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ABSTRACT: A variety of buildup types occur in the upper Paleozoic Auernig and Rattendorf Groups, Carnic Alps, at the present-day
Austrian-Italian border, including coral, diverse algal (Anthracoporella, Archaeolithophyllum, Rectangulina, and phylloid green), bryozoan,
brachiopod, and sponge buildups. Thin mounds and banks have a diverse fossil association (e.g., Archaeolithophyllum-bryozoan—
brachiopod mounds) and occur in siliciclastic-dominated intervals, as do coral buildups. Some of the biodiverse thin mounds occur in
strata that were deposited in cooler water. However, the thickest mounds are nearly monospecific (e.g., Anthracoporellamounds) and grew
in carbonate-dominated, warm-water environments.

Most of the mounds considered in this paper, particularly algal mounds, grew in quiet-water environments below wave base but within
the photic zone. Mound growth was variously stopped by siliciclasticinput, e.g., auloporid coral mounds, sea-level rise, e.g., the drowning
of Anthracoporella mounds of the Rattendorf Group, influence of cool water, e.g., algal mounds of the Auernig Group overlain by limestone
of cool-water biotic association, or sea-level fall, e.g., phylloid algal mounds that were subsequently exposed subaerially. There is no
indication of ecological succession during mound growth. Growth, dimensions, biotic association, and termination of mounds seem to have

been controlled by extrinsic factors, mainly sea level and water temperature.
Phylloid algal mounds are similar to those described from other late Paleozoic settings. Auloporid coral buildups, and Rectangulina and
Anthracoporella algal buildups, however, have not previously been reported from other regions, although these fossils are described from

several localities outside the Carnic Alps.

INTRODUCTION

Carbonate mounds are common features in upper Paleozoic
rocks (Auernig and Rattendorf Groups) in the Carnic Alps, (part
of the Southern Alps at the Austrian—Italian border (Fig. 1).
Mounds from distinct formations of the Auernig and Rattendorf
Groups have been described previously, but a review of the
overall buildups is lacking. Boeckelmann (1985) and Krainer
(1995) reported algal mounds in the Meledis and Auernig forma-

tions, respectively, from the Auernig Group. Fliigel and Krainer
(1992) reported coral mounds from the Meledis Formation,
Auernig Group. Fliigel (1987) described Anthracoporella algal
mounds from the Lower Pseudoschwagerina Limestone,
Rattendorf Group, and Samankassou (1998) pointed out the
constructional mode of Anthracoporella in the Carnic Alps.

The present paper reviews different buildup types within the
Auernig and Rattendorf Groups, including those in intervals
from which mounds are reported for the first time (Fig. 2). For the
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FiG. 2.—Stratigraphic scheme of the Carnic Alps rocks.

Trogkofel Group, the reader is referred to the thorough descrip-
tion by Fliigel (1981). The fossil associations of mounds studied
allow paleoecological interpretation, particularly regarding the
influence of sea-level fluctuations and the role of water tempera-
ture. Furthermore, comparisons are made to contemporaneous
buildups in other areas. This enables recognition of the factors
controlling Upper Carboniferous and Lower Permian buildups
discussed below.

GEOLOGICAL CONTEXT

During Variscan orogenic movements (late Namurian to
middle Westphalian), basins were formed in the areas of the
Carnic Alps on the Austrian-Italian border (Fig. 1) and were
filled with prodeltaic and shallow-marine sediments during the
middle Carboniferous to Early Permian (Venturini, 1990). These
rocksinclude the Upper Carboniferous to Lower Permian Auernig,
Rattendorf, and Trogkofel groups (Fig. 2).

The Auernig and Rattendorf groups are composed of cyclic
deposits. Quartz-rich conglomerates, cross-bedded sandstone,
bioturbated siltstone with trace fossils and plant fossils, gray
shale, and bedded and mounded limestone (Auernig Rythmus
sensu Kahler, 1955; Krainer, 1992) characterize the Auernig
Group.

The Rattendorf Group is subdivided into the Lower
Pseudoschwagerina Limestone, the Grenzland Formation, and
the Upper Pseudoschwagerina Limestone. The Lower
Pseudoschwagerina Limestone has cyclic deposits similar to
those of the Auernig Group, but carbonates are dominant
(Homann, 1969; Samankassou, 1997). Siliciclastics dominate the
Grenzland Formation, whereas the Upper Pseudoschwagerina
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Limestone is again dominated by carbonates. The Trogkofel
Group is composed mostly of massive reef carbonates (Fliigel,
1980, 1981).

MOUND TYPES
Auloporid Coral Mounds

Auloporid coral mounds are known from two localities, Cima
di Puartis and Rio Malinfier, in the Straninger Alm area (location
3, Fig. 1) and south of the Auernig area (location 4, Fig. 1) (Fliigel
and Krainer, 1992; Forke and Samankassou, 2000). The sequences
studied are Kasimovian in age. The coral has been identified as
Multithecopora syrinx (Etheridge 1900) by Fliigel and Krainer
(1992).

