will be confirmed in the Chapter 6. Thus in
d =1, we will remove the tilde on £. Since § = v (see Eq. 2.13), Eq. 3.18 becomes

v < (1+2)r. (3.19)

3.2 Linear vs non-linear responses

Since we expect the ground state polarization (P) to be an analytic function of F in principle,
we can consider its Taylor expansion

Py = Y KB (3.20)

Since the polarization should change its sign when ' — —F, all the terms with an even
power of E' must vanish and we get

Py = xXVE+x¥E* +... . (3.21)

2We do not know of a model for which it does not hold; it is for example d} = 6 for the Anderson-Mott
transition [57].
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By definition, x(! is nothing but the electric susceptibility x. If the electric field is small
enough, we enter the linear response regime where
(P)
= —. 3.22
X = 5 (3.22)
This expression will reveal itself to be a very useful alternative way of determining x. A
sufficiently large third-order non-linear susceptibility x(® could, however, mask the linear
behavior even at very small electric fields. Thus care has to be taken when one makes use of
Eq. 3.22. Certain materials, like polydiacetylenes, indeed show a very large x(®) [58]. Non-
linear response is a very interesting, if delicate, issue in its own right and has been recently
investigated by various analytical and numerical methods [58, 59, 60].

3.3 Periodic boundary conditions

Unfortunately open boundary conditions break the translational invariance on a finite lattice,
thus making the analytic treatment of a given model much more difficult, or even impossible.
One often has to switch to periodic boundary conditions (PBC), turning a chain into a ring,
a square into a torus and so on. The bad news is that the definition of the polarization itself
becomes awkward because the system lacks edges where the polarization is sustained in a real
material [15]. One has to resort to a few technical tricks in order to deal with this problem.
In particular, one can define a quantity which will tend to the macroscopic bulk polarization
as the size of the system grows towards infinity (in d = 1 only [61, 52, 62, 63, 64]). Another
annoyance is that a constant electric field gives a sawtooth periodic potential, which leads to
an ill-defined thermodynamic limit. Instead, one has to use a periodic electric field defined
so that one period spans the system size. In d = 1, we can choose E(z) = E cos(qz) with
qg= 2% As ¢ — 0, we would then get back F(z) — E. This yields a potential

O(z) = —%sin(qx). (3.23)

Notice that one must replace = by 2= sin(®z) in ®(z) = —Ex in order to get Eq. 3.23.
Such a mapping between OBC and PBC is quite general [64] and is reminiscent of conformal
mappings, e.g. between quantities at 7 =0 and 7" # 0 [6] or between a system of finite size
L and its thermodynamic limit L — oo [65, 66]. The coupling to the electric field obeys the
same rule

sin(qx; ~
Hew = —EY sin(gzs) _ _px (3.24)
i q
3
where we have defined a new position operator X [64]. Note that X is now only a measure of
the charge displacement on a ring and no longer represents the polarization, which is instead
given by a rather tricky expression [61, 52]

1 L)
P = lim —Imln(eT ¥), (3.25)

L—oo 277
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where X is the OBC position operator.® The electric susceptibility, however, may still be
defined using Egs. 3.11 [49]:

(0, | X[ To)|”
= 3.26
Il lg E, - FEy (3:26)
The correlation length may also be determined from Eq. 3.14 using X instead of X
-2 (X?) (3.27)
= 7 .

where (X) = 0 due to translational invariance on the ring in the absence of electric field.

3Notice that if one could commute ImIn and the expectation value (. ..) one would recover the expression
for OBC.



Chapter 4

Mott Transition

Let us go back to the good old days: in 1931 A.H. Wilson [67] described the difference
between the metallic and the insulating states using a model of non-interacting electrons.
The band theory was born and it sounded roughly as follows: if the atoms building up a
regular lattice have a closed outermost shell, it will give rise to filled or closed band which
corresponds to an insulator. We designate this situation “two electrons per atom”, provided
there are no degeneracies. If the atoms do not have a closed outermost shell, the band will
be half-filled, designated “one electron per atom”. Because there are free quantum states
available for the electrons to move around, they can carry a current and maintain quantum
coherence over the volume of the system, which is de facto a metal. The reign of this “Brave
New World”, as oppressing as it was for the majority of materials, was not to last forever.
Some troublemakers pointed out that a few systems do not obey the rules [68]: they had the
rudeness of being insulating despite being assigned to be metallic.

Non-interacting electrons are the building blocks of this flawed Utopia, as first pointed
by Wigner ! in 1938. Eleven years later, Sir Nevill Mott published a paper [69] which was
to become one of the cornerstones of modern many-body physics: the insulating state could
be built up from “one-electron atoms”. One must just increase the lattice constant a. This
means, experimentally, to decrease the external pressure and, theoretically, to increase the
strength of the Coulomb interaction! At some critical a. the metal eventually turns into an
insulator [69, 70, 8]. This Cinderella-like fairy-tale was not to everybody’s taste however:
A H. Wilson’s early breakthrough was too enticing. Fifteen years and another cornerstone
paper by Kohn [46] — a general study of the insulating state of matter — were needed to
change minds.

lintroduction of the so-called Wigner crystal

21
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4.1 Early and recent approaches

In the same year, Hubbard introduced a model [71] now named after him which incorporates
Coulomb interactions into Wilson’s theory:

H = —t z cgacja+U2niTn,¢ . (41)

<ij>o i

The first term is the tight-binding kinetic energy with hopping parameter t between nearest
neighbors (we set t = 1), and the second represents the electronic interactions reduced to
their local component U, a simplification which is motivated by screening of the long-range
part of the Coulomb interaction in the outer shells of transition metals. We will take the
band to be half-filled and vary the ratio U/t rather than the lattice constant ¢« — which is
set to 1 — to probe the so-called Mott transition. In 1968 this model was solved by Lieb
and Wu in d = 1 using the Bethe Ansatz in a paper [72] fatefully entitled “Absence of Mott
Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension”.
They find no transition at a finite U, > 0, the system is insulating for any finite interaction
strength. This result contradicts Mott’s original intuition of a critical interaction strength
of the bandwidth order, U, ~ t [70, 8]. However, since a half-filled band of non-interacting
electrons is obviously metallic, a metal-insulator transition occurs at U, = 0 right away.

Unfortunately, no exact solution has been found for the Hubbard model in higher dimen-
sions and only approximation schemes are left for the eager physicists. In the early 1960’s,
Gutzwiller introduced [73] a variational wave function which is an analytic continuation of
the non-interacting case:

Wg) = e T2amitmit |y | (4.2)

where 7 is the variational parameter and |¥y) the Fermi sea. Brinkman and Rice [74] inves-
tigated the Mott transition within the Gutzwiller approximation? in 1970. Their conclusion
was that a transition occurs at finite U, and that the double occupancy is an order parameter
for the metallic phase. This work was much celebrated and in fact it is still today, although
it is completely wrong: the transition observed by Brinkman and Rice is an artifact of the
variational scheme: because the Gutzwiller wave function grows adiabatically from a metallic
state, it cannot correctly describe a phase transition. Perturbative calculations indeed show
that the double occupancy is a smoothly decreasing function of U that reaches zero only in
the U — oo limit [76].

Another variational wave function was defined by Baeriswyl [77], starting this time in
the strong coupling limit:

|\I’B> — 6*772<ij>a c;'racjff‘\ljoo> , (4.3)

where |U.,) is the ground state of the Hubbard model for U — oo. This limit describes
the antiferromagnetic Heisenberg model, in which double occupancy is forbidden and which
has only spin degrees of freedom. The charges are frozen and |Up) necessarily describes

2which, by the way, becomes exact in the limit d — oo [75]
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an insulator. A calculation gives a lower energy for |¥p) than for |¥Ug) in the region of
the Brinkman-Rice transition [75], thus showing that the Gutzwiller wave function poorly
describes strong coupling! These issues have been discussed by other authors [78, 79]. These
two variational wave functions are only valid in the two asymptotic regimes, and cannot be
trusted in the vicinity of the transition [80]: but that is the fate of any variational approach.
Approximations that rely on continuously metamorphosing an exactly known limit to-
wards the transition will inevitably fail: one definitely needs (at least asymptotically) exact
methods to investigate a quantum phase transition, which corresponds to an abrupt and
drastic change of the properties of a system. Approximations that rely on metamorphosing
continuously an exactly known limit to approach the transition will inevitably fail. An in-
teresting but ambitious approach is to try to extract the scaling limit of the Mott transition
within a renormalization group approach [81]. Numerical simulations provide potentially
exact results on finite lattices, but are still in their infancy in d > 2 (QMC,DMRG): the
cluster sizes are small and a reliable finite-size scaling is difficult or impossible [82, 83].
Further simplifications arise if one considers the limit d — oo, where the dynamical
mean-field theory (DMFT) gives the exact solution® [84]. But this limit suffers from a
serious “bug”’: the paramagnetic insulator obtained has extensive 7' = 0 entropy. This
contradicts the third law of thermodynamics! Nevertheless many groups have focused their
attention on the Hubbard model in d — oo, studying the finite-7" transition instead [84]: its
order has been a subject of much debate and is still a delicate issue [85, 86, 84].
Meanwhile, substantial progress has been made in investigating experimentally com-
pounds in which a pure Mott transition occurs [13]. The most promising among them is
NiS,_ Se,. Substitution of S with Se in the Mott insulator NiSs makes the system metallic
(87, 88, 89, 90, 13]. A T = 0 study comparable to the one for Si:P and related materials
(see Chap. 2) has yet to be carried out. However, very low temperatures have been reached
and the Mott transition may also be induced by applying an external stress S: Husman et
al. started with insulating NiS; 56S5€eg.44 crystals and drove the system metallic with pressure
[88]. This way of tuning the transition by changing the lattice spacing perfectly matches
Mott’s original viewpoint! A dynamical scaling plot comparable to Fig. 2.4 has also been
obtained (Fig. 4.1) on the metallic side of the transition [88]. Note that the x-axis is the
inverse of the one on Fig. 2.4, so that the two scaling functions in fact look rather different.

4.2 The one-dimensional case

Experimentalists have also investigated the weird world of quasi-one- spatial dimension:
chains of atoms or stacks of molecules weakly coupled to each other. Some of these materials
are Mott insulators [91, 92] and some others undergo a pressure-induced Mott transition [93,
94]. The transverse coupling is typically weak enough so that the materials can be considered
one-dimensional. However the fate of this coupling when one lowers the temperature is not
so clear: the general trend is towards an increase due to the quantum fluctuations until the

3which has to be evaluated numerically though
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Figure 4.1: Scaling plot of ¢(5,T)/o(S.,T) (t = (S — S.)/S. and o(S.,T) = t") vs T/t*¥
with S, = 1.6 +0.16 kbar, p = 1.1 £ 0.2 and zv = 5 + 1.3 for NiS; 565€¢.44. The ability to
collapse the data onto a universal curve reflects the measurable influence of the quantum
critical point [88].

material eventually reverts to three-dimensionality at sufficiently low temperatures [95, 96].
It is thus very difficult to observe 7' = 0 phenomena for truly one-dimensional materials [94].

The good news is that in such low dimensional systems, a theorist’s life is much easier:
many strongly correlated lattice models may be solved exactly and many simplifications
arise. Finite temperature studies are extremely enticing, as they allow a direct comparison
with experiment: some techniques, both analytical (thermodynamic Bethe Ansatz [97]) and
numerical (TMRG [98]) are starting to be used [99, 100]. Their application is quite difficult
and still in its infancy but shows promising results which match general predictions from
continuous models [6].

Thus far, the vast majority of theoretical investigations in this field have been devoted
to T' = 0: a full understanding of this limiting case is essential for further investigations at
a finite temperature. The Lieb and Wu solution for the Hubbard model (4.1) was only a
starting point: it has recently been extended to obtain the full spectrum [101]! Unfortunately
this method is sufficiently complicated so that an analytic treatment involving excited states
is considered very delicate [47] even though substantial progress has been made quite recently.
Nevertheless, many ground state properties as well as the low-lying structure of the spectrum
may be discussed in detail. Let us now summarize the general picture [47]: At U = 0, the
system is a half-filled band of non-interacting electrons and is thus metallic and totally
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gapless. For any U > 0, a gap

16 [oo ViiZ—1

AeU) = v LY sinh(27y /U)

(4.4)

opens for the charge excitations [102] while the spin excitations remain gapless. The system
is a Mott insulator with a vanishing charge stiffness D = 0. There us a quantum phase
transition, but at U = 0 [6]. Lieb and Wu’s title [72] should not be misunderstood: it only
refers to the fact that there is no transition at a finite U. There is even more: it makes
perfect sense to consider a negative U, which leads to the attractive Hubbard model. At
half-filling a particle-hole canonical transformation on the down-spins electrons only,

{ A (4.5)
i} Gy
turns the attractive interaction into a repulsive one, spin into charge and charge into spin
[103]: the point U = 0 is a two-way mirror. As soon as U < 0, a gap Ay, also given by Eq. 4.4,
opens for the spin excitations, while the charge excitations remain gapless. Another quantum
phase transition occurs at U = 0 for the spins, which have mirrored critical behavior. The
system is metallic with a finite Drude weight D that increases as U — 0~ and makes a jump
of 2 at U =0 [41].

The critical region is nothing but the region of validity of weak-coupling: for |U|<2
Eq. 4.4 becomes [47]

8 _2m
= = 0]
Aes = —y/ [Ule (4.6)

where /U is a logarithmic correction in front of an exponential and may be neglected for
|U| — 0:

Apy ~ e T . (4.7)

The gap closes faster than any power-law, which means that, technically, zv — oo
(see Eq. 2.11). Another weak-coupling analysis reveals that the Hubbard model is Lorentz
invariant, i. e. time and space may be interchanged. The immediate consequence is that
z =1 [38], which in turn implies ¥ — co. The correlation length should thus diverge faster
than any power-law as U — oo. This is confirmed by the explicit Bethe Ansatz form [38§]
for both positive and negative U,

Ul (e Wy +vZ=1\ "
_ M 4.
o) = 7 ([ cosh@ry/IU]) ) (48)
which can be approximated as
£enl0) ~ A~ e (49)
c,8 A € .
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for U — 0. This is an example of an infinite-order transition for which the paradigm is
the classical Berezinskii-Kosterlitz-Thouless (BKT) transition, present in the 2D XY model
[104, 105, 106]:

Hxy = —=J DY (S7S7+SISY) . (4.10)
<ij>

This model has true ferromagnetic long-range order only at 7" = 0, which is destroyed
by spin wave excitations as soon as 7" > 0; this is a direct consequence of the Mermin-
Wagner theorem. The low temperature phase, however, remains critical with massless excita-
tions, power-law correlations and corresponding quasi-long-range order, up to the Kosterlitz-
Thouless temperature* Tyt where the size of the vortex-anti-vortex pairs® diverges. Above
Tk, there is short-range order with free vortices, a finite correlation length

§(T) ~ eV (4.11)

where b ~ 1.5 [105], and a susceptibility

\(T) ~ & (4.12)

with 7 = ;. The 2D classical Coulomb gas lies in the same universality class [107], when the
(anti-)vortices are mapped to (negative) positive charges. The gas is insulating at T < Tkt
and becomes metallic above the critical temperature [108, 49]. The electric susceptibility
has been found to diverge at the transition [49].

May one draw a bridge between the 1d Hubbard model and the Kosterlitz-Thouless tran-
sition? Here is the first clue: a quantum-classical mapping is possible because the effective
classical dimension of the Hubbard model is D = d + z = 2. But the situation is quite
intricate because there are two infinite-order transitions in the Hubbard model, mirrored at
U = 0. In discussing spins and charges separately we have implicitly referred to a beautiful,
yet questioned, property of the electron gas on a one-dimensional lattice: spin-charge sepa-
ration [109, 110]. It is possible to treat spins and charges as separate degrees of freedom; the
Hubbard model may thus be treated as a whole or split into its spin and charge components.
In the latter case, the gapless phase for either component turns out to be described by the
Gaussian model [110, 6, 111, 112]. The elementary excitations are free bosons, made up
of all spins or all charges. Since the spin and charge correlations decay as power-laws, the
phase is critical. This is the generic state for a 1d massless degree of freedom®, as intuitively
guessed by Haldane [113]. The conjunction of two massless degrees of freedom (one for the
spin and one for the charge) makes up a Luttinger liquid. The low-temperature phase of
the XY model also has the Gaussian model as its scaling limit, while the high-temperature
phase corresponds to the massive degrees of freedom of the Hubbard model (above or below

U).

4The poor Berezinskil is often forgotten, although he was the first one to unravel this transition.

5A vortex is a topological excitation where the spins whirl around a common center. An anti-vortex is
the same pattern, but with spins whirling in the other direction.

Swith a linear spectrum, see the next section
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Even in the latter model, one can reconcile spin and charge by considering a massive
Luttinger model [114], i.e. by adding a gapped degree of freedom to a gapless one; this yields
the Luther-Emery model, which fully describes both the negative- and positive-U Hubbard
model at half-filling [115]. And guess what? Quite a long while ago, the Luther-Emery
model has been shown to be equivalent to the 2D Coulomb gas [116, 115], which in turn lies
in the same universality class as the XY model! Could the problem be solved? Does the
1d Mott transition lie in the universality class of the XY model, as does the transition for
the spins for negative U? Here one must be careful: equivalences between all those models
are in general valid in an asymptotic regime of some sort [114, 6], and sometimes even rely
on intuitive guesses [114] so that building a chain of correspondences between one model
and another model does not ensure that these two models are truly equivalent. A delicate
study has to be undertaken anyway. Unfortunately, in the spirit of Lieb and Wu’s work, the
1d Mott transition, present in the Hubbard model, has been — and still is — considered
pathological. A direct comparison with the well known one-dimensional classical Ising model,
which lacks a true transition, does not help. This might explain why the issue of the nature
of the Mott transition in the Hubbard model has not been fully resolved and only gets out
of purgatory by now.

Nevertheless, quantum phase transitions in (1 + 1) dimensions’ as well as their mapping
to 2D classical phase transitions have attracted a lot of interest [6]. It appears that exponen-
tial divergences of critical quantities are actually not that pathological, and are even quite
common. Consider for instance the “spinless fermion model” (or t — V model) which is the
equivalent of the Hubbard model, but for spinless fermions,

H=—t) c;-'cj +V > nin; . (4.13)

<ij> <ij>

This model has also been exactly solved using the Bethe Ansatz [117, 118, 119]: the half-
filled chain undergoes a Mott transition at V., = 2t, with a corresponding jump of the Drude
weight [120]. For V < V, the system is a Luttinger liquid [6, 109, 110], while for V' > V it
is an insulator with a finite correlation length that diverges exponentially [121]

x2/2v/3
V) ~ eV (4.14)

and that is inversely proportional to the charge gap. This transition falls directly into the
BKT universality class [6].

After having deprived the electron of its spin, we now consider adding some spin-like
degree of freedom to the electron. This leads to the SU(NN) Hubbard model, in which each
fermion has N spin flavors® [122]. For N = 3 and 4, Monte-Carlo calculations at half-filling
give again a BKT opening of the charge gap, with a U, > 0 of the order of the bandwidth
[122].

"d=2z=1
8 N = 2 is the conventional Hubbard model.
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Both types of infinite-order divergences (Eqgs. 4.8 and 4.14) may be cast into the form

£ ~ eTwT (4.15)

This kind of transition has been found in many other (1+1)D systems with short-ranged
interactions, with different exponents o: o = 1 [123], 0 = 2 [124], 0 = 1 [123, 125, 126, 127,
128, 129]. See also [130, 131, 132, 133, 6]. A classification of these generalized topological
phase transitions, linking internal symmetries of the underlying model with the value of o,
has been convincingly undertaken by Bulgadaev [134, 135, 136], and subsequently by Itoi et
al. [137], who used renormalization group arguments. Application of those ideas to concrete
examples is far from trivial, however.

