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Abstract

This thesis presents the concept of general argumentation systems, a framework
for representing uncertain knowledge using information algebras and informa-
tion systems as well as probability algebras. Argumentation systems are a
generalization of assumption-based systems and propositional argumentation
systems and can deal with very general formalisms. We show also that an
argumentation system itself is a special case of an information system.

We focus on argumentation systems as a tool for doing model-based diagnos-
tics of complex systems built of components. Given a system and observations,
this knowledge is modeled in the framework of an argumentation system. If
the observations are not as predicted from the specification of the system, we
have a diagnostic problem. Then, using concepts which are built on top of the
argumentation system (such as generalized hints and allocations of support),
conflicts and diagnoses, arguments, etc. for the system can be computed. Di-
agnoses of a system which does not work as it is supposed to, can then be used
to define repair or replacement strategies for the components of the system.
The set of diagnoses is often too big to be computed explicitly, but we define a
logical framework for the description of sets of diagnoses.

A main ingredient of an argumentation system is probabilistic knowledge of
some parts of the available information, essentially knowledge about the modes
of the components. This probabilistic knowledge allows to define allocations of
probability and allocations of belief on top of the argumentation systems. Using
these allocations, the symbolical results are weighed and discrimination between
them is possible. Further, we present algorithms for efficient computation of
the probability of logical representations of sets of arguments without explicitly
computing the sets.

The local computation framework of Shenoy & Shafer can be applied to argu-
mentation systems. We show also how additional information can be added to
an argumentation system, i.e. how argumentation systems are combined. Com-
bination of argumentation systems can also be replaced by combination of the
generalized hints, the allocations of arguments or belief defined on top of them.

Further, we address the problem of how additional information about the system
can be obtained, especially where further measurements should take place in
order to obtain a maximal expected gain of information in the argumentation
system; this is useful for a sequential process of discrimination of diagnoses in
the system.

Finally, we present the language ABEL, an implementation of a special type
of argumentation system. Several examples are presented in order to show the
strength of argumentation systems.



Zusammenfassung

In dieser Arbeit fithren wir das Konzept von Argumentations-Systemen ein,
die ein Hilfsmittel zur Représentation von unsicherer Information mit Hilfe
von Informations-Algebren und -Systemen sowie Wahrscheinlichkeits-Algebren
darstellen. Argumentations-Systeme sind eine Verallgemeinerung von Annah-
men-basierten System und propositionellen Argumentations-Systemen und kon-
nen sehr allgemeine Formalismen handhaben. Wir zeigen auch, dass Argumen-
tations-Systeme ein Spezialfall von Informations-Systemen darstellen.

Schwerpunkt dieser Arbeit ist die Verwendung von Argumentations-Systemen
als geeignete Hilfsmittel fiir Modell-Basierte Diagnostik von komplexen Syste-
men. Wir betrachten Systeme, welche aus verschiedenen Bausteinen aufgebaut
sind. Das System und die Beobachtungen werden zuerst in einem Argumen-
tations-System modelliert. Wenn die Beobachtungen nicht dem Verhalten des
Systems gemaéss der Spezifikation entsprechen, so sind wir mit einem Diagnose-
Problem konfrontiert. Dann verwenden wir Konzepte (z.Bsp. verallgemeinerte
Hinweise, Allokationen von Support), welche auf dem Argumentations-System
aufbauen, um Konflikte, Diagnosen, Argumente, etc. fiir das System zu berech-
nen. Die Diagnosen eines Systems, dessen Verhalten nicht den Spezifikationen
entspricht, konnen fiir die Ausarbeitung von Reparatur- oder Austauschstrate-
gien fiir die Komponenten des Systems verwendet werden. Die Menge der Di-
agnosen ist oft zu gross um explizit berechnet zu werden, aber wir definieren
eine logische Sprache fiir die Reprasentation von Mengen von Diagnosen.

Ein weiterer Hauptbestandteil eines Argumentations-Systems sind probabilisti-
sche Aussagen tliber Teile der vorhandenen Information, hauptséchlich Aussagen
iiber die verschiedenen Arbeits-Modi der Komponenten. Diese Aussagen wer-
den dazu verwendet, Wahrscheinlichkeits- und Belief-Allokationen auf einem
Argumentations-System aufzubauen. Wir brauchen dann solche Allokationen,
um die symbolischen Resultate zu bewerten und zu unterscheiden. Des weiteren
definieren wir Algorithmen zur effizienten Berechnung der Wahrscheinlichkeit
von logischen Représentation von Mengen von Diagnosen, wobei die Mengen
nicht explizit berechnet werden miissen.

Die Methoden zur lokalen Berechnung von Shenoy & Shafer kénnen auch auf
Argumentations-Systeme angewandt werden. Wir zeigen weiter, wie neu auf-
tauchende Information in ein Argumentations-System integriert werden kann,
d.h. wie Argumentations-Systeme kombiniert werden. Diese Kombination kann
auch auf den darauf aufbauenden Konzepten wie verallgemeinerte Hinweise,
Allokationen von Support oder Wahrscheinlichkeits-Allokationen durchgefiihrt
werden.

Im weiteren behandeln wir das Problem der Beschaffung von zusétzlicher Infor-
mation liber das System; speziell interessiert uns die Auswahl eines Messpunkts
im System, so dass die Messung einen maximalen Erwartungswert von zuséatz-
licher Information liefert; dies ist niitzlich in sequentiellen Verfahren zur Aus-
scheidung von Diagnosen.
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Zum Schluss geben wir eine Einfithrung in die Sprache ABEL, in welcher Sys-
teme beschrieben werden konnen, welche auf einem speziellen Typus eines
Argumentations-Systems beruhen. Verschiedene Beispiele zeigen die Machtig-
keit von Argumentations-Systemen auf.
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Introduction

Information processing and automated reasoning on the computer have to deal
with several problems, one of them being uncertain information. In the field of
Artificial Intelligence, several different concepts and methods have been devel-
oped for dealing with uncertain information, but also with imprecise, unreliable,
and inconsistent information. In the presents work, we focus especially on the
management of uncertain information with respect to diagnostic processes, at
both the qualitative and the quantitative level.

1.1 Motivation and Purpose

Consider a system built of components and described in some modeling lan-
guage, together with some observations of its behavior. If the observations are
in conflict with the values predicted from the description of the system, we have
a diagnosis problem, that is, we have to detect the faulty parts of the system.
Reiter (1987) introduced the basic theory of diagnosis from first principles and
showed how a set of abnormally working components can be used to explain
the malfunctioning of the system, that is the discrepancy between the actual
observations and the predicted values. Clearly, there are several different sets
of possibly abnormally working components, and we do not know which is the
right one. Further interesting work in this area has been done by Davis (1984),
de Kleer (1976), de Kleer & Williams (1987), Genesereth (1984), and Reggia
et al. (1983; 1985), but here we will especially focus on the ideas presented in
(Kohlas et al., 1998).

The main goal of this thesis is a definition of a general framework for diagnostics
called argumentation systems. They generalize the so-called assumption-based
systems and propositional argumentation systems (Kohlas & Monney, 1993;
Kohlas & Monney, 1995; Haenni, 1996; Kohlas et al., 2000), which are mainly
based on propositional logic and probabilities. Argumentation systems in our
terminology can deal with information represented by much more general struc-
tures than propositional logic. Moreover, algorithms are presented which use
this structure to do model-based diagnostics and compute diagnoses, minimal
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diagnoses, and conflicts, but also supporting or refuting arguments for general
hypotheses.

The problem in the approach presented in (Kohlas et al., 1998) is that the
knowledge about the system is represented in two languages, a general lan-
guage L and a propositional language & C L, which contains the so-called
assumptions, i.e. the unary predicates AB(c¢;) describing the functioning of the
components ¢;. The only restriction on L is that there is an operator defined on
“Instantiated” formulas in £, i.e. on formulas where occurrences of AB(¢;) are
replaced by an assignment of true and false, where the answer of the operator is
either that the instantiated formula is consistent or that it is inconsistent. But
nothing more is known about this operator. Using the concepts of information
systems and algebras (Kohlas & Stark, 1996a; Kohlas & Stérk, 1996b) together
with a generalization of the concept of hints (Kohlas & Monney, 1995; Kohlas
& Monney, 1993), more structure is included in the formulation of the model
of the system; particularly, the two types of variables are “separated”. Model-
based diagnostics using (normal) hints have already been discussed in (Kohlas
et al., 1995), the approach presented hereafter is also a generalization of that
work.

Kohlas et al. (1998) show that their approach is also closely related to the
general theory of evidence introduced by Shafer (1976) which extends work of
Dempster (1967). Further influences from this field are (Kohlas, 1995; Kohlas,
1997a; Kohlas & Brachinger, 1995; Kohlas & Monney, 1994).

Additionally, probabilities are defined on argumentation systems. De Kleer &
Williams introduced probabilities into their assumption-based truth mainte-
nance systems (De Kleer & Williams, 1987; De Kleer, 1993; De Kleer, 1986a;
De Kleer, 1986b). But the approach presented here is based on a different and
correct method of Kohlas et al. (1998). So we show how probabilities of con-
flicts or diagnoses as well as any formula in a language can be computed, based
on a special case presented in (Anrig et al., 1996). The resulting information
with respect to a hypothesis is a so-called belief function (Shafer, 1976), and
thus argumentation systems may also help to formalize the notion of “eviden-
tial corpus” in the terminology of Smets (Smets & Kennes, 1994; Smets, 1999).
Furthermore, numerical supports and doubts in hypotheses about the system
are of special interest. Efficient algorithms for computing numerical results
from the symbolical ones are presented, but when only numerical results are
needed, there is also the possibility to use numerical propagation algorithms,
see for example (Lehmann, 2000) for a discussion.

Probabilities are really an additional information in this system. For example,
they can be used to weight (minimal) diagnoses and discriminate between them.
Another application is the computation of best next measurements, a method
for discrimination between diagnoses using more information in the system.
Probabilistic information together with symbolic information can then help the
user or an agent to make decisions based on the information presented in the
argumentation system, so here two types of results, numerical and symbolical,
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are presented to the user. Moreover, probabilities can be used to build the
system’s repair strategies.

1.2 Overview

Chapter 2 presents the mathematical fundaments on which this work is con-
structed: the theory of information algebras developed by Kohlas and Stark
(1996a; 1996b) for representing pieces of information in a well specified frame-
work; probability algebras for representing belief, especially about a state space;
and allocations of probabilities (Kohlas, 1997b) for linking pieces of information
of an information algebra with elements of the probability algebra. It is inter-
esting to see that the allocations themselves build also an information algebra.
Belief functions then associate the pieces of information directly to numerical
degrees of belief (Shafer, 1976). In the last section of the chapter, we focus
on the construction of belief functions from allocations of probability and vice
versa, the first one being a generalization of well known results, the second
using results of (Kohlas & Stark, 1996b).

In chapter 3, first the standard concept of hints (Kohlas & Monney, 1995)
is introduced. The main part of a hint is a multivalued mapping from the
possible interpretations to the frame of discernment. Typically, a hint reflects
information like “if component one is working but component two is not working
then the output of the device is five”, i.e. implications where the premiss is not
sure to be true. We generalize hints to the present framework, i.e. the frames
of discernment are replaced by more general information algebras. We show
how generalized hints can be combined and transported, and how allocations of
of probability and of quasi-support can be defined on top of generalized hints.
Further, also the allocations of quasi-support form themselves an information
algebra.

Information algebras are often not easy to handle, because in general they
have an infinite number of elements. So in chapter 4 information system are
introduced following (Kohlas & Stark, 1996a; Kohlas & Stark, 1996b). An
information system is a way to represent an information algebra. For example,
linear manifolds which consist in general of an infinite number of points can
alternatively be represented by finite sets of linear equalities.

In chapter 5, we introduce the concepts of finite set constraints (FSC) following
(Anrig et al., 1997¢), a generalization of binary variables. We show that FSC’s
are also an information system and we construct the corresponding, in fact
well-known information algebra. Further, we generalize the ideas of arguments,
conflicts, quasi-supports, ..., to this framework.

On the basis of the foregoing chapters, in chapter 6 we define the concept of
argumentation systems. An argumentation system is a FSC language and an
information system with a partial mapping between them. It is our basic struc-
ture for representing knowledge about systems, and we show how a generalized
hint can be deduced from it. Additionally, probabilistic information may be
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available for the literals of the FSC language; in that case, the argumentation
system is called probabilistic. Further, we show that an argumentation system
is itself also an information system, such that we are able to construct the in-
formation algebra on top of it. Then, we show how this information algebra
is in fact related to an allocation of arguments constructed on top of the hint
which is induced by the argumentation system.

The main topic of this work, model-based diagnostics using argumentation sys-
tems, will be the subject of chapter 7, where the fundaments presented in the
previous chapters and especially the concepts of argumentation systems are used
to develop the theory based on ideas of (Reiter, 1987) and especially (Kohlas
et al., 1998). Several examples illustrate the theory.

A well-known architecture can be used for computing conflicts, diagnoses and
arguments in argumentation systems, i.e. local propagation in valuation net-
works (Lauritzen & Spiegelhalter, 1988; Shenoy, 1989). In chapter 8, we adapt
these concepts to information systems, and therefore also to argumentation
systems, because they are just a special case of information systems.

Given a probabilistic argumentation system, the conflicts and also other argu-
ments can be weighted using the probability function. In chapter 9, we show
how prior probabilities of conflicts or diagnoses and posterior probabilities of
arguments are computed using efficient algorithms.

If additional information becomes available, it has to be added to that which is
already known. In chapter 10 the problem of adding information is addressed,
which can also be seen as a combination of argumentation systems. We espe-
cially focus on the computation using hypertrees. There, one of the problems
is the selection of the node where the new information has to be put. This
problem is not so hard to solve, but in some cases, the new information might
not “fit” on any edge of the hypertree because of its structure, and so we also
present some generalized and some new algorithms for changing the structure
of the hypertree efficiently.

Often an argumentation system does not contain enough information to make
a decision, for example to replace a component or not. In chapter 11, we
show how according to the knowledge contained in an argumentation system,
one can compute optimal points for taking measurements, i.e. how additional
information can be obtained in an optimal way. Due to the complexity of
the algorithms, we present also approximation techniques for this purpose, so-
called one-step lookahead methods, some of which are based on (De Kleer et al.,
1992D).

Finally in chapter 12, ABEL is presented, a software system which implements
some special kinds of argumentation systems and allows to do model-based diag-
nostics. We present this using several well-known examples. This language has
been designed and a solver is being implemented at the Institute of Informatics
iF at the University of Fribourg, Switzerland. This work has started as part
of the Esprit BRA project DRUMS II (Defeasible Reasoning and Uncertainty
Management Systems).
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1.3 An Introductory Example

In this section, we present an introductory example to clarify the concepts of
an argumentation system. We use a well known example of a simple electronic
circuit.

Example 1.1: Three Serial Inverters

This example is described in detail in section 7.3, example 7.1; here we give
only a overview of the problem.

Consider a simple digital circuit built out of three serial inverters and connected
as in fig. 1.1.

o o

Figure 1.1: Three serial inverters.

Suppose that every component has two working modes. If an inverter 7, is in its
correct working mode, then it inverts the incoming signal, i.e. its output signal
is the negation of its input signal; this mode will be denoted by ok and the
signals will be modeled by binary variables. If an inverter is in its faulty mode
(faulty = —ok) then nothing is said about its behavior, so every combination of
in- and output signals is possible, and one of these combinations is the correct
but unknown one. Assume that the initial probability of a failure of an inverter
is 0.01. The set of components is C' = {iy,i2,i3}, and the variables for the
connectors are in, x, y, and out. This information represents an argumentation
system. Usually, we represent the non-probabilistic part of this information by
a relation “—" between information about the components (which is uncertain)
and information about variables:

(i1 = ok) — (z = —in)
(i2 = 0k) — (y=-2)
(i3 = ok) — (out = —y)

In this example, the relation “~—” can be interpreted as a rule, that is if 11 = ok
then x = —in.

In addition, suppose that the input and output values are measured as 1. The
variables in and out are binary propositional variables, so we have to state the
fact that in and out are true independently of the state of the systems. This
is done using the symbol T representing the tautology, therefore in the same
notation as above:

T — in

T — out
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These observations form a second argumentation system which can be combined
with the first one to form a new, combined argumentation system. In this ex-
ample, the non-probabilistic information of the combined system is represented
by all five “rules” together.

Apparently, the observations imply that the system is not functioning correctly,
because the predicted output (—out) of the system, that is the behavior of
the system when all components are working correctly, is in conflict with the
observed one (out) if the input is in.

The combined argumentation system can then be used to compute minimal
diagnoses. There are three of them in this example, namely i1 # ok or is # ok
or i9 # ok, where the “or” is not exclusive, which means that at least one of the
components must be faulty. Using the prior probability of the working modes of
a component, the probabilities of the minimal diagnoses can be computed. Fur-
thermore, symbolic or numeric arguments for any hypothesis can be computed,
so for example for the hypothesis i1 = ok.

The three minimal diagnoses in this example appear to be equiprobable, so an
additional measurement can get new information to discriminate between the
diagnoses. The question is then: where should this measurement be made in
order to get as much information as possible? S)



Information and Uncertainty

In order to allow computers to deal with information, it has to be modeled
in a precise formalism. For our present purpose, by a piece of information we
generally understand statements describing some parts of a world, each piece
of information can or cannot be true. The uncertainty of the information being
true or not will be considered as not contained in the information itself, but
expressed within a second formalism. Thus we make a clear distinction between
the description of information and the description of uncertainty of a piece of
information. Clearly, the two concepts will be linked.

In this chapter we introduce the main concepts of representing information by
information algebras, probability algebras and allocations of probability. These
concepts are then the main ingredients for first generalizing hints (chapter 3)
and then constructing argumentation systems (chapter 6).

In the present chapter, we introduce the concepts for describing information by
information algebras in section 2.1 and for describing uncertainty by probability
algebras in section 2.2. Then these concepts will be linked by allocations of
probability in section 2.3, and we show that these allocations build themselves
again an information algebra (sections 2.4 and 2.5). Finally, in section 2.6 we
show that allocations of probability can be used to construct belief functions
and vice versa.

The concepts and ideas for sections 2.2 to 2.6.1 are mainly taken from (Kohlas,
1997c¢).

2.1 Information Algebras

The concept of an information algebra was introduced by Kohlas & Stark
(1996a; 1996b) as a general theory of information processing in computer sci-
ence. Its motivation comes originally from the field of uncertainty calculi in ar-
tificial intelligence, where many different calculi have in fact a common generic
inference theory; the calculi are models of a certain algebraic structure simi-
lar to information algebras (Shenoy & Shafer, 1990; Shafer, 1991). However,

7
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most of those calculi do not respect the axiom of idempotency (see (A6) below)
of information algebras (Kohlas & Stérk, 1996b). The following short intro-
duction to unmarked information algebras and to marked information algebras
in subsection 2.1.2 follows (Kohlas & Stark, 1996a; Kohlas & Stark, 1996b).
In subsection 2.1.3 we show that under some circumstances both concepts are
equivalent.

2.1.1 Unmarked Information Algebra

In general, information may consist of different pieces or elements. The set
& will represent the pieces of information, and a piece of information is also
just called an information. Every element of ® contains information relative
to a question. Possible answers to such questions are represented in structures
called frames or domains. We assume that there is a partial order > on the
set of domains D which represents the precision level of the frame. We assume
that D is a lattice such that for every z,y € D the meet x A y, representing the
finest frame coarser than x and y, as well as the join x V y, representing the
coarsest frame finer than x and y, are contained in D. Further, there is a top
element T in the lattice, that is T > x for all z € D.

Two or more pieces of information can be combined by a combination operation.
The result is again a piece of information which contains the “sum” of all
information of the pieces. This operation should clearly be associative (A1) and
commutative (A2), that is the order in which pieces of information are combined
should not matter. There is an “empty information” which, combined with any
other information, does not add anything to it. This is called the neutral
element of the combination (A3).

A second operation is called focusing of information. It focuses information to
a domain in order to answer a possible question expressed in this domain. The
focusing is transitive, that is if an information is transported to one domain
and then to a second one, then the result is the same using just one transport
of the information to the finest frame coarser than both frames (A4).

Another restriction put on the two operations is called the “combination axiom”
(A5): It means that if an information is focused to a domain and combined with
a second information, and the combination then focused to the same domain,
then this is indeed the same as the combination of the two pieces of information
previously focused on that domain; this expresses a certain distributivity of
combination and focusing. This axiom is not so evident but essential for the
concept of local computations developed in chapter 8. This axiom is fulfilled
by a lot of interesting examples.

The transport of a piece of information to another domain does not add any-
thing to it, but often some parts of the information get lost during the trans-
portation. So we have the axiom of idempotency (A6).

A transport of an information to the top element T of the lattice does not
change the information at all; this is called the “support” axiom (A7).
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Formally this leads to the definition of an information algebra:

Definition 2.1 Let D be a lattice and ® a set. For ¢1,¢9 € ® and z € D,
let (¢1,d2) — P1 ® Po be the combination operation with neutral element e €
O and (¢p1,7) — ¢1~" the focusing operation. The system (®,D) is called
(unmarked) information algebra if the arioms (A1) to (A7) are fulfilled:

(A1) Associativity: (¢1 © ¢2) D 3 = ¢1 © (P2 © ¢3).
(A2) Commutativity: ¢1 D ¢po = pa D 1.

(A3) Neutral element: ¢ ® e = ¢.

(A4) Transitivity: (¢p=%)7Y = ¢==/\,

(A5) Combination: (¢17% @ ¢2) 7" = p17" @ ¢~ ".
(A6) Idempotency: ¢ & ¢~ = ¢.

(A7) Support: For every ¢ € ® we have ¢~ = ¢.

® is therefore a commutative semigroup with respect to the combination oper-
ation.

An element x of the lattice D is called a support for ¢ € ® if $~% = ¢. Axiom
(A7) implies that every element has at least one support, namely T.