Description.—

Coral mounds are lens-like, with a flat base and a tabular or
slightly domal top. They range from a few centimeters to 50 cm
high and 80-90 cm long (Fliigel and Krainer, 1992), and occur
within sequences of silty shales (Fig. 3). The mound facies is an
auloporid coral boundstone and packstone (Fig. 4). Corals are
in growth position, with individual bodies very close to each
other (Fig. 4A). The resulting framework pores are filled with
micrite, peloids, marine cement, sponge spicules (?), worm-
tube like structures (similar to features known as Thartharella;
cf. Wahlman, 1988; Samankassou, 2001), and shell fragments
(Fig. 4). Other rare mound fossils include smaller foraminifers,
fusulinids, and ostracodes. Fliigel and Krainer (1992) have
reported chaetetid sponges. The silty limestone facies below
and above the mounds is similar to that of the matrix of the
auloporid boundstones.
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Fic. 3.—Sketch showing auloporid coral buildup in silty shales
as seen in Cima Val di Puartis, locality 3 of Fig. 1. White
discontinuous bands represent discontinuous marly lime-
stone beds.
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Fic. 4—Auloporid coral boundstone. A) Corals (Au), upright in
growth position; framework pores filled with peloids, micritic
and spar cement; and calcisiltite with sponge spicules (?), and
small fossil fragments. Note that corallites are very closely
spaced. B) Detail of framework, showing irregular frame-
work cavities (C) and the irregular contours of peloidal areas
(white arrow). Agglutinated features similar to Thartharella
occur (black arrow). A is oriented perpendicular to and, B
parallel to, bedding plane. Scale bar is 5 mm long for both
photomicrographs.

Depositional Environment and Comparisons.—

Unbroken fossils indicate limited transport prior to deposi-
tion. The muddy matrix of the auloporid mounds and the
upright growth position of the corals indicate a low-energy
depositional environment. Mounds grew during the early phase
of sea-level highstand, when siliciclastic input was low (Fliigel
and Krainer, 1992). They did not form “classical”, wave-resis-
tant frameworks.

Encrusting corals, e.g., Syringopora and Caninia, are reported
from other upper Carboniferous mounds (cf. West, 1988; Feldman
and Maples, 1989; Tedesco and Wanless, 1989, 1995), but up-
right growth forms are of secondary importance in these build-
ups (Wilson, 1963; Fagerstrom, 1987). Generally these corals
encrust, or are encrusted by, chaetetid sponges (see review in
West, 1988). Thus, as concluded by Fliigel and Krainer (1992),
auloporid mounds are not common among upper Paleozoic
buildups.
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Rugose Coral Biostromes

Biostromes studied occurin the Grenzland Formation, Asselian
in age, and crop out at locality 13 in Figure 1.

Description.—

Coral biostromes are a few centimeters thick and less than
ten meters in lateral extent, and are dominated by solitary and
massive colonial rugose corals (cerioid types) (Fig. 5A). Most
fossils, particular solitary forms, are broken (Fig. 5B). Corals
constitute approximately 30% of the whole rock and more than
60% of fossil volume. Fusulinids, crinoids, and Shamovella
(formerly Tubiphytes; see Riding, 1993) are common. The ma-
trix is typically peloidal clotted micrite (Fig. 5B). Pores are
cement-filled.

Fic. 5—Coral biostromes. A) Coral colony. The small black-and-
white bars that make up the left half of the bar are in centime-
ters. B) Broken rugose corals in a bioclastic micritic matrix.
Recognizable bioclasts other than coral fragments are
fusulinids (arrow) and fragments of crinoid stems (Cr). Note
the patchy distribution of cement-filled voids (white, Cem.).
Scale bar is 10 mm long.
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Depositional Environment and Comparisons.—

Thebroken fossils indicate reworking prior to deposition, and
the peloidal micritic matrix indicates that final deposition oc-
curred in a quiet or moderate-energy environment.

As in other upper Paleozoic rocks, the contribution of corals
to buildups in the Carnic Alps is minor. A rare occurrence is
reported from Texas, U.S.A. (Young and Rush, 1956). As with the
auloporid coralmounds described above, rugose coral biostromes
occur in predominantly siliciclastic successions. The co-occur-
rence of solitary and colonial corals is not unusual in Carbonifer-
ous buildups (cf. Hill, 1939).