4.3 1d U —t —t' Model

You may have noticed that the Mott transition present in the ¢ — V' spinless model and
in the SU(3) Hubbard model does not occur at U, = 0 like in the simple Hubbard case,
but rather at a U. > 0 of the order of the bandwidth. Why? Let us consider the non-
interacting limit in the simple Hubbard model. The Fermi sea contains just two points. A
weak interaction will cause scattering processes only between the two Fermi points, so that
one can linearize the spectrum around them for an effective description of the weak-coupling
physics. It turns out that the elementary excitations of such a model will be made up of
bosons, collections of the original fermions. Hence the name of this technique: bosonization
[138, 139]. These scattering processes must conserve momentum modulo a vector of the
reciprocal lattice because the original model is on a lattice. Such an Umklapp process [47]
will eventually turn the system into an insulator [111, 112]. In the simple Hubbard model
these processes are fully relevant only at half-filling, ® where there is a distance 27 between
the two Fermi points (perfect nesting) [112]. But they are irrelevant for SU(3) fermions [140]
and in the half-filled t — V model.!®

This is why some pretend that the Umklapp processes mask the real Mott transition.
To clarify this issue within the Hubbard model, one needs to make them irrelevant in one
way or another, still keeping spin—% electrons. This is most elegantly achieved by adding a
nezt-nearest neighbor hopping ¢, which results in the U — ¢t — ¢’ model:

H = — Z (t C;-LUCZ'_HU + tl C.Z!-U'Ci+20') + U ZTL,’TTLN . (416)
10 13
Note that the introduction of a #' also relies on experiment [141]. Here we will restrict
ourselves to half-filling, where the sign of t' is irrelevant, due to particle-hole symmetry
[142]. We set ¢ = 1 and consider only positive ¢'. For ¢ < 1, the non-interacting dispersion
relation
e(k) = —2cosk — 2t' cos 2k (4.17)

9For the relevance of Umklapp processes at commensurate fillings see [112].
10Tn the latter case, half-filling corresponds to a quarter-filled band for electrons with spin. The distance
between two Fermi points is thus .
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Figure 4.2: Left: energy dispersion relation of the U — ¢ — ¢’ model for #' < 3. Right: energy
dispersion relation for ¢ > . Here e is the Fermi energy [142].

has one minimum, whereas for ¢’ > i it has two. At half-filling the Fermi sea consists of just
two points for ¢ < 3. At ¢’ = 1, there are three Fermi points,"* while for ¢ > £ there are
four. The situation is depicted in Fig. 4.2.

When there are two Fermi points, the low-energy behavior, determined by processes
in the vicinity of the Fermi points, remains unchanged from that of the simple Hubbard
model, while in the four Fermi point regime, the Umklapp processes become irrelevant and
for weak repulsive interactions, the system is a metal with a spin gap, as predicted by
bosonization [142]. As the interaction becomes stronger, the metal is predicted to undergo
a Mott transition to a dimerized insulator [142]. This picture has been confirmed confirmed
numerically with quantum Monte-Carlo [143] and DMRG [143, 144, 145] simulations. Note
that such a tendency to frustrate nesting is generic when one adds a t' even in higher
dimensional lattices [146, 147]. A preliminary phase diagram was drawn in [145] with a U,
which was found to be of the order of the bandwidth, but the critical behavior was not
investigated at all.

We now turn our attention to the strong-coupling regime. Second-order degenerate per-

turbation theory'? in & on the U — t — ¢’ model leads to the J — J' model [47]

7
where J = % and J' = % and we get J'/J = t"2. We are now deep into the insulating phase:
the charges are frozen and no double occupancy is allowed anymore. This pure spin model
has been studied extensively [148, 149, 150, 151, 128, 152]. When J' = 0, this is the simple,
antiferromagnetic Heisenberg model, with quasi-long-range order. Using the Jordan-Wigner
transformation, it can be turned into the spinless fermion model mentioned above, which

1 The middle one’s spectrum cannot be straightforwardly linearized, which makes for an interesting and
possibly awkward bosonization scheme.
12Gee forthcoming chapter for further details.
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can be further bosonized [6]. It is a critical, gapless system, nothing but a Luttinger liquid
[6]! A positive J' acts to frustrate the antiferromagnetism, eventually making the system
massive at (J'/J). ~ 0.24 [151], through a BKT transition [128, 6, 152]. The massive phase
has a spin gap and is dimerized [128, 6, 152|, perfectly matching Fabrizio’s predictions [142]
as well as numerical simulations in the strong-coupling regime of the U — ¢ — t' model [145].



Chapter 5

Using the DMRG

Let us now return to the situation up to the late 1980°s: approximate analytical methods
nearly always have a range of applicability that is confined to limiting cases, like (very) weak
or (very) strong coupling, whereas we are interested in phase transitions at intermediate
coupling. Anything short of an ezact result! will fail in describing properly the catastrophes
involved in the critical regime, i. e. the drastic changes affecting the system when for
example the insulator metamorphoses into a metal. Exact results are scarce and are quite
often regarded as non-generic and pathological [72]. Last bad news: numerical simulations
have serious limitations. Hamiltonians on small clusters of up to 30 sites may be exactly
diagonalized, but the thermodynamic limit cannot be reached and no true critical behavior
may be observed. Quantum Monte Carlo simulations might treat larger clusters, but the
price to pay is usually the introduction of finite temperature? is the price to pay, once again
moving the system away from the quantum criticality.

A few years previously K.G. Wilson invented a numerical renormalization group (RG)
method specifically to solve the Kondo problem [153]. As a prophet, he was ahead of his
time: his method cannot be applied to models that lack an intrinsic separation of energy
scales. At the end of the past century his scheme has eventually been generalized by Steven
White’s tour de force[154, 155, 156], the Density Matrix Renormalization Group. DMRG
was born.

We refer the intrigued reader to the excellent original papers cited above, or to the review
in ref. [157]. Let us nevertheless state the basics. We will begin by considering a simplified
application of Wilson’s original scheme to the particle-in-a-box—problem, an application
suggested later by Wilson himself: an initial system of size L is fully diagonalized, and the
m lowest-lying states in the energy spectrum are kept to form a new basis. The system of
size L is then expressed in this new basis. We now increase the size of the system by putting
two blocks of size L together giving a system of size 2L. The new Hamiltonian is obtained by
tensor product and is a matrix of size 2m x 2m. Then we go back to the full diagonalization
followed by the truncation to m kept states. The system size therefore doubles at each step.
The biggest problem is that the boundary conditions are fixed for each diagonalized system.

Lat least asymptotically exact
2Actually QMC can run at T = 0 is some special cases.
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When we double the size, two boundaries become the center of the new system, which is
therefore badly described by the eigenstates. Successive iterations correct this only very
slowly.

The DMRG fixes this problem: the idea is to diagonalize a larger system, called a su-
perblock, which contains the original system, of size L, say. The rest of the superblock, called
the environment, may be considered as a bath which applies the complete set of possible
boundary conditions at the junction with the system. The whole superblock is exactly di-
agonalized. Depending on how much of the spectrum we finally would like to get, only the
ground state and possibly a few excited states are kept at this point. The environment is
then treated as a bath and its degrees of freedom are integrated out by forming a density
matriz which now describes the system alone. As we know from standard quantum mechan-
ics, the system is in a statistical mixture of pure quantum states. The eigenstates of the
density matrix give the possible states the system may be in, with the eigenvalues giving the
corresponding probability. The density matrix is thus diagonalized and the m states with
the greatest eigenvalues are kept, as they are the m most probable states for the system
to be in. These m states form the new basis in which we express the Hamiltonian of the
system. Then we add one or more lattice sites to the system and repeat the procedure by
defining a new environment in a way which depends on the DMRG “flavor” we are using,
e.g. by reflecting the system. The reduction of the basis is the crucial point: keeping a small
number of states greatly reduces the amount of numerical work in the algorithm, just like
in the Wilson case, while keeping all the states turns the DMRG into the good old exact
diagonalization.

While few exact mathematical statements exist about the convergence of the DMRG
scheme [158], in many cases the energies of the low-lying states converge to the ezact solution
exponentially in the number of states kept [157]. The DMRG can determine the expectation
value of any chosen operator in the ground state and in the desired excited states. The most
efficient DMRG flavor is the following: one carries out first an infinite-system algorithm, i.e.
one starts with a system of size L = 4, letting it grow by adding pairs of sites and forming
the environment by reflecting the system block. Once a given size L is attained, one goes
on with the usual DMRG procedure, re-building the system from scratch with the stored
systems of the previous step taken now as environments. In this part of the procedure, the
size L is kept fixed, therefore we talk about the finite-system algorithm. Several sweeps with
increasing number of states kept m may be necessary. The exact solution is reached at best
asymptotically in a variational procedure.

However, the DMRG is plagued by a severe drawback: it is basically a one-dimensional
algorithm — the superblock is always a chain, that hates long-ranged operators in the Hamil-
tonian. These will build spiderweb-like bridges between the system and the environment
forming the superblock. The two parts of the system become more entangled. Reaching
the same accuracy calls for an increase of the number of kept states m, transforming back
DMRG into exact diagonalization and its intractable complexity. Two-dimensional systems
are thus a far cry from being under good control, as a mapping to a one-dimensional system
requires long-range operators! Nevertheless DMRG is a wonderful 1d method that can treat
very large systems without problems, even in their critical regime(s). Investigating critical
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properties requires however ezrtensive computational resources and the study of quantum
phase transition in 1d, although possible by now, is still a Homeric task that is only now
being undertaken [150, 159, 160).

5.1 Testing and tuning the DMRG

Since the DMRG is a variational procedure, it is not truly exact. We therefore need to test
it by comparing its results to exact solutions. Moreover, the fact that the energy behaves
variationally does not imply that other quantities do. Note that this testing procedure is
needed for a numerical method, which is by essence never exact.

We would like to determine physical quantities such as the electric susceptibility x (3.4)
or the correlation length £ (3.14) of the U — ¢t — ¢/ model® (4.16). We choose open boundary
conditions (OBC) as the DMRG works best* in that case [157]. In order to calculate x one
could determine the ground state energy of the U —t —t' model (4.16) coupled to the electric
field (3.9), and then make use of the second-order perturbation theory formula for x (3.11),
but this would require a numerical evaluation of a second derivative, which is very inaccurate
[162]. It is better to utilize the linear response (3.22):

' ZZ x,nZ(U, t,,L)

x(U,t, L) = i : (5.1)
where the z; are the positions of the lattice sites with the origin chosen to be be in the middle
of the chain. The n;(U,t, L) are the local densities in the ground state n; = (¥,|7;|¥y), and
will be determined by the DMRG. Ideally one would take an almost vanishing £ and apply
Eq. 5.1 straight away; but this is numerically problematic, since one has to divide a very
small number by another one. It is fine as long as these numbers are exact, but as soon as
they are smeared by errors, the dividing procedure will magnify them and one may end up
with a meaningless result. On the other hand, if E' is taken too large, the system is outside
the linear response regime. Since the potential difference between the two ends of the chain
is FL, EL rather than E must be kept small to contain the system in the linear response
regime [163]. One has only to hope that the linear response regime begins before numerical
complications arise because of the dividing procedure. We were lucky enough that this was
the case in the U — ¢t — t' model, but keep in mind that this might not always hold. The
value EFL = 0.01 proved to be optimal and was used throughout this work.

In order to determine & we use the definition (3.15), with the electric field E' set to zero.
We do not need to worry about any linear response, we can just determine (¥,|n;n;|¥o) for
i < j with DMRG. The only drawback is that the number of terms grows like L?, which
compared to x severely limits the maximal size for the calculation.

3We have chosen not to consider the charge gap, as it is a very tricky quantity to calculate, especially
when one considers the thermodynamic limit. See [145, 161]. Also, it has already been calculated, see
Ref. [145].

4Periodic boundary conditions necessitate the introduction of a long-range coupling between the two ends
of the chain, thus leading to poorer convergence.
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Unfortunately there is no straightforward way of determining the DMRG error. We only
know certain trends: the error diminishes exponentially with increasing m [157], and DMRG
performs worst when there is no energy scale, i. e. when the system is gapless [164, 165].
Using the weight of the discarded states density matrix to quantify the error is often used
[157], but this measure is algorithm-dependent and is therefore not universal [166]. Instead
we compare the DMRG results in the most unfavorable case, i. e. gapless and without
interaction, with the exact result which is of course available. By doing this, we can tune
the DMRG parameters, the most important of which are the maximum number m of states
kept® in order to achieve the desired precision. Investigating® U > 0, we will use exactly the
same parameters, knowing that the precision will be at least as good as in the noninteracting
case.

At U = 0 we have a half-filled band of free electrons, a system that we can solve analyt-
ically to get x(U = 0,t',L) and £(U = 0,t, L); this is done in the appendices A.1 and A.2
respectively. At ¢/ = 0 and for large L we obtain the asymptotic behavior

xU=0,t'=0,L) = é L? (5.2)
fU=0+=01L) = %?’)L, (5.3)

while for nonzero ', we find the same large L dependence:

x(U=0,#,L) o L? (5.4)
fU=0,¢,1) x L . (5.5)

The constant of proportionality is a function of #. This is typical for a gapless system:
physical quantities will always be finite in a critical system of finite size L, diverging only with
L, while they will remain finite in the thermodynamic limit away from criticality [167]. Note
that Eq. 5.5 is pretty much what we expect, on dimensional as well as on physical grounds,
since a perfect metal maintains phase coherence throughout the finite lattice, yielding a
correlation length spanning the whole system.

DMRG results have been compared to the analytic solution at finite sizes L = 10, ..., 1000.
For small sizes, one has to utilize the exact formulae (3.12) and (A.22) instead of the asymp-
totic ones. Consider first the calculation of y. We found that for ¢ < %, m = 800 was
sufficient to obtain 6 significant digits of accuracy, while for ¢’ > % we had to increase m
greatly, up to 2400, to get the same precision at small sizes, and obtained as few as 4 sig-
nificant digits at larger ones.” To summarize this comparison, we plot the DMRG data
x(U =0,¢,L)/L?* as a function of 1/L in Fig. 5.1 for ¢ = 0 and in Fig. 5.2 for ¢’ = 0.7.

A linear fit can be used to extrapolate to L = oo, yielding (the error comes only from
the fitting procedure)

5

as well as the number of sweeps and the way we increase the number of states to reach m

bor U <0

"Generally, after the infinite-system building-up, we start a first sweep with m = 50 and then double m
until we reach the maximal number of states that we want to keep. We even went up to m = 3200 sometimes.
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Figure 5.1: Circles: Electric susceptibility divided by L? as a function of 1/L for L up to
300, according to DMRG, with U =0, ¢’ =0 and EL = 0.01. The solid line is a linear fit to
the data.
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Figure 5.2: Squares: electric susceptibility divided by L? for L = 16 to 100, as a function
of 1/L, according to DMRG, with U = 0, ¢ = 0.7 and EL = 0.01. The deviation from a
perfect linear behavior, as in Fig. 5.1, is an intrinsic finite-size effect. The solid line is a
linear fit to the data.
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Figure 5.3: Circles: correlation length divided by L as a function of 1/L, for L = 50 to
L = 100, according to DMRG, with U = 0 and ¢ = 0. The solid line is a linear fit to the
data.

xoMmrG (' =0,L) 1500

E % 0.026650(68) (5.6)
xpmrG(t' =0.7,L) 1o
iE % 0.0786(17) , (5.7)

whereas the exact values are

X(tl =0, L) L—o

= 2% 0.026525 ... (5.8)
#=07,L) 10
% L2 0.0774... . (5.9)

As can be seen the agreement is quite good. The calculation of ¢ is more delicate, since
one has to measure long-ranged correlations (7;7;). Since such quantities may only be
determined with a much lower accuracy within the DMRG, we have to significantly increase
the number of states kept m. For ¢’ < 1/2, we have kept up to 1200 states in order to
obtain 6 significant digits of accuracy, while at ¢’ > 1/2, 1600 states were necessary to obtain
between 4 and 2 significant digits, depending on the size of the system.® We plot the DMRG
data £&(U = 0,t', L)/ L as a function of 1/L for ' = 0 in Fig. 5.3 and for ¢ = 0.7 in Fig. 5.4
We do a linear fit and extrapolate it to 1/L = 0 (the error comes only from the fitting

8We have tried to increase m in order to get a higher precision, but the measurement time proved to be
excruciatingly long.
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Figure 5.4: Squares: correlation length divided by L as a function of L, for L = 14 to L = 70,
according to DMRG, with U = 0 and ¢ = 0.7. The solid line is a linear fit to the data.
Note that the deviation from a perfect linear behavior comes partly from intrinsic finite-size
effects and partly from the DMRG error.

procedure):
#=0,L o
gDMRG(L L) 1o 0.086400(31) (5.10)
¢=0.7L o
fDMRG(L L) 1og 0.1739(35) , (5.11)

whereas the exact solution is

gexact (tl = 0) L—xc

- 2% 0.086382. .. (5.12)
! _
boact (P = 0.1) 190 1797 (5.13)

L

As can be seen, the agreement is quite good. Note that in Figs. 5.2 and 5.4, there is a lot
of scatter in the points, so that it may seem at first not fully convincing that the data are
best fit by straight lines. The final justification however is that the values obtained by this
extrapolation agree well with the known exact results.

5.2 Strong-coupling limit
To be on the safe side, we would like to compare the DMRG results with some exact results,

at U > 0 this time, possibly pretty far from U = 0. Fortunately this is possible, and even
easy: one needs to do a second order degenerate perturbation calculation in 1/U on the
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Figure 5.5: Diamonds: electric susceptibility for U = 8, ¢/ = 0 and L going from 10 to 50.
The solid line is a linear fit to the form of Eq. 5.15.

U —t —t' model for x (appendix B.1) and simply to take the U — oo limit for ¢ (appendix
B.2).
We first consider x at ¢’ = 0. The result (Eq. B.7) is

8In2
U3
in the thermodynamic limit, L — co. For large U, x is finite and the system is insulating,

as is already well known [72, 47], but the DMRG gives x(L) only for a finite size L. If x(L)
is analytic in 1/L, we may consider its Taylor expansion around 1/L = 0:

Xoo(U,t' = 0) =

(5.14)

X(L) = Xeo + O(%) , (5.15)
where Yo is the electric susceptibility in the thermodynamic limit. If we can reach large
enough sizes so that higher order corrections in 1/L are negligible, a linear fit to the data
X(L) is possible and an extrapolation at 1/L = 0 yields x directly: this procedure is called
finite-size scaling® [167]; we give one example in Fig. 5.5. For large U, the same procedure
can be applied to yield x(U), which may be directly compared to the exact strong-coupling
relation (5.14). This is done in Fig. 5.6. As one can see, at U = 100 and above, the DMRG
data match the exact asymptotic result, thus confirming the validity of the whole procedure.

For t' > 0, Xoo(U, t') still goes like 1/U? for large enough U (see appendix B.1). Since
the J — J' model is non-integrable in general, we cannot give the exact proportionality
constant, like in the ¢’ = 0 case, except at one point: (J'/J)ug = tig = 1/2. This is the
Majumdar-Ghosh point, where there is an exact solution [168, 169]. For t' = %, the electric

9This has to be compared to the finite-temperature scaling used by experimentalists to get T = 0 quantities
out of finite-temperature data.
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Figure 5.6: Circles: electric susceptibility multiplied by U? obtained using the DMRG for
t' = 0; the dotted line is a guide to the eye. Note that every point comes from a finite-size
scaling according to Eq. 5.15. Solid line: strong coupling limit according to Eq. 5.14.

susceptibility becomes
1 9

N e
for large U (B.15). The comparison with the DMRG results is done in Fig. 5.7. The DMRG
data again match the exact asymptotic result.

Now we turn our attention to £ at ' = 0. The strong-coupling limit is (B.31)

Xoo(U, t' = (5.16)

41n2

2
in the L. — oo limit. We therefore need to perform a finite-size scaling procedure for the
&(L) values from DMRG:

{o(t'=0,U) = (5.17)

§(L) = &o + O(%) : (5.18)

At large enough L, only the first order finite-size correction has to be taken into account,
and the scaling is similar to that of x(L) as shown in Fig. 5.5. We apply this procedure to
large U to extract £, (U) and compare it to the exact result in Fig. 5.8. For ¢’ > 0, we know
that

§o(t',U) ox (5.19)

W )

but the proportionality constant cannot be determined, and only the 1/U? behavior can be
successfully checked with the DMRG (not shown here).
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Figure 5.7: Plus signs: electric susceptibility multiplied by U3, as obtained with DMRG, for

t' = L_; the dotted line is a guide to the eye. Note that every point comes from a finite-size
scaling, following Eq. 5.15. Recall that the Majumdar-Ghosh value is 9.
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Figure 5.8: Circles: correlation length multiplied by U?, as obtained with the DMRG, for
t' = 0. Note that every point comes from a finite-size scaling using Eq. 5.18.
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To summarize, the tests we did at U = 0 ensure that the DMRG parameters are correctly
tuned and that we can obtain results with the desired precision. Since this gapless case in
the most difficult one for the DMRG, we can reasonably expect that by keeping the same
parameters for the gapped cases, we will also obtain sufficiently accurate results, possibly
with an even higher precision. At strong coupling, an analytic solution is also at hand
and the DMRG results obtained as described above are a very good match, confirming the
validity of the whole procedure.
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Chapter 6

The Dielectric Catastrophe

Armed with the implacable DMRG machinery, we can look forward to unraveling the Mott
transition’s one-dimensional mysteries. Two physical quantities that we expect to behave
critically are at our disposal: the electric susceptibility and the correlation length. They are
analyzed in detail in the next two sections, respectively, for the U — ¢ — ¢’ model. In the last
section we observe, by verifying that hyperscaling is satisfied, that the & defined by Eq. 3.14
is indeed the true correlation length, therefore resolving the puzzle we posed previously.