An element z is called null element of the information algebra if it satisfies
z® ¢ = z for every ¢ € ®. This element represents the information which is
never true. Note that if such a z exists, then in general it is not necessarily
equal to 27% for every x € D. In some contexts it makes sense to formulate the
equality as an additional restriction; however we do not do this here. If there
is no null element contained in the information algebra, a new element z with
the properties of a null element can always be added to the information algebra
(because ® is a commutative semigroup) by defining ¢ @ z := z and 277% := 2
for € ® and = € D. So in the sequel, we always assume that the information
algebra has a null element; in a concrete situation an explicit representation of
this element is usually available.

If e = z then the information algebra is called inconsistent; this case is not of
interest here, because an inconsistent information algebra consists of only one
element, that is ® = {z}. Otherwise, i.e. if e # z, the information algebra is
called consistent.

Two elements ¢1, o € ® are called contradicting if their combination is the
impossible information, that is if ¢1 ® ¢2 = z. This means that if ¢; is actually
true then ¢, cannot be true at the same time (and vice versa); but there can
also be situations in which both ¢ and ¢ are not true. Therefore this does not
define a negation in the information algebra, but it can under some conditions
be used to define so-called pseudo-complements, see (Kohlas, 1995) for further
details.
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Elements of (®, D) may be compared based on the information they contain.
We say that ¢1 contains less information than ¢s if it can be combined with it
and the result is still ¢o. Formally, this leads to a partial ordering “<”: For
elements ¢1, g2 of the information algebra (®, D) we define

01 < ¢ ifand only if @1 P P2 = ¢o. (2.1)

Lemma 2.2 (Kohlas & Stark, 1996a) The relation < defined in (2.1) is a
partial ordering on .

Corollary 2.3 ¢ is the bottom and z the top element of ® with respect to the
partial ordering “<”, that is e < ¢ < z for any ¢ € P.

Lemma 2.4 ¢ = e¢~* for any x € D.

Proof of lemma 2./ (A3) implies e7* @ e = e~ and (A5) implies e © e~* = e.
Together with (A2), this implies the lemma. O

Note however that if there is a null element z in the information algebra, in
general z is not equal to 27* for x € D.

Examples of unmarked information algebras can be found in various fields.
In section 5.1 the unmarked information algebra of finite set constraints is
presented. Finite set constraints are a generalization of usual propositional
logic, therefore the example shows also that propositional logic can be seen as
an unmarked information algebra. Further, in section 6.3, another information
algebra is presented. Kohlas & Stark (1996b) show the link to constraint logic
programming.

2.1.2 Marked Information Algebra

The idea of a marked information algebra is that every element has a label
attached to it which specifies explicitly the domain in which the information is
expressed. This structure is very similar to the structure introduced in the last
subsection. In subsection 2.1.3 we show how an unmarked information algebra
can be transformed into a marked one and vice versa. The new structure will
be useful especially for computational purposes, as will be shown in chapter 8.

The formal definition was specified in (Kohlas & Stérk, 1996a; Kohlas & Stérk,
1996b):

Definition 2.5 Let D be a lattice, ® a set, and d : & — D a labeling function.
For ¢1,¢2 € ® let (¢1,p2) — @1 D @2 be the combination operation with neutral
element e, € ® for every x € D. For ¢ € ® and x < d(¢) (x € D) let
(¢, ) — @' be the marginalization operation. The system (®, D) is called
marked information algebra if the axioms (M1) to (M10) are fulfilled:
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(M1) Associativity: (¢ @ ¢2) ® ¢3 = ¢1 ® (2 ® ¢3).

(M2)  Commutativity: ¢ ® ¢y = ¢ & 1.

(M3)  Labeling: d(¢1 ® ¢2) = d(d1) V d(¢2).

(M) Label of the neutral element: d(e,) = x for every x € D.
(M5) Neutral element: If d(¢) = x, then ¢ & e, = ¢,

(M6) Label of the marginal: If x < d(¢), then d(¢'*) = z.
(M7)  Transitivity: If ¢ < y < d(¢), then (¢'¥)"" = pl=.

(M8) Combination: If d(¢1) = x1 and d(ds) = za, then (¢1 ® ¢2)*™ = ¢1 @
((252111/\12)_

(M9) Idempotency: If x < d(¢), then ¢ © ¢'* = ¢.
(M10) Stability: If © <y, then (e,)*" = e,.

An information ¢ with label z will usually be written as (¢, z) in order to
emphasize the domain .

An information with label x has sometimes to be “extended” to a superior
domain y > x in order to answer a question formulated with respect to y. This
extension does not add any information and is therefore called the vacuous
extension:

Definition 2.6 The vacuous extension of an information ¢ € ® with sup-
port x to a domain y > x is defined by

oV =g Dey. (2.2)

Clearly, d(¢!Y) = d(¢ @ e,) =  V y = y because y > .

The next lemma shows that this definition is consistent, that is the vacuous
extension of the empty information e, with label x to a finer frame y must
result in the empty information with label y, that is e,.

Lemma 2.7 (Kohlas & Stark, 19960) If x <y then e, @ e, = ey.
The vacuous extension has several properties:

Lemma 2.8 (Kohlas & Stark, 1996b)

1. x <y implies e, ¥ = €y.

2. ex D ey = epyy.
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3. If d(¢) = x, then ¢ @ e, = H1VY.

4. If d(¢) = z, then ¢'* = ¢.

5. Ifd(¢) =z and y < x, then ¢ ® e, = ¢.

6. If d(¢) =z and x < y < z, then (¢'%)" = ¢12.

7. Ifd(¢n) < z, d(¢2) < z, then (61 © ¢2)'* = ¢ @ .

8 Ifd(¢1) = 1 and d(do) = o, then ¢ ® ¢o = ¢y 1T1V2 @ o1 71V72,

The stability (M10) implies a stability property which holds for any information
¢ in (@, D):

Lemma 2.9 (Kohlas & Stark, 1996a) If d(¢) = x and x <y € D then
lx
(¢1)" = 0. (2.3)

This shows that the vacuous extension does indeed not add any information,
therefore ¢ and ¢!¥ contain essentially the same information.

A relation “<” can be defined in this information algebra similar to the one
introduced in the unmarked case. For (¢1,x1), (¢2,z2) in (@, D) define

(d1,21) < (P, m2) if and only if ¢ @ Gy = ! "1V"2 (2.4)

Often, (¢1,21) < (¢2,x2) will be abbreviated as ¢1 < ¢s.
Lemma 2.10 “<” defined by (2.4) is a partial ordering.

Proof of lemma 2.10 Reflexivity: For (¢, z) € (®,D) we have ¢ = ¢ ® ¢ =
#1*V* = ¢ and therefore (¢, x) < (¢, z).

Transitivity: Let (¢;, ;) € (®,D) for i = 1,2,3, (¢1,21) < (¢2,22) and
(2, x2) < (¢3,x3). Using the definitions, this is equal to

DLB Gy = ol (2.5)
G2 ®dy = 3™V (2.6)
Now
lzive
$1 ® b3 ((dn ® é3 T“V‘”MS) o by lemma 2.9
= (p1 @ 3@ €x2)lxlvz3 by definition
MG
= 3
= (¢1® o @ pg) "1V by (2.6)

— <¢2Tx1vﬂ52 D ¢3> le1Vas
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= (P2 @ gy, ® 3)"1 V78

lz1Ve
= (¢3T:E2\/a:3 ® eml) 1Vx3 by (26)
— <¢3 T:El \/"E2V1‘3) lxlvxS
Tz1VaaVas ANEE
— ((¢3TJJ1 \/1‘3) >
= ¢gloVes by lemma 2.9
which is the definition of (¢1,21) < (¢3,x3). This proves the lemma. O

Lemma 2.11 For a marked statement (¢, x) and y > x

(qﬁ,x)“’ > (¢, x) as well as (qﬁ,x)Ty < (¢, x).

Proof of lemma 2.11 By definition, the left hand side is equivalent to (¢, z) @
1 1) VY o 1
(p,2)"Y = ((gf),x) y) . Because y > z this is equivalent to (¢, x) & (¢, z)'Y =

(¢, 2)1Y (which is in fact also the definition of the right-hand side of lemma 2.11).
The idempotency axiom (M9) implies that (¢, z) & (¢, 2)"Y = (¢, z) ® (¢, ) B
(eg,y) = (¢, 2) ® (ey,y) = (¢, )"V and this proves the lemma. O

Kohlas & Stark (1996b) discuss the concept of marked information algebras
within relational databases and module algebras. In sections 5.1 and 6.3,
marked information algebras are constructed from unmarked ones (or vice
versa) using techniques presented in the next subsection.

2.1.3 Linking Unmarked and Marked Information Algebras

To every unmarked information algebra we can construct the corresponding
marked information algebra. Kohlas & Stark (1996a; 1996b) show also the
inverse path from the marked to the unmarked information algebra. They also
show that if one starts with an unmarked information algebra, then constructs
the marked one, and finally from the marked one constructs the unmarked one,
the latter is isomorphic to the starting algebra if every element therein has a
support.

First, we start with an unmarked information algebra and construct the cor-
responding marked one. So let (®,D) be a unmarked information algebra.
Consider the set

M ={(¢,x): 7" = ¢}. (2.7)

For two elements (¢1,21), (¢2,z2) from M define their combination by

(91, 71) ® (P2, 72) = (P1 © P2, 71 V T2) (2.8)
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and for y < z1 the marginalization by

(fr,21)" == (4177, y). (2.9)

Then define d({(¢1,x1) := x1 and e, := (e, x). It is easy to check that (M, D)
satisfies the axioms (M1) to (M10) and is a marked information algebra.

In the sequel, we usually denote by (®, D) the marked information algebra
constructed from the unmarked information algebra (®, D).

The null element z from (®, D) carries over to (®, D) as follows: For every label
x the element z, := (z,x) satisfies z, @ ¢ = z, for every ¢ with label d(¢) = x.

The combination of a marked information with such an element results then
still in a null element:

Lemma 2.12 (Kohlas & Stairk, 1996b) If d(¢) = = then ¢ @ zy = zZpvy.

Now, to consider the inverse path, we start with a marked information alge-
bra and construct the corresponding unmarked one. Let (®, D) be an marked
information algebra. Two pieces of information (¢, z) and (¢, y) in (®, D) are
called equivalent ¢ ~ 9 if their extensions to d(¢) V d(¢)) = x V y are equal,
that is if ¢ @© epvy = ¢ @ epvy. The relation ¢ ~ 1) is equivalent to ¢ < 1 and
P < ¢, i.e. “~” is the symmetry relation defined by the partial ordering “<”.

Lemma 2.13 ~ is an equivalence relation.

Proof of lemma 2.13 Reflexivity and symmetry follows from the definition. Let
now (¢, x), (1,y) and (x, z) be three marked statements with ¢ ~ ¢ and ¢ ~ x.
By definition, thisis ¢ © e, =9 ® e, and ¥ © e, = x © e,. This implies

pDe, De, =1 De,De,=xDe, Dey (2.10)

Marginalizing the left-hand side of (2.10) to x V z then gives

(Qb De, D 6y)isz = (¢ ©® ez) ©® eyl(z\/z)/\y = (¢ ® ez) S C(xvz)Ay
= (0®e:)Deav: Devany = (PDez) Deavs
= (b e,

and, similar, marginalizing the right-hand side of (2.10) to = V z gives
(X @ ex @ ey)lil?\/z — X @ €x7

such that finally ¢ & e, = x @ e, which, by definition, is ¢ ~ x and this shows
the transitivity of ~. O

Let now [¢] be the equivalence class to which (¢, z) belongs and [®] the set of
all these equivalence classes. The combination of two elements [¢] and [¢] of
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[®] is defined by [¢] @ [¢] := [¢ & ¢]. Focussing an element [¢] to a domain
y is defined by [¢]7Y := [(¢ @ e,)*Y]. Kohlas & Stirk (1996b) show that [®],
together with these two operations of combination and focussing, defines indeed
an unmarked information algebra.

The next lemma shows that the orders defined on the marked and the unmarked
information algebra coincide:

Lemma 2.14 (¢1,21) < (2, x2) if and only if [¢1] < [¢2].

Proof of lemma 2.1/ (¢1, 1) < (¢, z2) means, by definition, ¢; By = ¢ 1¥1V72,
But this is equivalent to [¢1] & [p2] = [¢2] in the corresponding unmarked
information algebra, which, again by definition, means [¢p1] < [¢2]. O

In the sequel, we can work either with the unmarked or the corresponding
marked information algebra and switch between the two representations de-
pending on which of them is more appropriate to the context.

2.2 Probability Algebras

An element of an information algebra can be believed to be true of not. But
it can also be believed only partly. In order to capture this idea, a system of
partial beliefs B is introduced. An element of B is called a belief. If a belief b
is part of another belief &’ then this is denoted by b < b’. We suppose that “<”
is a partial ordering on B and has a top element T representing the total belief,
and a bottom element | representing the void belief. We assume further that
the complement b of any belief b € B is also a belief in B as well as infimum
Aicr bi and supremum \/,; b; of any countable family of beliefs {b; : i € I} C B.
Therefore, the system of partial beliefs B is a Boolean og-algebra. Further we
assume that the countable chain condition (Halmos, 1963) holds, which in a
Boolean o-algebra can be expressed in the following way: If b;, 7 € I is strictly
ascending, that is b; < bj for i < j € I, then I is countable. Halmos (1963)
shows that this implies that the Boolean o-algebra is complete, that arbitrary
subsets of B have infimum as well as supremum, furthermore the countable
chain condition implies that for any subset B C B there is a countable subset
B’ C B such that A B= A B'.

Two beliefs b and b are called disjoint if their infimum is the bottom element,
that is bA Y = L.

Lemma 2.15 For a complete Boolean algebra B and b,b;,c; € B fori € I,
j € J we have

e De Morgan’s Law:

(\/ bi) C = A\ b, (/\ bi> c =\/ b (2.11)

i€l il el i€l
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o Associative Law: For I = U 1,

JjE€J
V{ve] - ve
jeJ \iel; iel
o Distributive Law:
b/\( bi> = \/(onb)
i€l i€l
bV </\b> = N\@®Vvb)
i€l i€l
(\/ bz> A Cj = \/ (bz A Cj)
el jeJ el jed
(/\bz> V Cj = /\(bi\/Cj).
el jeJ iel, jedJ

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

Proof of lemma 2.15 For (2.11) to (2.14) see (Sikorski, 1960). Let b = \/,; b;,

then

il JjEJ JjeJ Jj€J
() - e
jedJ el jeJ \iel
= Virg)
i€l, jed

and this proves (2.15); (2.16) is proved analogously.

(\/bl>/\ \/Cj = bA \/Cj = \/(b/\Cj) by (2.13)

by (2.13)

by (2.12)

O

The elements of the system of partial beliefs are then weighted, so a measure
w: B —[0,1] assigns a weight to every belief b € B representing the degree of
belief. The most probable belief, the element T, has a degree of 1, the most
improbable belief | has the degree 0. When a belief b € B is decomposed into a
family of disjoint beliefs {b; : i € I'}, then the countable chain condition implies
that this family is countable, and the sum of the beliefs of the parts, ;- ; u(b:),
is equal to the belief of the whole, u(b). Formally, the measure p satisfies:

e For any family {b; : i € I} C B of disjoint beliefs,

1 <\/ bi) = u(b).

il el

(2.17)
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e For any belief b € B, u(b) > 0.
e For any belief b € B, if p(b) =0 then b= L.
o u(T)=1

A measure which respects these conditions is called a positive probability
measure.

A system (B, u) consisting of a complete Boolean algebra B together with a
positive probability measure p is called a probability algebra, see also fig. 2.1.

Complete Boolean Algebra
Positive
Probability
(01] < Mesasure

%

Figure 2.1: Probability algebra

An important property of probability algebras can be expressed using the con-
cepts of up- and downward directed sets:

A subset B of B is called downward directed if for every pair of elements
b',b" in B there is an element b € B such that b < b A b”. Similar, a subset B
of B is called upward directed if for every pair of elements o’,b” in B there
is an element b € B such that b > b A .

Lemma 2.16 For any subset B C B
b| < inf u(b d b| > b 2.18
u(/\>_;gBu() an u(\/>_§1£u() (2.18)

beB beB
Additionally, if the set B is downward directed, then
1 (/\ b) = inf p(b), (2.19)
beB
if the set B is upward directed, then

i (\/ b) = sup u(b). (2.20)

beB beB

Proof of lemma 2.16 (2.18) is trivial. For a proof of (2.19) and (2.20) see
lemma 3.4 of (Kohlas, 1995). O
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2.3 Allocations of Probability

Let (®, D) be a unmarked information algebra. Additional knowledge may now
permit to decide which pieces of information in ® actually hold and which not.
But in general, such statements cannot be made with certitude, but only beliefs
can be assigned to the pieces of information. A consistency condition is that
if an information ¢; is stated to be true, then also every information ¢o < ¢
must be true. If ¢1 and ¢ are stated to be true, then also their combination
@1 D ¢2. These conditions mean that the pieces of information which are stated
to hold must form an ideal.

We represent such a belief in a piece of information ¢ € ® by an element p(¢)
of a probability algebra B, therefore the function

p: ®—B (2.21)

assigns a belief to every element of the information algebra (fig. 2.2). General-
izing the remarks above, p has to satisfy two consistency conditions:

(R1) p(e)=T.
(R2) For ¢1,¢2 € ®: p(¢1 & ¢2) = p(d1) A p(¢2).

(R1) means that the total belief T is assigned to the empty information e. (R2)
says that largest partial belief which is part both of p(¢1) and of p(¢2), that is
the infimum p(¢1) A p(¢2), is assigned to the combination ¢; @& ¢a.

A mapping p : & — B which satisfies (R1) and (R2) is called an allocation
of probability on the information algebra (®, D). The notion of allocation of
probability has already been studied in a slightly less general context by Shafer
(1979).

Complete Boolean Algebra Unlabeled Information Algebra

Allocation of
Probability

-

Figure 2.2: Allocation of probability.

The tuple (®, D, B, p) is also called a body of arguments by (Kohlas, 1995).
Note nevertheless that in the original definition of a body of arguments the
structure demanded on @ is a lattice, whereas in our situation, ® is an informa-
tion algebra and therefore in general only a semi-lattice with meet defined by
the combination. But this difference is not essential in the present context. In
chapter 3 we will introduce a method for constructing allocations of probability
from so-called hints, and examples for allocations of probability will be given
there.
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The next lemma shows that the allocation is indeed monotone:
Lemma 2.17 Let gbl,gbg c d. [f ¢1 < ¢2 then p<¢1) > p(¢2).

Proof of lemma 2.17 ¢1 < ¢9 is, by definition, ¢2 = ¢1 @ ¢2. By (R2) we have
p(p2) = p(d1 @ d2) = p(¢1) A p(¢2) and this shows that p(¢1) > p(¢2). O

An allocation is called normalized if no belief is allocated to the null element
z, that is if

(R3) p(z) = L.

An allocation p which is not normalized can always be normalized by condi-
tioning like in probability theory. Consider the family of beliefs of the form
b A p(z) for b € B. This family is denoted by B' = B A p°(z). It represents
the non-contradictory part of B, and it is still a complete Boolean algebra. If
w1(p(z)) # 1 then a probability measure 1/ on B is defined by

WoAp) = HeOAPTE) (2.22)

such that finally p'(¢) := p(¢) A p°(z) is a normalized allocation of probability
from ® to B’ derived from p.

A special case of a normalized allocation is the so called vacuous allocation
pv, defined by p,(e) = T and p,(¢) = L for all ¢ € & with ¢ # e. p, allocates
the total belief to the neutral element e and no belief to any other element;
therefore it contains no information and represents complete ignorance.

If p is an allocation of probability on the information algebra (®, D), then denote
by p(®) the image of ® under p, and by B(p(®)) the smallest complete sub-
algebra of B which contains p(®); such a smallest complete subalgebra always
exists, because the family of complete subalgebras is an intersection system,
that is the intersection of any family of complete subalgebras of B is again a
complete subalgebra of B. Denote by 1, the restriction of p to B(p(®)).

Let now p; and p2 be two allocations of probability from (®, D) to B. Then
B(p1(®)) and B(p2(®P)) are called independent subalgebras, if for every m; €
B(p1(®)) and ma € B(pa(P)) we have miAmeg # L. If additionally pu(miAme) =
p(ma)p(me), then (B(pi(®)), pp, ) and (B(p2(P)), tip,) are called independent
probability algebras. Hence, under the same conditions, p; and p2 are called
independent allocations of probability.

The concept of independent allocations is used in section 2.6 to compute the
belief of the combination of allocations.

In section 3.2 we will show how to construct an allocation of probability from
the information contained in a generalized hint.
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2.4 Unmarked Algebra of Allocations

In this section, we show that the set Py of allocations from an unmarked infor-
mation algebra (®, D) towards a probability algebra (B, i) form themselves also
an unmarked information algebra, so axioms (Al) to (A7) from definition 2.1
are fulfilled, and the whole computational theory which will be developed in
chapter 8 can be applied to them as well.

2.4.1 Combination of Allocations

Consider the situation where different sources of information are available,
where each of them defines an allocation of probability with respect to the
same information algebra (®, D) and the same probability algebra (5, 11). Then
these allocations have to be combined in order to get an allocation which reflects
the whole available information about the belief of elements of the information
algebra.

Consider two allocations of probability p; : ® — B, i = 1,2. These allocations
should now be combined into an allocation p in order to represent the combined
information.

Let ¢ € ® be an information and ¢, ¢2 € ® such that the combination ¢; & ¢
contains more information than ¢, that is ¢ < @1 @ ¢2. Any belief which is
allocated ¢; and also to ¢2 by p; and ps respectively is also a belief for the
combined information ¢ & ¢9, therefore we require

p(9) = p1(p1) A pa(g2) (2.23)

It is then natural to define the belief accorded to the information ¢ as the
smallest upper bound of all such beliefs, that is

p(0) = (pr @ p2)(8) =\ (p1(d1) A p2(2)) (2.24)
$<P1D¢2
and the following theorem shows that this defines indeed an allocation of pro-

bability:

Theorem 2.18 (2.2/) defines a combination operation on the set Py of allo-
cations from (®,D) to (B, p).