Rectangulina Algal Mounds

Mounds of the alga Rectangulina, up to 10 m long, occur in the
Auernig (location 4, Fig. 1), and Zollner See (locations 1-3, Fig. 1)
areas. The intervals involved belong to the lower part of the
Auernig Group, early Kasimovian in age (Fig. 2).
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Description.—

The thickest part of the Rectangulina buildups measured for
this study was four meters (see Forke and Samankassou, 2000, for
location and log of the section). The mound rock consists of
indistinctly bedded limestone, which is an algal wackestone and
packstone. Tube-like, straight, unsegmented thalli of the alga
Rectangulina, commonly grouped in bundles (Fig. 6A, B), consti-
tute more than 90% of the total biota. Other fossils include smaller
foraminifers and the alga Beresella (Fig. 6B). The bioturbated
matrix is peloidal, showing clotted grains, and constructional
boundstone (e.g., upright elements, framework pores, and early
cementation) is lacking.

Depositional Environment and Comparisons.—
The mud-rich facies and the abundance of fragile Rectangulina

algal thalliindicate quiet-water conditions during mound growth.
No erect growth forms occur, nor was there significant

FiG. 6.—Rectangulina packstone. A) Tube-like thalli are the dominant allochems (arrow, R). The peloidal matrix shows partly clotted
structures (middle) and includes rare smaller foraminifers (For). B) Beresella (arrows) is the most common associated fossil. Black
and white arrows at the respective corners indicate stratigraphic top. Scale bar is 2 mm long.
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syndepositional relief. Thus, the growth model is mechanical
accumulation rather than a constructional (biogenic) one, accord-
ing to Samankassou and West (2000, 2002.).

The alga is generally rare and seems commonly associated
with a bioturbated, peloidal facies (Mamet et al., 1987; Warnke,
1997). Rectangulina is reported from other localities, e.g., the
Tethys and the Canadian Arctic (Mamet, 1991). Nevertheless,
buildups of Rectangulina have not previously been reported
outside the Carnic Alps. Even in the Carnic Alps, itis confined to
a unique interval (Lower Kasimovian; Forke and Samankassou,
2000).

Anthracoporella—Archaeolithophyllum Algal Mounds

Mounds of the dasyclad alga Anthracoporella and the red alga
Archaeolithophyllum crop out in the Auernig and Krone area
(localities 5-7, Fig. 1) and are latest Kasimovian and Gzhelian in
age.

Description.—

Mounds are three to eight meters thick (e.g., Krone, locality
7 in Fig. 1), ten of meters long, and commonly massive (Fig. 7).
Commonly they are complex structures consisting of several
smallerbodies (mini-mounds; Wilson, 1972; Samankassou, 1997).
Irregular, discontinuous surfaces are common (Fig. 7A). The
mound is boundstone, with a volumetrically important peloidal
matrix (Figs. 7B, 8). The two algae rarely occur together; areas
dominated by the dasyclad alga Anthracoporella spectabilis Pia
1920 generally lack the red alga Archaeolithophyllum missouriense
Johnson 1956 and vice versa. Anthracoporella is commonly up-
rightin growth position (Fig. 7B). Archaeolithophyllum, however,
builds undulating, irregular crusts (Fig. 8A, B). The latter gen-
erally occurs in the basal part and at the top of the mounded
interval. Other mound fossils include Shamovella (Fig. 8A, B),
smaller foraminifers (Tuberitina, Palaeotextularia, Tetraxis),
fusulinids, and, rarely, the alga Epimastopora, gastropods, and
ostracodes.
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Depositional Environment and Comparisons.—

The delicate framework and the muddy matrix suggest quiet-
water conditions. The abundant dasyclad alga Anthracoporella
required a well-lit depositional environment. Thus, the mounds
grew below (fair-weather) wave base, within the photic zone
(Samankassou, 1998).

Archaeolithophyllum is an important mound builder in upper
Carboniferous rocks, particularly in the Midcontinent of the
U.S.A. (Laporte, 1962; Konishi and Wray, 1961; Wray, 1964, 1977;
Heckel and Cocke, 1969; Welch, 1977; Toomey and Babcock, 1983;
West, 1988; Samankassou and West, this volume). Wray (1964)
and Linehan and Sutterlin (1986) reported boundstone texture
similar to that described in the present paper. Anthracoporella
mounds, however, havebeenreported only from the Carnic Alps.
The co-occurrence of these two algae in mounds is unique to the
Auernig Group and to the Carnic Alps.

Phylloid Green Algal Mounds

Phylloid green algal mounds, widespread in the Carnic Alps,
occur in most of studied sections, ranging from Kasimovian to
Sakmarian in age.