6.1 Electric susceptibility

The qualitative phase diagram of the U —t—1t' chain at half-filling is already known [142, 145,
144]: for t' between 0 and %, the system is insulating as soon as U > 0, while for ¢’ greater
than %, there is a metallic phase up to U, where the chain becomes insulating. The system
is always metallic for U < 0. We started studying this transition by measuring x(U,t', L)
for several sizes and interaction strengths, while keeping ¢’ fixed at different values (0, 0.5,
0.6, 0.7, 0.8, 0.9, 1). The results are shown in Fig. 6.1 for ' = 0.7 and some U values. The
situation is similar for any t'. (In order to observe a metallic phase for t' < %, one has to
consider negative U.) There are two characteristically different behaviors. At small U (in
blue in Fig. 6.1), the system is metallic and the susceptibility diverges with system size: a fit
to a power law in L always yields an exponent very close to 2 (to within 5%), for any values
of ¢ and U in a metallic region.! Not only the line U,(#), but the whole metallic phase in
the U — t — ' model is thus at criticality. The susceptibility scales like [167]

X ~ IF, (6.1)

which means that n = 0 for the whole critical metallic phase. This matches the analytical
result for x (5.4) at U = 0 and we are led to conjecture that such a L? divergence is generic
for a one-dimensional perfect metal.? For larger U (in red in Fig. 6.1), x tends to a finite
value as L — oo, following Eq. 5.15, and a finite-size scaling extrapolation similar to that

Lfor positive or negative U
2which is per force a Luttinger liquid, as far as the charge degrees of freedom are concerned [113].
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Figure 6.1: Electric susceptibility, x, as a function of 1/L for ¢’ = 0.7 and for U = 1 (circles),
U = 2.5 (stars), U = 4 (diamonds), U = 5.5 (crosses), and U = 7 (squares). Dotted lines
are guides to the eye. Blue stands for a metallic behavior Y ~ L?, red for an insulating
one X = Xoo + (’)(%), and violet for an insulator close to the critical point, where one must
consider larger sizes in order to observe the insulating character.

shown in Fig. 5.5 for ¢ = 0 will give x. Away from the transition, a system size of L < 50
is ample to accurately determine x.,. Care must be taken near the transition (U=4, violet,
in Fig. 6.1): up to a length scale of the order of the correlation length, which diverges
while approaching the transition, the system will appear metallic even if it is intrinsically
insulating. Such a crossover from metallic to insulating behavior is evident in the U = 4
curve, for which lattice sizes of up to L = 100 are necessary to extract xo,. Very close to the
transition, the correlation length will become very large, requiring an L that is larger than
can be reached numerically — smaller systems will appear metallic.> Thus there will be an
insulating region very close to U, where getting x. will be impossible. We may just hope
that the critical region, i. e. the region where one can actually observe the asymptotic form
of the divergences, is larger than the fuzzy zone in which the thermodynamic limit cannot
be attained.

In Fig. 6.2 we summarize the results for x., for several values of #. What is seen is the
dielectric catastrophe itself (see for instance Figs. 2.2 and 2.3): the electric susceptibility x
diverges when one approaches the critical interaction strength coming from the insulating
side. Of course, we would like to discover how it diverges and where exactly it begins to
diverge, i. e. what is U.(#'). Consider first the simple, integrable Hubbard model (' = 0).
As discussed previously, the transition takes place at U. = 0. Notice that the width of the

3This length is about L = 1000, but it depends on how long one is willing to wait; L = 1000 takes about
one week on a 1Ghz Pentium III processor.
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Figure 6.2: Electric susceptibility xo (U, t') of the infinite-size system for ¢’ = 0, 0.6, 0.7, 0.8,
0.9, 1 as a function of U; the dashed lines are guides to the eye. Each point results from a
finite-size scaling according to Eq.5.15.

zone where it is impossible to reach the thermodynamic limit is about 2 (measured in units
of t). We expect x to be a function of the gap for sufficiently small U, as A is the unique
relevant energy scale close to the transition [6]. Using the formulae for the critical behavior
of the gap (2.11) and for the electric susceptibility (2.15) we can write down the following
relation:

Xeo ~ AT (6.2)

The dynamical critical exponent is z = 1, owing to the relativistic invariance of the Hubbard
model [38]. We are fortunate enough to know the gap exactly [102] and we can use the
analytic formula (4.4) to plot x(U) against A(U) in Fig. 6.3. Surprisingly at first, we find
a power-law relation satisfying Eq. 6.2 over a wide range of U values, from U = 1.9 up to
intermediate coupling, U = 10. The fit yields

T~ 2.0008(72) (6.3)

zZV

where the error comes only from the fitting procedure. In other words

Xoo ~ A? . (6.4)

This result should not puzzle us too much however. It could actually have been predicted.
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Figure 6.3: Circles: electric susceptibility as a function of the gap on a log-log scale for
t" = 0. The straight line represents a power-law fit. Each point results from a finite-size
scaling according to Eq. 5.15.

The first hint is the inequality (3.17), relating® x, A and £&. A more serious argument
comes from continuum field theory [6]: at small U, the scaling limit of the Hubbard model
is nothing but a sine-Gordon model [38], which is relativisticly invariant and has solitons
(quasi-particles) as elementary excitations with the following dispersion relation [38]

B, = V2 + A2, (6.5)

Here the “speed of light” ¢ is the soliton speed; it is given to first order in U at n = 1 by
[111, 38]

=2+ 4 (6.6)
2T

It is reasonable to expect that the leading term in the large-z decay is determined by the
contribution of a simple quasi-particle pole. The dynamic electric susceptibility has the form

A
bow) — .. 6.7
x(k,w) 2k + A? — (w + 16)? + (6.7)
at small k£ and T = 0, where ¢ is a positive infinitesimal and A the quasi-particle residue or
quasi-particle weight. Close to the transition, A scales as [6]

A~ AT (6.8)

Since n = 0 (see Eq. 6.1), the quasi-particle residue remains constant and does not vanish
as U — 0. For the static, homogeneous electric susceptibility, w = 0, k¥ = 0 so that Eq. 6.7
reduces t0 Yo ~ A? (6.4). The same behavior has been observed for the spin susceptibility
in Heisenberg chains [170].

4The reader’s patience will be rewarded in the next section by a full explanation.
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The extrapolation to A — 0 confirms that U, = 0, though this should not satisfy us: as
soon as we take t' # 0, the model loses its integrability and there is no longer an analytic
formula for the gap. Let us take a closer look at the weak-coupling formula for the gap (4.6)

8 x
A=ZVUeT, (6.9)
T
which gives a susceptibility
1 4
Xeo ™~ ev . (6.10)

As noted earlier in Chapter 4, we face an exponential divergence of the critical quantities as
a function of the coupling constant U, which means the transition is infinite order, i.e. the
divergence is stronger than any power-law. In such a case, v — oo, as well as v — co. Their
ratio however is well defined, as may be seen from Eq. 6.2. Following [106] we write

=7 (6.11)

where 7 = 2, as z = 1. Let us now be naive and pretend we do not believe Eq. 6.10 to be
true. We cautiously write the most general exponential divergence

4 od
Xeo = 7o 0. eW=0e) | (6.12)
where A and B are constants, U, is the “unknown” critical coupling and o is the exponent
classifying infinite-order transitions [134, 135, 136, 137]. A non-linear fit of the ¢’ = 0 data
according to Eq. 6.12 for the smallest U values at our disposal yields A ~ 0.011, B ~ 13.47,
U, ~ —0.03 and o0 = 0.848. We see that we obtain a rather good, although underestimated,
U.. A tendency to underestimate x and thus U, is in fact quite general for a variational
algorithm such as the DMRG and has been reported for other models [127]. On the other
hand, the values obtained for B, which should be 47 = 12.56637 ..., and o, which should
be 1 are pretty imprecise; this can be attributed to the presence of logarithmic corrections
[137, 171, 151] in the Hubbard model(like 1/U in Eq. 6.10). Even including the leading order
term explicitly in Eq. 6.12 is not sufficient. Recall that Eq. 6.12 is valid only asymptotically;
the mismatch for B and o, as well as for U,, would be lifted if we could gain access to X
for smaller U’s.
Logarithmic corrections are, in general, non-universal; thus we were wrong when we
claimed that we were considering the most general divergence in Eq. 6.12. For small enough
U, the logarithmic correction 1/(U — U,) can be simply discarded to yield

XYoo = A eTT7 (6.13)

We have gained in universality, but have worsened the conditions for the fitting! The same
procedure as before, but with Eq. 6.12 replaced by Eq. 6.13, now gives A ~ 0.00097, B =
1742, U. = —0.15 and o = 0.84. The corresponding fit is shown in Fig. 6.4 (left). The
result for o is quite good compared to the previous one, but B is fairly far from the exact
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Figure 6.4: Electric susceptibility x for ' = 0 (left: circles) and for ¢ = 0.7 (right: squares).
The lines are non-linear fits according to Eq. 6.13. Each point results from a finite-size scaling
(5.15).

value and U, is underestimated even more: these values are nevertheless consistent with the
exact ones, to within quite large error bars, which become smaller if one includes logarithmic
corrections.

I am sorry to announce that the fun part is over. We now have to switch ¢’ on. For ¢’ =
up to %, there are no significant changes, either qualitative or quantitative, in x. We do not
show these t' on Fig. 6.2, because they would simply overlap the ¢ = 0 data. However for
t' > 1, it is clear from Fig. 6.2 that the bigger ¢/, the larger the U = U, at which x diverges.
Having no analytic formula for the gap any more, we might be stuck. Are we really? No, we
just need to fit the DMRG data directly, since we have only two choices at hand. The first
one to be tested is a power-law

C

Xoo = m (6.14)

corresponding to a finite value of 7. This is a total failure because it systematically gives a U,
in the insulating phase: more precisely this U, is in the phase where the system is obviously
insulating®, not yet metallic, but where no reliable finite-size scaling procedure can be done
to determine y., with a sufficient accuracy. Such a power-law divergence is thus not strong
enough, and one has to consider v — oo, i. e. an infinite-order divergence, our second choice.
We fit the DMRG data for ¢ = 0.6,0.7,0.8,0.9 and 1 with Eq. 6.13. The result is shown in

5

i.e. where x(L) is not diverging like L?
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Fig. 6.4 for t' = 0.7, where we get B ~ 12.45, 0 ~ 1.049 and U, = 2.68. This time U, is
very reasonable, as may be seen from Fig. 6.1. The nice surprise is that B ~ 47 and 0 ~ 1,
the exact t' = 0 values; the fit is even better than for ¢ = 0! This is probably due to the
“pathological” character of the simple Hubbard model, where logarithmic corrections are
possibly at their strongest. Furthermore, we invariably get, for all the other ¢’ > %, B ~4r
and o ~ 1, just as good results as for ¢’ = 0.7. Below we list the critical interaction strengths
obtained this way, as well as the constant A in Eq. 6.13

=06: U, =212, A=2110°
¢=07: U,=268, A=4410"*
t#=08: U,=311, A=1810" (6.15)
=09 : U, =346, A=2810"
t=1: U,=37, A=3310"3.

Previous work has underestimated U, quite severely: U, = 3.2 for ' =1 [145] and 2 < U, < 3
for ' = 0.8 [143]. Therefore, the exponential form Eq. 6.13 with B =47 and 0 = 1

Xeo = AT (6.16)

characterizes the transition at all ¢, irrespective of whether a spin gap exists (¢ > 3 [142])
or whether U, is finite or zero. Presumably, the universality class is the same for every t'.

6.2 Correlation length

To confirm this picture, we need to determine the critical exponents z and 4. This is
most easily done by measuring the correlation length® £(U,t',L). This was done for several
sizes and interaction strengths while keeping ¢’ fixed at 0,0.5,0.7,0.8. Because of the large
computational effort involved, we have restricted ourselves to the most representative values
of t. The phase diagram of the half-filled U —t—¢' chain is again confirmed and the situation
depicted in Fig. 6.1 for x remains unchanged for any ¢', as may be seen in Fig. 6.5 for ¢’ = 0.7,
except that in the entire metallic phase, £ is proportional to the system size:

¢~ L. (6.17)

A power-law fit to the DMRG data invariably gives an exponent equal to 1 to within 5%.
Eq. 6.17 being generic for a system at criticality, we stress again that the whole metallic
phase is indeed critical [6]. On the other hand, £ tends to a finite value at L — oo for the
insulating state, according to Eq. 5.18. We also find a region in which the system appears
metallic up to the largest size we have been able to reach. It is a little wider here than for y,
since we have only treated system sizes up to L = 160. We summarize the measurements in
Fig. 6.6, the analogue of Fig. 6.2. This time we observe just a catastrophe, i. e. a divergence

Sinstead of the charge gap itself
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Figure 6.5: Correlation length, &, as a function of 1/L for ¢ = 0.7 and for U = 1 (circles),
U = 3 (stars), U = 4 (diamonds), U = 5 (crosses), and U = 7 (squares). L goes from 10 to
50. Dotted lines are guides to the eye. Blue stands for a metallic behavior £ ~ L, red for an
insulating one & = &, + (’)(%), and violet for an insulator close to the critical point, where
one should consider larger sizes in order to definitely observe the insulating character.
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Figure 6.6: Correlation length £, (U,t') of the infinite-size system for ¢’ = 0, 0.7, 0.8 as a
function of U; the dashed lines are guides to the eye. Each point results from a finite-size
scaling according to Eq. 5.15.
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Figure 6.7: Circles: correlation length &, as a function of {gs (6.18) from DMRG calcula-
tions; every point comes from finite-size scaling using Eq. (5.18); ¢ = 0. The solid line is a
linear fit for weak and intermediate coupling.

of the correlation length. This is reassuring, since it is necessary for a phase transition with
fully developed critical behavior.” Consider first the simple Hubbard model, ¢’ = 0, where ¢
can be calculated with the Bethe Ansatz [38]

_ o In(y++vy>—1)
&ea(U) = U/ (4/1 Y=o om0 ) . (6.18)
With the rescaling
! — 7T4

¢ 1s exactly equal to the system size for U = 0, according to Eq. 5.3, which means that it
is now expressed in units of the lattice constant and may be compared to £gs in Fig. 6.7.
In the weak- and intermediate-coupling regimes, both quantities are proportional to each
other. A linear fit gives

g, ~ 0.64&pa . (6.20)

Therefore &, is the true correlation length for the system for ¢ = 0, at least in the critical
region, which is exactly where we want to focus our attention. In the large-U limit, however,
they no longer match: &ga goes like 1/1n(U) [38] rather than 1/U? like “our” £ (B.31). This
is of no serious concern, however, since in this region, £, and &ga < 1, i.e. the correlation
length becomes smaller than one lattice spacing® and its proper definition is then awkward
anyway. The weak coupling limit of Eq. 6.18 is what we expect if z = 1 (see Egs. 2.11 and
2.13) [38]:

7And not just “mean-field” like, or above the upper critical dimension.
8recall that a = 1
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Figure 6.8: Circles: correlation length as a function of the gap A(U) on a log-log scale.
Every point comes from a finite-size scaling, according to Eq. (5.18). The straight line is a
power-law fit for U = 2.5, 3, 3.5, 4, 4.5.

2
€A = X (6.21)

This behavior is again confirmed for &, in Fig. 6.8, the analog of Fig. 6.3: the DMRG data
for &4 are plotted against the gap A(U) determined with the analytical formula (4.4). A
power-law fit for U < 5 yields a numerical estimate of the exponent z

% = 1.002(9) (6.22)

fully consistent with the exact value. One can and should try to fit £ to an exponential
divergence like Eqgs. 6.13 or 6.12 with a logarithmic correction. Unfortunately the precision
in £, is not high enough and one obtains rather inaccurate — but still consistent — results,
that we will not even quote here.

Let us switch on ¢ again: for ¢’ = 0.5, the correlation length changes very little: & is
not even shown in Fig. 6.6 since it would nearly overlap the ' = 0 data. However for t' > %
the behavior of £, supports the same conclusions as with y.: the bigger the ¢’ the greater
the U, at which &, diverges. Fits according to Eq. 6.13 may also be made and, as previously
noticed for x, they give results which are slightly better than at ¢ = 0, but which are still
not entirely satisfactory. We now encourage the reader to slide to the next section for a
deeper understanding of £, and its relation to .
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Figure 6.9: Electric susceptibility x., versus correlation length &, for different values of t'.
Lines are power—law fits.

6.3 Hyperscaling

A little puzzle has not been solved yet: what are the values of 4 and z for ¢ > 0?7 From
Eqgs. 2.15 and 2.13, we readily get

Xoo ~ &L - (6.23)
Since both quantities were determined for the same U values at t' = 0,0.7,0.8, checking
Eq. 6.23 is straightforward to do and is shown in Fig. 6.9. Close to the transition, we find
power—law behavior with the following exponents (the error comes only from the fitting
procedure): ¥(t' = 0) ~ 1.97(1), ¥(¢' = 0.7) ~ 2.01(2), ¥(#' = 0.8) ~ 1.976(5). All of these
results are consistent with

vy =2 (6.24)

for any t'; this value for 4 matches the one obtained by comparing x with the gap at ¢’ =0
(see Eq. 6.3).

In order to confirm that &, is indeed the correlation length characterizing the transition,
we would like to prove that hyperscaling is satisfied with exactly this £, as the correlation
length. Let us first state the hyperscaling hypothesis [172]: the ground state energy may be
split in two parts

E,(u,E,L) = E8(u,E,L) + EX&(u,L), (6.25)

where u = U — U, is the reduced interaction.® The regular part EX® does not change when
one crosses the transition and does not depend on the external electric field E. The singular

9You are maybe more familiar with the following definition of the reduced temperature t = (T — T.)/T.
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part E"8 does change at criticality and behaves in a, well, singular way. The hyperscaling
hypothesis further states that close to the transition, this latter part satisfies the homogeneity
relation [172, 173]

Esine(y, E, L)
Id

where Y is a universal function. (Although it depends on the geometry of the lattice and on
the boundary conditions.) The microscopic system-dependent details manifest themselves
only in the non-universal metric factors C; and Cs. The quantities v and E are called scaling
fields; they vanish only at criticality. In a classical ferromagnetic-paramagnetic transition,'°
the reduced temperature ¢t would replace u and the magnetic field B would replace E. The
inverse length 1/L is also a scaling field because true critical behavior can only be realized in
an infinite size system. Since time and space are “entangled” in a quantum phase transition,
the effective dimension is increased and one must replace the L one would have on the right-
hand side!! of Eq. 6.26 for a classical phase transition by L*# [173, 6]. Here v is still the
exponent of the correlation length and is allowed to take on an infinite value. The exponent
of L is 1 + z, since FL is an energy [10]. Let us now derive a corresponding homogeneity
relation for the electric susceptibility from the hyperscaling hypothesis (6.26). Applying the
definition of x (3.11) we differentiate Eq. 6.26 twice with respect to E to obtain

= L 9y (Ciu’L, CLEL') (6.26)

x(L) = L2742 d(Cw”L) (6.27)

where @ is another universal function. We take £o = u ™" /C1, absorbing the metric factor
into the correlation length at the same time as the coupling constant itself [174]. Defining
C := C2, we can write down the scaling behavior of the electric susceptibility [174]

(L) = L* 40 a(L/e). (6.28)

Here ® is a wuniversal function; the only remaining non-universality is contained in the
metric factor C. The entire physics is now governed by the ratio L/£,. This is a direct
implication of the hyperscaling hypothesis: a unique relevant length scale governs the physics
in the vicinity of the phase transition, and this length scale diverges as one approaches the
quantum critical point [174, 173]. This is indeed what we have observed before: for L > £,
the system behaves as an insulator — it “feels” the finiteness of its correlation length —
whereas for L. < &, the correlation length exceeds the size of the system which therefore
“thinks” it is in the critical, metallic state. The function ®(z) tends to a (universal) constant
as x — 0 [173]; at z = 0, the system is at criticality and  scales like L? (6.1). This means
that

n=d—z (6.29)
in the theory of classical phase transition. Recall however that in our case, U, may be zero, which requires
an alternative definition. Both definitions are in fact equivalent, since T, is constant and can be absorbed
into a metric factor (see below).

0in the familiar Ising model for instance

1 Note that on the left-hand side, we have the energy density, i.e. the energy per volume, which is not
affected.
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Figure 6.10: Scaling plots of x(L, U, t')/L? versus L/, (U,t') in a log—log scale: t' = 0 (red),
t' = 0.8 (turquoise).

and that z = 1. This is the result we have been seeking. It confirms the ¢ = 0 value. We
can now write the scaling form of the electric susceptibility in one dimension as

X(L) = L* C ®(L/éx) - (6.30)

In Fig. 6.10, x(L)/L? is plotted as a function of L/&,, for ' = 0 and ¢ = 0.8. For a given
', we observe a collapse of all the data for different L and U values onto one single curve,
confirming hyperscaling: the transition is below its upper critical dimension.'? Therefore, &5
behaves as the correlation length. For different values of ¢, the curves are proportional to
each other. Eq. 6.30 is thus confirmed: we get a universal ® and a non-universal constant
C depending on . For instance for ¢’ = 0 the value C®(0) = 55 (5.2) may be read off
from Fig. 6.10. Results in the x — 0 region are quite scarce, since we can calculate &, only
down to U ~ 2. Exactly the same kind of scaling in the spin glass susceptibility has been
observed in the classical 2D XY spin glass [176], while very similar scaling behaviors have
been observed for the Anderson model [177, 178, 179, 180], various quantum [181, 182, 183]
and classical [184, 185] models. In the opposite limit, L/{,, — oo, the system behaves as

12 An example of an infinite-order transition where hyperscaling does not hold can be found in [175].
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an insulator for all sizes and x(L) tends to a finite value xo. The scaling form (6.30) thus
implies lim, o, ®(x) = A/z? and

Xoo = C AEY (6.31)

where A is a universal constant. This is nothing but Eq. 6.23, confirming ¥ = 2 and the
results of Fig. 6.9.