Proof of theorem 2.18 Following theorem 1.4 of (Kohlas, 1995).

We have to prove that (2.24) defines an allocation of probability, therefore we
have to prove that p satisfies the axioms (R1) and (R2) on page 18.

ple) = \/ (p1(d1) A pa(2)) = pi(e) A pa(e) = T,

e<¢p1Dp2

because of the monotonicity of p; and p2, and therefore (R1) is satisfied.
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Let now 1,19 € ®. Then, by definition,
p(P1 & o) = \/(p1(62) A pa(2))- (2.25)
Y1®Y2<¢1DP2
For ¢ = 1,2, ¢; <11 @ g implies
V (p1(d2) Apa(d)) <\ (p1(d2) A pa(2)),

P1DY2<01Dd2 i <P1DP2

such that p(y1 & ¥2) < p(¢);). This implies then p(Y1 @ 12) < p(¥1) A p(¥2).
On the other hand,

{(¢1,02) : Y1 D Y2 < d1 D P2}
2 {(¢1,62) : b1 = $1 ¢, 62 = ¢ © G, b1 < 61 B b, Vo < A D P}
This set inclusion together with (R2) for p1, p2 and lemma 2.15 implies then
plr@ta) =\ (p(d1 @ &) A p(dh & ¢3))

1<) B,
Yo <o ®ol

= \/ (p1(61) A pr(87) A pa(dh) A pa(ey))
Y1 <¢) o),
Po<¢f &Y

=\ (01(6h) A pa(9)) A (1(88) A pa(5))

Y1<¢] Do)
Yo <ol ®ol)

_ \ (1 @) Ap2(@)) | AL\ (pr(8]) A paleh))

P1<¢) D) Y2<¢) ©dy
= p(¥1) A p(¢2).
So finally p(1)1 ®1b2) = p(t1) A p(1)2), therefore (R2) is fulfilled and the theorem
proved. O

Theorem 2.19 The set Py is a semi-lattice under combination, that is Py is a
commutative, idempotent semi-group with the vacuous allocation p, as neutral
element.

Proof of theorem 2.19 Commutativity follows from the definition (2.24).
Let ¢ € @, then using lemma 2.15

((p1 @ p2) ® p3)(@) = \/ ((p1 @ p2)(¢') A p3(93))
P<¢' D3
=\ \/ (p1(61) A pa(e2)) | A ps(s)

¢<¢' D3 &' <P1Bp2

- \/ (p1(91) A p2(92) A p3(¢s))
P<P1BP2BP3
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and, by symmetry, this proves the associativity.

For idempotency, consider

pep)(@) =\ (1) Ap(2) = \/ p(d1 & p2) = p(0),
O<Pp1 D2 O<Pp1D P2

where the supremum in the last equation is obtained for ¢ = ¢ = ¢9.

The vacuous allocation p, is the neutral element, because for any allocation p
we have

(@ p)(@) =\ (p(61) Apu(d2) = \/ p(d1) = p(6).

$<¢1D¢2 $<¢1

This proves the theorem. O

2.4.2 Focusing of Allocations

In the information algebra (®, D) we have defined an operation of focusing, an
element ¢ € ® can be focused to a domain x € D. The focusing operation
carries over to allocation of probability. Let p : ® — B be an allocation and = a
domain in D. Focusing the information contained in p means now to select the
part of p which allocates beliefs to those pieces of information whose support
is . Consider an information ¢ € ® with support z, that is =% = ¢, and
which contains more information than ¢, ¢¥» > ¢. The allocation p focused on z
allocates then a belief to ¢ which is a least p(¢)), therefore

p7EP) > p(). (2.26)

The belief allocated to ¢ is then defined to be the least upper bound of all these
beliefs, that is

p70) =\ ). (2:27)
b0

The following theorem shows that this defines indeed an allocation of probabi-
lity:

Theorem 2.20 (2.27) defines a focusing operation in the set Py with respect
to D, i.e. p~% is an allocation of probability.

Proof of theorem 2.20 We have to prove that (2.27) defines an allocation of
probability, therefore we have to prove that p=% satisfies the axioms (R1) and
(R2) on page 18. By definition,

p7ie) = \ew) = ple) = T

Y=y=oe
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because of the monotonicity of p, and this proves (R1).
For (R2) by definition,

PG @) =\ pw).

Y=9=?2¢1®P2
For i = 1,2 we have ¢; < ¢1 @ ¢2, therefore p=™* (1 ® ¢2) < p~ % (i), such that
P71 B d2) < pT (1) A pT T (92).
On the other hand,
(V7" =Y > 1 @ ¢}
D{Y =1 @Y P17 =1 > b1, T = 4o > hol

This set inclusion together with (R2) for p and lemma 2.15 implies then

p7 (g1 @ d2) > Vo eys) = \ (p(1) A p(t2))
P1=1p1 7T > 1 =917 >¢q
Yo =1pg 7T >pg ho=1pg 7T >pg

= Vo) | A \/o(¢2)

=117 >P1 ho=1pa 7T >po

= p7 (1) A pT " (2)-

So finally p=%(¢1 @ ¢p2) = p~ (¢1) A p~ 7 (¢2), therefore (R2) is fulfilled and the
theorem proved. O

The following lemma shows that every allocation has a support in D. Intuitively,
this means that for every allocation, there exists a domain in D in which it can
be described.

Lemma 2.21 p~ " = p for every p € Ps.

Proof of lemma 2.21 Let ¢ € ®. By definition,

@)= \fp)= /o) =p(¢)
b=p=T2e U2

because T is a support for every ¢ € ® (cf. (A7)), i.e. ¥= T = 1, and p is
monotone. O

A straightforward result is that focussing does not add any information to an
allocation:

Lemma 2.22 Let p be an allocation, then

e p7% (@) < p(@) for all p € P.
o o =¢~" implies p~*(¢p) = p(P).

Proof of lemma 2.22 Follows from the definition (2.27). O
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2.4.3 Unmarked Information Algebra of Allocations

The set of allocations Pgp together with the operations of combination and
focusing forms now itself an unmarked information algebra:

Theorem 2.23 (Py, D) is an unmarked information algebra.

Proof of theorem 2.23 (A1), (A2), and (A3) have been proved in theorem 2.19,
(A7) in lemma 2.21. So we have to prove (A4), (A5) and (A6).

(A4) Transitivity: For p € Py, 2,y € D: (p~7%)7Y = p=*"\Y,

Using the definition (2.27) together with lemma 2.15,

")) = W) =\ \/ n(&)

Y=9=Y¥2>¢ Y=yp=V2¢ \ =772

= \/n(6)

E=E729=Y=V2>¢

and

o) = o) = \/ p(®).

Y=y=rNV2>¢ Y=(y=*)7V>¢

Because % = (112)7¥ implies ¥ = (%)) = (=) = ¢ and,

similar, ¢ = =" we have
{P:9=@W7")7" 26} C{E: =" 29 =y7Y 2 ¢}

and therefore (p™%)7Y(¢) > p=2" ().

£ =¢E7% > ) = 7Y > ¢ implies 7Y = (677)7Y > 7Y > ¢. This together

with (£7%)7Y = (£7Y)7" gives then

(p7") 7)) < V&) < \/ p(€Y) (2.28)

EZV=(E7Y)T 20 E2V=(E2Y)T 20

since 7Y < ¢ implies p(§) < p(£7Y) by lemma 2.17. Replacing £7Y by 1 in
(2.28), such that =¥ = (£7Y)7Y = 7Y = 1), we get

(7)7(@) < V@) = Voow) = p7*(9),
P=YU=(I) T2 w=gE g

such that finally (p=%)7Y = p~%\Y and this proves the transitivity.

(A5) Combination: For p1,p2 € Pp, x € D: (p17% @ p2)~ " = p17% @ pa~%,
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Using the definitions (2.24) and (2.27) together with lemma 2.15,

(=" @) (@) =\ (M7 (¢1) Apa~"(¢2))

P<P1DP2
=V \ pi(wr) | A \/ p2(t2)
$<P1®Bp2 \Y1=y17*>¢1 =12 =" >po
= V(p1(1) Apr(d2)) = \(p1(w1) A pr(2)),
Y1=91 7T >¢q =1~
Yo=Y 7T >¢g ho=1pg =T
¢<¢1 Do d<1p1 Do

and, also by definition,

(™" @ p2) (@) = (0™ (¢1) A pala)).
$<p1DP2

Using lemma 2.15, this gives

(=" @) (@) = \/ (\/(ﬁﬂcwomx@»)

P<p=9=T \P<d1®B92

- \/ (P17 (¢1) A pa(d2))
p<Y=p=7 <1 O

= V (( V Pl(wl)) A ,02(¢2))
P<Y=1y=?<p1®BP2 d1<1=1p1 77

= \ (p1(¥1) A pa(¢2)) = \/ (p1(¥1) A pa(¥2))
[ Sqibljf éiqé%?é P2 ¢<t illliiwﬂ};xl Do

Now

{(W1,02) s b1 =177, aho = ho ™", <Py B aba}
C{(1,92) 1 =1 7%, ¢ < p =¢7F < apy Daha}
because if ¢ = 177, o = 127" and ¢ < ¥y @ 1y then, setting ¥ := b1 @ o,

we have =% = (Y1 @) 7" = 17T BT = Y1 By = ¢ and ¢ < ¢ =
=T < ap1 @ 1hy. This shows that

(017" @ P27 ") () < (17" @ p2)~ " (9)- (2.29)

On the other hand, if ¥ = ¥1=%, ¢ < ¥ = =T < by B by, then ¢ = =7 <
(V1 ®1h2) 7T = 17T DT = by Db~ " and because pa(1h2) < pa(1h2~"), for
every element 15 we have p1(¢1) A pa(th2) < p1(¥1) A p2(1h2™), therefore

(m7" @ p2)7" < \/ (p1(w1) A pa(3p2™7))
¢>sw:$1;zw§ﬁ;wﬁz
= \ (p1(¥1) A paiha)) = \/ (p1(w1) A pa(t2)),
1= 7T =11 =T
ho=1pg =T ho=1pg =T

P<Y=9 =T <epy Dipg <Y1 DY
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where the last equation follows from the fact that we may put ¢ = 1 ® 9
which satisfies then =% = (11 @ 1h2) 7" = 11 @ ¥y = 1. Therefore we have

(MTT@p2) 7" < (7" @ p27 ") (9)- (2.30)
This proves the combination.
(A6) Idempotency: For p € Pg, x € D: p® p~7% = p.
By definition,

(& r™)0) =\ (o(o1) A p7"(2))
P<P1DP2

p(@) ApT%(e) = p(9).

Y

On the other hand,

pep)e) = \V [re0n|  Ve@)

$<¢1D¢p2 G2 <Y=1p=*

= Vo) re@) = Voerey) < po)
b Sp=p=T Y=y
$<é1002 oso1Ov

because ¢ < ¢1 @1 implies p(¢) > p(¢1 @ ). This proves the idempotency. O

The information algebra (®,D) can be naturally embedded into (P, D) by
identifying every element ¢ € ® with a deterministic allocation py : ® — B
defined by

T if ,
po(V) = { 1 i)tllfergw(iﬁse. (2:31)

It is easy to verify that pg is in Pp and for ¢1,¢2 € @, x € D,

Pp1 D Pps = Ph1do
(p)™" = prgy=)-

2.5 Marked Algebra of Allocations

There are two different ways to define a marked algebra of allocations, either
by defining marked allocations of probability directly, which is presented in
the next subsection, or by applying the technique from subsection 2.1.3 (for
constructing a marked from an unmarked algebra) to the unmarked algebra of
allocations, which is presented in subsection 2.5.2. In subsection 2.5.3 we show
that the results of the two approaches are essentially the same.
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2.5.1 Marked Allocations of Probability

Consider the semigroup @, := {¢ € ® : d(¢) = x} of pieces of information with
label = in the marked information algebra (®, D). This semigroup contains
the neutral element e, and (eventually) the null element z,. An allocation of
probability p : &, — B which satisfies

(RY) ple,) = T
(R2') For ¢1,d2 € o, p(d1 & ¢2) = p(¢1) A p(d2)
is called a marked allocation of probability with label d(p) := x and is

written (p, x).

A special case is the so-called vacuous allocation (v,,z) which satisfies

va(9) = { # i 2 i(f; 07 (2.32)

The combination of two marked allocations is defined analogous to (2.24). Let
(p,z) and (p’,y) be two marked allocations, then the combination (p® p’, zVy)
is defined by

(o)) =\ (p(d2) AP (8y)) (2.33)
P<dpx Doy
d(pz)==,d(dy)=y
for ¢ € ®yyy.

Let {p, ) be a marked allocation. The marginal (p¥,y) of (p, ) with respect
to a domain y € D with y < z is defined by

P (¢) = p(¢!") (2.34)
for ¢ € ®,.

Lemma 2.24 (p@p',xVy) and {p'¥,y) defined by (2.53) and (2.34) respectively
are marked allocations of probability with domain x V y and y respectively.

Proof of lemma 2.2/ First we have to prove that (p @ p',x V y) satisfies the
axioms (R1’) and (R2'). But d(p @ p') = x V y, and the proof is analogous to
the one of theorem 2.18.

Second we have to prove that (p!¥,y) satisfies the axioms (R1’) and (R2').
By definition and lemma 2.8, p'¥(e,) = p(e,'*) = p(e;) = T, and therefore
(RY') is satisfied. For ¢',¢"” € @,, we have by lemma 2.8 and (R2') for p,

P 0 = p(@ed)”) = p(¢ed™)
APV DI CONVEICD

and this proves (R2).
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The vacuous extension (p'¥,y) of an allocation of probability (p,z) to a finer
domain y > x is defined analogous to definition 2.6:

plY = pou,. (2.35)

By lemma 2.24 the extension is still a marked allocation of probability. The
definition of the combination (2.33) implies then that for ¢ € ®, we have

p1() = \{p() : ¢ € By, ¢ <913 (2.36)

The interpretation of this equation is the following: The supremum of all beliefs
allocated to pieces of information v, which have label x and which imply ¢, is
the belief allocated to ¢ by p!Y.

Denote by Pj the set of marked allocations of probability defined on the in-
formation algebra (®, D) as above. The next theorem shows that (P}, D) is
indeed a marked information algebra:

Theorem 2.25 (P}, D) is a marked information algebra where v, is the neu-
tral element for the combination operation within the semigroup ®, of alloca-
tions with label x € D.

Proof of theorem 2.25 We have to show that the axioms (M1) to (M10) from
definition 2.5 are fulfilled. Commutativity (M2), Labeling (M3), Label of the
neutral element (M4), and Label of the marginal (M6) follow directly from the
definitions (2.32), (2.33) and (2.34).

(M1) Associativity. Let (ps, ), (py,y) and (p., z) three marked allocations and
¢ € Ppyyvz, then using lemma 2.15

((pz © py) ® p2)(¢) = \/((Pw © py) (Pay) A p2(02))

< pryDdz
d(pzy)=zVy, d(Pz)=2

= V \/ (0a(82) A py (@) | A p:(62)

¢<dzryDoz bxy <px Doy
d(pzy)=zVy, d(¢pz)=2 d(pz)=w, d(Py)=y
= \/ (p2(Pz) A py(@y) A p2(02))
P<PxDoyDoz

d(¢pz)=z, d(qby):y, d(pz)==
and, by symmetry, this proves the associativity.

(M5) Neutral element. For an allocation (p,x), the vacuous allocation (v, ),
and ¢ € ®,, we have

pev)@) = V@) rwm@) = \pd) = po).

/ 1 —
d(j’))gjda?’):w ¢<¢',d(¢')=x

This proves (M5).
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(MT7) Transitivity. Let (p, z) be an allocation, z <y < z all in D, and ¢ € ®,,
then, by definition,

lz Tz z T
(0)7(9) = P (01) = p((61) ") = p(6%) = p**(9),
and this proves (MT).
(M8) Combination. Let (p/,z) and (p”,y) be two allocations, then, for ¢ € ®,,
(p/ ® p//)l:c((b) _ (,0/ ® p//)(¢Toch) _ \/ (,0/(¢,> A P”(QSN))
d(¢')=z,d(¢"")=y,
STTVY <y @
and also

W@ =V (@) nse"™).
d(¢")=z, d(¢'")=zAy,
¢<¢' o'’
If ¢17V¥ < ¢/ @ ¢ then ¢ < (¢ ® ¢")'" = ¢ @ ¢"V*" and this implies then
(0 © ") (¢) < (9@ p"**")(¢). On the other hand, if d(¢') = x, d(¢") = z Ay
and ¢ < ¢ @ ¢" < ¢ @ ¢"1Y (lemma 2.11) then ¢!™¥ = ¢ ® epyy < ¢ @
&Y @ eqyy = ¢ ® ¢"1 and this implies then (o & p")** (¢) > (o' ® p"1*") ().
Therefore finally (o' ® p")*(¢) = (o' @ p"1*"¥)(¢) and this proves (MS).

(M9) Idempotency. Let (p,y) be an allocation, ¢ € ®, and x <y, then

(p@p'*)(9) = \/ (p(¢) A p'(¢")) = \/ (o(¢) A p(¢"™))
d(¢')=y, d(¢" )=z, d(¢" )=y, d(¢" )=z,
<o’ B’ <o’ B’
= V(@ o) < \V (@ @ ¢"1))
d(¢")=y, d(¢' )=z, d(¢")=y, d(¢' )=z,
o< B! ¢S¢/@¢//Ty
< p(9).

On the other hand, ¢ = ¢@p!* = QSGB(QS”)M, which implies p(¢) < (p®p'®) ().
So finally p(¢) = (p ® p'*)(¢) and this proves (M9).

(M10) Stability. Let ¢ € ®, and = < y. If ¢ # e, then it follows that ¢'¥ # e,,.
Therefore, by definition,

Vylx(d)) = Vy(¢Ty) =1

Otherwise, if ¢ = e,, then e,1¥ = e,, therefore (1)) (e,) = vy (ex 1Y) = v (e,) =
T. This show that (1,)** = v, and proves therefore (M10). O

2.5.2 From the Unmarked to the Marked Algebra of
Allocations

In section 2.1.3, we showed how to construct a marked from an unmarked
information algebra. This can be applied to the unmarked information algebra
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(Pp, D) as well. So we consider the marked information algebra (Pg, D), with
elements

(p,x) such that p € Py and x € D is a support of p. (2.37)

Combination and marginalization are then defined by (2.8) and (2.9) respec-
tively. So (Pg, D) is clearly a marked information algebra. The question is now:
What is the difference between this information algebra and the one defined in
the previous subsection?

2.5.3 A Comparison of the Approaches

We compare now the two algebras (P}, D) and (Pg, D). They are clearly not
equal because a typical element (p,z) of (Pg, D) is not a marked allocation of
probability as defined in subsection 2.5.1, therefore not contained in (P, D).
But to an element (p,z) € (Ps, D) we can associate a marked allocation

pa((9, ) := p(¢) for (¢,z) € (@, D). (2.38)

Vice versa, to a marked allocation (p, z) in (Pg, D) we can associate an element
()", ) in (P, D) by

() (@)= o (¥,2)) for ¢ e (®,D). (2.39)
Y=$=>¢

These two mappings define indeed an isomorphism between the two marked
information algebras:

Theorem 2.26 The information algebras (Pg, D) and (Pg, D) are isomorphic.
An isomorphism is given by the mappings defined in (2.38) and (2.39), that is
for (p,x) € (Py, D)

(o) = (2.40)
and for (p',x) € (P}, D)
(1)) =1, (2.41)

and combination as well as focusing carry over: if {p,z) and (£,y) belong to
(Pp,D) and z < x, z € D, then

(P:>Z)z = lez- (243)

Proof of theorem 2.26 First we prove (2.40), so let (p,x) € (Pp, D) and ¢ €
(@, D). Then, by definition,

()" (¢) = Vp@2) = @) = p7%(¢) = p(9),

Y=yp=r>¢ Y=yp=r>¢
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where the last equation follows from the fact that = is a support for p, p=% = p.

This proves (2.40).
Now, we show (2.41), so let (p/,x) € (Pg,D) and (¢,z) € (®,D). Then, by
definition,
(D)elids2)) = ()(0) =  \AWWa) = pe),
Y=y=*>¢

where the last equation follows from the fact that (¢, z) implies ¢=* = ¢. This
proves (2.41).

Now we prove (2.42). Let (¢, Vy) € (P, D). By assumption, x is a support
for p and y a support for &, therefore for all ¢ € (®, D)

p(d) = \/p(t), @)= Vo),

¢§¢’z:¢zjz ¢§¢y:¢y:>y

and this implies

ped)e) = \ p(¥2) | A \ &(wy)
P<P'DP" \ ¢ <thp=1pz =" @ <thy=1p, 7Y
= Vo) NE@WY) =\ (p(a) A&(1y))
<o’ Do’ <tz DYy
¢ <tpp=1pz =7 Y=g =%
P <thy =1y =Y Yy=1hy =Y

= (pa ®&) (D, 2V y)).
This proves (2.42).
Let now (p,x) € (Pp, D), z < x and ¢/ = (¢, 2) € (®, D). Then

@)= \/pw) = p(¢),
P<p=9=7*

since ¢ = ¢~ %, and this implies (p™7%).(¢') = p(¢). On the other hand, if
' = (1, ), then p,(¢') = p() and therefore

(p=)*(¢) = pa(¢'1") = p(677) = p(0),

since ¢ = ¢=% = ¢~ = (¢=2)7 = ¢, So finally (p™7), = (p,)** and this
proves (2.43). O

2.6 Belief Functions

In this section, we present the connections between an allocation of probability
and a belief function, that is how one concept can be constructed from the other
one.
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2.6.1 Constructing Belief Functions from Allocations of
Probability

Given an allocation of probability p defined on an information algebra (®, D)
into a probability algebra (B, i), we can define the degree of credibility of
an information in ® by considering its image under p o p. That means the
information is just as credible as the belief allocated to it. Formally, for ¢ € ®,
we define the mapping

bel : & — [0,1]
¢ = bel() == p(p(e)), (2.44)

(see fig. 2.3).