Description.—

Some phylloid algal buildups in the Auernig Group occur
above or below Anthracoporella mounds (e.g., in the Corona
Formation). The relief of these buildups is usually minor; small
biostromes and banks a few decimeters thick and ten of meters
long are the common structures (Fig. 9). Algal wackestone,
boundstone, and, rarely, packstone are the dominant microfacies.
Algal thalli constitute 80-90% of the fossil content (Figs. 9, 10).
Most accessory fossils are encrusting forms: the smaller fora-
minifers Tuberitina and Calcitornella, the red alga Ungdarella,
Shamovella, worm tubes, and, rarely, fenestellid bryozoans
(Samankassou, 1997). The heterogeneous matrix includes car-
bonate mud and irregularly shaped peloid- and cement-domi-

Fic. 7.—Anthracoporella—Archaeolithophyllum mounds. A) Massive part (left) passing into crudely bedded part (right) of mound.
Mound is approximately seven meters thick (arrow showing person for scale) and extends for several tens of meters laterally. B)
Anthracoporella (An) is commonly upright in growth position and usually forms small framework patches. Coin for scale is ca. 20

mm in diameter.
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Fic. 8.—A, B) Archaeolithophyllum boundstone. Normally one of
the two algae Archaeolithophyllum or Anthracoporella domi-
nates, as does Archaeolithophyllum missouriense (Ar) in these
figures. Only a fragment of Anthracoporella (8A, encircled) can
be recognized. Note undulating forms and bifurcation of
Archaeolithophyllum thalli (Wray, 1964) and the common en-
crusting Shamovella (arrows). Framework voids are filled
mostly by peloidal sediment containing sponge spicules. Bar
scale is 2 mm long.

Fic. 9.—Phylloid algal mounds. Accumulation of leaf-like algal
thalli. The very large thalli within a micritic matrix cannot be
transported far prior to deposition. Coin for scale is ca. 20 mm
in diameter.

Fic. 10.—Phylloid algal boundstone. A) In situ brecciated, irregu-

larly encrusted phylloid algal thalli (PA) in a peloidal micrite
matrix with various bioclasts. Shamovella encrusts most of
thalli (arrow). Scale bar is 2 mm long. B) Algal thalli (here
Neoanchicodium N) are obviously brecciated in situ. The matrix
is micritic, peloidal, and contains diverse smaller bioclasts (cf.
Wray, 1964; Samankassou and West, 2002). Scale bar is 5 mm
long. C) Framework cavities (C) are filled with marine ce-
ment. Note the irregular contours of peloidal areas in cavities
(C). The rarely identifiable thalli are of Eugonophyllum and
Neoanchicodium. Collapse brecciation is indicated by thalli
fragments that are slightly offset (arrows). Cement-filled cavi-
ties are more common than in Part A. Scale bar is 5 mm long.
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nated areas. Micritic cements are common. Mounds are capped
by reddish, brecciated horizons and numerous fractures (Fliigel
et al., 1997).

Depositional Environment and Comparisons.—

Phylloid green algal thalli seem to have been brecciated in situ,
asindicated by the arrangement of broken thalli (Fig. 10). Because
thallihave notbeen transported and occur ina muddy facies, low-
energy conditions are inferred (Welch, 1977; Frost, 1975). No
constructional features, such as the upright, cup-shaped growth
forms described from the Midcontinent, U.S.A. (Samankassou
and West, 2000, 2002, and this volume), occur in the Carnic Alps.
The enclosed pores and broken algal thallus fragments that fit
together indicate very little or no transportation and reworking
prior to deposition. Biodiversity was relatively low, as is common
in algal banks (Laporte, 1962; Heckel and Cocke, 1969; Heckel,
1974; Wilson, 1975; Toomey, 1976, 1991; Frost, 1975). These banks
appear to have formed in very shallow, well-lit environments.
Mound growth was terminated by subaerial exposure, as evi-
denced by fractured surfaces and reddish horizons capping
mounds and including karst breccia.

Accumulation of phylloid algal thalli, growth of algal banks
into shallower environments (shoals, capping facies; Wilson,
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1975), and subsequent subaerial exposure are common patterns
in upper Paleozoic phylloid algal facies (Pray and Wray, 1963;
Wilson, 1975; Wray, 1977; Toomey et al., 1977; Toomey and
Babcock, 1983; Dawson and Carozzi, 1986; among many others).
The phylloid algal mounds studied, capped by horizons record-
ing subaerial exposure, however, lack shallowing-upward trends.

Archaeolithophyllum—Bryozoan—Brachiopod Mounds

Archaeolithophyllum-bryozoan-brachiopod buildups com-
monly occur in the Pizzul and Auernig formations in localities 5
and 6 (Fig. 1) and are Kasimovian and Gzhelian in age.

Description.—

Archaeolithophyllum-bryozoan—brachiopod buildups aresmall,
only a few decimeters thick, with massive to irregular bedding.
Boundstone is the characteristic microfacies, with the red alga
Archaeolithophyllum missouriense, fenestellid bryozoans, and or-
nament-rich brachiopods the main mound-building fossils (Fig.
11). Archaeolithophyllum encloses large cavities, up to 5 mm in size
(Fig. 11A). Bryozoans, Shamovella, and brachiopods encrustor are
attached to the large, undulatory thalli of Archaeolithophyllum
missouriense (Fig. 11B, C).