6.4 The hyperscaling strikes back

The scaling behavior of the electric susceptibility (6.30) is plagued by the non-universal
constant C in front of the universal scaling function ®. How can we get rid of this thorn in
the flesh? Combining x with the non-linear susceptibility would make it disappear.'®* But
we already have at our disposal a fundamental quantity which will have a fully universal
scaling: the correlation length [172, 174, 173]

§(L) = L S(Cu”L) . (6.32)

Here we have set the electric field to zero, and S is a universal scaling function, just like ®.
It has no non-universal prefactor, though, because no derivation from a more fundamental
scaling relation was necessary to get Eq. 6.32, unlike Eq. 6.30 in which the metric constant C'
comes from differentiating twice with respect to E. The hyperscaling hypothesis, £} = Ciu”,
would now give

E&(L) = LS(L/Es) - (6.33)

This relation is satisfied by the DMRG data, as shown in Fig. 6.11. Note that the ¢ = 0 curve
and the ¢ = 0.8 curve overlap this time, in contrast to the electric susceptibility depicted in
Fig. 6.10. The hyperscaling hypothesis is again confirmed: all data points for different U,
L (and ¢’ this time) collapse onto a single curve, which is nothing but the universal scaling
function of Eq. 6.33. Exactly the same kind of correlation length scaling has been observed
in many systems, including the Anderson model [186, 187, 188, 189], the quantum Hall liquid
[190, 191], and other models [192, 193, 194]. In the L/{,, — oo limit, the system behaves as
an insulator for all sizes and (L) tends to &, the value in the thermodynamic limit. We
obtain the simple result lim, ,, S(z) = 1/z.

In the opposite limit, L/£,, — 0, the system behaves as a metal,'* although it is still an
insulator for a large enough size: £ scales linearly with L and S tends to a universal constant
S(0). At criticality, i.e. at U = U, exactly,

14
l,

(L) = S(0) L. (6.34)

Bgiving a sort of Binder cumulant, see [174]

14 Actually, a system of finite-size L will always have a charge gap. It can be neglected at a large (say
L > 10 here), but still finite, size. At a smaller size though, this charge gap is substantial and the system is
insulating even if L/€,, — 0. This possibly accounts for the breakdown of the hyperscaling at L < 10. One
could also state it that way: there are finite—size corrections to the hyperscaling at small enough sizes.
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Figure 6.11: Scaling plot of £(L,U,t")/L versus L/£.(U,t') in a log—log scale: ¢’ = 0 (red),
t' = 0.8 (turquoise).

Since S(x) is a universal function, the proportionality constant between the finite-size cor-
relation length and the size of the system at a critical point is a universal amplitude. Alter-
natively stated, the ratio £&(L)/L is universal for a critical system. This was predicted by
Privman and Fisher in their milestone paper of 1984, albeit for classical phase transitions
[174, 172]. We have already determined S(0) for open boundary conditions (OBC)inat' =0
calculation at U, = 0 (see Eq. A.34):

o, (6.35)
However, this point cannot be seen explicitly in Fig. 6.11, since the scaling function S(x) is
shown only down to x ~ 8, corresponding to L = 10 and U = 2. For smaller sizes, one will
get finite-size corrections to the scaling while for U < 2 it is impossible to extract &, from
finite-size scaling. Fortunately, however, the correlation length is exactly known for ¢’ = 0
(6.18). Using the relation (6.20) between £g4 and £, we determine £, for U < 2 and exhibit
the £ — 0 limit of S(z) in Fig. 6.12. Only the insulating phase, which has a finite £, and
the critical point U = U, itself, which is the first point to have £,, = oo, appear on Figs. 6.12
and 6.11. What happens to the remaining metallic phase!® at U < U.,? Remember that it
is critical and therefore £(U,t', L) = ©(U,t') L. According to Privman and Fisher [174], the
function © should also be universal in the whole critical region. A naive guess would be

15Recall that a negative U makes sense and that it characterizes the metallic state at t' < 1/2.
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Figure 6.12: Scaling plot of £(L,U,t' = 0)/L versus L/, (U,t' = 0) on a log-log scale for
t' = 0. For U = 1.5 and below, &, is determined using Eqgs. 6.18 and 6.20. Note that
lim,_,o S(x) = 7¢(3)/m* = 0.0863821 ... from Eq. 6.35 is confirmed.

that © = S(0). This is not the case, however: for fixed ¢, the coefficient of proportionality
O(U, 1) is a decreasing function of U (see Fig 6.1 for x: the situation is analogous for &) that
reaches S(0) only at U,:

OU.(t), ') = 5(0). (6.36)

The function O(U, ') can be obtained from a finite-size scaling procedure analogous to
the one depicted in Fig. 5.4. In Fig. 6.13, we plot the results as a function of U/U,(t') for
several values of ¢ > 1/2 for which U.(t') > 0. The U, are taken from (6.15) and are thus
fully independent of calculation of £&. At U = 0, the exact solution (see Egs. A.35 and A.37)
gives ©(0,% > 1/2) = 14¢(3)/m* = 25(0), which is confirmed by the DMRG data. All the
data points for different U and ¢’ values then continue to overlap to give one single curve,
which seems to be universal. At U = U,.(t'), we have t' O(U.(t'),t) = S(0) for any ¢/, as
discussed previously. Note the slight systematic error: recall that DMRG underestimates
critical coupling constants. For U > U,, © = 0, because the system is insulating. The ratio
&(L)/L makes a universal jump at the metal-insulator transition.'® The scaling function ©
does not vanish smoothly at the critical U,; instead it goes discontinuously from the metallic
to the insulating state. This is indeed what we expect since the Drude weight also makes a
universal jump at the one-dimensional Mott transition [38, 195]. There are also reports of
universal jumps in the conductance [196, 195] and in the resistivity [197, 196] for other tran-
sitions. Mott himself conjectured the existence of a minimum metallic conductivity, possibly

16Tt is the same at t' < 1/2, see Eqs. A.35 and A.34.
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Figure 6.13: ©(U,t') = limy_,» (U, t', L)/L as a function of U/U.(t'). The critical interac-
tion strengths are obtained from the non-linear fits to x (summarized in (6.15)). At U > U.,,
© = 0, since the system is in the insulating phase.

universal, for metal-insulator transitions in general [8]. Such a minimum conductivity was
successfully probed in some systems [198], but was questioned in others [8].

What about Privman and Fisher’s argument of the constancy of &£(L)/L at criticality
[174]? Tt still holds, albeit with a slight modification. Each point (U,t') in the metallic
part of the phase diagram is critical in its own right. For each of those points separately,
the ratio £(U,t', L)/L may be considered universal, although its value changes as a function
of U and ¢'. Only when one looks at © as a function of a particular combination of U
and t', namely U/U.(t'), does one recover a universal curve: the value of © depends on the
coupling constants of the model, but in a universal way. Such a breaking or softening of the
universality usually reveals the presence of a persistent marginal scaling field in the vicinity
of an infinite-order transition, such as the temperature in the XY model [105, 106, 137].
This should not be a big surprise, since this kind of field is necessary to form a line (XY
model) or a surface (U — ¢t — ¢’ model) of critical points [137].

Since the ratio £(U,t', L)/L has a universal jump at U.(t'), one may use this fact as a
— possibly accurate — criterion to determine the phase boundary between the metallic and
the insulating states; an analogous procedure has been used in [199, 200].
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Chapter 7

Phase Diagram

It might seem that we have already finished: the universality class does not change with #'.
This is shown definitely by the universal scaling of the correlation length. So why bother?
We should just set ' = 0 and turn back to our good old friend, the sacrosanct Hubbard
model? We would rather kindly ask you to let us look beyond the polished facade that we
just introduced to you. The nature of the insulating phase has not been clarified, and it may
actually change! with #. Herein lies the cornerstone necessary to build a complete phase
diagram, possibly the general phase diagram of the Mott transition in one dimension. The
occurrence of a universal jump at the transition is a further hint.

7.1 Dimerization

Up to now, we have ignored all the possible changes in the insulating phase that could be
generated by increasing t'. We have concentrated on the electric susceptibility, which is finite
and behaves similarly whatever ¢’ is. This is not the entire story, however. At small ¢/, and
for U > Uy, the system has antiferromagnetic correlations? [47]. For ¢’ larger than about 1/2,
and for U > U,, dimerization should occur, as Fabrizio predicts [142]. This is a new phase
transition that is associated with the opening of a spin gap® [201, 202] and the breaking
of a discrete symmetry: “weak” and “strong” bonds alternate with each other. The order
parameter is thus the difference in the strength of two adjacent bonds and we call this phase
bond-ordered. Its local definition is

b = Z(chiHa—cLlaciHa + h.c.) (7.1)

~

where we write b; = (b;) for the ground state expectation value. With periodic boundary
conditions, there are two degenerate ground states, shifted by one site relative to one another.
Open boundary conditions, on the other hand, break the translational symmetry so that only

1 This is already understood and presented in Refs. [142, 145].

2There is no no true antiferromagnetic order: we are in one dimension and no continuous symmetry may
be broken.

3present as well in the metallic phase
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one of the two ground states cited above survives: the one with an odd number of strong
links for an even number of sites.* Because of this the order parameter for a finite system
of size L can be calculated directly with the DMRG as

b(L) = % S b (7.2)

i=1

The measurements are easy, just as for the local densities n;. We follow the same pro-
cedure as for x to tune the DMRG parameters: we determine b(L) at U = 0 and compare
the DMRG results to the exact solution.> The results for U > 0 can be then regarded with
confidence. We find the following behavior: for ¢ < 1/2, b(L) always scales to zero with L.
For t' > 1/2, b(L) scales to zero with L in the metallic phase: a bond order is obviously
incompatible with a perfect metal. Then, exactly at U.(t'), b(L) starts to scale smoothly
to a finite value. Finite-size scaling may be performed to extract the thermodynamic limit
boo = limy, , o b(L) in the same way as for x (5.15) and £ (5.18). An analytic strong-coupling
calculation is also presented in Appendix B.3. This calculation states that at large enough
U7

buolt) = 75 ) (7.3)

where d := ﬁ S E23 d;, with

di = (Si-Sit1) — (Sit1 - Sito) (7.4)
which is nothing but the corresponding order parameter for the spin dimerization present in
the J — J' model at J' > J! = 0.241167(5)J [151, 128]. The order parameter is known only
at the Majumdar-Ghosh point d = 3/4 where it has the value (B.42)

1 3
\/5) =7 (7.5)
This is compared to the DMRG data at large U in Fig. 7.1. Although d is not known exactly
for other values of ¢, it can nonetheless be extracted from the DMRG data at large U by a
power-law fit according to Eq. 7.3. The result is depicted in Fig. 7.2 for several ¢’ values. This
matches exactly the order parameter obtained by White and Affleck [128] who performed a
careful DMRG calculation on the J — J' model itself to determine d(J'/J = t'?).

We have determined the bond order parameter in the intermediate-coupling regime for
several values of ¢’ and U. In the metallic phase, b(L) scales to zero,® while it reaches a finite
value in the insulating phase for #'>1/2. Finite-size scaling can be done as shown in Fig. 7.3
for ¢/ = 0.7, where we plot 1/b(L), which goes to infinity at the transition, rather than b(L),
in order to enable an easy comparison with the corresponding figures for x (Fig. 6.1) and
for ¢ (Fig. 6.5). In the insulating phase, we have determined b, by the standard finite-size

boo(t' =

4We treat only systems of even size.

5found with Mathematica

6We pretty much have b(L) ~ L™7 with an exponent 7 ~ 1, but finite-size corrections are here so
important that it is impossible to get a reliable value for 7. This has to be contrasted to the analytic form
found in the insulating phase.
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Figure 7.1: Plus signs: bond order parameter b, multiplied by U as a function of U. The
dotted line is a guide to the eye. Note that b U = 3 is the large-U limit.
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Figure 7.2: Symbols: spin dimerization order parameter d,, as a function of #'. The order
parameter d, is determined by a power-law fit to the DMRG data for by, = 4dy/U. The
solid line is a spline through the data points.
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1/b(L)

1/L

Figure 7.3: Inverse of the bond order parameter, b, as a function of 1/L for ¢ = 0.7 and for
U =1 (circles), U = 2 (stars), U = 3.5 (diamonds), U = 4.5 (crosses), and U = 6 (squares).
Dotted lines are guides to the eye. Blue stands for a metallic behavior limy ., b(L) = 0,
red for an insulating one b(L) = by, + O(1), and violet for an insulator close to the critical
point, where one should consider larger sizes in order to obtain by.

scaling procedure, b(L) being analytic in 1/L. The extrapolated values of b, are plotted in
Fig. 7.4 as a function of U. Note that for 0.5 < #' < 0.65 there is a region in which the bond
order parameter b, drops to zero as a function of U (at fixed ¢'), but then becomes nonzero
again, going like 4d,, /U at large U. This implies that the phase boundary between the two
insulating states as a function of U is not a straight line! One should notice that the critical
(J'/J)e~0.241... < 0.25 = t” for the J — J' model [151]. This means that for ' = 0.5, one
should obtain a finite b., for very large but finite U. Even for ¢ = 0.55, the bond-ordered
phase reappears only at extremely large U. This critical region is thus out of reach, because
the DMRG' becomes unstable and gives erratic results.

7.2 Universality Class

Now that we have determined the bond order parameter, we can draw the phase diagram of
the U — t — t’ model. This is done in Fig. 7.5, where we collected the critical values from
Eq. (6.15) and from Fig. 7.4. There are two distinct insulating phases, which we call “Mott
Insulator I” (#'<%) and “Mott Insulator II” (large U t'>1). The Mott Insulator I phase

2
possesses antiferromagnetic correlations and quasi-long range order, with a power-law decay

7as would any numerical method
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Figure 7.4: Symbols: bond order parameter b, as a function of U for several values of t'.
The solid lines are spline through the data.
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Figure 7.5: Phase diagram of the U — ¢ — ¢’ model at half-filling; recall that the sign of
t' is irrelevant. Circles: critical U, taken from (6.15). Squares: critical points where the
bond-order parameter drops to zero; taken from Fig. 7.4.
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of the correlation functions® which means that there is a charge gap, but no spin gap.

The bond order parameter b, certainly vanishes along the line dividing the two insulating
phase and remains finite in the Mott II phase. This bond-ordering for the charge degrees
of freedom turns into bond-ordering for the spin exchange at large U, where the U —t — ¢/
model gets metamorphosed into the J — J' model. In this phase, a spin gap A, is present
[142]: it should open simultaneously with b, when one varies ¢ at any fixed U > 0. We
have not calculated A,, but we nevertheless risk the conjecture that

boo ~ /2, (7.6)

based on the J — J' model results [128]. Both Mott phases are also present in the two-
dimensional Mott insulating state [203, 204, 205, 206]. We still have a spin gap in the
metallic phase at positive U [142]. On the U = 0 line, A, is zero, because the system is
completely gapless, while for negative U, it comes back to life.

This phase diagram is very close to that of models in the sine-Gordon (sG) universality
class, which is shown in Fig. 7.6. The sine-Gordon model is a continuous model that emerges
from the scaling limit of underlying lattice Hamiltonians; its action® reads [6]

1
27TK’UF

where K and v are coupling constants and vg is a velocity that sets the relative scales of
time and space. This model is (1+ 1) dimensional, which matches our case, since d = z = 1,
and ¢ is a bosonic field. A possible, but not unique, Hamiltonian that leads to (7.7) is the
J1 — Jo model which we mentioned before as the J — J' model, but here we add an anisotropy
parameter \:

((0:0)* +vin(V9)?) — vcos(49)| (7.7)

S = / dxdr

H o= J1) (SFS7+ SYSY+ASiS) +J2 ) Si-S; . (7.8)
(ig) ((i5))
We emphasize that this J; — J; — A spin model is taken here only as a realization of the
sine-Gordon model, shown in Fig. 7.6 and has nothing to do with the strong-coupling limit
of the U — t — t' model®.

Let us now forget about the spin degrees of freedom in the U —t —t' model, which is likely
to be legitimate due to the spin-charge separation reigning in one dimension [207, 208], and
let us consider its phase diagram only for the charge degrees of freedom. We will now try to
compare the latter phase diagram to the one of the sine-Gordon model, or, more precisely,
to the one of the J; — J; — X model. Since both the charge sector of the U — ¢t — ¢’ model
and the sine-Gordon model have a general U(1) symmetry, such a comparison is possible.
The perfect metallic phase in Fig. 7.5 is nothing but a Luttinger liquid [209, 113, 210], which
matches the massless phase of Fig. 7.6. The Mott II phase has bond order, the equivalent of

8At t' = 0, and possibly in the whole Mott I phase, there may exist a breaking of a discrete symmetry, and
one could define a corresponding non-local order parameter, see Ref. [140]. We expect this order parameter
to vanish on the transition line between the two insulators, but this is science-fiction.

9There is a whole jungle of conventions, notations and flavours for the sine-Gordon model; we use here
and in the following the formalism of [6].

10The different notation is meant to reinforce this.
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Figure 7.6: Phase diagram of the J; — J, model with anisotropy A (Eq. 7.8) lying in the
sine-Gordon universality class. The multi-critical point, where all three phases meet, has
v=0and K =1/2[6].

spin dimerized order for the charge degrees of freedom: this is nothing but the spin-Peierls
phase in Fig. 7.6. Last but not least, the Mott I phase has antiferromagnetic correlations
albeit no breaking of symmetry (Ising-Néel) as in Fig. 7.6.

The intricate relation between the Mott transition and the sine-Gordon model is even
deeper than is indicated by this superficial resemblance: at ¢ = 0 the simple Hubbard
model, which may be mirrored to J, = 0 in Fig. 7.6, has as its scaling limit as U — U, =0
[211, 212, 213, 214, 215, 195] the sine-Gordon model. In this limiting case, the U(1) symmetry
turns into a SU(2) symmetry.!! The “free” part of the action (7.7) is the Gaussian model'?
which corresponds to the gapless charge degrees of freedom of the negative-U metallic phase
[216], while the cosine term arises from the Umklapp processes [111]. The mapping to the sG
model reveals that at U, = 0 there is an infinite-order transition of the Kosterlitz-Thouless
universality class [6]. We have just demonstrated that this does not change when one triggers
', regardless of the symmetry of the insulating phase. The same happens for the sG model
[6]: the transition from the Luttinger liquid to both massive phases in Fig. 7.6 bears the
same infinite-order divergence.

This may well resolve the issue of the order parameter on the metallic side of the one-
dimensional Mott transition: there may be an order parameter, but it will be zero in the
whole critical phase anyway! There is no transition to a phase with long-ranged order but
rather to a whole phase of critical points with only quasi long-range order, just like in
the Kosterlitz-Thouless universality class. In the latter case, the magnetization is the order
parameter, which reaches a non-zero value only at 7" = 0. The Drude weight D, often cited as

UThe latter symmetry is lost when one triggers #' (for the charges), respectively .Jo.
12¢onformallly invariant
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a candidate of choice for an order parameter even though it lacks a local definition is related
rather to the helicity modulus Y [217]. Y also makes a finite universal jump at the Kosterlitz-
Thouless transition [218, 219, 220, 221]: in that sense, one also goes discontinuously from
the massless to the massive phase. The same occurs in the U — ¢t — ' model, as we have
seen in the first section of this chapter, with a universal jump in limy,_,o, £(L)/L at the Mott
transition. Finally, let us mention that there is a further analogy: the vortices present in the
XY model may also have been identified in the sine-Gordon [222] and in diverse strongly
correlated electron [223] models.



Chapter 8

Certain Avatars

Last summer, Amir Caldeira’ came into the office I was sharing with Alvaro Ferraz?, and
asked us frankly: “Do you believe in electrons? Because I do not”. Neither do I, if I might
add. This question definitely opened my mind. I do not believe in a particular model either,
or in an intricate combination of facts that gives me back exactly what I put in first. Of
course, theoretical physics is about phenomenology, about tuning parameters and finding
the correct Hamiltonian to describe a given system; it is about peculiar details behind which
a realm of new perspectives might open. However, theoretical physics is also about finding
the essence, which one may call universality. Electrons and spins are here and there; you
do not have to “believe” in them, as if they were sacrosanct, even though the traces of their
presence may be measured, therefore bringing them to “reality”. They instead need to be
transcended in order to let the phenomenon express itself through them: the metal-insulator
transition in all its varieties, for instance.