Belief Function

Complete Boolean Algebra Unlabeled Information Algebra

Positive Allocation of
Probability Probability

[0,4] Measure ) -— )

Figure 2.3: Belief function.

This mapping satisfies the axioms stated by Shafer (1976):

Theorem 2.27 The mapping bel defined in (2.4/) is a belief function, that
is it satisfies the conditions (B1) and (B2):

(B1) ‘bel(e) = 1.
(B1') bel(z) = 0, if the allocation p is normalized.

(B2) Monotonicity of order co: If ¢ € &, n > 1, and ¢ < ¢;, ¢; € © for
1=1,...,n, then

bel(¢) > > (=) bel (@ q§i> : (2.45)

0AIC{1,...n} i€l

Proof of theorem 2.27 Adapted from (Kohlas, 1995). By definition (2.44) and
(R1),

bel(e) = p(p(e)) = u(T) =1,

and this proves (B1).
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Now we prove (B2) ¢ < ¢; implies p(¢) > p(¢;) for i = 1,...,n, therefore
p(@) > p(é1) V V p(éy). Now, using the exclusion-inclusion formula from
probability theory nd (R2),

bel(p) = p(p(¢)) = M(VM@O

=1

L Elen)- Brb(e)

0AIC{L,...,n } iel 0AIC{1,....n} icl

= Y () (@ @-) ,
}

0AIC{1,...n icl
and this proves (B2).
Finally we prove (B1’). Let p be a normalized allocation. Then, using (R1’),

bel(z) = p(p(z)) = p(L) =0

and this shows (B1'). O

This theorem shows how an allocation of probability on an information algebra
induces a belief function. For the inverse case, Kohlas (1993a) gives an affir-
mative answer for the construction of an allocation of probability from a belief
function, but only in a less general context, where the reference system is not
an information algebra, but only a power set.

A belief function is called vacuous, if bel(e) = 1 and bel(¢) = 0 for every
¢ # e. This means that only the empty information e is believed, but nothing
else. Clearly, a vacuous allocation of probability does induce a vacuous belief
function.

If an information ¢ holds, then a deterministic belief function allocates the
total belief to ¢, and also to every information ¢ < ¢, that is bel(y)) = 1 for

every ¥ < ¢.

Theorem 2.27 induces a monotonicity property for belief functions:

Lemma 2.28 The belief function is monotone, that is if 1 < ¢o then bel(¢py) >
bel(p2).

Proof of lemma 2.28 Let ¢1 < ¢o, then because p is monotone (lemma 2.17)
it follows that p(¢1) > p(¢2) and because p is a probability measure on B we

have therefore bel(¢1) = po p(p1) > po p(g2) = bel(gps). O

In the important case of independent allocations of probability, the belief func-
tion constructed from the combined allocations can be computed directly from
the two belief functions constructed from the individual allocations:
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Theorem 2.29 (Kohlas, 1995) Let bely and bely be two belief functions in-
duced by two independent allocations of probability (section 2.3). Then the
belief function bel of the combined allocations of probability satisfies

bel(¢) = sup Z (—1)'”rl belq <@ qbli) bela (@ ¢2i) . (2.46)

PAIC{1,...n} i€l icl

where the supremum has to be taken over all finite sets {(¢i1, i2) 11 =1,...,m;
n > 1} such that ¢ < ¢i1 @ ¢io.

This combination generalizes Dempster’s rule in the Dempster-Shafer theory of
evidence (Dempster, 1967; Shafer, 1976).

2.6.2 Belief Functions Induce Allocations of Probability

Given a belief function on an information algebra as defined in section 2.6,
a corresponding allocation of probability can always be constructed using a
fundamental result of Shafer (1979), see also (Kohlas, 1993a).

Theorem 2.30 Given an unlabeled information algebra (®, D) where every el-
ement has a support, and a belief function bel : (®,D) — [0, 1], there exist a
probability algebra (B, ) and an allocation of probability p : (®,D) — (B, u)
such that

bel = pop. (2.47)
Note that an element ¢ of an unlabeled information algebra (®, D) has a support

if there is a # € D such that ¢=% = ¢.

The theorem is proved in the following subsection.

2.6.3 Proof of Theorem 2.30

Consider the unlabeled information algebra (®, D) where every element has a
support, and a belief function bel : (®, D) — [0,1]. Using techniques presented
above, the corresponding marked information algebra (®, D) is constructed.
The belief function bel induces a belief function belys : (®, D) — [0, 1] by

belpi ((p,z)) = bel(p) (2.48)
for every element (¢, z) in (@, D).

The marked information algebra (®, D) can now be embedded in a so-called
tuple system following results presented in (Kohlas & Stérk, 1996b).

Definition 2.31 (Kohlas & Stark, 1996b) A tuple system is a quadruple
(D, F,d,-[-]) where D is a lattice, F a set, d: F — D and -[] : F x D — F
functions which satisfy the following axioms for f,g € F, and x,y € D:
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(1) If x <d(f), then d(f[x]) = .

(2) If x <y < d(f), then fly][z] = flz].

(3) If d(f) = x, then flx] = f.

(4) If d(f) =z, d(y) =y, and flx Ay] = glx A y], then there exists an h € F
such that d(h) = z, h[z] = f, and hly] =

Kohlas & Stérk (1996b) show that if (®, D) is a marked information algebra,
then (®,D,d,!) is a tuple system. They show further how a tuple system
generates an information algebra. Consider the tuple system (®, D, d,}). A
relation is a pair [R,x] such that R C ®, x € D, and d(¢) = x for every
¢ € R. For a relation [R,z] and y < z, the projection of it onto y is defined
by 7([R,7]) := {¢!¥ : ¢ € R}. The join of two relations [R,z] and [S,y] is
defined by [R,z] = [S,y] := {¢ € ® : d(¢) = x V y, ¢} € R, ¢!¥ € S}. Further
define d([R, z]) := .

Let now Rg denote the set of all relations over ®. Then (Re, D) is a marked
information algebra generated by the tuple system (®, D, d, }).

We started with the marked information algebra (®, D). Kohlas & Stérk show
that it can be embedded into (Rg, D) using the following mapping

I : (®,D) — (Rg,D)
(p,2) = I({(¢,7):= {1 €®:¢ <4, d¥)=x},x) (2.49)

which satisfies

a) d((¢,x)) = d(I({(¢,x)))

b) I({¢,z) ® (¥,y)) = (¢, x)) > I ({1, ).
c) If y < z, then I((¢, z)'Y) = m,(I((,z))).
)

d) I(¢) = I(v)) implies ¢ = .

Define I((®, D)) := {I((¢,x)) : (¢,x) € (P,x)}. The injectivity of I allows to
transport the belief function belys to I((®, D)), which results in the function

belr(I((¢,x))) = beln({($,)) (2.50)

for I((¢,x)) € I((®, D)). Clearly, bel; is again a belief function.

Lemma 2.32 I((®, D)) is a multiplicative subclass of ® with respect to the
multiplication <, that is

a) 1((®, D)) C 2(*P) and
b) If Ry, Ry € I((®, D)), then Ry > Ry € I((®, D)).
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Proof of lemma 2.32 a) follows from the definition of I. For b), let Ry, Ry €
I((®,D)). For i = 1,2, there exists (¢;,z;) € (®,D) with R; = I({¢;, x;)).
The information algebra (®, D) is closed under combination, hence we have
(p1,21) ® (P1,22) € (P, D) and therefore, by the definition of I, I({(¢1,x1) @
(p2,x2)) € I((®,D)). Using the properties of I (page 35), this implies that
I(<(z)1,.1‘1>)[><]I(<¢2,£1?2>):R1[><1R2 EI(<(I),D>). O

Shafer (1979) shows how a belief function defined on a subclass induces an
allocation of probability. We will not go into the details here, but use only the
following result:

Theorem 2.33 (Shafer, 1979) Suppose f is a belief function on a multiplica-
tive subclass £. Then there exists an allocation of probability p : € — M such
that f = po p, where p is the measure associated with the probability algebra

M.

In the present situation, this theorem can be applied to the multiplicative sub-
class I((®, D)) and the belief function bel;, and we get

e a probability algebra (B, u), and
e an allocation of probability p; : I((®, D)) — (B, j1) such that bel; = popy.

The resulting allocation of probability p; can be lifted back to the initial infor-
mation algebra in two steps:

1. Lifting back to the marked information algebra (®, D), that is for (¢, z) €

(®, D) define
pu((¢,x)) = pr(I((¢, x))). (2.51)
2. Lifting back to the unmarked information algebra (®, D), that is for ¢ €
(®, D) define
p(¢) = pu((¢,z)) (2.52)

for any support = € D of ¢, that is for any x which satisfies =% = ¢.

The latter definition makes sense only if it is independent of the support of the
information. This is proved in the following lemma:

Lemma 2.34 p defined by (2.52) is an allocation of probability.

Proof of lemma 2.3/ p(e) = pm({e,z)) = T because pys is an allocation of
probability. Further, for ¢ € ® and x,y € D with ¢ = ¢7*% = ¢~¥ we have
pai((6,3)) = par((6,2)) A par(less)) = par((6,2) @ e,y)) = plla v 1) =
pae({e,2) & (6,9)) = par({e: 1) A par ((6,4)) = pas ({6, 4)) and therefore p(9) is
well defined. Let ¢; € (®, D) with ¢;=% = ¢; for i = 1,2. Then p(¢1 & ¢3) =
pat ({61, 21) ® (b, 22)) = par (61, 21)) A par ({2, 82)) = plé1) A p(gn). O
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Lemma 2.35 pop = bel.

Proof of lemma 2.35 Let ¢ € (®, D) and x € D with ¢~ = ¢. Then it follows
from the previous results in this subsection that

wp(@)) = (D7) = plor(1({(d,x))))
= beli(I((p, 7)) = belu({¢,z)) = bel(9).

This concludes the prove of theorem 2.30.
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Hints

In this chapter, the concept of a hint is introduced and also generalized. This
concept will be a further ingredient for argumentation systems, a concept which
is defined in chapter 6.

Note that in this whole chapter, we will work with unmarked information al-
gebras as defined in section 2.1. Yet equivalent concepts can also be developed
for marked information algebras using the results of the previous chapter. In
the following chapters we will then use the theory of hints straightforwardly
together with marked and unmarked information algebras.

In the first section we introduce the classical definition of a hint following
(Kohlas & Monney, 1995), in section 3.2 this concept is extended to gener-
alized hints. In section 3.3, the combination of generalized hints is discussed.

Hints will then be used to construct allocations of support in section 3.5. In
section 3.6, we show how to combine and focus the allocations of support such
that they form also an information algebra themselves. Finally, allocations of
support are then used to construct allocations of probability in section 3.7.

3.1 Hints

The concept of a hint has been introduced in (Kohlas & Monney, 1995; Kohlas,
1995) based on Dempster’s concept of multivalued mappings (Dempster, 1967),
and we will here first introduce their definition. Let © be a set with the in-
terpretation that every element therein represents a possible answer to a given
question; O is also called the frame of discernment. A set {2, finite or infinite,
represents all possible interpretations of a given information, but it is unknown
which of these interpretations is the right one. For every interpretation w € )
there is a set I'(w) € O representing the subset in which the correct answer
to the given question must be if the interpretation w is the correct one. The
elements of € are usually not equally likely, and this information is represented
by a probability space (€2, A, P).

39
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Definition 3.1 A hint is a tuple H = (2, 1,0, A, P) where

o O is the set of possible interpretations (not necessarily finite),
e O is a set, called the frame of discernment,
o [ is a multivalued mapping, called focal mapping, from 2 to ©, and

o (2, A, P) is a probability space.

Different hints can then be combined to a new hint which contains all the
information, and mechanisms are developed to answer questions (Kohlas &
Monney, 1995), but here we will first focus on a generalization of the structure
of a hint before we will come back to these question in the more general context.
In order to distinguish different types of hints, we will say that a hint which
respects the definition above is a classical hint.

3.2 Generalized Hints

In a classical hint, a focal set is an element of the power set 2°. Based on hints,
an abstract theory of argumentation has been developed by Monney (1994)
by replacing the set of interpretations as well as 2© by two complete lattices.
Here, we go one step further by replacing 2© by an unmarked information
algebra (®, D), but leaving the set of interpretations unchanged. Therefore,
the mapping I' : © — @ is not a multivalued mapping but a normal function,
in contrast to the theory of hints as introduced in the previous section. If an
interpretation w € 2 is the correct one, then I'(w) € ® is the corresponding
information which is true, and every information ¢ < I'(w) must clearly be true
too.

Definition 3.2 A generalized hint is a tuple H = (Q,T',®, D, A, P) where

e O is the set of possible interpretations (not necessarily finite),

e [' is a mapping, called focal mapping, from Q to the unmarked infor-
mation algebra (®, D), and

e (Q,A, P) is a probability space.

In some situations, we will consider hints without a probability space; such a
structure will also be called a hint and denoted by a quadruple H = (2,I", ®, D).

The images of I are called focal information of the hint. An interpretation
w € 1 is called contradictory, if its image is the null element z of the informa-
tion algebra; such an interpretation cannot really be the correct one. A hint is
called normalized if it does not contain any contradictory interpretation, that
is I'(w) # z for every w € €2. Non-normalized hints can always be turned into
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Figure 3.1: A generalized hint.

normalized ones by eliminating contradictory interpretations and conditioning
the probability measure on the remaining interpretations; this process is called
normalization and is described in the following definition:

Definition 3.3 (Normalization of a Hint) Let H = (2,I',®, D, A, P) be a
hint. Then the normalized hint is defined by H' := (', T",®, D, A', P') where

Q= {weQ:T(w) # 2} (3.1)
W) = ') for ' € QY :
A = {AnQ' :Ae A} (3.3)

We consider the probability space (', A’, P') where the measure' P’ is defined
if Q' is measurable with respect to A by

P'(A) = P(é’) for A e A, (3.4)
otherwise, if P*(2) > 0,by
* /
P'(A) = ]I;*Eé’g for A" e A, (3.5)

where P* denotes the outer measure with respect to measure P.

The case where P*(€2) = 0 is not treated here, see (Monney, 2000) for a discus-
sion of a special case.

Some special kinds of hints will be of interest, see also (Kohlas & Monney, 1995)
for further details:

'See (Kohlas, 1995) for a proof that P’ is a measure
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e Vacuous Hint H.: Every focal information I'(w) consists of the empty
information, that is I'(w) = e. This means that the hint does not contain
any information relative to the question.

e Simple Hint: There is at most one focal information different from the
empty information e.

e Consonant Hint: The focal information can be numbered Fy, Fy, ... and
is nested F} > F5 > ---. This means that the focal information points
into the same direction.

Using the mapping I', the partial ordering “<” on the information algebra
(@, D) can be transported to Q. For wy,wy € Q, define

wi Swy if T'(w) <T(w2). (3.6)

w1 <X wy reflects the fact that the information I'(wg) implied by the interpreta-
tion we is “stronger” than I'(w;) implied by wy.

Lemma 3.4 “<7” is a partial order on the set of interpretations ).

Proof of lemma 3./ This follows from the definition (3.6) and the fact that “<”
is a partial order on the information algebra (®, D). O

3.3 Combining Generalized Hints

The available information may define different hints on the same information al-
gebra. These hints can emerge from different sources, for example one hint may
contain the system description, another one some environment dependencies, a
third one actual measurements, and so on. Several hints can be combined into a
new hint containing all information. For every hint H;, i = 1,...,n, there is an
(unknown) correct interpretation w; € €;, so the correct interpretation of the
combined hint H is the vector (wy,...,wy). The information which is true under
this interpretation, that is the element in the information algebra (®, D), is then
the combination of the corresponding focal information I'; (w1) @ -+ - @ 'y (wy,).
So we have to look at all possible vectors in €27 x --- x €,. Yet some of the
vectors may lead to an image which is the null element z in the information
algebra, that is they are contradictory interpretations of the combined hint, and
the resulting hint is therefore in general not normalized. Here we will usually
work with not necessarily normalized hints. This has advantages especially for
computations. The contradictory vectors can always be removed at any stage
of the combinations using normalization (definition 3.3).

A vacuous hint H. is clearly a neutral element of the combination of hints,
that is for every hint H relative to the same information algebra as H, we have
H @ He ~ H.



3.8. Combining Generalized Hints 43

It can be shown that normalization and combination of hints are commutative in
the sense that (H) ®@H,) = (H1@® Hs)' for two hints H;, Ha and normalization
denoted by a prime.

3.3.1 Hints on the Same Probability Space and Information
Algebra

A special case occurs when the hints, say H; = (2,1, ®, D, A, P),i = 1,2, to be
combined share the same probability space (2, .4, P) and the same information
algebra (®, D) and differ only in the focal mapping I'y and TI';. In this case,
the combined hint is defined with respect to the same probability space and
information algebra, that is H = (Q,T',®, D, A, P) and T is the combination of
the two focal mappings, that is I'(w) := 'y (w) @ Ta(w).

3.3.2 Hints on Different Probability Spaces

Let H; = (24,1, ®,D, A;, P;) i = 1,2 be two hints defined on the same in-
formation algebra but on different probability spaces. Let P be a measure on
Ay x Ay which reflects the common likelihood of combined interpretations and
which has P; and P» as marginals. The two hints are called independent if
the interpretations of the two hints are stochastically independent and therefore
the probability measure P defined by the product of the measures P; and Ps.
This case will be treated in the sequel:

Definition 3.5 (Combination of Independent Hints) Consider two hints
Hi = (Q;,T;,®,D, A;, P), i = 1,2. If they are independent, then their combi-
nation, H = H1 ® Ha, is a hint

H = (Ql x T, (I),D,Al X AZ:-PIPZ) (37)
where
I'((wi,w2)) = Ti(w1) ®Ta(wa) forw; €y, j=1,2, (3.8)

Py P, denotes the product measure of Pi and Py (the hints are independent),
therefore (1 x Qa, A1 X Ag, P1P,) is a probability space.

The combined hint will not necessarily be normalized even if both hints it is
combined from are normalized. Usually in the theory of hints (Kohlas & Mon-
ney, 1995), the combination operation is defined as first applying definition 3.5
and then normalizing its result by means of definition 3.3, in order to get a
normalized hint as the result of the combination of two hints. This combi-
nation is called Dempster’s rule of combination, because it was introduced by
A. Dempster (1967) for multivalued mappings.

The above definition can also be extended to combine dependent hints, the only
change being that the product of the measures P P, on €)1 x {2 has to be re-
placed by a measure which reflects the dependencies between the interpretations
of the hints being combined.
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3.4 Transport or Focussing of Hints

The concepts of transport or focussing of hints as defined in (Kohlas & Monney,
1995) can be generalized to our framework as well. Consider a generalized hint
H = (Q,I,®, D). The information contained in the focal mapping of this hint
can be focussed or transported to a domain € D. So define the focussing of
hint H by

H=* = (Q,T7%, &, D) (3.9)

where I'7%(w) := (['(w))™".

From the definition, it follows that focussing is transitive, i.e. (H™%)7Y =

H=*"Y and that combination is transitive over focussing, i.e. (H1™% @ Hy) ™" =
H1:>:E EB H2:>x‘

3.5 Allocations of Support induced by Hints

Consider a hint H = (,I',®, D, A, P) and a piece of information ¢ in the
information algebra (®, D), also called a hypothesis. Some interpretations w
in € support the hypothesis, while some do not. In this section we define the
concept of an allocation of support based on a given hint. For the hypothesis ¢,
such an allocation of support singles out a subset of all interpretations in €2 such
that every member of this subset, if it holds, allows to deduce the hypothesis
from the actual knowledge, and this hypothesis has therefore to be true.

In the sequel, we follow mainly the notation introduced in (Kohlas et al., 2000).

3.5.1 Different Kinds of Interpretations

Interpretations, also called arguments, in favor of or against some hypotheses
are a key point in diagnostics. Consider for example a digital circuit: one
could be interested in the interpretations in favor or against the functioning
of different sets of components in order to decide which components should be
replaced. In this section, the definitions of several kinds of interpretations are
introduced; in chapter 8 we will also focus on the computation of interpretations.

Consider a hint H = (Q,T',®, D, A, P) and a hypothesis ¢ of the information
algebra (®, D). An element w € ), that is an interpretation, is called an quasi-
supporting interpretation for the hypothesis ¢, if the information w allows
to “deduce” ¢, that is if I'(w) > ¢.

Note that if T'(w) = z, then w is a quasi-supporting interpretation for every
information ¢ € ® because z is the top element of the partial order “<”, and
such an w is then especially a quasi-supporting interpretation for the informa-
tion z € ®; it is therefore called an inconsistent interpretation, because it is
an interpretation which cannot be true. In a normalized hint there are clearly
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no inconsistent interpretations. An interpretation w which is not inconsistent,
that is I'(w) # z, is called consistent.

In some cases, the user is interested in the “real” interpretations, that is those
which are not inconsistent. An element w € € is called called supporting
interpretation for the hypothesis ¢ € ®, if it is a consistent quasi-supporting
interpretation for ¢, that is if

Nw)>¢ and TI'(w) # =z. (3.10)

Note that in a normalized hint, every quasi-supporting interpretation is also a
supporting one.