Fic. 11.—A-C) Archaeolithophyllum-bryozoan-brachiopod boundstone. Large, unbroken undulatory thallus of Archaeolithophyllum
missouriense (Ar in A—C) enclosing cavities (C), encrusting bryozoans (Bryoz in A, B), Shamovella (T in B), and ornament-rich
brachiopods (Bra in C) are the main constituents. Fragment of bryozoans are common in the matrix, along with foraminifers,
sponge spicules, and Shamovella. The fossil associations are very similar to those of the Midcontinent, U.S.A. (Wray, 1964, and
subsequent workers). All figures are oriented perpendicular to bedding plane. Scale bar is 5 mm long for A and 2.5 mm for B

and C.
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Additional fossils include the smaller foraminifers
Palaeotextularia, Tuberitina, and Hemigordius, ostracodes,
Shamovella, sponge spicules, and the problematic algae Efluegelia
and Ungdarella, and rare calcareous sponges (Fig. 11A). The
overall biodiversity is high. A peloidal matrix is characteristic,
and cement fills interparticle pores (Fig. 11A).

Depositional Environment and Comparisons.—

The delicate, evident framebuilding and the micritic matrix of
Archaeolithophyllum-bryozoan—brachiopod moundsindicate low-
energy conditions during deposition. Biodiversity is high, and in
this respect Archaeolithophyllum—bryozoan-brachiopod mounds
differ from other mounds of the Auernig Group and other mounds
dominated by phylloid green algal species (see above).

Mound growth forms are very similar to those reported from
the U.S. Midcontinent, as is the fossil association (Wray, 1964;
Frost, 1975; Welch, 1977; among others). Samankassou and West
(this volume) reported a higher biodiversity in red-
(Archaeolithophyllum)-algal-dominated mounds than thatin green-
algal-dominated mounds from eastern Kansas, U.S.A. According
to these authors, this may be related to difference in algal growth
forms.
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Rocks above the Archaeolithophyllum-bryozoan-brachiopod
mounds have been interpreted as cool-water carbonates
(Samankassou, 2002). Thus, the uncommon fossil association
may be explained by temperature. Sequences that presumably
have been influenced by cool-water currents are limited to spe-
cific intervals within the Auernig Group, and this may explain
why buildups of this kind are confined to the Auernig Group
(Samankassou, 2002).

Anthracoporella Mounds

Mounds of the dasyclad alga Anthracoporella, widespread in
the Carnic Alps, occur in localities 5-7 and 8-11 (Fig. 1), domi-
nantly in the Auernig Group and the Lower Pseudoschwagerina
Limestone.

Description.—

The thickest mounds of the stratigraphic sections studied,
up to 22 meters, occur in the Lower Pseudoschwagerina Lime-
stone (Fig. 12A). Anthracoporella built delicate frameworks
(Samankassou, 1998) as indicated by dense, commonly erect
and unbroken thalli (Figs. 12B, 13) and cavities between algal

Fic. 12.—Anthracoporella mounds. A) Thick (22 m), massive Anthracoporella mound. Arrow indicates person for scale. B) The large
thalli of Anthracoporella are commonly upright in growth position and show little brecciation. Marks on the scale bar are in

centimeters.
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Fic. 13.—A, B) Anthracoporella boundstone. Well-preserved Anthracoporella thalli (An), obviously in growth position, enclosing
framework pores filled with peloidal clotted micrite and cement (C). The rare fossil occurring in the matrix is Shamovella (T,
arrows). Fragments of algal thallus (circled) are rare. Scale bar is 2.5 mm long for A and B.

thalli that are filled with carbonate mud, peloidal grains,
synsedimentary marine cements, and micritic crusts (Fig. 13).
Fossils that rarely occur in cavities are: coralline sponges, bra-
chiopods, serpulids, and gastropods.

Intermound areas, usually one-third as thick as the mounds,
consist of wackestone and packstone containing a different biota,
one in which Anthracoporella is scarce, making it easy to differen-
tiate mound facies from intermound facies.

Depositional Environment and Comparisons.—

Anthracoporella mounds grew in a low-energy environment,
below wave base, as indicated by the delicate framebuilding
growth forms and significant volumes of clotted peloids and
micrite. The alga grew during rising sealevel but “gave up” when
the sea floor was below the lower limit of the photic zone. The
subsequent drowning is recorded in the ”"Shroud Facies” that
overlies Anthracoporella mounds (Samankassou, 1999).

The dasyclad alga Anthracoporella is widely reported from
upper Paleozoic shallow-marine carbonates (Mamet et al., 1987;
Mamet, 1991). Nevertheless, to date, actual mounds constructed
by this alga are known only from the Carnic Alps (Fliigel, 1987;
Krainer, 1995; Samankassou, 1997, 1998).

Mounds of Complex Fossil Associations

Buildups of complex fossil associations occur in the Upper
Pseudoschwagerina Limestone, at locality 14 (Fig. 1). They can-
not be clearly delineated, nor can they be differentiated in the
field using their fossil content (Fig. 14). They are therefore treated
as a whole in the following section, and differentiation is based
on thin-section petrology.