Isolated strongly correlated electrons is a theoretical dream that one should never believe
in. Disorder, complicated lattice structures and so on always perturb the nice landscape
we now have in mind after the past few chapters. That is why we would like to try to go
beyond the Mott transition and possibly to unravel universal features that hold for other
metal-insulator transitions. We will not be exhaustive however, since this would bring us
too far afield. The first avatar is the good old band insulator while the second is the so-called
tonic Hubbard model, a coalescence of the Hubbard model and the band insulator.

8.1 Band Insulator

We have some good news: let us forget about correlations for the time being and consider
the 6 — ¢t — ¢’ model:

Hpr = — Y [tclycipie +1 clyeipar +he] +0D (14 (=1))nyo . (8.1)

o jo

lyisiting professor from the University of Campinhas
2visiting professor from the University of Brazilia
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As usual we set t = 1 and restrict ourselves to 6 > 0 without loss of generality. We again
study the half-filled case exclusively: the sign of ¢ is then irrelevant® as before and we
consider ¢ > 0 only. At § = 0, the system is obviously metallic, and, of course, the same
state as the non-interacting limit U = 0 of the U — ¢t — ¢’ model.

The § —t—1t' model contains only one-body operators and is therefore easily diagonalized;
this is done in the Appendix C.1. For § > 0, there are two separate bands whose dispersion
relation is

ex(k) = 0 —2t'cos k= \/(52 +2(1 +cos k) (8.2)
podm L L
7 E A R

We consider only sizes L divisible by 4. For § > 0 and 0 < ¢’ < 1/2, the two bands are
separated by a direct gap A = 2§ and (8.1) describes an insulator at half-filling. There is a
metal-insulator transition at 6. = 0. This is a quantum critical point since the ground state
energy density

Ey(6) N 2
7 _;s_(k)— V6 FAB( ) (8.3)

is non-analytic at 6. = 0 [6]. The complete elliptic integral of the second kind E(z) is
discontinuous at x = 1. For ¢’ > 1/2, the two bands overlap and the system is metallic. This
reminds us strongly of the U —t —t' model. The metallic phase is not critical, however, since
it possesses a finite relevant energy scale, the width of the overlap between the bands. At a
d.(t") > 0, the two bands just touch each other and for § > d.(¢') an indirect gap A opens
between the two:

A(t',6) = e,(0) —e_(£1) = 6+ V62 +4— 4t (8.4)

turning the system into an insulator. The phase boundary between the metal and the

insulator is given by
0, 0<t<
5c(tl) = { 421 RS

2
The phase diagram, depicted in Fig. 8.1, has interesting similarities with the one of the
half-filled U — t — ¢’ chain (Fig. 7.5). The universality class does not change with ¢, so we
just concentrate on the ¢’ = 0 case where analytic calculations are less tedious. Since the
gap closes like A ~ |0 — d.|, we have zv = 1 according to Eq. 2.11: this is a second order
phase transition. The electric susceptibility (calculated in Appendix C.2) is finite for 6 > 0:

1 1 52 +8 2 2
Xoo((s) = 1271_\/m< 52 E(\/m)_K(\/m)> : (86)

As § — 0, (8.6) reduces to the form (A = 20):

(8.5)

N =N [—=

41
A - S
Xool A= 0) = 275

3The argument is the same for the U — ¢ — #' model, see (4.5).

(8.7)
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Band Insulator

Figure 8.1: Phase diagram of the § — ¢ — ¢’ model at half-filling; recall that the sign of ' is
irrelevant. Only the line delimiting the phase boundary is critical here — the metallic phase
has a relevant energy scale, namely the width of the band overlap.

which gives v = 2. Eq. 8.7 is analogous to what we obtained for the simple Hubbard
model, see Eq. 6.4! The same weak-coupling behavior y ~ 1/A? is thus found in two
totally different models: the Hubbard model, where the metal-insulator transition is driven
by repulsive local correlations of strength U, opening a gap A(U), and a “simple” band
insulator with independent electrons, where the gap itself A = 20 is the coupling constant.
Thus we are led to conjecture that

1
is a general relation for a gapped insulator. This yields with Egs. 2.11 and 2.15 the general
relation between exponents for a metal-to-gapped-insulator transition

T _ (8.9)

v

which would give ¥ = 2 for the U — t — ' model,* see Eq. 6.23. This analogy goes even
further: in the strong-coupling limit, we have

Xoo(A = 00) ~ —— . (8.10)

Again we recover the same result as in the Hubbard model (B.7), where the gap is propor-

tional to U for U — oo [47] and therefore xoo(U — 00) ~ 35.

4Recall that z=1.
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The correlation length may be determined as well: the calculations are presented in
Appendix C.3. As one would expect, &, is finite for § > 0:

1
w(l) = ————. 8.11
&oo(9) 40v/6% + 4 (8.11)
In the weak-coupling regime, we get
11
A = - — A2

which yields ¥ = 1 with Eq. 2.13 and z = 1 together with the relation zv = 1 derived above.
The behavior £ ~ 1/A in the critical region again matches the Hubbard model result [38]
(see Fig. 6.8 as well). This should not be surprising though, since z = 1 for both models:
time and space are on equal footing, which means that &, must diverge as the inverse of the
relevant energy scale. Interestingly, in the strong-coupling limit

£an(A = 00) = é (8.13)
which corresponds to the large-U limit of the Hubbard model, see Eq. B.31.

There has always been some haunting incertitude about the real meaning of the correla-
tion length £. Such an issue can be addressed in the framework of this analytically solvable
model by determining the Drude weight D in the insulator (§ > 0, ' = 0). In the thermo-
dynamic limit, D is of course zero; but we are interested instead in the way it scales to zero
when L — oo. For the simple Hubbard model, a Bethe Ansatz calculation gives

D(U,L) ~ Le t/ea (8.14)

at a large but finite size L [38], where &ga is nothing but the correlation length mentioned
earlier in Eq. 6.18. A comparable calculation can be carried out for the band insulator, see
the Appendix C.4 and Eq. C.31. For large enough system sizes we obtain pretty much the
same L—dependence as in Eq. 8.14,

D(6,L) = \/LQ_W \/% ¢ Laminn(ge)/2 (8.15)

The correlation length that one would define starting from Eq. 8.15

2

éoruae(8) = —— (8.16)
2

does not match £. Recall that g4 does not match our definition of £,,(U) in general either,
but only in the vicinity of the critical region. The situation is exactly the same here, since

gDrude((s — 0) = 46(5) . (817)
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Sufficiently close to the critical point, the correlation length &ppyqe defined from the large—L
decay of the Drude weight coincides® with the length scale ¢ determined by the fluctua-
tions of polarization. At strong coupling, they behave in radically different ways. Whereas
£(6 — 00) ~ 672, Eprude ~ 1/1In 4, very much like the large-U limit of &ga, which is 1/InU
[38].

Let us return to the weak-coupling regime, where hyperscaling is satisfied, since Eq. 8.15
maybe recast as

D(L,§) = Y(L/¢), (8.18)

where we choose as the correlation length(C.15) rescaled by & — £/4. The scaling function

Y is then
2z 3
Y = \/— 14— . 1
(z) ™ ¢ < +23:) (8.19)

At large x, which means L > £, we recover the result for the Hubbard model [38],

Y(z) = \/?e—w . (8.20)

Does the band insulator to metal transition belong to the same universality class as the
Mott transition? This anxious query was too quickly answered “yes” many times, because of
the similarities between the two transitions [224]. However, even a superficial investigation
makes this issue clear cut: the Mott transition is infinite order whereas the band-insulator-
to-metal transition is second order: thus they cannot belong to the same universality class,
period. Resolving this dilemma in terms of the scaling function Y is in fact easy: one simply
must examine the higher order terms 1+ % + (9($%) which do not correspond to the ones of
the Mott insulator [224].

In order to observe this mismatch explicitely, we compare the complete scaling functions
U(z) of some critical quantity for both models: we choose the correlation length, since
the corresponding scaling function S(x) is fully universal [174]. Furthermore, Sy (z) has
already been determined for the whole range of z = L/, for the Hubbard model (Fig. 6.12).
In order to compare it to Syiets, Spr(z) must be calculated for open boundary conditions®
(OBC). This is most conveniently done numerically: Hp; (8.1) may be reduced to a one-
electron problem, which yields a tridiagonal matrix for ¥ = 0 and OBC. This matrix is
readily diagonalized using standard algorithms [162] and the determination of £(d, L) is
painless. In Fig. 8.2 we present £(6, L)/L as a function of L/£,(9) for the band insulator
with ¢ = 0, together with the corresponding quantities for the simple Hubbard model, taken
from Figs. 6.12 and 6.11. Hyperscaling is once again confirmed for the band insulator, since
all the data for different sizes L and coupling constants § fall on one curve. For L > &
both scaling functions match, as previously found for the Drude weight (8.20), whereas for
L ~ &, they are clearly distinguishable due to the higher order terms: the band and the

Sup to a proportionality constant
6Recall that S, although universal, depends precisely on the boundary conditions [174].
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Figure 8.2: Plot of the scaling functions Syiot,51 = (L, U,t' = 0)/L vs. L/ (U,t' =0) in a
log-log scale for the simple Hubbard model (red) and the band insulator (violet). Note that
lim, o S(z) = 7¢(3)/7* = 0.0863821 ... in both cases.

Mott insulators do not lie in the same universality class [224, 225]. Both scaling functions
Smott (L/€x) and Spi(L/€~) merge again as L/, — 0 because both critical points, U, = 0
or §. = 0, and the boundary conditions are the same in both cases: Syott(0) = Sp1(0) = %(43)
(A.34). Recall that limy, o, £(L)/L is predicted to be universal at the critical point [174] —
in other words it should remain the same on the whole critical line (8.5). This can be checked
explicitly for periodic boundary conditions (appendix C.5). For open boundary conditions,
we will always have

§(L) = L (8.21)

at criticality whatever d.(¢') is, thus matching the result of Fig. 6.13 for the U — ¢ — ¢ model.
However, since the metallic phase is not critical in the band insulator model, some correlation
length £ will assume a finite value for § < 0.(¢') in the thermodynamic limit. In the vicinity
of the transition on the metallic side, £ will be inversely proportional to the energy overlap
between the bands because z = 1. The scaling function £(L)/L makes a universal jump
between the critical point and both phases.
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U

Figure 8.3: Schematic phase diagram of the ionic Hubbard model; the transition line is given
by U ~ §. The Mott insulator has a charge gap but no spin gap, while the band insulator
has both gaps.

8.2 Ionic Hubbard Model

Let us now resuscitate the on-site Hubbard repulsive term in the band insulator and formulate
what has been named the ionic Hubbard model

Hionic = —tz (C}gci—f—lo +he) + (52 nJU + U annu (8.22)

o

For the sake of conciseness, we have not included a ¢'; we work at half-filling and set ¢ = 1.
At U = 6 = 0, we have our well-known metallic point. As soon as U > 0 and/or § > 0,
the system becomes an insulator and &(L)/L makes the same universal jump observed in
the Mott and the band insulators separately. Say we trigger § first: the system is in a band
insulating state, where charge and spin gaps are exactly the same. If U is subsequently
turned on, things will evolve and the system will eventually get metamorphosed into a Mott
insulator at large enough U, most probably at a value of the order of § [226]. The spin gap
will vanish at the transition, leaving the charge gap alone’. We show a schematic phase
diagram in Fig. 8.3 There has been quite a lot of controversy about the way this transition
takes place. All authors agree with the fact that the charge gap drops dangerously close to
zero in the vicinity of the transition. Does it actually vanish at the transition point? Almost
everybody answers “yes”: it does drop to zero precisely at the transition, yielding a unique
metallic point in the phase diagram [226, 227, 228, 229, 230, 231]. Some claim that the

this picture of the Mott insulating state is only consistent with a small or zero frustration #'.
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Figure 8.4: Diamonds: correlation length &, as a function of U for 6 = 4 in the ionic
Hubbard model (8.22). Each point comes from a finite-size scaling procedure applied to the
DMRG data according to Eq. 5.18. The lines are splines through the data.

metallic region has a finite extent [229]. However, there has been speculation that there is
no metallic phase at all [232].

A closer investigation of this model using critical quantities like the electric susceptibility
x or the correlation length £ instead of the charge gap could possibly resolve the controversial
issue of whether there is a metallic point at finite U and ¢ in the ionic Hubbard model. We
choose § > 0 and U = 0 first, so that we start with the pure band insulator. In order to
measure x and &, we use the same parameters in the DMRG calculation as for the simple
Hubbard model: as we have argued in the Chapter 5, the accuracy would definitely be
high enough since turning on ¢ induces a charge gap at U = 0. We can then compare the
results with the exact solution. The linear response regime is quite hard to reach —i.e. EL
must be made quite small — if one couples Hionic(U = 0) to an electric field by the usual
method, especially for reasonably large values of d (of the order of 1): such values are needed
to investigate a possible metal-insulator transition. Turn U on and you can tell the linear
response goodbye.

Therefore we have decided to focus our attention on £. Calculations are much more diffi-
cult than for the simple Hubbard model, owing to the staggered (“ionic”) on-site potential.
At U = 0 the DMRG calculation reproduces the exact result at large L (C.15). For U > 0,
we display & in Fig. 8.4. The correlation length evidently increases when one approaches
the assumed transition point, around U = 5.5. Does it really diverge, at least at the tran-
sition point? If so, a metallic region will be present, perhaps only at one point. As usual,
there is a small window around the presumed critical point where the correlation length
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becomes so large a finite-size scaling is impossible. This window is much smaller than in the
Mott transition: if &, diverges, it should do it less abruptly, i.e. as a power-law rather than
exponentially. However, even if we were able to reach the thermodynamic limit very close
to the transition point, there would still be uncertainty as to its location. In the Hubbard
model we estimated the error in U, to be about 0.2. Since the calculations are more delicate
here, the value should be at least as large. The error might be even larger than the width of
the presumed metallic region, which would lie between U = 5.3 and U = 5.7 and is therefore
(much) smaller than 0.4, as it may be seen from Fig. 8.4.

Do we have a clue as to what’s going on? Perhaps: at U = 0 and § = 0 there is definitely a
metallic point, and it satisfies Eq. 8.21. Since the quantity £(L)/L = 7¢(3)/n* is predicted to
be universal at criticality [174], we just need to see if £(L)/L reaches 7¢(3)/m* = 0.0863821 ...
at some point in the region 5.3 < U < 5.7. If it does, it would be metallic. Since this
criterion has been used successfully in two very different — but related — models, the Mott
transition and the band-insulator-to-metal transition, there is reason to believe that it may
be applicable here as well. Unfortunately, we have to stress again that calculations for
&(L) are not as easy as for the simple Hubbard model. Carrying out a finite-size scaling
procedure on £(L)/L as we did to get Fig. 6.13 is close to impossible here because it requires
large system sizes. However, we can consider reasonable sizes, say below 50 sites, where the
system still behaves as a metal®: we then have £(L) = ©L. In such a situation, no length
scale appears and the constant of proportionality © remains the same (apart from small
finite-size corrections), until the system realizes that it is an insulator, possibly at a huge
size L. The correlation length & (L) would then reach a gigantic but finite value and we could
formally take © — 0. If the system is truly metallic, it will never change its behavior and
&(L) =OL up to L — oo, where © remains unchanged. The message is clear: as long as we
are interested only in the effective value of ©(d,U) up to a finite size L in a region where
£x > L, we do not need to go to very large sizes. If the ©(0,U) obtained is equal to the
universal value, we are at a well defined metallic point.® If it is below the universal value,
the system will always have a finite correlation length, even if we cannot probe it directly.
On the other hand that same criterion can be successfully applied to regions in which the
thermodynamic limit is actually reached.

In Fig. 8.5, £&(L)/L is depicted as a function of 1/L for different U values between U =
5.3 and U = 5.7. As one can see, £(L)/L is well below the “minimal” universal value,
0.0863821 ... . This should remain unchanged in this region for other values of U. Thus,
if there is no violation of this universality criterion and if nothing peculiar occurs between
the points at which we did the calculations, &n fty only reaches a maximum and does not
diverge. However, this does not mean that the charge gap does not vanish, since the “usual”
relation &, ~ 1/A, may not hold in this critical region. In fact, A, has to go to zero, at
least at some critical point U,, since both insulating phases of the ionic Hubbard model are
of different nature [233]: we have a (renormalized) band insulator between U = 0 and the
presumed critical point U,, and a Mott insulator above U.. How can we reconcile those two

8in which case L < &4
9Tf it is above the univeral value, there may be critical region of finite extent, like the metallic phase of
the U — t — ' model.
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Figure 8.5: Symbols: £(L)/L as a function of 1/L, calculated with the DMRG. The dotted
lines are guide to the eye. Note that £(L)/L is always well below the universal “minimal”
value 7¢(3)/7* = 0.0863821... .

points of view? This unique metallic point is in fact rather weird [233]: it has a zero charge
gap and a zero Drude weight D as well!l Astonishing, isn’t it? In this case, it is not fully
metallic in the common sense, and since D = 0, the correlation length £,, may well remain
finite at this point! The quantity limy_, . &(L)/L should thus be related to the Drude weight
itself, a relation which might hold for the U — t — ¢’ as well.



Chapter 9

Conclusion

Dear readers, it is now time for me to thank you for your patience and your study of this
monograph. Before I let you close this thesis however, I would appreciate sharing a last little
while in your company, and summarizing the most relevant streams of facts and ideas that
have spanned this thesis.

The starting point and the unaltered cornerstone of this work is the electric suscepti-
bility x. We have determined it numerically with the DMRG for the Mott transition and
analytically for the band-insulator-to-metal transition, obtaining the same result: x is finite
in the insulator and diverges at the transition. This is the dielectric catastrophe cherished
by Mott. Such a critical quantity is thus well suited to study a metal-to-gapped-insulator

transition, giving'
1

As a paradigm of the Mott transition we have studied the U —t —t' model. For all values
of t', x is always found to diverge in the same exponential way and can be used to locate
the transition point U,, i.e.

x(U) ~ eT-T; | (9.2)

For t' < %, relevant Umklapp processes open a charge gap immediately — U, = 0 just like in
the simple Hubbard model (# = 0). This insulating phase, which we have named the “Mott
I” phase, possesses antiferromagnetic correlations. For ¢’ > % on the other hand, the Fermi
“surface” jumps from two to four Fermi points and Umklapp processes lose their relevance
at small U. At first, no charge gap opens and the system is a perfect metal for a non-zero
repulsive interaction. Only later at a U, > 0 does a charge gap open, and does the metal
turn into an insulator, named the “Mott II” phase. This phase is a Mott insulator without
antiferromagnetic correlations.? There is, however, bond ordering where the order parameter
is the difference in the strength between two adjacent bonds. Where it vanishes determines
the transition line between the two types of insulators. These two phases have also been
identified in the two-dimensional Mott transition [203, 204].

'For the Anderson insulator, which is gapless, one would need an alternative definition of y in order to
get relevant results [234].
2They are frustrated by the ¢’ term.
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The electric susceptibility x (Eq. 9.2) diverges exponentially, faster than any-power law:
the transition is infinite-order and v — oo. This is reminiscent of the Kosterlitz-Thouless
transition, which is found in the one-dimensional quantum sine-Gordon model. The phase
diagram of the latter is indeed very similar to that of the U —¢—t' model [6]: such an analogy
has already been made for the simple Hubbard model. We believe that this is nothing but
the universality class of the one-dimensional Mott transition.

The fluctuations of the polarization also diverge in general at a metal-insulator transition.
In one dimension, they represent the correlation length close to the critical point, a relation
which has been confirmed explicitly for the band insulator. For both the Mott and the band
insulators, we find

£~ X (9-3)
In other words, /v = 2, which is what experimentalists measure in a broad class of T = 0
metal-insulator transitions (see Chapter 2). We have possibly touched on a highly universal
relation here, transcending various universality classes of such transitions. Close to the
transition, we have shown that this length is unique and that hyperscaling is satisfied for
both transitions: the electric susceptibility may be expressed as a wuniversal function of
L/¢, albeit multiplied by a non-universal constant:

V(L) = I C B(L/Ex) - (0.4)

Note that hyperscaling has been observed in experiments as well (see Chapter 2), even for a
“pure” Mott transition (see Fig. 4.1). We have also demonstrated that the scaling function of
the correlation is fully universal, confirming earlier work by Privman and Fisher on classical
phase transitions [174]:

§(L) = LS(L/é) - (9.5)
As L/&,, — 0 we reach the critical point, where the correlation length diverges proportionally
to system size: £(L) = S(0)L whereas in the insulating phase limy, o £(L) = €. This means
that £(L)/L takes on a universal value at the critical point.

In the Mott case in particular, the electric susceptibility and the correlation length diverge
exponentially, giving v — oo and v — oo. In analogy with the Kosterlitz-Thouless case,
the whole metallic phase below the Mott insulator is critical. This means that (L) diverges
with the system size for U < U, as well, but not with the same constant of proportionality:
(L) = O(U,t')L. Here © is a universal function of U/U.(t') which makes a universal jump
from S(0) to zero at the critical interaction strength U.(t'). I cannot resist quoting you again
that for open boundary conditions,

(9.6)

The full scaling function S(z) remains the same, whatever t' is, therefore confirming the
constancy of the universality class in the U — ¢ — ¢/ model: the simple Hubbard case, t' = 0,
is not pathological and is definitely representative of the general case. However this is not
the same universality class as that of the band insulator — the scaling functions S(z) of
both insulators do not match.