Two other kinds of interpretations can be of interest. Consider those elements
of 0 which are not quasi-supporting interpretations, but whose image under I'
is also not in contradiction with the hypothesis. Formally, an w € 2 is called
possibly supporting interpretation for the information ¢ € &, if I'(w) is
not in conflict with ¢, that is if

I'w)® ¢ # 2. (3.11)

The opposite concept, i.e. elements of 2 whose images under I are contradicting
with the hypothesis, are also said to refute the hypothesis. Such an interpreta-
tion represents a doubt one has in the hypothesis. Formally, an w € € is called
refuting interpretation of the information ¢ € ®, if I'(w) is in conflict with
¢, that is if

T'(w)® ¢ = 2 (3.12)

In fact, a refuting interpretation should really be called quasi-refuting, because
it can also be an inconsistent interpretation. Based on this, we can define
refuting and possibly refuting interpretations analogously to quasi-supporting
interpretations and therefore get a duality between supporting and refuting.
For more details on these concepts and the special case where a negation is
available see (Kohlas et al., 2000). In the sequel, we will usually focus on the
“positive” interpretations, that is the three types of supporting interpretations.

Clearly, the union of the possibly supporting and the refuting interpretations
is the whole set 2, and the two sets of interpretations are disjoint.

3.5.2 Allocation of Support, Quasi-Support Sets

Let H = (Q,T,®,D, A, P) a hint and ¢ be an element of the unmarked in-
formation algebra (®,D). The quasi-support set QSS(¢) is then the set of
all quasi-supporting interpretations for the current hypothesis ¢. Formally the
function @SS is defined by

QSS: & — 2%
¢ — QSS(p):={we: I'(w) > ¢}. (3.13)
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Figure 3.2: Allocation of support induced by a focal mapping.

In order to clarify the dependencies, the hint H which defines the allocation of
quasi-support will sometimes be noted as a subscript, like SSy.

This type of mapping is well known:

Theorem 3.6 The mapping QSS is an allocation of (quasi-) support’
(Besnard € Kohlas, 1995; Kohlas, 1997a) from the information algebra (®, D)
into the Boolean algebra 2%, i.e. for ¢1,ps € B:

QSS(e) = Q, (3.14)
QSS(1® ¢2) = QSS(¢1) N QSS(42). (3.15)

Proof of theorem 3.6 By definition, QSS(e) = {w € Q : I'(w) > e}. But, for
every w € ), we have I'(w) € ® and by corollary 2.3 I'(w) > e. This proves
(3.14).

QSS(p1 @ d2) = {weQ:T(w) = o1 D P2}
= {weQ:I(w) =1, T'(w) > g2}
= {we:T(w)>p}N{we:T(w) > ¢}
QS5S(91) N QSS(¢2)

and this proves (3.15). O

The allocation of quasi-support @SS is in general not normalized, that is
QSS(z) is empty only if the hint is normalized. From the definition it fol-
lows that every quasi-supporting interpretation for the impossible information
z is also a quasi-supporting interpretation for every information ¢ € ®. There-
fore the set QSS(¢) is called only a quasi-support set of ¢ (and not a support

2 Allocations of support are also called meet homomorphisms or intersection homomorphisms
(Shafer, 1979).
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set, see below), because some of its members also support the impossible infor-
mation. For the same reason we call )SS a quasi-support and not a support
function.

Corollary 3.7 The mapping QSS is monotone, that is for ¢1,¢s € P,

o1 < ¢ implies QSS(¢1) 2 QSS(¢2), (3.16)

and

QSS(d1) 2 QSS(2). (3.17)

Proof of corollary 3.7 ¢1 < ¢o means by definition ¢1 @ ¢ = P2 and together

with (3.15) we have QSS(¢2) = QSS(p1 B ¢p2) = QSS(¢1) N QSS(¢2). This

implies QSS(¢2) C QSS(¢1).

The second equation follows from the first one with ¢o = z and corollary 2.3.
O

The two mappings @SS and I' are in general not inverse mappings, but have
the following property:

Lemma 3.8 w € (SS(I'(w)) for every w € Q.
Proof of lemma 3.8 Follows from the definition of @SS (3.13). O

A system (®, D, 2%, QSS) is then called a body of arguments (cf. section 2.3).
It is called normalized if @SS is normalized. If, additionally, (2,4, P) is a
probability space, then (®, D, 2%, QSS, A, P) is called a body of evidence
(Kohlas & Brachinger, 1995; Kohlas, 1997b).

3.5.3 Support Sets

We have already mentioned that for ¢ € ® the set QS5(¢) includes, besides oth-
ers, the supporting interpretations for the impossible information z. Sometimes,
we are interested in “proper” supports, i.e. we want to exclude the inconsistent
interpretations. So for a formula ¢ € ® define the support set SS(¢) as the
set of all supporting interpretations,

SS5(¢) = @SS(¢) — QSS(2) (3.18)
= {weQ:T(w) > ¢, I'(w) # 2z}

This definition makes sense only in the case where ()SS(z) # (2, that is when
there are some consistent interpretations.

SS does also satisfy the conditions for an allocation of support, it is even a
normalized allocation of support:
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Corollary 3.9 The mapping SS is a normalized allocation of support from
the information algebra (®, D) into the Boolean algebra 2% with ' = {w € Q :

I'(w) # z}, that is for ¢1, ¢ € ®:

SS(e) =
SS(p1® ¢2) = SS(¢p1) N SS(¢2),
SS(z) = 0

Proof of corollary 3.9 Follows from theorem 3.6 and the definition of SS (3.18).
O

Corollary 3.10 The mapping SS is monotone, that is for ¢1,¢ps € @,

o1<d2 implies  SS(¢1) 2 SS(¢n). (3.19)

Proof of corollary 3.10 Follows from the definition (3.18) of SS and corollary 3.7.
O

The functions @SS and SS defined with respect to a normalized hint are clearly
identical, because there are no conflicting interpretations.

Consider now a body of evidence (®, D, 2%, @SS, A, P). As described above,
we can define a normalized allocation of support SS. Further, the measure P
is considered as a prior measure reflecting the situation before we learn that
the interpretations QSS(z) are conflicting. So this additional information is
used to condition the probability measure, i.e. the probability space (2, A, P)
is normalized to a new probability space (€', A’, P’) using the same technique
as described in definition 3.3 for normalization of generalized hints, that is

Q = Q- Q85(z) (3.20)
A = {AnQ:Aec A} (3.21)

and the measure P’ is defined if ' is measurable with respect to A by

!/
P'(A) = igéli for A e A, (3.22)
otherwise, if P*(Q') > 0,by
P*(A
P'(A) = P*EQ’; for A e A, (3.23)

where P* denotes the outer measure with respect to measure P.?

Therefore we get a normalized body of evidence (®, D, oY S5 A P! ).

3For the case P*(Q') = 0 see the remark after definition 3.3.
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3.5.4 Possibly Supporting and Refuting Sets

For ¢ € ® define the possibly supporting set PSS(¢) as the set of all possibly
supporting interpretations,

PSS(¢) = {weQ:pdT(w) # 2}, (3.24)
and the refuting set RS(¢) as the set of all refuting interpretations,
RS(¢) = {weQ:00(w)=z}. (3.25)

The possibly supporting set and the refuting set are disjoint, and their union is
the whole set €). But in contrast to @S5S and SS, the mappings PSS and RS are
not additive, that is they do both not satisfy a condition analogous to (3.15).
Therefore they are both clearly not allocations of support (cf. theorem 3.6).
Further, they both are not allowments of possibility* (Besnard & Kohlas, 1995;
Kohlas, 1997a), that is PSS(¢1 @ ¢2) is in general not equal to PSS(¢1) U
PSS(¢2) and analogously for RS. In general, only the following relations hold:

Lemma 3.11 For ¢1,¢ € P,

PSS(¢1 @ ¢2)
RS(¢1 @ ¢2)

PSS(é1) N PSS(¢1), (3.26)

-
2 RS(¢1) URS(1). (3.27)

Proof of lemma 3.11 Follows from the definitions of PSS (3.24) and RS (3.25).
O

3.5.5 Conflicts and Diagnoses

In subsection 3.5.1, we introduced the distinction between consistent and in-
consistent interpretations. In chapter 6, this distinction will get a meaning in
the context of model-based diagnostic. Here, we define the two fundamental
sets which will be used there, that is the so-called conflicts C'S and diagnoses
DS:

CS = {w € Q:wis an inconsistent interpretation} (3.28)
= {weQ:T(w) =2z}
DS := {we€Q:wisa consistent interpretation} (3.29)
= {weQ:T(w) # 2z}
Clearly, these two sets are complementary with respect to the state space, that
is Q— CS = DS.

The following lemma shows the relation between quasi-support sets, the con-
flicts, and the diagnoses:

4Allowments of possibility are also called union homomorphisms (Shafer, 1979).
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Lemma 3.12 CS = QSS(z) and DS = SS(e).

Proof of lemma 3.12 Follows from the definition of @SS (3.13) and of SS (3.18).
O

Clearly, the representation of these two concepts as subsets of ) is not very
handy, or often not even possible due to the size of ). In chapter 5, other rep-
resentations of the conflicts and diagnoses are studied, in chapter 8 we address
the computation of conflicts and diagnoses.

Every interpretation in the possibly supporting set does not contradict the
hypothesis, so especially it is not a member of the conflicts:

Lemma 3.13 PSS(¢) C DS for every ¢ € ®.

Proof of lemma 3.13 Follows from the definitions of DS (3.29) and PSS (3.24).
O

Every member of the conflicts is clearly contained in the refuting set for every
hypothesis ¢ € @, therefore:

Lemma 3.14 CS C RS(¢) for every ¢ € .

Proof of lemma 5.1/ Follows from the definitions of C'S (3.28) and RS (3.25).
O

3.6 Information Algebra of Allocations of
Quasi-Support

In this section, we will first consider the allocations of support from the infor-
mation algebra (®, D) into the power set 2, and we show that this indeed is
an information algebra. We denote the set of all these allocations of support by
So. Note that all these allocations are defined on the same information algebra
(@, D) and with respect to the same probability space (2, A, P).

The combination of allocations defined on the same set of interpretations is
presented in subsection 3.6.1. In subsection 3.6.2 the focusing of allocations is
applied to the computation of quasi-supporting interpretations.

In subsection 3.6.3 a generalization of the combination operation is presented,
namely the combination of allocations on different sets of interpretations.

Note that every allocation of support is also an allocation of quasi-support;
therefore the definition and result presented hereafter apply also to allocations
of support.
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3.6.1 Combining and Focussing Allocations of Quasi-Support

Consider two allocations of quasi-support, that is they both satisfy the two
conditions from theorem 3.6. The combination of these allocations follows from
the combination of the underlying hints:

Theorem 3.15 For i = 1,2, let H; = (Q, 'y, ®,D) be a generalized hint
and QSSyy, the corresponding allocation of quasi-support. Then, the allocation
of quasi-support @SSy, &, generated by the combined hint Hy & Ha can be
computed from the allocations QSS4,, and QSSy,, that is for ¢ € @,

QS0 (0) = | (@83, (61) N @SSy, (62))- (3.30)
P<P1DP2

We denote the combination of two allocation by Q5S4 ® @SSy, := @SSy, a,-
Proof of theorem 3.15

Q@SS em,(¢) = {w € Q: e, (w) > ¢}
= {weQ: Ty (w) &y, (w) > ¢}
= {weQ:¢ <10 ¢, Iy (w) > 1, Iy (w) > P2}
= {weQ:9p< 102, we QSSy, (P1) N QSSy, (d2)}

= [J (@SS, (1) N QSSy, (62)).
0<p1DP2

O

Analogously, the focusing operation for hints carries over to the allocations of
quasi-support:

Theorem 3.16 Let H = (0, T',®, D) be a hint and QSS4 the corresponding
allocation of quasi-support. For x € D, the allocation QSSy=« corresponding
to the focussed hint H=" can be computed from the allocation QSSy, that is
for p € @

QSSy=2(9) = |J @SS(¥). (3.31)
Yp=9p=*>¢

We denote the focusing of an allocation by QSS, ™" := QSSy==.
Proof of theorem 3.16
Q55y2e(9) = {weQ:Ty™"(w) 29} = {weQ: (w)~" > ¢}

= {weQ:Tw) >y =9"">¢} = [ JQSS(¥)
Y=¢=*>¢

and this proves the theorem. a
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The vacuous allocation s,, induced by the vacuous hint, satisfies s,(e) = Q
and s,(¢) = 0 for ¢ # e, that is it allocates only arguments to the vacuous
information e. It is clearly the neutral element of the combination operation.

Together with these two operations of combination and focussing, the set of
allocations of quasi-support Sg is an unmarked information algebra. This can
be shown just as in the case of allocations of probability in section 2.4. The
only difference is that the reference set 2? of the allocations of quasi-support is
not a probability algebra, but only a complete Boolean algebra of subsets. Yet
the proof from section 2.4 nevertheless carries over to the present case, because
the probability measure itself is unimportant in the proof.

3.6.2 Focusing of Allocations for Computing Quasi-Supports

The operation of focusing an allocation of quasi-support allows to represent
conflicts and quasi-support sets possibly within smaller domains in D:

Lemma 3.17 Let ¢ € ®, then for x € D

SS~%(e) = DS for any x, (3.32)
QSST*(z) = CS if x is a support for z, (3.33)
QSST*(¢) = QSS(9) if © is a support for ¢. (3.34)

Proof of lemma 5.17 The third equation follows from a property of the infor-
mation algebra (Sg, D) which can be proved analogously to lemma 2.22 for
(Pp, D), that is

QSS=*(¢) = [JQSSw) = QSS(¢),
Y=rT=1p>¢

because z is a support for ¢ and @SS is monotone.

For a proof of (3.33), we can apply (3.34) to ¢ = z, therefore QSST%(z) =
QSS(z). (3.33) follows then by lemma 3.12.

Apply (3.34) to ¢ = e. Every x € D is a support for e (cf. lemma 2.4) and SS is
monotone, therefore SS=*(e) = SS(e). (3.32) follows then by lemma 3.12. O

3.6.3 Allocations of Quasi-Support on Different Sets of
Interpretations

Let H; = (924, T;,®,D), i = 1,2 be two hints with respect to the same infor-
mation algebra (®, D). Denote by @SS, and @SS, the respectively induced
allocations of quasi-support. To combine the information contained in the hints,
we can either combine both hints to a new hint H according to section 3.3 and
then derive the combined allocation of quasi-support SS;, from this new hint;
or the two allocations of quasi-support @SSy, and @SSy, can be combined
directly. The following theorem states that the results are essentially the same:
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Theorem 3.18 Let H; = (Q;,T';, ®, D) fori = 1,2 be two hints and H1 HHa =
(Q,T,®, D) their combination. For ¢ € P,

QS8 rar(@) = | (@555, (61) x 92) N1 (1 x Q583,(2)). (3.35)
$<¢150¢2

Proof of theorem 3.18 Adapted from (Kohlas, 1995). Denote the right-hand
side of (3.35) by R. Let ¢ € ®, then by definition,

QSS’HleBHg ((Z)) = {w €Q: FHl@H2 (w) > ¢} (3'36)

and denote this set by L.

Now let w be in L. Then w = (w1, ws) with w; € Q1 and wy € Q9. By definition
of H1 & Ha, T'nyam,(w) = Ty (wi) @ 'y (we). Further, for ¢ = 1,2 define
¢i = I'y;(wi), then w; € Q5SS (¢i). Using ¢1 @ ¢2 > ¢, we have then that
(w1, w2) = (w1 X Q2) N (21 X wa) is contained in R.

Now let (wi,wz) in R. Then there are ¢1,¢02 € ® with ¢ @ ¢p2 > ¢ and
w; € QSSy,(¢i) and therefore I'y,(w;) > ¢; for i = 1,2. This shows that
Iy, (w1) & Ty (w2) = Ty, (w) > ¢, such that (w1, we) is in L.

This shows that L = R and completes the proof. g

A conclusion of this theorem is that if several allocations of support
Q88 : & — 2%, i=1,....n (3.37)

have to be combined, then we can first extend each of them to Q := Q1 x---xQ,
by defining

Q88 : & — 29 i1 n
¢ = Q8Si(¢):= (]| x @98i(e) x [ J]
j=1

j=it+1

for ¢ € ®, and then combine the allocations of support @SS}, ..., @SS, using
the method described in section 3.6.1. Yet from a computational point of view,
this is not very efficient.

3.7 Constructing Allocations of Probability and
Belief Functions

Given a hint H = (Q,T",®, D, A, P) and the corresponding body of evidence
(®, D,2%, QSS4,, A, P) (cf. section 3.5), we will now define an allocation of pro-
bability along similar lines as described in (Kohlas, 1995) for classical hints.
Usually, we consider only normalized bodies of evidence at this point, but
the definitions below are not restricted to them. By definition, the structure
(Q, A, P) is a probability space, therefore in general not every subset of Q0 can
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be measured. But we can compute §(¢) := P(QSSy(¢)) for ¢ € @ if QSS1(4)
is P-measurable. The set of pieces of information ¢ which are P-measurable is
closed under meets and contains the element e with P(QSS4(e)) = P(2) = 1.
P(QSSy(¢)) is the probability that the interpretations which are quasi-sup-
porting ¢ hold. We will show below how to extend this probability to the whole
set 2.

It is reasonable to measure the not P-measurable elements in 2% by least upper
bounds, that is for S C 2 define

&(S):= sup P(A). (3.38)
A<S, AcA

This function is an extension of & because if S is P-measurable, then £(S) =
£e(5)-
Following (Kohlas, 1995), this definition can in fact be motivated.

Let I be the o-ideal of all elements A € A with measure zero, that is P(A) = 0.
This ideal permits now to define an equivalence relation on the algebra A: For

A A € A,

A~ A" ifand only if (A— A") € Iyand (A" — A) € I,.
Lemma 3.19 (Kohlas, 1995) ~ is an equivalence relation on A.

Denote by [A] the equivalence class of A € A, and by B the set of equivalence
classes, that is the quotient algebra B = A/~.

The mapping A — [A] is a o-homomorphism from A into B and we can define
a probability measure on B by

wu([A]) := u(A) for [A] € B. (3.39)
Lemma 3.20 (Halmos, 1963) (B, i) is a probability algebra.

(For a proof see for example (Kohlas, 1995).)
For any S € 2% define

o(s):= \/ 4] (3.40)

and it can be shown (Kohlas, 1995) that this mapping is a normalized, o-
complete allocation of support, that is

p (/\ Ai> = /\ p(A;) for any countable set I.

i€l el
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The mapping 7 := p o Q554 is a chain of allocation of supports, therefore
also an allocation of support. Further, m is also an allocation of probability
from (@, D) into the probability algebra (B, p).

The allocation of probability my; together with the measure p defines then a
belief function on (®, D),

belpy: @ — [0,1]
¢ = beln(d) == pu(rn(9)), (3.41)

which satisfies the axioms (B1) and (B2) of section 2.6. And this belief function
bely is in fact equal to the extension & (Kohlas, 1995), therefore this links the
former definition of &, to this analysis. The situation is depicted in fig. 3.3.

Belief Function

Probability Algebra

Positive
Probability

Measure ]
p

[0.1]

Complete
Boolean Algebra

\D - Allocation of Support \J
A Unlabeled Information Algebra
;

\9)

\N&
«?

Figure 3.3: Allocation of probability, belief function and extended belief func-
tion.

3.8 Equality and Equivalence of Hints

The developments of the previous section allows now to define concepts of equal-
ity and equivalence of generalized hints based on the allocations of probability
induced by them.
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Definition 3.21 Two hints H1 and Hs are called

e equal, Hi = Ha, if the components they are made of are identical.

o equivalent, Hy ~ Ha, if the induced allocations of probability Ty, and
TH, are equal.

“ ” [43 2

Both relations, “=" as well as “~” are equivalence relations.



Information Systems

In the previous chapters, we worked with the concept of information algebras,
marked and unmarked ones. Yet in practice, elements of this information al-
gebra are in general infinite and therefore not tractable by computers. Linear
manifolds, for example, consist in general of an infinite set of points, yet they
can elegantly be described by finite sets of linear equations.

So in this chapter, we present the well-known concept of information systems
and show its relation to information algebras. In chapter 5, the concept of an
information system is used for a representation of sets of interpretations. In
chapter 6, information systems will be used to represent information algebras
in order to build argumentation systems.

In the first section, we introduce the concept of information systems, a theory
developed by Scott (1982). In section 4.2, the connection between informa-
tion systems and unlabeled information algebras is presented following (Kohlas,
1997b). This connection allows to use the computational theory for informa-
tion algebras (Kohlas & Stark, 1996a; Kohlas & Stark, 1996b) for information
systems; this computational theory will be presented in a general context in
chapter 8. In section 4.3, the special and very important case of information
systems with variables is discussed and finally used for the concept of variable
elimination.

4.1 The Concept of an Information System

Consider a language £ which is just a set of sentences; we are not interested
here in syntactic details of this language. Available information is expressed
as a subset X of L. Different sets of sentences may express the same infor-
mation, and some sentences can be derived from others. Therefore we need
a consequence relation (Tarski, 1957) or entailment relation - between sets of
sentences X and a sentence ¢, where X F ¢ means that ¢ can be derived from
X. We assume that this entailment relation F satisfies the axioms (E1) and
(E2), for X, Y C L and d € L:

57
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(E1) X F a for each a € X.

(E2) If X b foreachbeY and Y F d, then X + d.

A special element 1 is contained in the language £ which denotes the falsity.
Every element in the language £ follows from this elements by the consequence
relation F, that is {L} F a for every a € £. This element L represents the
information which “cannot be true”, which implies therefore anything else.

Further, the entailment relation is called finitary or compact if it satisfies the
following condition:

(E3) If X I a then there exists a finite subset Y C X such that Y F a.

In the sequel, we will always work with finitary entailment relations, because in
practice, computers cannot work with infinite representations of information.
As an abbreviation we will often omit the set boundaries on the left hand side of
the entailment relation, i.e. we write fi,..., f,, b g instead of {f1,..., fm} F g.

Definition 4.1 An information system is a tuple (L,F) consisting of a lan-
guage L, together with a compact entailment relation b defined on the language
L which satisfies the azioms (E1) to (E3).