Description.—

Banks and biostromes are the common structures in the
Upper Pseudoschwagerina Limestone. They areirregularly bed-
ded, 1-3m thick, and several tens of meters in lateral extent (Fig.
14). Using fossil content, as observed in thin sections, three
different types of buildups have been distinguished: (1)
Archaeolithophyllum—Shamovella—bryozoan (Fig. 15); (2)
Archaeolithophyllum—calcisponge (Fig. 16); and (3) calcisponge-
Shamovella (Fig. 17). The only recognizable calcisponge is
DPeronidella, and both Archaeolithophyllum lamellosum Wray 1964
and Shamovella built crusts (Fig. 15). A. lamellosum built struc-
tures with synoptic relief (Fig. 16), and Shamovella and bryozo-
ans commonly encrusted the algal thalli. Peloidal-dominated
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Fic. 14—Upper Pseudoschwagerina buildups as seen at locality
14, Fig. 1. Poorly bedded banks composed of complex biotic
associations (see Figs. 15-17). Note thinning of the bank
toward left and dip to the left (arrows).

areas, strikingly lacking bioclasts, are volumetrically impor-
tant. The mostly pendant micritic cements are volumetrically
important in the calcisponge-Shamovella buildups (Fig. 17).
Paleosols cap most (three-quarters) of these buildups
(Samankassou, 1997). Although framework structures are com-
mon and lateral changes in thickness are obvious (Fig. 14), no
high-relief, small-scale biohermal features can be delineated in
the field.

Depositional Environment and Comparisons.—

The microfacies of the mounds (boundstone of delicate
fragile fossils, micrite, and pendant micritic cements in and
outside of cavities; Fig. 17) indicate low-energy conditions.
Mounds were exposed into shallow-water environments, as

FiG. 15.—Archaeolithophyllum—Shamovella-bryozoan boundstone.
Archaeolithophyllum lamellosum built thick crusts, which en-
close cavities (C) filled with peloidal micrite (P; note the
irregular surfaces of infilling sediment), smaller foraminifers,
and cement. Shamovella and bryozoans (Br) commonly en-
crusted algal thalli. Absence of bioclasts in peloidal areas is
striking, indicating low reworking. Scale bar is 1 mm long.

ELIAS SAMANKASSOU

Fic. 16.—Archaeolithophyllum—calcisponge boundstone.
Archaeolithophyllum lamellosum was obviously able to build
millimeter-scale relief (arrows). Sponges (S) grew close to the
domal forms. Micrite and cement fill cavities (C). Note irregu-
lar forms of peloidal areas that are free of bioclasts. Scale bar
is 4 mm long.

indicated by the capping facies recording subaerial exposure
(Samankassou, 1997). The microfacies and the fossil association
are very similar to those of Permian buildups from the Hueco
Mountains, Texas, U.S.A. (Wahlman, 1988), except for
Archaeolithoporella, which is not as common in the Upper
Pseudoschwagerina Limestone. The occurrence of a capping
facies fits with most previous algal-mound models (Wilson,
1975, and subsequent workers), but the shallowing-upward
trend of the latter is lacking in the Upper Pseudoschwagerina
Limestone buildups.

TRENDS IN DISTRIBUTION AND EVOLUTION OF
BUILDUPS IN THE CARNIC ALPS

Auernig Group

The Auernig Group records a wide spectrum of buildups
(Fig. 18):
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Fic. 17.—A, B) Calcisponge-Shamovella boundstone. The only recognizable calcisponge is Peronidella (S). The abundant Shamovella
(T) built crusts. Micritic, generally pendant cements (arrow in A) are common and volumetrically important. Archaeolithophyllum
is present but is less important compared to Figure 16. Peloidal-dominated areas are, however, volumetrically more important.
Bryozoans (Br in B) are rare. Scale bar is 5 mm long in A and B.

1. Auloporid corals and the alga Rectangulina were the dominant
mound builders during the early Kasimovian. These two
types of buildups are limited to the basal part of the Auernig
Group and to the Carnic Alps generally.

2. Algae were the dominant mound builders during late
Kasimovian and early Gzhelian. Mounds generally exhibit a
higher diversity than do those from the early Kasimovian.
Except for phylloid algal mounds, all buildups comprise two
or more fossil groups. Commonly, Archaeolithophyllum-bryo-
zoan-brachiopod mounds are smaller (centimeter-scale) than
mounds dominated by Anthracoporella—Archaeolithophyllum
(meter-scale).

3. The depositional environment was carbonate-siliciclastic
dominated, under moderate water depth at or just below
wavebase (Fig. 19A). Cooler-water fossil associations consist-
ing of bryozoans, brachiopods, and crinoids occur in rocks
just above the mounds. Thus, input of cool water is assumed
to be the limiting factor of mound growth (Fig. 19A, B).