Appendix A

Non-Interacting Limit

A.1 Electric susceptibility for U =0

We would like to solve

H=— Z (t C;-rng'+1a + t, C;-LUCH_QU) - F Z r;n; . (Al)

1o %

One can find an exact solution in some limiting cases [163, 235, 236]. It is also important to
note that the limits L — oo and E — 0 do not commute [163]. If we use the definition (3.11)
of the electric susceptibility, we must let E go to zero first, at finite size L: in that case,
E can be treated as a perturbation whereas the influence of an electric field on an infinite
system is singular [163]. Thus we will use Eq. 3.12. For OBC, (3.12) is easily determined
for t = 0 only. We take L to be even. Let the Fermi sea be

L/2
@ >= ][ ¢ .| >, (A.2)

n=1,0
where the quantum numbers are given by

nm
kpn = —— =1,...
n L—i—l’ n 7

and the (normalized) one-particle wave functions by

. . . 2 . nmy
on(j) =< jln >=< ]\CLM\ >= ”L-i— : sin 41 (A.4)

The perturbation is just the polarization multiplied by L:
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In the second order, only excited states with one hole in the Fermi sea need be taken into
account. This readily gives

L/2 L

< n|Hi|m > |?
Ko = 2y Y s> (A.6)

L = L meL2+1 cos k, — cos k,,

8 L2 L sin? k,, sin? k,,
= 22 (A7)
L(L+1)2 T (cOSky — cosky)®
n+m odd

Since the two set of quantum numbers {n} and {m} do not overlap, the summand has no
divergence and we can, for large L, replace the sum over m by an integral, which yields

1 L
Xobc = m ngl F(kn) s (A8)

where F'is an elementary function of sines, cosines and logarithms that it diverges at k = 7:

1 _ 1
(k=" 2037

2
+ logarithmic divergences + regular terms . (A.10)

Flk) = (A.9)

For large L, we need to keep only the most divergent term in the sum (A.8), which yields:

1 4 oo
e = A1l
Xob Rk ( ) g;; 2n + 1 (A-11)
8L%22* -1
= @) (A.12)
finally giving
Xobe(t' =0, L) = L (A.13)
obc ’ 1277 . :
For PBC Eq. 3.12 is still valid, but with X replaced by
G _ 1 i i
X = o0 > (ChiqoCho — Ch_qoCho) - (A.14)

The calculations starting from Eq. 3.12 are now much easier. At 0 < t' < % the Fermi sea is
non degenerate for even L, non divisible by 4, and we immediately obtain:

L)= L (A.15)
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for large L. At ¢' > 1 we have 4 Fermi points (iklg), ikl(f)) and we must determine their
location in order to use Eq. 3.12. As kg) — kg) = 7, we can write the following equation for
k}”:
T
e(kY)) = (k8 + ) (A.16)
This is easily solved and gives

14+ v8t? —1
4t
For the case of L a multiple of four, the Fermi sea is non degenerate, and we find

k%l) = arccos( ). (A.17)

—V2 = V=2+ 1617 — 2'(1 + 2v/—1 + 8t7?)y/4 — =15 ,

L
Am3/—1 + 812(1 + /=1 + 8¢2) /4 — Y=L (1 — ¢ /g — 2V=LH8E%)
(A.18)
Despite its intricate formula (A.18), xpbe has a simple behavior: x,ne/L? has a simple pole

>
when t' = %:

1
Xpbc(t, > §7L) =

/>l 1 1 2

(t ~— A.19
Xpne(# = 5) 1673 ¢ — 1 (A-19)
and it decays monotonically like 1/873¢' for large ¢'.
At ¢ = 0 we have the following relation between the results for OBC and PBC:
! 27T2 !
Xobc(t - 0, L) - 7Xpbc(t - Oa L) (AQO)

which can be numerically checked to arbitrary precision for any ¢’ and up to very large L
(above 10000 for instance) via exact diagonalization.! We therefore can write

' 27T2 '
Xobc(t ,L) = ?Xpbc(t ,L) . (A'21)

A.2 Correlation length for U =0

The calculation of £ with OBC (3.15) is analytically tractable only at ¢ = 0. We use the same
notation as in the previous section for the wave functions (A.4) and the quantum numbers
(A.3). Let the ground state be the Fermi sea (A.2). Using Wick’s theorem, we readily get

L/2 L

b= X3 iienen()enlionl) (A.22)

n=1m=L/2+1 i,j=1

! As this is a non-interacting problem, the size of the matrices does not grow exponentially with the system
size L.
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which gives, see (A.6),

£ = 8 LZ/Q i sin® k,, sin® k,,
obe = L+12n 1 res (cosky — cos k)t
n+m odd

(A.23)

Note that this is very much like (A.7). The most important contribution to & will come from
the most divergent part of the summand, i.e. for k, close to k,,. This time, we can even
directly approximate for large L

sin® k,, sin® k. 1
“ T = O((kp — k)2 A.24
(cosk, —coskp)t  (kn— km)? +0(l ™) ( )
which gives
L/2 1
Eobc = — (A.25)
L3 nzl . LZ/2+1 (kn — km)*
n+m odd
/2 1
= L — . (A.26)
P

n+m odd

Furthermore, for L divisible by 4, we get

Eobe = 121;4 (Léjl (ww) (% + % —m) —p® (g + % —m))

0

LA L 1 L 1

+Z( ( +——m)—w(3)(—+——m>> (A.27)
2 2 2

where ¥(® is the pentagamma function:

3 (z) = di;/;(?’x) dd44 InT'() . (A.28)

¥ is the digamma function. A simple rearrangement gives

o = 1 (30 (3) - (412)

L/4-1

+2 mg <¢(3) (@) —® (%))) . (A.29)

It is known that 1
e (5) 7t @z = 00) =0, (A.30)
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so that we just need to carry out, for large L, the remaining sum in (A.29). To this end, we
represent 1)) as the third derivative of the integral representation of the digamma function:

3) fo'e) t3€_2t
= dt . A.31
W) = [T (A31)
Then we commute sum and integration, which enables us to do the sum exactly:
L/4-1 —tL/4 —t
ot € —e
=—. A.32
mzzl ‘ e'-1 ( )
By further taking the limit L >> 1, the sum in (A.29) finally becomes
£30—3t/2 v
149 A.
|t e - +42((3) (A.33)
which readily gives the result for large L:
7¢(3
ne(t) = =P (A.34)

The determination of £ with PBC (3.27) is very easy and yields

1 L
Epbe (' < 3 L)= P (2 Fermi points)
1 L
Eppe(t' > 3 L)= 92 (4 Fermi points) (A.35)

For ¢ = 0, with have the relation between OBC and PBC:

28
fobc(tl = 01 L) g( )gpbc( = 0: L) . (A36)
This can be proved numerically with arbitrary accuracy? for any t':
28
uclt, 1) = 2 0.1 (A37)

2see preceding section
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Appendix B

Strong-coupling limit

B.1 Electric susceptibility for U — oo

We now determine the electric susceptibility of the U — ¢t — ¢’ model (4.16) for U — oco. To
this end, we take the integrable atomic limit of (4.16) coupled with an external electric field
with OBC (3.9):

Ho=UD njnj —E} jn; . (B.1)
J J
We then add the kinetic energy H; = T of (4.16) as a perturbation, considering:
U > LFE
{ U > 4t (B-2)

so that the ground state of (B.1), at half-filling, has no double occupancy and is thus fully
degenerate in the spins; its energy is Fy = —FL(L+1)/2. We apply degenerate perturbation
theory: let P be the projector onto the subspace with no double occupancy and P, its
orthogonal complement so that the total Hilbert space is their orthogonal sum. To first
order, we find

HU =PTP=0, (B.3)
whereas in second order
n» —pr—_7p. (B.4)
Ey—H,
We first treat the ¢’ = 0 limit. The resolvant operator Eoiﬂo will have two distinct

eigenvalues (— g5, —g75), and PLTP = TP. Defining the usual spin — 5 operators from

the fermionic ones, £ is just the antiferromagnetic Heisenberg model:

4U 1
Ho = <z S;-Si1 — ZL) . (B.5)
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The ground state energy of Ho + H® + H? is then [109):

L(L+1) 42U

E E(Q) —E _
0+ 2 U2 — E2

Using (3.11), we immediately find

8In2
3

We next turn our attention to the general case (' # 0). The operator

. . . !
four distinct eigenvalues (— UiE, — U}LE, — U_tQE, U+2E)

very much the same way, we obtain the J — J' model:

x(U,t'=0) = (B.7)

o % will now have
Again, P, TP = T P. Proceeding

1
HE =3"(JS; - Sip1 + J'Si - Siva) — Z(J +J')L (B.8)
with
AU ) 4U "
_ _ B.
o e T T roae ()

The ground state energy of Ho + H") + H? can then be written as

Ey+ E® = % (460(15'2%) - 1)
_U2Uj124LEQ B EL(L2+ 1) (B.10)
where ey(y) is the ground state energy density of the rescaled J — J' Hamiltonian
eo(y) = %Z <S;-Sit1+yS;-Siie > . (B.11)
We assume that e(y) is at least twice differentiable. Then, using (3.11), we find
NUA) = 2 (1 + 482 — dey(7) — 12€) (7)) . (B.12)

/3
This already proves x(U — oo) ~ 1/U? for any t'. From the Hellmann-Feynman theorem,
we further see that the first derivative of eq is given by

eh(t?) = Z <S;-Sip2> . (B.13)

The ground state energy density eq(y) is only known at two finite values of y: y = 0 (Bethe
Ansatz) and y =  which gives in (B.11) the Majumdar-Ghosh model which can be exactly
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(and easily) solved [168, 103]. The (degenerate) ground state of (B.11) is then just a product
of uncorrelated spin singlets at neighboring sites. We have [103]

1=7
i,J singlet pair (B.14)
otherwise

< S.L . Sj >MG=

o l Nt
NI

This immediately yields ej(3) = 0 and eg(3) = —2, which finally gives the simple result for
large U in the vicinity of the Majumdar-Ghosh point

1 9

5= (B.15)

x(U,t' = i

B.2 Correlation length for U — oo

We start from the definition (3.15). We consider first ¢ = 0. For OBC, with the usual
particle-hole transformation

jo . B.16
Cjg — e '™ c;[(, ( )

.I. o .
{c — e ¢,

at half-filling, the Hubbard model (with E = 0) is mapped onto itself with an unchanged
number of electrons, while

which gives n; = 1: there are no Friedel oscillations at half-filling in an open Hubbard
chain[237]. At sufficiently large U, only short-ranged (n;7;)’s will be correlated, while

(haiy) T30 (B.18)
Let

be the double occupancy operator and d; its expectation value in the ground state. Using

(77) = 1+ 2d, (B.20)
and the sum rule
> (ng) = L*, (B.21)
ij
we get, for large enough U
<fLZ’TALZ':|:1> = 1- (Ldi (B22)
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while all the longer-ranged correlations are equal to 1, following Eq. B.18. The constants a
and b are yet to be determined, using the sum rule (B.21). Introducing Egs. B.20,B.22 and
B.23 in Eq. 3.15, we get

-1 L—2
E&(L) =~ 22 j2d, —az J(G+1)d; —az Jj(G —1)d; —bz Jj(j+2)d; —bE]]—Q)d
L j=1 j=2 j=1 7j=3
(B.24)
For large L, d; = d is independent of j and we write
d
6L) = 57 [2(1— a— b)L* +3(2b+ 1)L* + (1 + 2a — b)L — 6b] . (B.25)
Since (L) must scale to a finite value for L — oo, we must have
l—a—-b = 0 (B.26)
2b+1 = 0 (B.27)
and in order to satisfy the sum rule, the relation
2-2a—2b = 0 (B.28)

must also be fulfilled.! This set of equations is over-determined, but can be solved, obtaining

—_1 -3 is oi
b= —35 and a = 3. This gives us

3
§U) = 5 d(v) (B.29)
in the thermodynamic limit. The density of doubly occupied sites is given by
1,4 d0(E,/L)
d = —(D) = ————= B.30
7{D) 50 (B.30)

with D = > d; and using the Hellmann-Feynman theorem. The ground state energy E, of
the Hubbard model as a function of U is exactly known [47], and eventually yields

41n2
2

For t' > 0, we start from the PBC definition of £, (3.27), because n; = 1 no longer holds.
The same kind of derivation may be realized, yielding again

O(E,(t',U)/L)
- (B.32)

but this time E,(¢',U) is unknown. However, certain arguments give the general behavior
E, ~ 1/U [47], which yields

(' =0,U) =

(B.31)

§t,U) ~

1
ﬁ.

1Satisfying all those constraints would not have been possible by taking (R;f;+2) = 1 at the start.

£t U) ~ (B.33)
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B.3 Bond order for U — o

The local bond order parameter is defined as

bi = Z(CLCH_lg —C;r+1aci+20 + hC> . (B34)

g

Let us define local nearest-neighbor kinetic energies (the second-nearest neighbor part re-
mains unchanged):

T = S (d,ciy1o + he). (B.35)

This gives with the Hellmann-Feynman theorem

_ 0B, OE,

b, = o o (B.36)
At U — oo we have to first order in ¢
E, = (R Y_JiSi-S; + Y J'S;-S;|®,), (B.37)
(ig) ((ig))
where J; = % and J' = 222 ((---)) stands for “second-nearest neighbor”. We have then
aaf - = 85 (B.35)
which eventually gives for ¢, = 1 A
b; = i d; , (B.39)
where d; is the dimerization order parameter for the spins in the J — J' model:
d; = (Si-Siz1) — (Siy1- Site) - (B.40)
Taking the mean value over the whole lattice, we can write
4
b = U d. (B.41)
In particular, at the Majumdar-Ghosh point [168, 169], we have d = 2 [103] and
3
h = o (B.42)
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Appendix C

Band Insulator

We use periodic boundary conditions (PBC) to solve the § — ¢t — t' model analytically:

Hpr = — Z [t c;'raci-i—la + CIUCH—ZU] +9 2(1 + (_1)j)”ja . (C.1)

o jo
We will set ¢ to 1 and take 6, ¢’ > 0. Throughout this Appendix, we consider only system
sizes L that are multiples of four.

C.1 Spectrum

We define new operators: a},, creates particles on sites of energy 24 and b}a creates particles on

sites of energy zero. The Hamiltonian (C.1) is then readily diagonalized (Fourier transform
and then Bogoliubov transformation):

Hpr = Z (s+(k)a};oakg + e,(k)ﬁ,laﬁkg) , (C.2)

ko

where the energy spectrum is given by

ex(k) = 0 —2t'cos k+ \/52 +2(1 4 cos k) (C.3)
and the eigenvectors by
Oy = Uil(k)akg-i-viz(k)bkg (C 4)
ﬁka = 'Utl(k)a'ka +Ut2(k)bk:o ’
with
le+ (k)| ( 1+eik>
vy (k) = 1, C.5
0= ey \TH @) ()
and
ex(k) = 0£/82+2(L+cos k) = ex(k)],_g (C.6)
e(k) = /62 +2(1+cos k) . (C.7)
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C.2 Electric susceptibility

We consider only ¢ = 0. At half-filling, the ground state is

o) = H 5110|> (C.8)
ko
where |) stands for the vacuum. The position operator for PBC is given by (¢ = 2X)
L i -
- Ami k (azwqaaka B a't’Qq”ak" te qb’t+2q0b’€ qu 2qabk0) : (C.9)

The only excited states |®,) for which (®,|X|®,) # 0 are those where a hole is created in k
in the lower filled band and an electron is created in k£ + 2¢ in the upper empty band. Since
X is finite in the thermodynamic limit, we may immediately replace the sum by an integral
for large L and (3.12) becomes:

1 <(I>0|ak+k/ X|(I)0) |2

dk C.10
X %w/ e(k + &) + e(k) (C.10)
For large L, the integrand may be developed as a series in powers in ¢:
(Do |kt ko X\CDO)P 52 sm2’2C
+ 0 C.11
e(k+ k) +e(k) 8(2+ 02+ 200sl~c)5/2 (4) (C-11)
which yields for ¢ = 27/L — 0
52 qm sin? &
=— [ dk 2 . C.12
X 27r/0 (2 + 6%+ 2cos k)>/? (C-12)
This is easily integrated to give:
1 1 52 +8 2 2
0) = E - K : C.13
X0) = 5 T ( v Pt (\/52+4)> (€13)

where K and E are the complete elliptic integrals of the first and second kind, respectively.

C.3 Correlation length

We use (3.27) to determine & at t' = 0; for X, we take (C.9) with (C.4) inverted. As ¢ is
finite, the remaining sum in (3.27) is converted to an integral at large L and we expand the
integrand as a power series in ¢, see Eq. C.11. For ¢ = 27 /L — 0 we have:

525—2/ﬁdk sin’ 5
2 Jo (24 0%+ 2cosk)?

(C.14)

which readily gives

(C.15)
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C.4 Drude weight

We follow closely the method presented in [38]. The Drude weight may be determined
through Kohn’s formula [47]

1 0°(E,/L)
2 0(®/L)? |,_,

where ® is a magnetic flux piercing the ring. Setting ¢’ = 0, and coupling ® to the Hamil-
tonian, (C.1) transforms into

D = : (C.16)

o= (e al bj + hc) =3 (e7®al, ) bj + hoc) + 26 3 al,a; (C.17)

jo jo

where the operator a}a creates a particle on a site of energy 29, while b;rv,, does it on a site

of energy zero. He can be diagonalized in very much the same way we did it for (C.1) in
section C.1. The spectrum is

ex(k,®) = 6% 1/62 +2(1 + cos(2®/L + k)) . (C.18)

The introduction of the magnetic flux just causes a shift £ — k+2®/L in the first Brillouin
zone, and €4 (k, ®) = e4(k + 2®/L). At half-filling, the ground state energy is given by

E,(6,®,L) Ze (k, @) (C.19)

If we naively transform this sum into an 1ntegral over k by taking the large L limit, we will
lose any ®-dependence. We instead use the Poisson summation formula to write

OO
E,(6,®,L) = - / dk e_ omim(Lk/2-2) (C.20)
m*—oo
m = 0 yields the “zeroth” order, which is exactly the first approximation we were talking
about, where we lose the ® dependence; it will not contribute to the Drude weight. At
large enough L we may just keep m = £1, which is the first order which gives a non-zero
contribution to D. Kohn’s formula (C.16) yields

L? m .
D(,L) = — | dk V62 4+ 24 2cos k elk/? (C.21)
mwoJ-7
The integrand, with the shift ¥ — —n + ¢k and rewritten as
; |
L)y =T 4T n|s 42—
e , p(k) 5 + 5 " 5L In|6°+2 —2cos k| (C.22)

is holomorphic in the complex plane. We have a complex logarithm, with In z = In|z| & i7
if x < 0. The integral (C.21) is dominated by the saddle point

Vo244 1
ko, = arsinh% + O(z) (C.23)
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Transforming (C.21) into a contour integral in the complex plane, we get for L, large and a
multiple of four,
L2

DG,L) = = [ dk2cosh k=2 — 02 ¢ L2 | (C.24)
T ko

We make the change of variables y = k£ — k, and expand for large L to obtain

1
cosh(y + k,) = cosh k, + ysinh k, + 53/2 cosh k, . (C.25)
We have

6% +2

cosh k, = ; (C.26)
1

sinh k, = —— C.27
30) (€20

where £(6) is the correlation length determined earlier (C.15). This yields

2
D@, L) = o—Lko/2 [6%+2 +2 / \/y +— 52+2 e Lu/2 (C.28)

which is easily evaluated to give

L —-L arsinh(i)/2 1 L L
D, L) = — 8/ 8%+t | | —— | . C.29
(1) = o ¢ %&+m€e F\8(62 +2)¢ (C.29)

The modified Bessel function K;(z) has the following asymptotic expansion for large x

T 1 31
K ~ g€ — (1+== .
(@) SNE ( +82) ’ (C-30)
which eventually gives for the Drude weight at large L
1 L 1 arsion(L £
DO,L) = —— (|2 e Lasinn(3e)/2 (1 L3052 1 2)2 ) . C.31
0.0) = =1/ (0% +2) (c:31)

C.5 &(L)/L at criticality

On the critical line (8.5), £(L) ~ L. The upper band just touches the lower one; they do
not overlap. At finite L, there is only one electron at k = 0 in the upper band and a hole
at k = —r in the lower band. In X, only the two terms ~ 8 roB—rt2g0 a0d ~ aLQqaaot, will
contribute to the divergent part of 5

(L) = +((Xaa) + (X55)) - (C.32)
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We have .
~ e *
X,B,B = - 2(]2 'U2—(_7T+QQ) Z Nﬂiﬂ'o'ﬂ—ﬁ'Fqu' (033)
which gives
ooy v (=T +2¢)° 4oo L?
(Xgg) = o — o (C.34)

We get exactly the same for (X2, ) so that at large L

(r) = L (C.35)

472



98

APPENDIX C.