Scott introduced a closely related concept in (Scott, 1982). The main difference
is that Scott singles out “consistent” subsets of £, while in this paper we will
not do that.

There are a variety of models of the theory of information systems, as has been
mentioned in (Kohlas, 1997b), for example

e Systems of linear equations (Hertelendy, 1997)

Systems of linear inequalities (Kalt, 1997)

Propositional logic builds an information system; this is discussed in
(Kohlas et al., 1999D).

Finite Set Constrains: in chapter 5 we will present this generalization of
propositional logic and show that it also is an information system.

Predicate logic

4.2 Information Systems and their Information
Algebras

In this section we will show how an information algebra can be built on top of
a given information system.



4.2. Information Systems and their Information Algebras 59

Suppose that there is a set S of sublanguages of £, which represents all sub-
languages we are interested in, S C 2. This models the fact that we are not
interested in every possible question with respect to the information system,
but only in some of them. Further we suppose that £ itself is a member of S
and that S forms a N-system, that is the intersection of any family of sublan-
guages of S is also a sublanguage contained in S. If the top element, the meet
and join are defined by

Top Element: L,
Meet: LiNLy:=LiNLy €S,
Join: LiVELIp:=(|{L'eS:LiuL, C L},

for L1,Ly € S, then S forms a complete lattice (Davey & Priestley, 1990;
Grétzer, 1978).

In an information system, the same information can possibly be expressed by
several different subsets of sentences. The entailment relation F allows to define
an equivalence relation on subsets of £ with the meaning that two sets of
formulas are equivalent if the same information can be deduced from them.
More formally, we define the operator C from 2% to itself, i.e. for a set X € L,
we define the set C'(X) as the set of all sentences in £ which can be derived
from X by the entailment relation I,

CX)={aecLl:XFa}. (4.1)

Given that F satisfies (E1) to (E3), it is easy to see that the operator C' satisfies
the following properties and is therefore a compact consequence operator
(Tarski, 1957):

Cl) X CC(X) for every X C L.

(C1)

(C2) C(C(X)) =C(X) for every X C L.
(C3) If X CY C L, then C(X) CC(Y).
(C4)

C4) C(X)=U{C(Y): Y C X, Y finite}.

Definition 4.2 Two sets of formulas X and Y in L are called equivalent,
X ~Y,if C(X) =C(Y). X is called closed if C(X) = X. The formulas
contained in C((), i.e. the sentences following from the empty set of formulas 0,
are called tautologies.

Note that the set of formulas £ is closed itself because of (C1). An important
property of C'is stated in the following lemma:

Lemma 4.3 (Kohlas & Stark, 1996b) For X,Y € L,

C(XUY) = C(XUC(Y)). (4.2)
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Often, we are not interested in consequences with respect to the whole language
L, but only to some specific smaller subsets of formulas of £. We define therefore
for every subset M of L

Cu(X)=C(X)NM for X C L. (4.3)

Cy as operator from 2% to itself has similar properties as the operator C' (Kohlas

& Stirk, 1996b):

(M1) If X C M, then X C Chr(X).

(M2) Cp(Cu(X)) = Cu(X).

(M3) If X CY C L, then Cy(X) C Cp(Y).
(M4) Tf X C M, then C(Car(X)) = C(X).

Usually, we are interested in sublanguages which belong to the lattice S.

Impose now two further restrictions on the consequence operator C':

(C5) C(Cu(CL(X))) =C(Cynr(X)) for X C L and L, M € S.
(C6) CL(CL(X)UY)=Cr(Cr(X)ulCL(Y)) for X, Y CLand L € S.
Kohlas & Stérk (1996b) show that property (C5) is equivalent to C' having the

interpolation property with respect to S, and also, that the deduction property
implies condition (C6).

Definition 4.4 Let L € S and X C L. Then ¢ = (X, L) is called a marked
statement. d(¢) = L is called its label. The set of all marked statements is
denoted by MS.

Two marked statements ¢ = (X1, L1) and ¢pa = (X9, Lo) are called equivalent
¢1 ~ @2 if and only if X1 ~ Xo and L1 = Lo.

Two operations, marginalization and combination, are defined on marked state-
ments:

Definition 4.5 A marked statement ¢1 = (X1, L1) is called a marginal of
o2 = (X9, L) if and only if

L1 g LQ and CLl (Xl) = CL1 (Xz) (4.4)

In the sequel, we define
¢21L1 = <CL1 (X2)7 L1> (45)

$2+1 is clearly a marginal and for every other marginal ¢ of ¢o we have ¢/ ~
gt
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Lemma 4.6 (Kohlas, 1997b) The marginalization is transitive, i.e. for ¢; =
<X17LZ> € MS7 1= 172737

if po ~ @1t and g3 ~ ¢oM then gy ~ ¢y t10. (4.6)

Definition 4.7 A marked statement ¢ = (X, L) is called a combination of
the marked statements ¢1 = (X1, L1) and ¢o = (Xo, La), if and only if

L=IL1V Ly and C(X):C(XlLJXQ). (4.7)

In the sequel, we define the product of ¢; and ¢2 as
¢1 D P2 = <C(X1 U Xg), LV L2> (48)

Clearly, ¢1 @ ¢ is a combination and every other combination ¢’ of ¢; and ¢o
satisfies ¢’ ~ @1 D ¢o.

Lemma 4.8 (Kohlas, 1997b) The combination is commutative and associative,

1.e. for ¢; = <Xi,LZ'> eMS,i=1,2,3,

1O P2=020 01 1D (P2 D P3) = (P01 D h2) © P3. (4.9)

This lemma shows that marked statements form a commutative semigroup
under combination. The unity element for the label L is marked statement
er, = (0, L) which satisfies

e @ (X,L) = (X, L) (4.10)

for every marked statement (X, L). Furthers, the combination of marked state-
ment is idempotent:

Lemma 4.9 (Kohlas, 1997b) For a marked statement ¢ = (X, L) and a sub-
language L' C L, we have ¢ @ ¢ ~ ¢.

The following lemma is an essential result for computations with marked state-
ments, especially in distributed computations:

Lemma 4.10 (Kohlas, 1997a) If the consequence operator C' satisfies (C6) and
o = (Xi, L) fori=1,2 are two marked statements, then

(1@ d) "t = gy @ g2, (4.11)

Equivalent statements express the same information “in different words”. Thus
it makes sense to consider the classes of equivalent marked statements: For
¢ € MS denote the equivalence class which it belongs to by [¢]; a representant
of this class is for example C1(X) if ¢ = (X, L). Denote by [MS] the family of



62 4. Information Systems

all these equivalence classes. Define combination and marginalization in [MS]
by

[$1] © [92] = [¢1 © o] (4.12)
oIt =[], (4.13)

and the labeling function d by d([¢]) := d(¢).

The set MS and the lattice S together with the operations of combination and
marginalization as defined above satisfy the axioms (M1) to (M10) of defini-
tion 2.5 if the additional properties (C5) and (C6) on the consequence operator
C' are satisfied, therefore (MS, S) is a marked information algebra (for a proof
see (Kohlas, 1997b)). Using the results from subsection 2.1.3, we can also con-
struct the corresponding unmarked information algebra (MS, S).

Consider now an information algebra constructed from an information system
as shown above. Then the computation of a marginal in the information algebra
can be carried over to the computation of a marked statement representing the
corresponding marginal in the information algebra. Therefore, we can work with
representants of equivalence classes (that is marked statements) rather that with
the equivalence classes (that is elements of the information algebra) themselves.
Usually, a representant is a small set of formulas whereas the equivalence class
can be infinite and therefore — from the computational aspect — not tractable.

The concept of local computations on hypertrees, as it will be introduced in
chapter 8, can be applied to marked statements; this is in detail explained in
(Kohlas, 1997b).

We have shown how to construct an information algebra from an information
system. The other direction is only possible in some cases: the construction of
an information system from a so-called finitary information algebra is presented
in (Kohlas & Stéark, 1996b).

4.3 Elimination of Variables in Information
Systems with Variables

A special case arises if the language £ of the information system is formed over
a finite or countable set V of symbols or variables; the information system is
then called an information system with variables (Kohlas, 1997b). This is
for example the case in propositional logic.

The lattice S contains then usually all sublanguages formed over subsets of V.
A sublanguage over a set of variables V' C V is denoted by Ly . Usually, the
following relations hold for V', V" C V:

LV/mV// = LV/ m LV// (4.14)
Lyyr = m{LV Ly ULyn C Ly} = Ly V Ly» (4.15)
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Let X be a set of formulas from £. The set of variables which appear in X is
called its signature, denoted by X(X). Then Ly, (x) is the smallest sublanguage
of S which contains X, and this sublanguage is completely characterized by
Y (X). Therefore we write (X, V') for the marked statement with set of formulas
X in the language V for a V € V.

For an information system with variables the concept of marginalization can be
seen as the elimination of variables in a set of formulas. For a marked statement
¢ = (X,V), we are interested in a marginal ¢*¥ 1%} for a v € V. We suppose
therefore that there is a fixed way to obtain a set X ¥ such that

(X7 V —{o}) ~ (X, (4.16)

The computation of X~ from X is called the elimination of the variable
v, and this elimination therefore corresponds to the marginalization. Let now
X4, be the subset of all formulas of X which contain the variable v which is
to be deleted, and X_, := X — X,. Then, for ¢4, := (X1, V) and ¢_, :=
(X_y,V —{v}), we have ¢ ~ ¢4, ® ¢_,. The consequence operator C' satisfies
the condition (C6), therefore using lemma 4.10, we have

oV~ (g @) (4.17)
~ ¢V e, (4.18)
~ (X PUX L,V = {v}). (4.19)

This means that XY and X4, " U X_, are equivalent. Yet without loss of
generality, we define in the sequel X% := X,,7Y U X_, in order to simplify
notations.

Furthers, for a sequence of variables vy, ..., v, in V define inductively
X_(U11~~"vp) = (X_(vlv“’vpfl))ivp . (420)

Then, using lemma 4.6, we get

<X_(v17"'7vp)7 V- {Ub cee 7Up}> ~ <X7 V>lW_{'U1,~~~7'Up}‘ (421)

Marginals of marked statements in the information system can therefore be com-
puted by sequentially eliminating variables. Different orderings of those vari-
ables, which have to be eliminated, result usually in different but nevertheless
equivalent marginals.! But clearly, the computational effort may considerably
depend on a “good” ordering of the variables, see for example (Kohlas, 1997D).
Together with the concept of computations in a hypertree (see chapter 8), the
elimination of variables is useful for big computations; for an implementation
of marginalization for different calculi see also chapter 12.

The special case of propositional logic with the usual consequence operator
is clearly an information system with variables, as it has been considered in

Kohlas et al. (2000) show that in the special case of propositional logic, the results are not
only equivalent, but equal.
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(Kohlas et al., 1999b); see also chapter 5 for a generalization to set constraints.
Combination means essentially union of sets of propositional formulas, com-
puting marginals, that is elimination of variables in a set of formulas, means
resolutions based on concepts developed by Davis & Putnam (1962; 1983).

Systems of linear equation are considered in the context of marginalization in
(Kohlas, 1997b; Hertelendy, 1997), systems of linear inequalities can be treated
similarly using Fourier-Motzkin elimination techniques (Kalt, 1997; Imbert,
1995; Williams, 1976).



Logical Representation
of Arguments

The representations of conflicts and diagnoses as subsets of €2 defined in section 6
are not very easy to handle. The state space (2 normally is very huge, its size
usually grows exponentially with the number of variables. In this chapter, a
logical description for subsets of €2 is presented, and this description will also
be used to formulate the computations in chapter 8. In addition, several useful
properties of the logical description are stated and proved.

We consider the special case where the space €2 is a finite cartesian product
of the possible values of a set of variables. This restriction is motivated by
the use of Q in the framework of an argumentation system (cf. chapter 6 for
examples). This approach is very much motivated by the work with examples
(see also chapter 12): Usually, there is a notion of components which are in a
precise but unknown working mode out of a set of possible modes, and these
sets of modes are then used to build the set of interpretations €2; this means
that an interpretation w € 2 defines the working mode of all components. In
the sequel, we will not restrict the formalism to systems with components, but
present it in a more general context.

In the first section we introduce the concept of finite set constraints and show
that they define an information system and algebra. In section 5.2, we show
how arguments can be represented as formulas in the language of finite set
constraints. Implicates and implicants are introduced in section 5.3 and used
to define canonical representations for any formula. In section 5.4, the concepts
of conflicts and diagnoses, in section 5.5 those of support and quasi-support sets,
and in section 5.6 those of possibly supporting and refuting sets are carried over
from €2 to the language of finite set constraints.

5.1 Finite Set Constraints

In this section, we introduce the concept of finite set constraints following (Anrig
et al., 1997c). Further literature on this concept can be found in (Haenni &

65
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Lehmann, 1998a) and, together with a short discussion of the difference between
finite set constraints and singed formulas in many-valued logics, also in (Haenni
& Lehmann, 1998b). More general set constraint languages, also called signed
logics, are discussed in (Hahnle, 2000; Beckert et al., 1999; Héhnle & Escalada-
Imaz, 1997).

Note that here, we use the term “set constraint” for a concept which differs
substantially from the one used in the literature, for example in (Kozen, 1994;
Aiken et al., 1994; Gilleron et al., 1993).

Set constraints are a generalization of ordinary variables from propositional
logic which can only take two distinct values; so here, we consider variables
with several possible values. This is especially handy for the formulation of
different operating modes for components in complex systems.

5.1.1 Definition of the Language

Consider the finite set of variables {c1, ..., ¢, } and for every variable ¢; there is
a fixed finite set V; of possible values, also called the frame of the variable. A
finite set constraint (FSC) over a variable ¢; and a frame V with V C V} is
denoted by M (c¢;, V). It is interpreted as a predicate which is true if and only
if the variable ¢; takes a value out of V. This is a simple constraint over one
variable.

More general constraints can be built using several variables and a subspace
of the cartesian product of their possible values. The predicate is true if and
only if the vector of variables takes a value out of the subspace. For example,
consider three variables c;, ¢j, and ¢, together with a subspace V' C V; xV; x V},,
then the predicate is true if and only if the value of (¢;,¢j, ¢) is in V. This is
a generalization of FSC, but note that generalized restrictions can always be
formulated using FSCs.! Efficient algorithms have been developed for reasoning
with FSC (Anrig et al., 1997¢); these algorithm can be generalized too, but they
become rather complex. Therefore in the sequel we focus on FSC as defined
above.

The language FSC is built using the following rules:

1) L, T are formulas in FSC.

3

(1)
(2) M(c;,V) is a formula in FSC for every i = 1,...,n and every V C V;.
(3) If f is a formula in FSC, then so is (—f).

(4)

4) If f; and fo are formulas in FSC, then so are (fi A f2), (f1V f2), (fi — f2)

and (f1 < fa).

(5) All formulas in FSC are constructed by application of the rules above.

'Every generalized restriction can be formulated using an FSC DNF (see below for the definition
of DNF).
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Parentheses are omitted if they are not necessary, and for that purpose we
define the usual increasing priority of the connectives, that is <, —, A, V, —.

An interpretation w = (wy, ..., wy) is defined as being a vector containing the
value of every variable, that is the variable ¢; takes the value w; fori =1,... n.
The possible values for w are the elements of the cartesian product

Q= [[v (5.1)

and ) is called the set of interpretations. This space will also be used to define
hints on argumentation systems; this is described in chapter 6.

Given an interpretation w = (w1, ...,wy) € €2, the predicate M(c;, V) evaluates
to true if and only if w; € V. Evaluating a formula f € FSC under w € €2
means then to replace the predicates by their respective evaluation T or L
under w and then evaluate the formula using the usual logical truth tables for
the connectives A, V, =, —, and «». Formally, we define the evaluation w = f
of a formula f € FSC under an interpretation w = (wq,...,wy,) € Q by the
following rules:

cwkT.

e Notwk L.

o wk M, V)iffw e V.

w = —f iff not w = f.
WEfiAfoiffwle fi and w & fo.

wE AV RiIfwEfiowE fa.

cewkEfi— foifwE-fiorwE fo
cwiEfiefiffwulEfi—feandwl f2 — fi.

Note that the “or” in the previous definition are inclusive-or. As an abbrevia-

tion, we write w = f1,..., fm fwE fi,w E f2, ..., w E fin.

Often we are interested in the set of all elements of 2 under which a given
formula evaluates to true. Therefore we define the function N which maps a
formula from FSC to a subset of €2,

N(f) ={weQ: wE f} (5.2)

We will say that a formula f € FSC describes a subset ' C Q if N(f) = F.
It is easy to show that the following properties hold for the mapping N and
f,g € FSC:

N(=f) = N(f) (5.3)
N(fng) = N(f)NN(g) (5.4)
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N(fvyg) = N(f)UN(g) (5.5)
N(fi— f2) = N(=f1) UN(f2)
N(fi < f2) = N(fi — fa) " N(f2 — f1)

Two formulas fi, fo in FSC are logically equivalent?, written f; = fo, if

N(f1) = N(f2). f1 induces fo, written f; = fa, if N(f1) € N(f2). We
abbreviate fi A -+ A fn, E f by fi,---,fn E [ or sometimes by F | f if
F={f1,..., fn}, that means sets of formulas are interpreted conjunctively.

A system state w € € can be represented by a formula ¢(w) in the language
FSC,

n

c(w) = \ M(ci, {wi}). (5.8)

i=1

Clearly, the combination N o ¢ is the identity on 2. For a formula f € FSC we
call

Vew) (5.9)

its canonical representation.

The usual equivalence relations known from propositional logic hold also for
the language of finite set constraints: For f,g,h € FSC,

Idempotency: fANfFEFf V=T
Commutativity: fAgZgAf, fVg=gVf.

Associativity: FAW@AR)Z(fAg) AR, fV(gVh)Z(fVg)Vh.

Absorption: ANV ZSf fV(fAg =S
Modularity: FAW@V(fAR)Z(fANg)V(fAR),
fVgA(fVR)=(fVg)A(fVh)

Distributivity: ~— fA(gVh) Z(fAg)V(fAR), fV(gAR)Z(fVg) A(fVh).
Universal bounds: fAL = 1, fv.1l=f fATZf fVvT=T.
Complements: fA-f=1, fvaf=T.

Involution: -(—f) = f.

De Morgan: ~(fAg)=—f Vg, ~(fVg) =—fA-g.

2We write “logically” instead of “FSC-logically” in order to simplify notations. This simplifi-
cation will also be used for future definitions.
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Further, there are several equivalence relations in the language FSC which are
induced from set theory (Gries & Schneider, 1993) and follow from the defini-
tions above. These relations allow to construct simpler but logically equivalent
formulas by successively replacing formulas from the left hand-side by their
respective equivalent formulas on the right-hand side. For ¢ = 1,...,n and
Vv,V eV

Lower bound: M (c¢;, () = L.

Upper bound: M(¢;, V;) = T

Negation: “M(c;, V)= M(c;, Vi = V).

Disjunction: M (c;, V)V M(c;, V') =2 M(c;, VU V).

Conjunction: M (c;, V) A M(c;, V') = M(c;, VNV,

An FSC M(c¢;, V) is called proper if V # () and V # V;. An FSC clause is
a disjunction of proper FSC’s such that every variable ¢; occurs at most once.
Analogously, we define a FSC conjunction as a conjunction of proper FSC’s
such that every variable ¢; occurs at most once. Note that neither an FSC
clause nor an FSC conjunction contains any negated literal. Any formula in
FSC can be transformed into a logically equivalent disjunction of FSC conjunc-

tions (DNF) or a conjunction of FSC disjunctions (CNF) using the two sets of
equivalence relations defined above.

5.1.2 Information System and Algebra of Set Constraints

The tuple (FSC, |=) is an information system as described in chapter 4 because
= is a compact entailment relation.

Lemma 5.1 | is a compact entailment relation in FSC.

Proof of lemma 5.1 We have to show that (E1) to (E3) are satisfied for |=.
Let X C FSC and f € X. Then

NX)=N| ANg| =[Ny NG

geX geX

and therefore X |= f which proves (E1).
For (E2), let X,Y C FSC and d € FSC such that X = f for every f € Y and
Y |=d. This implies that N(X) C N(f) for every f € Y, hence

N(X) € () N = N(Y).
fey
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Further N(Y) C N(d). Together, this gives N(X) C N(d) which by definition
is X |= d and therefore proves (E2).

For (E3),let X C FSC and d € FSC such that X |= d. The set of interpretation
Q) is a finite product of finite spaces, therefore there is a finite Y C X such that
N(Y)= N(X). So N(Y) C N(d), which by definition is Y |= d and this proves
(E3). O

Using the techniques presented in subsection 2.1.3, we can build the correspond-
ing marked and unmarked information algebra as follows.

Define FSCy, for L C {cy,...,c,} as the language of finite set constraints built
with predicates relative to the variables in L. Therefore, SCy, . ..} = FSC
and FSCy is the language constructed with the only terms L and T. Define
the set

S:={FSCr:LC{ct,...,cn}} (5.10)

S is clearly a complete lattice with top element FSC, meet FSCp A FSCy =
FSCrnr, and join FSCp V FSCyp := ﬂ{FSCLN e S : FSCLUFSC C
FSCpn} = FSCryrr. The consequence operator C : FSC — FSC is defined
by

C(X) == {feFSC:XEf} for X C FSC. (5.11)

For finite set constraints, = is a compact entailment relation, and we have
proved in section 4.2 that this implies that C' is a compact consequence oper-
ator, i.e. it satisfies the conditions (C1) to (C4) of section 4.2. Further, define
Cr(X) := C(X)NFSCy. In the lemma below we show that C' satisfies also the
condition (C5) and (C6) from the same section.