Biodiversity is high despite limiting factors such as siliciclas-
tic input and cooler temperatures.

Rattendorf Group
Lower Pseudoschwagerina Limestone.—

Both types distinguished in the Lower Pseudoschwagerina
Limestone, Anthracoporellaand phylloid algal mounds, are nearly
monospecific. The thickest mounds of the entire interval ana-
lyzed occur herein (Fig. 12A). The depositional environment was
typically carbonate dominated, and water depths were deeper
than that of mounds in the Auernig Group. Warm-water condi-
tions are inferred for the Lower Pseudoschwagerina Limestone
on the basis of the abundance of ooids and aggregates
(Samankassou, 1997).

Mounds occur in the transgressive phase of Lower
Pseudoschwagerina Limestone cyclothems (Samankassou, 1997).
Thick mounds, resulting from increased accommodation space,
indicate that mounds kept pace with sea level. Mound growth
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Fic. 18.—Distribution of mound types within the stratigraphic scheme of the Carnic Alps, and distinctions based on fossil associations
and influencing factors. The biotic diversity is higher in the Auernig Group (siliciclastic-dominated and cool water) and moderate
tohigh in the Upper Pseudoschwagerina Limestone (very shallow, warm? water). Diversity islow in the Lower Pseudoschagerina
Limestone (deeper, carbonate dominated, warm conditions) and Grenzland Formation (very shallow, siliciclastic dominated,
warm water). Boldface type indicates mound types known only from the Carnic Alps to date. LPL = Lower Pseudoschwagerina
Limestone; GF = Grenzland Formation; UPL = Upper Pseudoschwagerina Limestone.

was terminated by drowning through sea-level rise (“Shroud
Facies” draping Anthracoporella mounds; Samankassou,
1999)(Figs. 18, 19A, B).

Grenzland Formation.—

The two mound types encountered in the Grenzland Forma-
tion are of low diversity, and were constructed by phylloid algae
and rugose corals (Fig. 18). A very shallow, siliciclastic-domi-
nated depositional environment is inferred. The broken fossils

and the presence of ooids may indicate shallow-water conditions,
above wave base. Intervals of subaerial exposure evidenced by
breccia, collapse, and fractures are recorded at the tops of the
mounds (Fig. 19A, B). Warm-water conditions are inferred (Fig.
18).

Upper Pseudoschwagerina Limestone.—

Upper Pseudoschwagerina Limestone mounds have more
diverse fossil associations than those of the Grenzland Formation
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Fic. 19.—A) Depositional environment of the mounds studied and the main factors controlling their growth. (1) Coral and alga
Rectangulina mounds grew in a siliciclastic-dominated environment, close to wave base. Mounds grew during phases of reduced
siliciclastic input (Fliigel and Krainer, 1992). Their growth was arrested by increased input of siliciclastics. (2) Algal mounds of
the Auernig Group grew close to and just below wave base. Input of cool water is assumed to be the limiting factor of mound
growth (Samankassou, 2002). (3) Alga Anthracoporella mounds grew during rising sea level. Before final drowning, mounds kept
pace with sea level. Thicker mounds are the result of increased accommodation space. Deep-water deposits cover mounds
(Samankassou, 1999). (4) Phylloid algal mounds (e.g., Grenzland Formation) grew just below wave base. Sea-level falls caused
subaerial exposures of mounds. Thinner mounds are the result of decreased accommodation space. Sketches are not to scale. The

difference in mound sizes reflects differences in thickness.
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FiG. 19 (continued).—B) The growth of buildups (B) is arrested by siliciclasticinput (#1, coral and alga Rectangulinamounds, Auernig
Group), cooler temperature (#2, algal mounds of the Auernig Group), sea-levelrise (43, drowning in the Lower Pseudoschwagerina
Limestone), or sea-level fall (#4, subaerial exposed tops of buildups in Grenzland Formation and Upper Pseudoschwagerina

Limestone).

and grew in moderate water depth, below wave base (Figs. 18,
19A). Subaerial exposure horizons are common at the tops of the
buildups, recording sea-level falls below actual sea floor or
mound accretion to the sea surface (Fig. 19A, B). The latter seems
unrealistic, inasmuch as moundslack ashallowing-upward trend
in vertical facies evolution. Furthermore, subaerial exposure
directly atop subtidal mound facies implies a rapid sea-level fall.

Using the early Permian fossil associations from the
Midcontinent North America (Toomey and Cys, 1979; Wahlman,
1988, 2000) for comparison, warm-water conditions can be in-
ferred. The higher diversity may be explained by the general
trend of increasing biodiversity from the latest Carboniferous to
the early Permian (Wahlman, 2000).