BAND INSULATOR



Bibliography

[1] M. E. Fisher. Rev. Mod. Phys. , 46(4):597, 1974.
[2] J. A. Hertz. Phys. Rev. B, 14(3):1165, 1975.
[3] M. A. Continentino. Phys. Rep. , 239(3):179, 1994.

[4] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar. Rev. Mod. Phys. , 69(1):315,
1997.

[56] D. Belitz and T. R. Kirkpatrick. cond-mat. 9811058.
[6] S. Sachdev. Quantum Phase Transitions. Cambridge University Press, 1999.
[7] E. Abrahams and G. Kotliar. Science, 274:1853, 1996.
[8] N. F. Mott. Metal-Insulator Transitions. Taylor & Francis, 1990.
[9] D. Belitz and T. R. Kirkpatrick. Rev. Mod. Phys. , 66(2):261, 1994.
[10] C. Aebischer, D. Baeriswyl, and R. M. Noack. Phys. Rev. Lett., 86(3):468, 2001.

[11] R. M. Noack, C. Aebischer, D. Baeriswyl, and F. Gebhard. In J. Bonca et al., edi-
tor, Open Problems in Strongly Correlated Electron Systems, pages 347-359. Kluwer
Academic Publishers, 2001.

[12] C. Aebischer, D. Baeriswyl, and R. M. Noack. In preparation.
[13] M. Imada, A. Fujimori, and Y. Tokura. Rev. Mod. Phys. , 70(4):1039, 1998.

[14] H. F. Hess, K. DeConde, T. F. Rosenbaum, and G. A. Thomas. Phys. Rev. B,
25(5):5578, 1982.

[15] J. D. Jackson. Classical Electrodynamics. Wiley, 1975.

[16] T. G. Castner, N. K. Lee, G. S. Cieloszyk, and G. L. Salinger. Phys. Rev. Lett.,
34(26):1627, 1975.

[17] M. Capizzi, G. A. Thomas, F. DeRosa, R. N. Bhatt, and T. M. Rice. Phys. Rev. Lett.,
44(15):1019, 1980.

99



100 BIBLIOGRAPHY

[18] T. F. Rosenbaum, R. F. Milligan, M. A. Paalanen, G. A. Thomas, R. N. Bhatt, and
W. Lin. Phys. Rev. B, 27(12):7509, 1983.

[19] F. A. D’Altroy and H. Y. Fan. Phys. Rev. , 103(6):1671, 1956.

[20] T. F. Rosenbaum, K. Andres, G. A. Thomas, and R. N. Bhatt. Phys. Rev. Lett.,
45(21):1723, 1980.

[21] M. A. Paalanen, T. F. Rosenbaum, G. A. Thomas, and R. N. Bhatt. Phys. Rev. Lett.,
48(18):1284, 1982.

[22] G. A. Thomas, Y. Ootuka, S. Kobayashi, and W. Sasaki. Phys. Rev. B, 45:1723, 1981.
[23] Y. Imry, Y. Gefen, and D. J. Bergman. Phys. Rev. B, 26(6):3436, 1982.

[24] M. Lee, J. G. Massey, V. L. Nguyen, and B. I. Shklovskii. Phys. Rev. B, 60(3):1582,
1999.

[25] S. Waffenschmidt, C. Pfleiderer, and H. V. Lohneysen. Phys. Rev. Lett., 83(15):3005,
1999.

[26] S. Bogdanovich, M. P. Sarachik, and R. N. Bhatt. Phys. Rev. Lett., 82(1):137, 1999.
[27] S. Bogdanovich, M. P. Sarachik, and R. N. Bhatt. Phys. Rev. B, 60(4):2292, 1999.

[28] S. Bogdanovich, D. Simonian, S. V. Kravchenko, M. P. Sarachik, and R. N. Bhatt.
Phys. Rev. B, 60(4):2286, 1999.

[29] H.-L. Lee, J. P. Carini, D. V. Baxter, W. Henderson, and G. Griiner. Science, 287:633,
2000.

[30] A. N. Ionov, L. S. Shlimak, and M. N. Matveev. Solid State Comm., 47(10):763, 1983.
[31] M. Watanabe, K. M. Itoh, Y. Ootuka, and E. E. Haller. Phys. Rev. B, 62(4), 2000.
[32] P. W. Anderson. Phys. Rev. , 109:1492, 1958.

[33] P. A. Lee and T. V. Ramakrishnan. Rev. Mod. Phys. , 57(2):287, 1985.

[34] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan.
Phys. Rev. Lett., 42(10):673, 1979.

[35] D. J. Bergman and Y. Imry. Phys. Rev. Lett., 39(19):1222, 1977.

[36] K. M. Itoh, E. E. Haller, J. W. Beeman, W. L. Hansen, J. Emes, L. A. Reichertz,
E. Kreysa, T. Shutt, A. Cummings, W. Stockwell, B. Sadoulet, J. Muto, J. W. Farmer,
and V. I. Ozhogin. Phys. Rev. Lett., 77(19):4058, 1996.

[37] C. A. Stafford, A. J. Millis, and B. S. Shastry. Phys. Rev. B, 43(16):13660, 1991.



BIBLIOGRAPHY 101

[38] C. A. Stafford and A. J. Millis. Phys. Rev. B, 48(3):1409, 1993.

[39] E. Jeckelmann, F. Gebhard, and F. H. L. Effler. Phys. Rev. Lett., 85(18):3910, 2000.
[40] S. Fujimoto and N. Kawakami. cond-mat. 9710313.

[41] N. Kawakami and S.-K. Yang. Phys. Rev. B, 44(15):7844, 1991.

[42] R. M. Fye, M. J. Martins, D. J. Scalapino, J. Wagner, and W. Hanke. Phys. Rev. B,
45(13):7311, 1992.

[43] H. Castella, X. Zotos, and P. Prelovsek. Phys. Rev. Lett., 74(6):972, 1995.
[44] X. Zotos and P. Prelovsek. Phys. Rev. B, 53(3):983, 1996.

[45] J. M. P. Carmelo, N. M. R. Peres, and P. D. Sacramento. Phys. Rev. Lett., 84(20):4673,
2000.

[46] W. Kohn. Phys. Rev. , 133:171, 1964.

[47] F. Gebhard. The Mott Metal-Insulator Transition. Springer, 1997.

[48] W. L. McMillan. Phys. Rev. B, 24(5):2739, 1980.

[49] R. Kupferman and A. Chorin. STAM J. Appl. Math., 59(5):1843, 1999.

[50] A. Diaz-Sédnchez, M. Ortu no, M. Pollak, A. Pérez-Garrido, and A. Mobius.
Phys. Rev. B, 59(2):910, 1999.

[51] J. H. Davies, P. A. Lee, and T. M. Rice. Phys. Rev. B, 29(8):4260, 1984.
[52] R. Resta. cond-mat. 9802004.

(53] E. K. Kudinov. Sov. Phys. Solid State, 33:1299, 1991.

[54] 1. Souza, T. Wilkens, and R. M. Martin. Phys. Rev. B, 62(3):1666, 2000.
[55] N. Marzari and D. Vanderbilt. Phys. Rev. B, 56(20):12847, 1997.

[56] K. Huang. Statistical Mechanics. Wiley, 1987.

[57] T. R. Kirkpatrick and D. Belitz. Phys. Rev. Lett., 74(7):1178, 1995.

[58] S. N. Dixit, D. Guo, and S. Mazumdar. Phys. Rev. B, 43(8):6781, 1991.
[59] A. Takahashi. Phys. Rev. B, 51(22):16479, 1995.

[60] A. Takahashi. Phys. Rev. B, 56(7):3792, 1997.

[61] R. Resta. Phys. Rev. Lett., 80(9):1800, 1998.



102 BIBLIOGRAPHY

[62] R. Resta and S. Sorella. Phys. Rev. Lett., 82(2):370, 1999.
[63] A. A. Aligia and G. Ortiz. Phys. Rev. Lett., 82(12):2560, 19909.
[64] J. Zak. Phys. Rev. Lett., 85(5):1138, 2000.

[65] J. L. Cardy. Conformal invariance. In C. Domb and J. L. Lebowitz, editors, Phase
Transitions and Critical Phenomena, volume 11. Academic Press, 1987.

[66] R. A. Romer and B. Sutherland. cond-mat. 9303004.

[67] A. H. Wilson. Proc. Roy. Soc., page 458, 1931.

[68] J. H. de Boer and E. J. W. Verwey. Proc. Phys. Soc., 49:59, 1937.

[69] N. F. Mott. Proc. Phys. Soc., page 416, 1949.

[70] N. F. Mott. Rev. Mod. Phys. , 40(4):677, 1968.

[71] J. Hubbard. Proc. Roy. Soc., A277:237, 1964.

[72] E. H. Lieb and F. Y. Wu. Phys. Rev. Lett., 20:1445, 1968.

[73] M. C. Gutzwiller. Phys. Rev. , 137, 1965.

[74] W. F. Brinkman and T. M. Rice. Phys. Rev. B, 2(10):4302, 1970.

[75] M. Dzierzawa, D. Baeriswyl, and L. M. Martelo. Helv. Phys. Acta, 70:124, 1997.
[76] D. Baeriswyl and W. Von Der Linden. Int. J. Mod. Phys. B, 5:999, 1991.

[77] D. Baeriswyl. In A. R. Bishop et al., editor, Nonlinearity in Condensed Matter, vol-
ume 69. Springer Series in Solid State Sciences, 1987.

[78] F. Mancini. Furophys. Lett., 50:229, 2000.

[79] K. Hashimoto. Phys. Rev. B, 31(11):7368, 1985.

[80] D. Baeriswyl. Foundations of Physics, 30(12):2033, 2000.

[81] M. A. Continentino. Furophys. Lett., 9(1):77, 1989.

[82] D. J. Scalapino, S. R. White, and S. C. Zhang. Phys. Rev. Lett., 68(18):2830, 1992.

[83] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T.
Scalettar. Phys. Rev. B, 40(1):506, 1989.

[84] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg. Rev. Mod. Phys. , 68(1):13,
1996.

[85] R. M. Noack and F. Gebhard. Phys. Rev. Lett., 82:1915, 1999.



BIBLIOGRAPHY 103

[86] M. J. Rozenberg, R. Chitra, and G. Kotliar. Phys. Rev. Lett., 83:3498, 1999.

[87] A.Y. Matsuura, Z.-X. Shen, D. S. Dessau, C.-H. Park, T. Thio, J. W. Bennett, and
O. Jepsen. Phys. Rev. B, 53(12), 1996.

[88] D. S. Jin, Y. V. Zastavker, T. F. Rosenbaum, X. Yao, and J. M. Honig. Science,
274:1874, 1996.

[89] X. Yao, J. M. Honig, T. Hogan, C. Kannewurf, and J. Spalek. Phys. Rev. B,
54(24):17469, 1996.

[90] X. Yao, Y.-K Kuo, D. K. Powell, J. W. Brill, and J. M. Honig. Phys. Rev. B,
56(12):7129, 1997.

[91] K. Kobayashi, T. Mizokawa, A. Fujimori, M. Isobe, Y. Ueda, T. Tohyama, and
S. Maekawa. Phys. Rev. Lett., 82(4):803, 1999.

[92] R. Neudert, M. Knupfer, M. S. Golden, J. Fink, W. Stephan, K. Penc, N. Motoyama,
H. Eisaki, and S. Uchida. Phys. Rev. Lett., 81(3):657, 1998.

(93] J. S. Ahn, J. Bak, H. S. Choi, T. W. Noh, J. E. Han, Y. Bang, J. H. Cho, and Q. X.
Jia. Phys. Rev. Lett., 82(26):5321, 1999.

[94] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Méziere, M. Four-
migué, and P. Batail. Phys. Rev. Lett., 85(25):5420, 2000.

[95] H. J. Schulz and C. Bourbonnais. Phys. Rev. B, 27(9):5856, 1983.

[96] C. Bourbonnais and L. G. Caron. Phys. Rev. B, 29(9):5007, 1984.

[97] M. Takahashi. Prog. Theor. Phys., 47:69, 1972.

(98] X. Wang and T. Xiang. Phys. Rev. B, 56(9):5061, 1997.

[99] S. Fujimoto and N. Kawakami. J. Phys. A: Math. Gen., 31:465, 1998.
[100] A. Klimper. Fur. Phys. J. B, 5:677, 1998.
[101] F. H. L. EBler, V. E. Korepin, and K. Schoutens. Phys. Rev. Lett., 67(27):3848, 1991.
[102] A. A. Ovchinnikov. Sov. Phys. JETP, 30:1160, 1970.
[103] A. Auerbach. Interacting Electrons and Quantum Magnetism. Springer, 1998.
[104] V. L. Berezinskii. Sov. Phys. JETP, 32(3):493, 1971.
[105] J. M. Kosterlitz and D. J. Thouless. J. Phys. C, 6:1181, 1973.

[106] J. M. Kosterlitz. J. Phys. C, 7:1046, 1974.



104 BIBLIOGRAPHY

[107] P. Minnhagen. Rev. Mod. Phys. , 59(4):1001, 1987.
[108] P. Gupta and S. Teitel. Phys. Rev. B, 55(5):2756, 1997.

[109] H. J. Schulz. Fermi liquids and non-fermi liquids. In et al. E. Akkermans, editor,
Proceedings of Les Houches Summer School LXI. Elsevier (Amsterdam), 1995.

[110] H. J. Schulz, G. Cuniberti, and P. Pieri. Fermi liquids and Luttinger liquids. In
G. Morandi et al., editor, Field Theories for Low-Dimensional Condensed Matter Sys-
tems. Springer, 2000.

[111] T. Giamarchi. Phys. Rev. B, 44(7):2905, 1991.

[112] T. Giamarchi. cond-mat. 9609114.

[113] F. D. M. Haldane. Phys. Rev. Lett., 45(16):1358, 1980.

[114] J. Sélyom. Advances in Physics, 28(2):201, 1979.

[115] J. Voit. Eur. Phys. J. B, 5:505, 1998.

[116] S.-T. Chui and P. A. Lee. Phys. Rev. Lett., 35(5):315, 1975.

[117] C. N. Yang and C. P. Yang. Phys. Rev. , 147(1):303, 1966.

[118] J. des Cloizeaux. J. of Math. Phys., 7(12):2136, 1966.

[119] J. des Cloizeaux and M. Gaudin. J. of Math. Phys., 7(8):1384, 1966.

[120] B. S. Shastry and B. Sutherland. Phys. Rev. Lett., 65(2):243, 1990.

[121] G. Spronken, R. Jullien, and M. Avignon. Phys. Rev. B, 24(9):5356, 1981.

[122] R. Assaraf, P. Azaria, M. Caffarel, and P. Lecheminant. Phys. Rev. B, 60:2299, 1999.
[123] M. Nakamura. Phys. Rev. B, 61(24):16377, 2000.

[124] C. Itoi, S. Qin, and 1. Affleck. Phys. Rev. B, 61(10):6747, 2000.

[125] M. Nakamura, A. Kitazawa, and K. Nomura. Phys. Rev. B, 60(11):7850, 1999.
[126] M. Nakamura, K. Nomura, and A. Kitazawa. Phys. Rev. Lett., 79(17):3214, 1997.
[127] R. Roth and U. Schollwéck. Phys. Rev. B, 58(14):9264, 1998.

[128] S. R. White and I. Affleck. Phys. Rev. B, 54(14):9862, 1996.

[129] J. L. Black and V. J. Emery. Phys. Rev. B, 23(1):429, 1981.

[130] S. Fujimoto and N. Kawakami. Phys. Rev. B, 54(16), 1996.



BIBLIOGRAPHY 105

[131] H. J. Schulz. Phys. Rev. B, 53(6), 1996.

[132] G. L. Japaridze and A. P. Kampf. Phys. Rev. B, 59(20):12822, 1999.

[133] A. A. Aligia, K. Hallberg, C. D. Batista, and G. Ortiz. Phys. Rev. B, 61:7883, 2000.
[134] S. A. Bulgadaev. hep-th. 9808115.

[135] S. A. Bulgadaev. hep-th. 9906091.

[136] S. A. Bulgadaev. hep-th. 9907195.

[137] C. Itoi and H. Mukaida. Phys. Rev. E, 60(4):3688, 1999.

[138] J. von Delft and H. Schoeller. cond-mat. 9805275.

[139] D. Sénéchal. cond-mat. 9908262.

[140] S. P. Strong and J. C. Talstra. Phys. Rev. B, 59(11):7362, 1999.

[141] W. Hofstetter and D. Vollhardt. Ann. Phys., 7:48, 1998.

[142] M. Fabrizio. Phys. Rev. B, 54(14):10054, 1996.

[143] K. Kuroki, R. Arita, and H. Aoki. J. Phys. Soc. Jap. , 66:3371, 1997.

[144] R. Arita, K. Kuroki, H. Aoki, and M. Fabrizio. Phys. Rev. B, 57(17):10324, 1998.
[145] S. Daul and R. M. Noack. Phys. Rev. B, 61(3):1646, 2000.

[146] H. Q. Lin and J. E. Hirsch. Phys. Rev. B, 35(7):3359, 1987.

[147] E. Koch, O. Gunnarsson, and R. M. Martin. cond-mat. 9912345.

[148] F. D. M. Haldane. Phys. Rev. B, 25(7):4925, 1982.

[149] K. Nomura and K. Okamoto. J. Phys. A: Math. Gen., 27:5773, 1994.

[150] R. J. Bursill and F. Gode. J. Phys.: Condens. Matter, 7:9765, 1995.

[151] S. Eggert. Phys. Rev. B, 54(14), 1996.

[152] P. Lecheminant, T. Jolicoeur, and P. Azaria. Phys. Rev. B, 63:174426, 2001.
[153] K. G. Wilson. Rev. Mod. Phys. , 47:773, 1975.

[154] S. R. White and R. M. Noack. Phys. Rev. Lett., 68(24):3487, 1992.

[155] S. R. White. Phys. Rev. Lett., 69(19):2863, 1992.

[156] S. R. White. Phys. Rev. B, 48(14):10345, 193,



106 BIBLIOGRAPHY

[157] R. M. Noack and S. R. White. In I. Peschel et al., editor, Density Matriz Renormal-
ization Group: A New Numerical Method in Physics. Springer (Berlin), 1999.

[158] M.-C. Chung and I. Peschel. Phys. Rev. B, 64:064412, 2001.

[159] S. Daul. Eur. Phys. J. B, 14:649, 2000.

[160] S.-W. Tsai and J. B. Marston. Phys. Rev. B, 62(9):5546, 2000.

[161] E. Jeckelmann, D. J. Scalapino, and S. R. White. Phys. Rev. B, 58:9492, 1998.

[162] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C. Cambridge University Press, 1994.

[163] H. Fukuyama, R. A. Bari, and H. C. Fogedby. Phys. Rev. B, 8(12):5579, 1973.
[164] A. Drzewinski and J. M. J. van Leuwen. Phys. Rev. B, 49(1):403, 1994.

[165] O. Legeza and G. Fath. Phys. Rev. B, 53(21):14349, 1996.

[166] M. Andersson, M. Boman, and S. Ostlund. Phys. Rev. B, 59(16):10493, 1999.

[167] M. N. Barber. Finite-size scaling. In C. Domb and J. L. Lebowitz, editors, Phase
Transitions and Critical Phenomena, vol. 8. Academic Press, 1989.

[168] C. K. Majumdar and D. K. Ghosh. J. of Math. Phys., 10:1399, 1969.
[169] C. K. Majumdar. J. Phys. C, 3:911, 1970.

[170] S. Maslov and A. Zheludev. Phys. Rev. Lett., 80(26):5786, 1998.
[171] 1. Affleck and S. Qin. J. Phys. A: Math. Gen., 32:7815, 1999.

[172] V. Privman, P. C. Hohenberg, and A. Aharony. Universal critical-point amplitude
relations. In C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical
Phenomena, vol. 14. Academic Press, 1991.

[173] K. Kim and P. B. Weichman. Phys. Rev. B, 43(16):13583, 1991.
[174] V. Privman and M. E. Fisher. Phys. Rev. B, 30(1):322, 1984.

[175] T. R. Kirkpatrick and D. Belitz. Phys. Rev. Lett., 79(16):3042, 1997.
[176] S. Jain and K. J. Hammarling. cond-mat. 9805141.

[177] E. Hofstetter and M Schreiber. Phys. Rev. B, 49(20):14726, 1994.
[178] I. Kh. Zharekeshev and B. Kramer. Ann. Phys., 7:442, 1998.

[179] S. De Toro Arias and J. M. Luck. J. Phys. A: Math. Gen., 31, 1998.



BIBLIOGRAPHY 107

[180] D. N. Sheng and Z. Y. Weng. Phys. Rev. Lett., 83:144, 1999.

[181] D. N. Sheng and Z. Y. Weng. Phys. Rev. Lett., 80(3):580, 1998.

[182] E. Hofstetter. Phys. Rev. B, 57(20):12763, 1998.