For L C {ci,...,c,} define the subspace

Qp =[] Vi (5.12)

cEL
For A C () denote by A‘Q the projection of A to the subspace 2, and by Ny,
L
the restriction of N to Qf, , i.e. Np(X) := (N(X))‘Q . Further, for L' C L, the
L
canonical embedding of B C Q/ into €, is denoted by BT,

Lemma 5.2 C satisfies conditions (C5) and (C6) of section 4.2.
Proof of lemma 5.2 The lemma can be proved by considering the subsets

N(f) for formulas f € FSC. First, note that for every X C FSC and
M C{cy,...,cn} we have

NCu(X) = [N = N A | XQeeny-ur
fEFSCy Ny (X)CACQ
N(X)CN(f)

. ) H{eci,.en}t
o~ (v )
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Now we prove (C5). Let X C FSC and L, M C {c1,...,c,}. Then

N(Cu(Cp(X)) = <N<CL<X>>

H{ei,oen}t Hetsen}
QL) ) ’QM>

T{Cl 77777 Cn}
ows) — N(Curn(X))
MNL

This implies (C5) because

C(Cu(CL(X))) = {feFSC:Cu(CL(X)) E f}

{f € FSC: N(Cu(CL(X)) S N(f)}
{f € FSC: N(Cunr(X)) € N(f)}
{feFSC: Cynr(X) E f}

= C(Cunrn(X)).

Now we prove (C6). Let X, Y C FSC and L C {¢y,...,¢,}. Then

NL(CL(X)UY) = Np(CLX))NN(Y) = Np(Cp(X))n No(Ca(Y))
= Np(CL(X)uCL(Y))

and this implies (C6) because
CrL(CL(X)uY) = {feFSCL: N(CL(X)UY)C ( )}
= {feFSCL: NL(CL(X)UY) C NL(f)}
= {feFSCL: NL(CL(X)UCL(Y)) C NL(f)}
= {feFSCL: N(CL(X)UCL(Y)) € N(f)}
= CL(CL(X) UCL(Y)).

O

Consider L C {¢1,...,¢,} and X C FSCr. Then (X, L) is a marked statement,
and we define combination and marginalization like in section 4.2: For L' C L,

(X, L) = (Op(X), L)
(X,L)o (X', Ly = (Crop(XUuX'),LulL)

In the present context, these operations can also be represented more intuitively
as follows: For L' C L,

(X, )" = ({f e FSC : N(X) C N(f)}, L)
(X,Ly® (X', L) = ({feFSCrup : N(XUX')C N(f)},LUL)

where N (Y) := [ cy N(g). The definition of equivalence of marked statements
reads now

(X,L) ~(X',L) if L'=Land N(X)=N(X"). (5.13)
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This implies that the class of marked statements equivalent to (X, L) can be
represented by [N (X), L], and because X C FSCy, we have

(N (X))ot = N(X), (5.14)

This reflects the fact that the class [N (X), L] contains only information with
respect to L, but no information outside L.

Combination and marginalization of these classes are defined following (4.12)
and (4.13) respectively, that is for L” C L' in terms of interpretations

0, L)@ [Q, L] = [(Q’TL’UL) N (QTL/UL> LU L} (5.15)

o, L\ = Hw e Qe {wY C Q’} ,L"} . (5.16)

The marked information algebra is then (29, 2{c1-cn}y,

Using the results from subsection 2.1.3, we can construct the corresponding
unmarked information algebra. For an element [, L'], this means that we
have to identify it with any marked statement [Q”, L”] satisfying

Q/TL’UL” _ S)//TL’UL"7 (517)
therefore we identify all marked statements having the same set of interpre-
tation. This identification results in equivalence classes which, for an element
[, L] in the class, can be represented by its canonical embedding into €2,
that is /Tt hecause for every [, L] there is an equivalent element
[Herent o ¢,}]. This indeed gives the well known unmarked informa-
tion algebra (22, 2{¢15¢n}) " Given an element ¢ in this unmarked information

algebra, a support of it is any subset L of {ci,...,c,} such that ¢ contains no
information about variables outside L, that is

T{Clv"'vc’ﬂ}
¢ = [NV ew) . (5.18)

wEP

5.2 Arguments

Consider a generalized hint H = (,I', ®, D) where 2 is the set of interpre-
tations of the language FSC. The concept of arguments, defined in subsec-
tion 3.5.1 for elements of €2, can be carried over to the language FSC. For

f € FSC we define:

e f is a quasi-supporting argument for ¢ € ®, if

I'w) > ¢ for every w € N(f). (5.19)
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e fis a conflicting argument, if it is a quasi-supporting argument for z,
that is

I'w) =2z for every w e N(f). (5.20)

e f is a supporting argument for ¢ € @, if it is a quasi-supporting
argument for ¢ but not a quasi-supporting argument for z, that is

INw) > ¢ and I'(w) # z for every w € N(f). (5.21)

e f is a possibly supporting argument for ¢ € ®, if

INw)® ¢ # 2z for every w € N(f). (5.22)

e f is a refuting argument for ¢ € ® if

Nw)® ¢ =2z forevery we N(f). (5.23)

5.3 Implicates and Implicants

We are interested in representing general formulas in FSC by logically equiva-
lent ones which have a simpler form. Optimally, a formula should be represented
by a logically equivalent formula with minimal size, but the computations of
such a representation is in general not feasible and the resulting formula not
very handy to work with. In this subsection, generalizing the ideas from propo-
sitional logic, we will introduce the concepts of implicants and implicates, which
allow to generate reasonable representations.

In order to simplify notations, we first define a partial ordering on FSC con-
junctions. Let co = /\(; y)er M(ci, V) be an FSC conjunction. Then we define
the partial relation >~ by

AM(e, V) = N\ M, V) (5.24)
(i,V)erl (a,Ver’
for every I’ satisfying
[T ={(i,V):(,V)el, VCV'}.
The right-hand side of (5.24) must also be an FSC conjunction, that is every
FSC satisfying M(c,V) = T is removed (the empty conjunction is T).

A dual definition is possible for FSC clauses: Let cl = \/; ey M(c;, V) be an
FSC clauses. Then we define the partial relation < by

VM@, v) <\ M, V) (5.25)

(i,V)erl (s, Vel
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for every I’ satisfying
[T ={G,V):GV)el, VoV

The right hand side of (5.25) must also be a FSC clause, that is every FSC
satisfying M(c, () = L is removed (the empty clause is ).

Clearly, > defined by (5.24) is a strict partial order on the set of FSC con-
junctions and < defined by (5.25) is a strict partial order on the set of FSC
clauses.

Lemma 5.3 co = co' implies co |= co’' and cl < cl’ implies cl’ |= cl.
Proof of lemma 5.3 Follows from the respective definitions (5.24) and (5.25). O

An FSC conjunction co is called an implicant of a formula f € FSC if co |= f.
It is called a prime implicant of f if it is an implicant of f and if any FSC
conjunction co’ satisfying co = co’ is not an implicant of f.

The definitions for FSC clauses are analogous: An FSC clause cl is called an
implicate of a formula f € FSC if f |= cl. 1t is called a prime implicate of
f if it is an implicate of f and if any FSC clause cl’ satisfying ¢l < cl’ is not an
implicate of f.

Generalizing results from propositional logic, the set of prime implicants PI(f)
or the set of prime implicates PC(f) of a formula f € FSC can be used to
represent the formula itself:

Lemma 5.4 For f € FSC,

f= \/ co, [ /\ cl. (5.26)

coePI(f) cdePC(f)

Proof of lemma 5./ We prove the first equality of the lemma. By definition,
for an interpretation for which a prime implicant co is true also the formula
f itself is true. On the other hand, consider an interpretation w € €2 for
which f is true. Consider the FSC conjunction c¢(w). Clearly, w is the only
interpretation which makes c¢(w) true, because N(c(w)) = {w}. Therefore c(w)
is clearly an implicant of f. But then, there must exist a prime implicant co
satisfying ¢(w) > co. Lemma 5.3 implies that the interpretation makes co true
and therefore the conjunction of the prime implicants is true. This proves the
first equation of the lemma; the second one is proved analogously. a

The representations described in lemma 5.4 are also called the prime normal
forms. Due to their canonical form, they are appropriate for implementations.
Many methods for computing these representations in propositional logic have
been presented in the field of minimizing Boolean circuit and applications for
artificial intelligence; see (Birkhoff & Bartee, 1970; Haenni, 1996) for further
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literature and algorithms for computing the prime normal form, and (Ngair,
1992) for a complexity analysis of the problem. These algorithms can usually
be generalized to FSC.

Yet the representation by prime implicants or implicates might be redundant,
that is some implicates or implicates respectively may be eliminated in (5.26)
without changing the logical equivalences. A subsets @ of PI(f) with f =
\/cer co is called irredundant, if the removal of any element from @ will
destroy this equality. An analogous definition is possible for implicants.

Lemma 5.5 The minimal and the shortest FSC DNFs or FSC CNFs of a
formula f € FSC are irredundant with respect to f.

Proof of lemma 5.5 Analogous to the proof of theorem 5.3 of (Kohlas & Monney,
1995) O

Denote by FSCor, € FSC the set of clauses, by FSCoo C FSC the set of
conjunctions in the language FSC such that PI(f) C FSCco and PC(f) C
FSCcr- Note that we consider only “proper” clauses and conjunctions, that is
every atom of the language occurs at most once therein.

For a further discussion of representations, rather on the level of implementa-
tions, see also (Kohlas et al., 2000).

5.4 Conflicts and Diagnoses

Consider again a generalized hint H = (Q,T", ®, D) where € is the set of inter-
pretations of the language FSC. In (3.28), the conflicts of the H are represented
as a subset CS of the set of interpretations 2. Here, we will focus on a rep-
resentation of the conflicts in logical form in the language FSC; this will have
several advantages especially for the computation. Let ¢ be the function defined
in (5.8), then define the logical representation Conf of the conflicts CS by

Conf := \/c(w). (5.27)
we S

Clearly, N(Conf) = CS.

Following the ideas of (Kohlas et al., 1998), it can now be shown that Conf has
a maximality property in the set of arguments:

Lemma 5.6 The formula Conf is the weakest conflicting argument (up to log-
ical equivalence), that is

(1) Conf is a conflicting argument.

(2) If f € FSC is a conflicting argument, then f = Conf.
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Proof of lemma 5.6 (1) Let w € N(Conf). Then by definition of Conf, w € CS
and therefore, by the definition of CS (3.28), I'(w) = z which shows that Conf
is a conflicting argument.

(2) Let f € FSC be a conflicting argument and w € N(f). Then I'(w) = 2
because f is a conflicting argument. I'(w) = z implies that w € CS. By
CS = N(Conf) we have N(f) C N(Conf), thus f = Conf, and this proves the
lemma. O

The diagnoses DS are those interpretations which are not contained in the
conflicts CS and therefore the set can be represented by a logical formula Diag
as

Diag = \/c(w). (5.28)
weDS
Then it follows that
N(Diag) = DS =Q — CS = Q — N(Conf) = N(—Conf). (5.29)
such that
Diag = ~Conf. (5.30)

This shows that the logical formulation of the diagnoses can be obtained from
the logical formulation of the conflicts and vice versa. By definition, Conf
and Diag are considered as disjoint normal forms (DNF), that is a disjunction
of conjunctions, and therefore the computation of Diag from Conf requires a
transformation of a negated DNF —Conf to a DNF, which in the worst case
is an exponential task. However, it is usually sufficient to deal with simpler
formulas which are equivalent to Diag or Conf.

Lemma 5.7 If the information algebra (®, D) is consistent®, then the formula
Diag is the weakest supporting argument (up to logical equivalence) for the neu-
tral element e of (¥, D), that is

(1) Diag is a supporting argument for e.

(2) If f is a supporting argument for e, then f |= Diag.

Proof of lemma 5.7 (1) Let w € N(Diag). Then by definition of Diag, w € DS
and by corollary 2.3, I'(w) > e. By the definition of DS (3.29) I'(w) # z which
shows that Diag is a supporting argument for e.

(2) Let f € FSC be a supporting argument for e and w € N(f). Then I'(w) # =
because f is a supporting argument. I'(w) # z implies that w € DS. By
DS = N(Diag) we have N(f) C N(Diag), thus f |= Diag, and this proves the
lemma. O

3The information algebra is consistent if e # z, see subsection 2.1.1.
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An FSC conjunction d is called a diagnosis if d = Diag. It is called a mini-
mal diagnosis if it is a diagnosis and no FSC conjunction f’ € FSC satisfying
f = f'is a diagnosis. The set of minimal diagnoses is denoted by uDiag. Anal-
ogously, an FSC conjunction ¢ is called a minimal conflicting argument or
simply a minimal conflict if it is a conflicting argument and no FSC conjunc-
tion ¢ € FSC satisfying ¢ > ¢ is a conflicting argument. The set of minimal
conflicts is denoted by pConf. These are representations of Diag and Conf
because clearly

Diag = \/d and Conf = \/c, (5.31)
depDiag cepConf

and they will be of interest in chapter 7. The set of minimal conflicts uConf can
be obtained on the node by computing the prime implicates of the conflict Conf
(cf. for example (Birkhoff, 1948; Haenni, 1996)), and applying the theorem of
Reiter & De Kleer (1987). A discussion of an efficient method for computing
diagnoses from minimal conflicts as well as further literature on this topic can
be found in (Haenni, 1998).

5.5 Quasi-Support and Support

In section 3.5.1 quasi-support and support sets have been introduced. Here,
these concepts will be reformulated in the logical framework of finite set con-
straints FSC. The formulas defined in this section are not very convenient
representations of the respective sets. But in the sequel, we will in general only
work with simpler formulas in FSC which are logically equivalent to them as
well as, in some sense, easy to handle with, for example one of the respective
prime normal forms.

The quasi-support gs(¢) of an information ¢ € ® is defined as a logical
formula representing QSS(¢),

as(¢) = \ew), (5.32)

weRSS(¢)

therefore N(gs(¢)) = QSS(¢).
The mapping gs is an intersection homomorphism like @SS (cf. theorem 3.6):
Lemma 5.8 For ¢1,¢ € D,

gs(¢1) A gs(¢2), (5.33)
T (5.34)

1%

qs(¢1 @ ¢2)
gs(e)

1

Proof of lemma 5.8 This follows from theorem 3.6 and the definition of the
quasi-support above. a
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Similar, the support sp(¢) of an information ¢ € ® is defined as a logical
formula representing SS(¢),

sp(e) = \/elw), (5.35)

therefore N (sp(¢)) = SS(¢).

The relation between the logical formulation of quasi-support and support of
any information in ® follows from the definition of the support set (3.18).

Lemma 5.9 For an information ¢ € @,
sp(¢) = qs(¢) A =qs(z). (5.36)

Proof of lemma 5.9 By definition we have QSS(¢) N (Q — QSS(z)) = SS(¢),
which means that N(gs(¢)) N N(gs(z))¢ = N(qgs(¢) A =gs(z)) = N(sp(¢)), and
this implies the lemma. O

The quasi-support is a maximal element in the set of quasi-supporting argu-
ments for a formula:

Lemma 5.10 gs(¢) the weakest quasi-supporting argument (up to logical equi-
valence) for the hypothesis ¢ € ®, that is

(1) qs(¢) is a quasi-supporting argument for ¢, and

(2) if f is a quasi-supporting argument for ¢, then f = qs(¢).

Proof of lemma 5.10 (1) Let w € N(gs(¢)). Then we have w € QSS(¢) and, by
definition of @SS (3.13), I'(w) > ¢. This shows (1).

(2) Let f be a quasi-supporting argument for ¢ and w € N(f). This implies
['(w) > ¢. The definition of @SS (3.13) implies then that w € QSS(¢). There-
fore N(f) C QSS(¢) = N(gs(¢)) such that finally f = gs(¢), and this proves
the lemma. O

The support sp defines a supporting argument if sp(¢) % L. If sp(¢) = L
then e = z, and this means that the information algebra is inconsistent (cf.
subsection 2.1.1).

Lemma 5.11 If sp(¢) % L then sp(¢) is a supporting argument of the infor-
mation ¢ € P.

Proof of lemma 5.11 Suppose that sp(¢) 2 L such that there is an w €
N(sp(¢)), therefore w € SS(¢). By the definition of SS (3.18), this implies
that I'(w) # z and I'(w) > ¢ such that sp(¢) is a supporting argument. O
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5.6 Possible Support and Refutation

Two other sets of interpretations have been defined in section 3.5: the possibly
supporting set and the refuting set. Like in the previous section, we define
logical representations of such sets in the language FSC.

The possible support pss(¢) of a formula ¢ € @ is defined as a logical formula
representing PSS(¢),

pss(¢) = \/c(:v) (5.37)

z€PSS(¢)

Similarly, the refutation rs(¢) of a formula ¢ € ® is defined as a logical formula
representing RS(¢),

rs(¢) = \/c(:z) (5.38)

Lemma 5.12 For ¢ € P,
pss(¢) | Diag,  Conf =15(6),  pss(@) = ~rs(¢).

Proof of lemma 5.12 Follows from lemmas 3.12, 3.13 and 3.14 respectively. O

5.7 Marginalization and Combination

The definitions of marginalization and combination for allocations of quasi-
support can be carried over to the quasi-support functions: for ¢ € @,

as”(¢) = \[as(y), (5.39)
Y=Y 20

(g1 @ a%:)(0) = \/(as1(d1) A gsa(2))- (5.40)
P<p1DP2

An allocation of support sp is clearly also an intersection homomorphism (like
the allocation of quasi-support, see lemma 5.8), and the definitions and results
in this section can also be applied to sp.

Lemma 5.13 Forx € D, ¢ € ® and qgs; defined by (5.32),

N(gsi7"(¢)) = QSS,7"(¢),
N((gs1© g5)(0)) = (QSS; @ @S552)(9).

Proof of lemma 5.13 Follows from the definitions together with (3.30) and (3.31).
O

The following results will be useful for computational purposes.
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Lemma 5.14 Let ¢ € ® and x € D, then
sp~*(e) = Diag for any x,
qs %(z) = Conf if x is a support for z,
qs7 (o) =2 qs(o) if © is a support for ¢.

Proof of lemma 5.1/ Follows from the definition of gs (5.32) and sp (5.35)
together with lemma 3.17. O



Argumentation Systems

In chapters 2 to 5 the main ingredients for the present chapter have been intro-
duced: allocations of arguments and probability, generalized hints, information
systems, and FSC languages. Now these ingredients will be placed in a common
framework, in order to build so-called argumentation systems. An argumenta-
tion system which satisfies some additional properties allows to construct a
generalized hint, which can then be used to compute arguments in favor of or
against a hypothesis by using the corresponding allocation of arguments.

In the first section we define the notion of an argumentation system, and in
section 6.2 such a system is used to construct a generalized hint. Section 6.3
shows how the argumentation system can be interpreted as an information
system and how an information algebra can be built on top of it. In chapter 7
we will show that argumentation systems are a convenient representation for
model-based diagnostics, that they are in fact a sort of minimal requirement
for doing model-based diagnostics.

6.1 Definition

Consider an information system (£, ) as defined in chapter 4. Further assume
that the language FSC describes subsets of ) as in chapter 5. A partial map-
ping x from FSC to 2° has the meaning that for a formula f € FSC, every
interpretation w € Q with w |= f “implies” the information modeled by the set
of formulas X = x(f), if it exists. This partial mapping describes for example
the functioning of a component described by x(f) under the assumption that
one of the interpretations described by f is true. A mapping f : A — B is
called partial if f(a) is not necessarily defined for every a € A. We use a partial
mapping here because often information is specified in this way. For example,
we often know how a component behaves if it works correctly and represent this
information using some sort of implication, but we don’t know anything about
its behavior otherwise and do not represent this information at all.

81
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We call the tuple (FSC, x, £,I-) an argumentation system.! If, additionally,
a probability distribution pr is given for every variable ¢; occurring in FSC,
that means if

pr(c; = vig) = prig > 0 for every possible value v, (6.1)
with
Ty
mek:l fori=1,...,n, (6.2)
k=1

then we call the tuple AS = (FSC, x, L,F,pr) a probabilistic argumenta-
tion system. Usually, for every pair of variables ¢;; # c¢;,, their probability
distributions p;, and p;, are assumed to be stochastically independent, where
pi(vig) == pr(z; =vix), i =1,...,nand k = 1,...,r; but the formalism is not
restricted to this situation.

Argumentation systems are a convenient formalism to express information for
model-based diagnostics as we will show in chapter 7. For every information
expressed in the language £ the argumentation system allows to compute the
“arguments” for the information specified by the partial mapping Y.

Consider two argumentation systems (FSC,x;, L,F), @ = 1,2, on the same
language FSC and information system (L£,F). These argumentation systems
can be combined into a new argumentation system (FSC,x1 @ x2,L,F) by
defining

x1(f)Uxa(f) if xa(f) and x2(f) are defined,
o x1(f) if only x1(f) is defined,
Ca@x2)(f) = x2(f) if only x2(f) is defined,
undefined otherwise.

This combination operation is clearly associative, commutative and idempotent.
The neutral element is (FSC, x,, £,F) where the mapping X, is undefined for
every f € FSC.

A well known example of an argumentation system is the so called proposi-
tional argumentation system (Kohlas et al., 2000; Haenni et al., 1999b). It
is usually represented as a triple (£, A, P) where A and P are two disjoint sets
of proposition and £ a sentence in the propositional language L(AU P) over the
atoms A U P. In our terms, the propositional language L(A) is equivalent to
a language FSC where the domain V; of every variable ¢; consist of only two
values (true and false). The language L(P) describes a propositional informa-
tion system (£,F), and & € L(A U P) can be represented by a set of formulas
X ={a; = m a; € L(A), m; € L(P), i € I} such that

¢ is logically equivalent to /\ (a — ), (6.3)
(a—m)eX

In fact, this can even be generalized to situations, where at the place of FSC there is only a
lattice, see (Monney, 1994).
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and we define
x(a) = {r:(a—m) e X} (6.4)

Clearly, the representation X is not unique, but all representations are logically
equivalent and the corresponding deduced generalized hints are then equal. A
propositional argumentation system can also be extended to a language built
of finite set constraints (Haenni & Lehmann, 1998a). More general examples
have also been presented in the context of algebraic assumption based systems
(Haenni, 1997). Classical or generalized hints can also be interpreted as argu-
mentation systems.