Summary.—

Biodiversity is highestin carbonate-siliciclasticenvironments
and moderate water depths close to wave base. Surprisingly, the
higher—diversity mounds, which were influenced by cool water,
occur in the Auernig Group (Figs. 18, 19A). Inasmuch as
biodiversity is supposed to be lower in cool-water settings, these
results do not fit previous models. The thickest mounds occur in
intervals of highest accommodation space (Lower Pseudo-
schwagerina Limestone), where the principal mound constructor
was the dasyclad alga Anthracoporella (Samankassou, 1997, 1998).
Mounds of the algae Rectangulinaand Anthracoporellaand mounds
of auloporid corals are known only from the Carnic Alps (Table
1). The reason for this limitation is not clear; more studies are
needed to evaluate the full geographic extent of these mounds.

No evidence of vertical zonation during mound growth was
observed. Vertical changes in sediments and fossils mirror extrin-
sic controls, specifically changes in water temperature, sea-level
fluctuations, and siliciclastic input (Fig. 19A, B; Table 1), rather
than reflecting ecological succession. These unstable physical
factors, which imply unstable ecological parameters, may partly
explain the dimensions of the mounds, the domination of build-
ups by opportunistic biota (mainly algae), and the overall low
biodiversity of buildups.

COMPARISONS WITH
CONTEMPORANEOUS AREAS

Most of the reported contemporaneous carbonate buildups
occur in the Carnic Alps (Table 1). Mounds of the algae
Rectangulina and Anthracoporella and mounds of auloporid cor-
als are so far known only from the Carnic Alps. The occurrence
of Archaeolithophyllum and Anthracoporella in the same mound is
unique to the Carnic Alps, as well. Two major mound types are
seemingly absent in the Carnic Alps: chaetetid sponge mounds
and Palaeoaplysina (fossil of uncertain systematic position)
mounds (Table 1). Palaeoaplysina is common in higher-latitude
settings. Donezella algal mounds generally occur in older rocks
(Mamet, 1991; Watkins, 1999; Samankassou, 2001), and bryo-
zoan mounds are more common in Artinskian and younger
rocks (Beauchamp, 1992).

According to most of the previous models, mounds grew
during falling sea level (cf. Soreghan and Giles, 1999a, for a
critical discussion). In the Carnic Alps, however, mound growth
occurred at various positions on the shelf (Fig. 19B), and the
mound thickness varies accordingly. As demonstrated in the
Orogrande Basin, New Mexico, U.S.A., multiple factors can
potentially affect mound growth and thickness (Soreghan and
Giles, 1999a, 1999b).

CONCLUSIONS

The buildups described range from a few centimeters to
several meters in thickness. Mound rocks are massive (particu-
larly those dominated by Anthracoporella) to indistinctly bedded
(Archaeolithophyllum-bryozoan dominated). Mound intervals
consist of boundstone, mostly with a peloidal-clotted texture.
Intermound areas consist of a bioclastic wackestone, typically
biodiverse, with fusulinaceans and the alga Epimastopora, which
commonly occur with gastropods, ostracodes, and smaller fora-
minifers. Fossils within the mounds differ from those in the
intermound and off-mound areas. Sedimentary structures, par-
ticularly large-scale cross-bedding inbeds underlying the mounds,
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TasLE 1.—Occurrence and distribution of buildup types in the Carnic Alps versus other settings.

CARNIC ALPS CONTEMPORANEOUS
BUILDUP TYPES (AUSTRIA-ITALY) SETTINGS
Auernig Group Rattendorf Group

Auloporid coral X

Rugose coral X X
Rectangulina X

Archaeolithophyllum-Anthracoporella X

Phylloid algal X X X
Anthracoporella X X
Archaeolithophyllum-Bryozoan—Tubiphytes X X
Archaeolithophyllum-Calcisponges X X
Sponge—Tubiphytes X X
Chaetetid sponges X
Palaeoaplysina X

Donezella algal mounds generally occur in older rocks (Mamet, 1991; Watkins, 1999; Samankassou, 2001), and bryozoan
mounds are more common in Artinskian and younger rocks (Beauchamp, 1992); both are therefore not considered in this
diagram. For references, see Young and Rush (1956), Wilson (1975), Fagerstrom (1987), West (1988), Wahiman (1988,

2000), and other authors cited in the text.

indicate deposition close to wave base, whereas mounds grew
below wave base. Cool-water fossil assemblages at the tops of
most Auernig mounds indicate a possible influence of water
temperature that may have been responsible for the termination
of mound growth. Sea-level fluctuations were probably a more
important control on Rattendorf mounds, as indicated by inter-
vals of drowning (Anthracoporells mounds, Lower
Pseudoschwagerina Limestone) and subaerial exposure of
mounds (Grenzland Formation, Upper Pseudoschwagerina Lime-
stone).

Whereas most carbonate buildup types reported from con-
temporaneous areas so far occur in the Carnic Alps, buildups of
the algae Anthracoporella and Rectangulina and buildups of
auloporid corals are not reported from other settings.
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