[183] E. Cuevas. Phys. Rev. Lett., 83(1):140, 1999.

[184] F. Igléi and E. Carlon. Phys. Rev. B, 59:3783, 1999.

[185] R. A. Monetti and J. E. Satulovsky. Phys. Rev. E, 57(6):6289, 1998.

[186] A. MacKinnon and B. Kramer. Phys. Rev. Lett., 47(21):1546, 1981.

[187] F. M. Izrailev, T. Kottos, and G. P. Tsironis. J. Phys.: Condens. Matter, 8:2823, 1996.
[188] T. Kawarabayashi, B. Kramer, and T. Ohtsuki. Phys. Rev. B, 57(19):11842, 1998.
[189] M. Weiss, T. Kottos, and T. Geisel. Phys. Rev. B, 62:1765, 2000.

[190] B. Huckestein and B. Kramer. Phys. Rev. Lett., 64(12):1437, 1990.

[191] D. Liu and S. Das Sarma. Phys. Rev. B, 49(4):2677, 1994.

[192] P. A. Rikvold, W. Kinzel, J. D. Gunton, and K. Kaski. Phys. Rev. B, 28(5):2686, 1983.
[193] A. Eilmes, U. Grimm, R. A. Romer, and M. Schreiber. Fur. Phys. J. B, 8:547, 1999.
[194] M. Henkel and U. Schollwdck. J. Phys. A: Math. Gen., 34:3333, 2001.

[195] J. Voit. Rep. Prog. Phys., 58(9):977, 1995.

[196] S. Kivelson, D.-H. Lee, and S.-C. Zhang. Phys. Rev. B, 46(4):2223, 1992.

[197] M. P. A. Fisher, G. Grinstein, and S. M. Girvin. Phys. Rev. Lett., 64(5):587, 1990.
[198] D. C. Licciardello and D. J. Thouless. Phys. Rev. Lett., 35(21):1475, 1975.

[199] A. A. Aligia, E. Gagliano, L. Arrachea, and K. Hallberg. Eur. Phys. J. B, 5:371, 1998.
[200] A. A. Aligia. Europhys. Lett., 45(4):411, 1999.

[201] L. Balents and M. P. A. Fisher. Phys. Rev. B, 53(18):12133, 1996.

[202] M. Vojta, A. Hiibsch, and R. M. Noack. Phys. Rev. B, 63:045105, 2001.

[203] S. Sachdev. cond-mat. 0108238.

[204] K. Park and S. Sachdev. cond-mat. 0104519.

[205] N. Read and S. Sachdev. Phys. Rev. B, 42(7):4568, 1990.



108 BIBLIOGRAPHY

[206] N. Read and S. Sachdev. Phys. Rev. Lett., 62(14):1694, 1989.

[207] M. Ogata and H. Shiba. Phys. Rev. B, 41(4):2326, 1990.

[208] N. Kawakami and S.-K. Yang. J. Phys.: Condens. Matter, 3:5983, 1991.
[209] J. Voit, Y. Wang, and M. Grioni. Phys. Rev. B, 61(12):7930, 2000.

[210] F. D. M. Haldane. Phys. Rev. Lett., 47(25):1840, 1981.

[211] E. Melzer. cond-mat. 9410043.

[212] D. Controzzi, F. H. L. Efiler, and A. M. Tsvelik. cond-mat. 0011439.
[213] D. Controzzi, F. H. L. Efiler, and A. M. Tsvelik. Phys. Rev. Lett., 86(4):680, 2001.
[214] E. Papa and A. M. Tsvelik. Phys. Rev. B, 63:085109, 2001.

[215] S. Lukyanov and A. Zamolodchikov. hep-th. 0102079.

[216] M. P. M. den Nijs. Phys. Rev. B, 23(11):6111, 1981.

[217] M. E. Fischer, M. Barber, and D. Jasnow. Phys. Rev. A, 8(2):1111, 1973.
[218] D. Nelson and J. M. Kosterlitz. Phys. Rev. Lett., 39(19):1201, 1977.
[219] N. Schultka and E. Manousakis. Phys. Rev. B, 49(17):12071, 1994.

[220] K. Harada and N. Kawashima. Phys. Rev. B, 55(18), 1997.

[221] K. Harada and N. Kawashima. J. Phys. Soc. Jap. , 67:2768, 1998.

[222] H. J. Schulz. Phys. Rev. B, 22(11):5274, 1980.

[223] M. I. Salkola and J. R. Schrieffer. Phys. Rev. Lett., 82:1752, 1999.

[224] C. A. Stafford. Private communication.

[225] F. H. L. Efller, F. Gebhard, and E. Jeckelmann. cond-mat. 0103406.
[226] P. Brune, G. I. Japaridze, and A. P. Kampf. cond-mat. 0106007.

[227] T. Wilkens and R. M. Martin. Phys. Rev. B, 63:235108, 2001.

[228] S. Qin, J. Lou, T. Xiang, Z. Su, and G.-S. Tian. cond-mat. 0004162.
[229] Y. Takada and M. Kido. cond-mat. 0001239.

[230] N. Gidopoulos, S. Sorella, and E. Tosatti. Fur. Phys. J. B, 14:217, 2000.

[231] M. Fabrizio, A. O. Gogolin, and A. A. Nersesyan. Phys. Rev. B, 83:2014, 1999.



BIBLIOGRAPHY 109

[232] K. Schoenhammer, O. Gunnarsson, and R. M. Noack. Phys. Rev. B, 52(4):2504, 1995.
[233] G. I. Japaridze. Private Communication.

[234] R. Zbinden. Diploma thesis, Université de Fribourg. 2001.

[235] A. Rabinovitch and J. Zak. Phys. Rev. B, 4(8):2358, 1971.

[236] A. Onmipko and L. Malysheva. Phys. Rev. B, 63:235410, 2001.

[237] G. Bediirftig, B. Brendel, H. Frahm, and R. M. Noack. Phys. Rev. B, 58(16):10225,
1998.



VOLUME 86, NUMBER 3

PHYSICAL REVIEW LETTERS

15 JANUARY 2001

Dielectric Catastrophe at the Mott Transition

C. Aebischer, D. Baeriswyl, and R. M. Noack*

Institut de Physique Théorique, Université de Fribourg, CH-1700 Fribourg, Switzerland
(Received 20 June 2000)

We study the Mott transition as a function of interaction strength in the half-filled Hubbard chain with
next-nearest-neighbor hopping #’ by calculating the response to an external electric field using the density
matrix renormalization group. The electric susceptibility y diverges when approaching the critical point
from the insulating side. We show that the correlation length & characterizing this transition is directly
proportional to fluctuations of the polarization and that y ~ £2. The critical behavior shows that the
transition is infinite order for all #/, whether or not a spin gap is present, and that hyperscaling holds.
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A material’s response to an applied electric field char-
acterizes whether it is a metal or an insulator. One such
response is the static electrical conductivity at zero tem-
perature, which is finite for a metal (or infinite for an ideal
conductor), but vanishes for an insulator [1]. The conduc-
tivity can therefore be used to probe the metal-insulator
transition from the metallic side. A complementary quan-
tity is the dielectric response to an electric field, the electric
susceptibility, y. This quantity is expected to diverge (for
a continuous transition) when the transition is approached
from the insulating side and to remain infinite in the metal-
lic phase. This phenomenon, termed “dielectric catastro-
phe” by Mott [2], has been reported for doped silicon [3].

One possible origin of insulating behavior is the local
Coulomb repulsion between electrons. This “Mott phe-
nomenon” [4] leads to a metal-insulator transition which
occurs either as the electron density, n, is varied for fixed
electron-electron interaction strength or as a function of
interaction strength at fixed electron density [2,5]. In this
Letter, we concentrate on the transition as a function of
interaction strength for fixed electron density. Experimen-
tally, such a transition can be induced by applying isostatic
or chemical pressure.

The prototype model for the Mott transition is the single-
band Hubbard model with purely local interaction, whose
Hamiltonian is

I:I = — Zt,-jé;rgéj,, + Uzﬁﬁﬁil’ (1)

ijo i
where é;r(, creates an electron of spin o at site i and
Nig = éjgé,-g. The hopping matrix elements ¢;; are short
ranged. At half filling, n = 1, the Hamiltonian (1) maps
onto a Heisenberg model with couplings J;; = 4t,~2j /U for
U — < and is thus insulating, while at U = 0, it describes
a perfect metal. Therefore, a Mott transition must occur at
some U, = 0 [6].

In order to describe the dielectric response of such a
system, one must consider the coupling to a static electric
field. Taking the field in the x direction and neglecting
overlaps between different Wannier functions (tight-
binding approximation), we add the coupling term

468 0031-9007/01/86(3)/468(4)$15.00

PACS numbers: 71.10.Fd, 71.30.+h, 75.40.Cx
Aeow = —EX = —ED xifi;, 2)
i

where X is the dipole operator (we have put ¢ = 1), x; is
the x coordinate of the ith site, and #; measures the occu-
pation of this site. Here we have assumed that the finite
lattice has open boundary conditions, i.e., the connections
terminate at the lattice edges. We note that while this is the
natural definition for experiments, the notion of response
to an applied electric field has recently been generalized to
periodic boundary conditions [7]. An applied electric field
will induce a polarization at zero temperature given by

oE
—d 0
-— 3
5E 3)

on a d-dimensional lattice with linear dimension L, where

the average is taken with respect to the ground state of

the full Hamiltonian A + Hey, with corresponding energy

Ey. The zero-field susceptibility is then defined as

X = E = 174 @ .
IE? |g—o

P=L"%X)=-L

OF lpo “4)

The examination of the properties of this susceptibility in
the vicinity of the Mott metal-insulator transition is the
principal aim of this Letter.

The susceptibility y can be related to the eigenstates
|W,) of A using elementary perturbation theory,

_ |<\PO|X|\Pn>|2

=274 —_—, 5
X ; A, ()
where AE, is the excitation energy of the nth eigenstate.
(Here we have chosen the origin of the coordinate system
so that (X) = 0 for E = 0.) This relation immediately
yields a useful inequality in terms of the “charge gap,”
A (defined as the lowest excitation energy for which the

dipole matrix element does not vanish):

2 _ N
X =y LWl X2 W). (6)
It is thus instructive to consider fluctuations of the polar-
ization, (Wo|X?|W,), which can be estimated as follows.
We expand the ground state as a series | W) = > ) |‘I’(()D) ,
where D is the number of doubly occupied sites (“par-

ticles”). At large U the particles are located close to

© 2001 The American Physical Society
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empty sites (“holes”). Each particle-hole pair represents
an elementary dipole with essentially random orientations.
Therefore our estimate is

(Wl R21Wo) = > (W 121"y = (D)2, (7)
D

where [ is the average size of the dipoles. Comparing
this result with the inequality in Eq. (6), we conclude that
a diverging susceptibility requires either a diverging size
of the dipoles or a vanishing charge gap or both. In one
dimension, the quantity

1 ~
&= 7 (WolX2|Wo) (8)

is a length characterizing the insulating phase [8,9]. We
will show below that ¢ is the correlation length, up to a
dimensionless constant.

On regular lattices, one often faces the problem that the
Mott phenomenon, which sets in at large values of U due to
charge blocking, is masked by the opening of a charge gap
at much lower values of U due to antiferromagnetic order
induced by nesting or umklapp processes. In order to con-
trol such effects, we consider here a model that explicitly
incorporates frustration of antiferromagnetism, namely,
the one-dimensional Hubbard model with both nearest-
neighbor ¢ and next-nearest-neighbor ¢’ hopping terms.
We set r = 1 and consider only ¢ = 0 here because the
sign of ¢/ is irrelevant at half filling due to particle-hole
symmetry. For ¢/ = 0, the Bethe-ansatz solution allows
one to calculate the charge gap [10], the charge stiffness,
and the correlation length in the insulator [11] explicitly.
The system is found to be insulating for all positive values
of U. The metal-insulator transition occurs at U. = 0 and
is infinite order: the charge gap and, correspondingly, the
inverse of the correlation length decrease exponentially
as U — 0. At the same time, the magnetic correlations
show a power-law decay. For ' > 0, a weak-coupling
renormalization group analysis [12] predicts the same
behavior as long as there are two Fermi points: umklapp
processes lead to an insulating state for U > 0, while the
magnetic excitation spectrum remains gapless.

For ¢/ > 0.5, there are four Fermi points in the non-
interacting band structure and the picture becomes more
complicated. In weak coupling, the lowest-order umklapp
processes are marginally irrelevant [12], and the system
is predicted to be metallic (vanishing charge gap) with a
spin gap. At strong coupling, the model can be mapped to
a frustrated Heisenberg chain, which develops a spin gap
for J'/J ~ t"> > 0.2412 [13] and incommensurate anti-
ferromagnetic order for J’/J > 0.5. This general picture
has been confirmed numerically [14,15]. For a detailed
phase diagram, we refer the reader to Fig. 3 of Ref. [15].
Here we will examine both the parameter regime with gap-
less magnetic excitations and U, = 0 (' =< 0.5) and the
one with gapped spin degrees of freedom and U, > 0
(t' = 0.5).

In order to numerically evaluate the electric suscepti-
bility, Eq. (4), we use the density matrix renormalization
group (DMRG) [16]. We apply a small electric field so
that the system is in a linear response regime (as deter-
mined by a careful analysis of the E dependence, typically
EL = 0.001) and measure

P 1 R

X E LE lel<nl>' )
We use the finite-size DMRG algorithm [16,17] on up to
L = 1000 sites, retaining up to 2400 states for the system
block. This allows us to keep the sum of the discarded den-
sity matrix eigenvalues to below 1073, We have performed
extensive tests for U = 0, a difficult case to treat numeri-
cally, and find that we can reproduce analytic results to
within less than 1%. The details of the calculations will be
described more extensively elsewhere.

The electric susceptibility y is shown in Fig. 1 as a func-
tion of the inverse system size for #/ = 0.7 and a number
of U values. There are two characteristically different be-
haviors: at small U, the system is metallic, and the sus-
ceptibility diverges with system size. A fit to a power law
in L yields an exponent very close to 2 (within 5%) for the
small U values. For U = 0, it can be shown analytically
that y ~ L? for large L for all values of t'. We conjec-
ture that such a L? divergence of y is generic for a one-
dimensional perfect metal. For larger U, y extrapolates to
a finite value as L — . While this is clear for the two

3
10
1
10
-1
10 i W
2 -1
10 10
FIG. 1. Electric susceptibility, y, as a function of 1/L for ¢’ =

0.7 and U = 1 (circles), U = 2.5 (stars), U = 4 (diamonds),
U = 5.5 (crosses), and U = 7 (squares).
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larger U values in Fig. 1, care must be taken near the tran-
sition because the system appears metallic up to a length
scale on the order of the correlation length which diverges
at the transition. Such a crossover from metallic to insu-
lating behavior is evident in the U = 4 curve, for which
we have taken lattice sizes of up to L = 100 to show that
X scales to a finite value, i.e., that the system is insulating.

In the insulating regime, we expect y to be analytic in
1/L. We therefore perform finite-size scaling for large
L using a linear fit and extrapolating to 1/L = 0. The
result, y, is shown in Fig. 2 for ¢/ = 0, 0.7, and 0.8 as a
function of U. Calculations for additional values of ¢ (0.3,
0.4, 0.5, 0.6, 0.75, 0.85, 0.9, and 1) are consistent with
Fig. 2. For t' = 0, the transition takes place at U, = 0,
as discussed previously. Although we could not obtain
a reliable finite-size extrapolation for U =< 2 because the
correlation length becomes much larger than the system
sizes we were able to reach, we could observe numerically
that y ~ A~2 (for U =< 10), where A is the charge gap
given in Ref. [10]. The extrapolation to A — 0 confirms
that U, = 0. Alternatively, we can fit to the low-U form
for A72,

X' = 0) = (10)

e =g
v-u Pl -uy )
with the exactly known values B = 47 = 12.566, ...,
and o = 1; here the prefactor 1/(U — U,.) comes from
the logarithmic correction. This yields U, = 0.058 and
we effectively find that U, = 0 to within error bars. A
fit to the form without the logarithmic correction would
yield U, = 0.209, which is also consistent with zero, but
to within a larger error bar.

It is clear from Fig. 2 that the bigger ¢/, the larger the U
at which y diverges. However, one must perform careful

12

FIG. 2. Electric susceptibility y«.(U, t’) of the infinite-size sys-
tem for ¢t/ = 0, 0.7, and 0.8, as a function of U; the lines are
guides to the eye. Inset: y..(U,t = 0.7) for U = 4.1 to 4.4
(squares) as a function of 1/(U — U,), on a semilog scale. The
line is a fit to an exponential form.

470

fitting in order to accurately determine U, and the form
of the divergence at ' > 0, as an analytical result for the
charge gap exists only at / = 0. For ¢/ = 0.7, we have
calculated y at many U values near the transition and have
fitted to both power law, y ~ (U — U.)” and exponential
forms [Eq. (10)], but without the logarithmic correction.
The logarithmic corrections are, in general, nonuniversal,
i.e., t' dependent. Leaving these corrections out, as argued
above, will only make the determination of U, less precise.
We find that the fit to the power-law form yields U, = 3.4,
a point at which careful finite-size scaling of y yields
a finite value of y.. Therefore, this U, is clearly too
large. The exponential fit yields o = 1.049, B = 12.45,
and U, = 2.67, a more reasonable value of U,. Note
that the values for o and B are again very close to the
ones obtained for #' = 0. The inset of Fig. 2 shows a
semilog plot of y. vs 1/(U — U,) as well as the fit itself,
illustrating its good quality. We therefore find that the
exponential form, Eq. (10), expected in an infinite-order
transition, characterizes the transition at all ', irrespective
of whether a spin gap exists or whether U, is finite or zero.

If hyperscaling is valid, there is only one relevant length
scale &. (the correlation length for L — ) in the vicinity
of the quantum critical point. This length then determines
the finite-size scaling of the singular part of the ground
state energy density [18]

Ey" /LY = £, OF(L/ ), (11
where 7 is the dynamic critical exponent and f a universal
scaling function. The quantity EL is an energy and there-
fore scales like £, °. Using Eq. (4), one obtains the scaling
behavior of the electric susceptibility

x = L¥ICD(L/Ex), (12)
where C is a nonuniversal constant that depends on mi-
croscopic details, and @ is a universal function [19]. The

hyperscaling assumption also implies that ® tends to a fi-
nite value as L/&. — 0. This is the region in which the

107 +
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FIG. 3. Scaling plots of x(L,U,t)/L* vs L/&.(U,t") in a
log-log scale: ' = 0 (left); t' = 0.8 (right).
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FIG. 4. Electric susceptibility y- versus correlation length &
for different values of ¢'. Lines are power-law fits.

system appears metallic and in which y tends to scale like
L?. Note that this is the same L dependence as that in the
metallic phase. Thus z = 1 is the only consistent value
in Eq. (12), in agreement with exact results for ¢’ =
[11]. In the opposite limit, L/&.. — oo, the system behaves
as an insulator for all sizes and y tends to a finite value
X. The scaling form (12) with z = d = 1 thus implies
lim,_ ®(x) = A/x? and

X = CAEZ, (13)

where A is a universal constant.

In order to confirm the scaling form Eq. (12) for our
model, we plot the DMRG results for y/L? as a func-
tion of L/&. in Fig. 3. The quantity & is obtained by
calculating ¢ on finite systems using Eq. (8) and then per-
forming a finite-size extrapolation similar to that used to
obtain y... Notice that all L and U points for a particular
t' collapse onto the same curve, confirming hyperscaling.
Therefore, £ behaves as the correlation length, which we
have checked by ascertaining that &.. is the same length
(up to a constant) that characterizes the exponential decay
of the density-density correlation function.

The results of the 1/L extrapolation for y and &
are shown in Fig. 4 for three different values of #'. A
power-law fit to y. = C'&% vyields ¥(#' = 0) = 1.97,
y(' =0.7) =201, y(' =08) =196, and C'(t' =
0.7)/C'(t' = 0) = 1, C'(t' = 0.8)/C'(+' = 0) = 0.7.
This confirms the scaling behavior (13). It also shows that
the constant C depends weakly on ¢’

In summary, our calculations for the U — ¢ — ¢’ chain
at half filling confirm that the electric susceptibility y (and
therefore also the dielectric constant € = 1 + 4w y) di-
verge when approaching the Mott transition from the in-
sulating side. The polarization fluctuations, which also
diverge for U — U, from above, have been found to be

directly proportional to the correlation length & of the
Mott insulating phase. In agreement with the hyperscal-
ing hypothesis, the metallic or insulating behavior of the
finite-size system depends only on the ratio L/&.. The
finite-size scaling of y can then be related to a universal
scaling function and a dynamic exponent 7 = 1. The tran-
sition is found to be infinite order and to show the same
critical behavior whether there is a spin gap or not. As
to the origin of this dielectric catastrophe, we conclude,
on the basis of both the inequality y =< 2£/A and the ob-
served scaling Y. ~ £2, that it involves both a diverging
correlation length ¢ (linked to the unbinding of dipoles)
and a vanishing of the charge gap A.
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