6.2 From Argumentation Systems to Generalized
Hints

Let (FSC,x,L,F,pr) be a probabilistic argumentation system. Using tech-
niques presented in the previous chapters, we can build a generalized hint based
on this system.

In the sequel, we will usually represent the partial mapping x by a set of for-
mulas, i.e. for every existing x(f) = X, f € FSC and X C L, we write

fr X, (6.5)

“ 2

where the arrow “—" reflects the partial mapping x, and we denote the set of
all these formulas by Z,

E o= {f—X:x(f)=X, fe FSC, X C L}, (6.6)

called the representation of x.

If the information system (L,F) satisfies the conditions (C1) to (C6) stated
in chapter 4, then we can construct the corresponding unmarked information
algebra (®,S). For every set of formulas X C £, the mapping C : 25 — &
selects the corresponding element of the information algebra (®,.S) as induced
by the construction in section 4.2. For two sets of formulas X,Y C £, lemma 4.3
implies that C(X) & C(Y) = C(X UY). For every interpretation w € Q we
now collect all information available in = which corresponds to w, that means
we select the set of formulas

F,={(f—X)eZ:we N(f)}

and define the mapping I' which associates the interpretation w with the infor-
mation defined by the mapping x by means of its representation =,

Pox) = c Ux |

(f—=X)eF, (f—=X)eF,
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that is

w — Tw= Gecx)=c| [Jx|. (6.7)
(f — X)eE (f— X)eE
wEN(S) wEN(S)

Note that the combination over an empty set is the neutral element e of the
information algebra (®,.5). I' is a total mapping and reflects the information
expressed by . In general, there is no one-to-one mapping from x to I'; but nev-
ertheless, the construction presented is surjective. The image of some elements
of 2 might be the null element z of the information algebra (®,.5).

A probability measure P on 2% is defined by

for every subset A C Q).

The tuple H = (Q,T, ®, 5,2, P) is then a generalized hint. Based on this hint,
an allocation of support and probability ()55, and a belief function bely, := Po
()5S can be defined using the concepts presented in chapter 3. The respective
unmarked information algebra of allocations of support is denoted by (Hg, S)
where (®, 5) is the information algebra constructed from the information system
(L,F). These structures can then be used to compute conflicts, diagnoses, quasi-
support, etc. as defined in chapter 3. Examples of argumentation systems are
presented in chapter 7 in the context of model-based diagnostics.

An argumentation system together with the induced concepts of generalized
hints, allocations of support and probability, and belief function is depicted in
figure 6.1.

Consider two probabilistic argumentation systems (FSC, x;, £, pr), i = 1,2.
Then the hint H = (Q,T', ®, S, 29 P) defined on the combined argumentation
system (FSC,x1 @ x2,L,F,pr) is clearly equal to the combination H; & Ha
of the two hints H; = (Q,I;, ®, S, 2Q,P), 1 = 1,2 defined on the respective
argumentation system, because

reg) = Pow) = Pex) |e| Pox)

(f — X)e= (f— X)ez, (f — X)€EEq
WEN(f) wEN(f) WEN(f)
= T'i(¢) ®T2(9),
where =; is the representation of y;, ¢ = 1,2, and = the representation of

X = X1 @ x2. Further, we have already shown in chapter 3 that the allocation
of support deduced from a combined hint is equal to the combination of the
two allocations of support respectively induced by the two hints. This shows
that the combination can be made in any step of the process.
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6.2. From Argumentation Systems to Generalized Hints
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Figure 6.1: An argumentation system together with the induced concepts of
generalized hint, allocation of support and of probability, and belief function.
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For an argumentation system, the conflict C'S and the diagnoses DS as well as
their logical representations Conf and Diag are defined as the corresponding
concepts for the induced allocations. Further, the quasi-support (set) of a set
of formulas X C £ is defined by extending the definition for formulas in the
information algebra (®,.5) as

QRSS(X) = QSS(C(X)), (6.9)
gs(X) = qs(C(X)), (6.10)

and similarly also other concepts like support, degree of support, etc. Analogous
results as in chapter 5 can be proved, e.g. QSS(X UY) = QSS(X)U QSS(Y)
for X, Y C L.

6.3 Argumentation Systems as Information
Systems

Let AS = (FSC,x,L,F) be an argumentation system and S the lattice of
interesting sublanguages of £ as introduced in section 4.2. We will show that an
argumentation system is also an information system and an information algebra
can be constructed on top of it without passing through generalized hints. Yet
the resulting information algebra is not isomorphic to the one constructed via
generalized hints; in section 6.3.3 we discuss the link between them.

6.3.1 The Corresponding Information System

The language £ describes all possible formulas which can occur in a repre-
sentation = of the mapping y of an argumentation system. We restrict the
occurring FSC formulas to be FSC conjunctions. This can always be ful-
filled by transforming a general FSC f into a logically equivalent FSC DNF
fi V.-V f, and splitting the corresponding formula f— X into a set of for-
mulas {(f;— X) :i=1,...,n}. Define

LT = {(f—~X):feFSCco, X C L}. (6.11)
The lattice S from the information system (£, ) is extended to a lattice ST by
St :={ex(L): L€ S} (6.12)

where
ex(L):={(f—X): feFSCco, X € L}. (6.13)

This means in fact that ST does not restrict the FSC part. Using the compact
entailment relation I, a relation F is defined for formulas in £7:

{(fimX)ie I (f—X) (6.14)

if there is an I’ C I such that X C C (U Xi> and f = /\ fi.
il iel’
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Lemma 6.1 The relation F is an entailment relation, that is it satisfies the
conditions (E1) and (E2) from chapter 4.

Proof of lemma 6.1 (E1) means {(fi — X;) :i € I} F (f; — X;) for every j € I.
This is fulfilled by I’ := {j}.

(E2): Let {(fi— X;):i € I} F (g;—Y;) for every j € J and {(g; —Yj):j €
J}H (h— Z). We have to prove that {(fi— X;):i € I} F (h— Z).

For every j € J there is a subset I’ C I such that

Y;cC UXi and gj:/\fi.

: ! ; /
’LEI]- ZGI]-

There is a subset J’ C J such that

zco| Uy and  h= A g;
jeJ’ jeJ’

This implies that

h=N|NFfi|=N#F whee I":=][]I. (6.15)

jet \iel, il jeJ

Further,

z cclUy| cclUclUx

JjeJ’ jeJ’ i€l

Yet for the right-hand side, we have

cllc U.XZ- c C UC(UXZ) = C(UXZ).

jeJ’ iel] je icr*
This implies that
Z C C <U Xi) ,
1€l*
and together with (6.15) we have {(fi— X;) :i € I} F (f— Z). Hence (E2)
is proved. O
Note that - is in general not a compact entailment relation, that is (E3) is not

fulfilled, see the following counterexample:

Example 6.2: F is not necessarily compact

Consider sets X; € £ and f; € FSC for i € N. Define now

X::C(U)Q) and  fi= A fi

S €N
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Assume that C' is compact and therefore using (E3),
X:U{C(Y):Yg U x, Yﬁnite} =JcUx
ieN i€N j<i
In a general situation, we have for every finite I/ C N
XgcC (U XZ->
el

such that

{(fim X i eI} 1 (f = X).

Thus here, F is not compact. S

6.3.2 Construction of the Information Algebra

Define the relation C* by means of the entailment relation F~ as
CYX)={teLt: X+ 1} (6.16)
for X C LT and its restriction to a sublanguage L € ST by
CHX)=CT(X)NnL (6.17)

for X C £*. Then C™ satisfies the conditions (C1), (C2) and (C3) from chap-
ter 4 and is therefore a consequence relation, but not necessarily compact, that
is (C4) is not necessarily fulfilled. Yet additionally, C" satisfies the conditions
(C5) and (C6):

Lemma 6.3 The consequence relation Ct satisfies the conditions (C5) and
(C6) from chapter 4.

Proof of lemma 6.3 First we prove that Ct satisfies condition (C5). Let F =
{szXz 11 E I} - L1 and L,M e ST,

CH(F) = {(fHX):XQCL (U XZ-> Cf=\ £ I’g]}
el el
such that
Cy(CL(F)

= {@—Y)y:vyceu| UZ).9= NAh QccCir)
(h— Z)eQ (h— Z)eQ
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and denote this set by A. Further,

Cirn(F) = {(fHX)iXQCMnL <U Xi>7f: /\fi; I’QI}

iel’ iel’

and denote this set by B. We have to show that C*(A) = C*(B), or equiv-
alently, A C C*(B) and B C C*(A). Let (f—X) € B. So there is a
I' € I such that X C Cynr(U;ep Xi) and f = A,cp fi. This implies that
X C Cr(U;ep Xi) and therefore (f — X) € C} (F). Now, X C M and thus by
(M1) of section 4.2, X C Cp(X). By setting @ := {(f— X)} we have then
(f—X) e A

Let now (¢—Y) € A. Then there is a Q C C/ (F) such that

Y C Oy U A and g = /\ h .
(h— Z)€Q (h— Z)€Q

Further, for every (h— Z) € Q there is an Iz C I with Z C CL(

X;) and

i€ly

ro= |Jiz,

(h—2)eq

then, using (C5) for C, we have

Y

N

cu| U~z cul U af|lUx

(h—2)eQ (h—2)eQ 1€ly

ulee(Yn)) = efonfe(Ur))
_ o (cMmL (U X))

g = A = N |ANf] = A&

(h— Z)€Q (h— 2)eQ \i€ly iel*

N

N
N

and

therefore (¢g—Y) € C*(B). This proves (C5) for C*. The proof of (C6) is
straightforward. O

CT is not compact, but nevertheless we can use it to construct a marked infor-
mation algebra (Lg,St) and from that an unmarked one, (L, S™), using the
techniques presented in section 4.2.
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An information algebra constructed from a compact consequence operator yields
a so-called finitary information algebra (Kohlas & Stark, 1996a; Kohlas &
Stark, 1996b), and from a finitary information algebra a compact consequence
operator can be defined which is isomorphic to the starting one. Therefore this
is a strong link between finitary information algebras and compact consequence
operators. A non-compact consequence operator defines a non-finitary infor-
mation algebra. The concept of finitary information algebra defines a way to
approximate infinite information by finite information. Here we will not fo-
cus on this aspect, see (Kohlas & Stark, 1996a; Kohlas & Stérk, 1996b) for a
discussion of finitary information algebras.

6.3.3 Comparing the Information Algebra Constructed Using
Hints with the One using Information System

Given an argumentation system AS = (FSC, x, L,F), section 6.2 shows how
to construct the induced generalized hint and infer the algebra of allocations
(Hg,S). In the preceding subsection, we have shown how the argumentation
system is interpreted as an information system and the corresponding infor-
mation algebra (Lg,S) constructed. The two unmarked information algebras
(Ly,S™) and (Hg, S) are in general not isomorphic, but there is a homomor-
phism from (Lg,S™*) to (He,S). We will show this using the corresponding
marked information algebras (Lg, ST) and (Hg, S), because the notations are
simpler.

Denoting an equivalence class of (Lg,ST) by its representant (C*(X), L), we
define a mapping ¢ by
¢: (L$,ST)Y — (Hg,S) (6.18)
(CH(X),L) — C(CH(X),L)):= (pic+(x),0): L)

where

po+(x),ny (@) = U N

(f—Y)ECT(X)
c(Y)zo

An overview of the situation is depicted in fig. 6.2.

Theorem 6.4 The mapping ¢ (6.18) is a homomorphism from (Hg,S) to
(Lg,ST), that is for L' C L (the labels of the marked allocations have been
omitted),

PCH(X1),L1) D PCH(Xa),La) = P(CH(X1),L1)B(CH(Xa),La) (6.19)

(p<C+(X),L>)lL/ p<c+(X)7L>LL’ (620)

Proof of theorem 6./

(Pt (x1),01) D PO+ (X2),12)) (@) = \/(p<C+(X1),L1)(¢1) A PO+ (Xa,10) (02))
P<p1D P2
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Finite Set Constraints Information System
FSC (L,F)

/

Information Algebra

(®,9)
Argumentation System
(FSC,x, L,F)
Information System Hint
(Q,T,2,5)

Information Algebra Algebraof Allocations
 (Le,S87) ) - (He,S) )

Figure 6.2: Argumentation system and related concepts.

= U U~ [ U N(g)

$<p1®P1 (f—Y)eCct(xq) (g — Z2)eCt(X9)
C(Y)>¢1 C(Z)>¢o
= V() NN ()

(f—Y)eCt(Xy)
(9 — Z)eCt(Xy)
p<C(Y)®C(2)

and denote the last set by A. Further,

PLCH (X0, L)e(CH (X2),12) (P) = PUCH(OH (X1)UCH (X2)),LavEa) (D)
= P(CH+(X1UX2) L1V L) (D)

- UN ")
(h— H)ECT(X1UX9)
C(H)>¢

and denote the last set by B. Now we show that A = B. First let w €
A. Then there exist (f—Y) € Ct(Xy) and (¢9— Z) € CT(X3) satisfying
CY)aC(Z)>¢pandw e N(f)NN(g). Now, CYUZ)=C(Y)DC(Z) > ¢
and C+(X1) UC+(X2) - C+(X1 UXQ) imply (f/\g>—>YU Z) € C+(X1 UXQ)
and therefore w € B. Now let w € B. Then there is a (h— H) € CT(X; U X3)
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satisfying C'(H) > ¢ and w € N(h). Now, let X; = {(h;— Z;) : i € I;} for
j =1,2. Then there is a I’ € I; U I3 such that

h=NAh  and HgC(U&).

el el
Define now [} := I' N I; and
Wp=/\h and  Hj:=|])2Z (6.21)
i€l i€l
for j = 1,2, then we have
h=hyARy and  H CC(H;UHS)).

This implies that (k) — Hj) € C*(X1) and (h,— H}) € CT(X3). Furthers,
C(H}) & C(H}) = C(H| U HY) = C(C(H)) = C(H) > ¢ and N(}) 0 N(h)) =
N(h) such that w € N(h})NN(hY). This shows that w € A and proves the first
equation of the theorem.

For the second one consider

(o)) (9) = \pic+x.0 (¥)
b=yt 20

=V Uvon| = U~

==L >¢ \ (f—Y)eCT(X) (f —Y)eCct(x)
ez ©NFL 2

and denote the last set by A. Further, by definition

Porvpaun (@) = Percpeonm (@) = UN ()
(9 — z)ect(cf, (x)
c(2)z¢

and denote the last set by B. We show now that A :/B . First, let w € A.

Then there is a (f—Y) € CT(X) satisfying (C(Y))7Y > ¢ and w € N(f).
Yet

CY) Y =cep(y) > ¢ (6.22)

such that (f— Cp/(Y)) € CT(C},(X)) and therefore w € B. Now let w € B.

Then there is (g — Z) € CT(C},(X)) satisfying C(Z) > ¢ and w € N(g). Now

(C(2)™" = C(Cu(2)) = C(C(Cr(2)) 2 C(2) 2 b, (6.23)

because Z C C(Cp/({H : (h—H) € X})) and C o Cp/ is also a consequence
operator. Hence (g — Z) € C*(X) and finally w € A. This proves the second
equation of the theorem. O

The theorem implies that the same is true for the unmarked information alge-
bras:
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Corollary 6.5 There is a homomorphism from the unmarked information al-
gebra (Hg, S) to (Le, S™) respecting the focussing.

These mappings allow to define the diagram in fig. 6.3, and the following theo-
rem shows that this diagram is indeed commutative.

INFORMATION ALGEBRA

INFORMATION ALGEBRA
OF MARKED ALLOCATIONS

(Ls, 5%) — (Hs. 5)
[r—tcr @1 [t
(FSC,x, L,F) : x—T H=(0T,9,59):
{ X : FSC — 2F partial map. } 7 { r-Q—-ao }
ARGUMENTATION SYSTEMS GENERALIZED HINTS

Figure 6.3: The connections between the argumentation system and the algebra
of allocations.

Theorem 6.6 The diagram of fig. 6.3 is commutative, i.e. for an argumenta-
tion system AS = (FSC,x, L,F) and a representation ZE of x with = C Lg €
St, we have that

C(CT(B),Lg))  and (¢ {we€Q:T(w) > ¢}, Lg) (6.24)

are members of the same equivalence class of (Hg, S).

Proof of theorem 6.6 Given the argumentation system as specified in the the-
orem, the path from the argumentation system to a marked allocation via the
information algebra (Lg, S1) constructed directly from the argumentation sys-
tem results in an element

C(CH(E),Lz) = (¢~ ] N(),Le).

(f—Y)eCct(E)
c(Y)>o

A=
The other path, via generalized hints, results in
(0> {weQ:T(w) > ek Lz) = (9 {we: @ CE)>e} L)

(f—Y)exs
wEN(f)

B:=
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For a fixed ¢, we first prove that A = B. So let w € A. Then there exists
(9—Z) € CT(E) satisfying C(Z) > ¢ and w € N(g). By definition of C*
there exists a set = := {(fi—Y;) : i € I} C Z such that & F (g Z) and
w € ier N(gi). This implies

Pecy) = Poy) = 2 =¢

(f—Y)€eE i — Y;)uel
weN(F) {(fi—=Y;)uel}

and therefore w € B. Now let w € B. This implies that there exists (¢— Z) €
CT{(f—Y)€eEZ:we N(f)}). Therefore w € N(g) and C(Z) > ¢, and this
implies w € A. This proves that A = B.

Note that the labels Lz and LL are not necessarily equal, but both are labels
of the allocation of support such that the two marked allocations are members
of the same equivalence class of the induced unmarked information algebra
(H o, S ) O

6.4 Computational Theory for Argumentation
Systems

Given an argumentation system with the representation =, we want to compute
the conflict Conf. Using the definition of the mapping ¢ above, we have

cs = U N = U N = U N, (6.25)

(f—Y)eCct(®) (f —Y)eCct(E) (f — L)eC+(B)
c(Y)zc{Lh Lec(y)

and for its representation

Conf = \ f (6.26)

(f—L)eCHE)

We will show in chapter 8 how this can be computed without constructing
C*(2) explicitly in most cases.

Further, we can compute the quasi-support @QSS(Z) for any set of formulas
Z C L by using the definition of the mapping ¢ above:

QSS(Z) = U N = U N = U N(f). (6.27)

(f—Y)eCct (@) (f—Y)eCct (@) (f—Y)eCct(®)
C(Y)>C(2) c(z)ce(y) zce(y)

and its representation

as(Z) = \/ 1. (6.28)

(f—Y)ect(®)
ZCC(Y)

—_
—

Again, it is usually not necessary to compute CT(Z) explicitly. CT is a con-
sequence relation, therefore, as already mentioned in chapter 4, the general
computational theory for information systems, i.e. the concept of local com-
putations on hypertrees, can be applied to this problem (Kohlas, 1997a); this
theory will be discussed in chapter 8.



Model-Based Diagnostics

In this chapter we finally approach the central point of this paper: model-based
diagnostics.

Technical systems are in general not guaranteed to be working correctly, but
they are more or less reliable, i.e. they are functioning more or less often as
expected. One main problem for technical systems is the computation of the
reliability of a system. This is studied in reliability theory (see for example
(Kohlas, 1987; Beichelt, 1993; Barlow & Proschan, 1975)). The reliability
depends on various factors like quality or age of components, complexity of
the system, etc. The reliability of a system states some information about the
behavior of the system in the future. The problem of reliability is not the
main focus here, note however, that this problem can also be formulated using
the following concepts (see also (Anrig et al., 1999)). In the sequel, we will
focus on the second main problem for technical system, namely the problem of
diagnostics, which does not state information about the behavior in the future,
but tries to explain the behavior of the system up to the present, usually based
on measurements and observations of some parts of the system together with
the system description in some framework.

Consider a system to be monitored together with observations of the system’s
behavior, for example input- and output-values of an electronic circuit. If these
observations are in conflict with the behavior the system should have, then
something must be wrong in the system. Therefore we have a diagnostic prob-
lem, i.e. we have to identify those system components which are functioning
abnormally and therefore inducing the discrepancy between the predicted and
the observed behavior of the system. The actual observations and the descrip-
tion of the system are the only ingredients for the computation of the diagnoses.
Additionally, if probabilistic knowledge is available on the different operating
modes of the components, then the weights of the system states can be com-
puted and prior as well as posterior probabilities can be defined on the set of
system states.

Many theories for diagnostic problems have been proposed. Especially, the
mathematical foundations on diagnosis from first principles have been laid down

95
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by Reiter (1987). Reiter addresses the problem of computing the conflicts, and
he (among many others) shows that the conflicts are the key to model-based
diagnostics from which the other concepts, especially the diagnoses, can then
be derived. Note that the notation used in (Reiter, 1987) does not always mean
exactly the same thing as in this paper, see (Kohlas et al., 1998) for a discussion
of some major differences.

A variety of efficient algorithms for special cases have been developed for the
computation of conflicts and, the opposite concept, diagnoses, for example for
propositional logic (De Kleer et al., 1992a; Inoue, 1992; Kohlas & Monney,
1993; Siegel, 1987), some of them for the special case of horn clauses.

In general, there are several possible diagnoses for a given diagnostic problem,
and often there are even a very large number of diagnoses. Two problems then
arise: first, the user usually wants more information about the different diag-
noses in order to be able to make a decision and to choose one diagnosis which
seems to be the best one; so techniques to differentiate between the diagnoses
have to be developed. Such techniques are discussed in chapter 11, based on
probabilistic information or on additional knowledge gathered about the sys-
tem, i.e. for example additional measurements. Second, sometimes there are so
many diagnoses that they cannot be computed explicitly and sometimes even
their logical representation is too complex to be computed. So approximation
techniques are needed which compute only the “best” diagnoses, and this selec-
tion is often based on either their size or probabilistic information in the system.
But this is not a major problem addressed here, see for example (Kohlas et al.,
2000) for further work on what they call “focussing of computations”.

In the sequel, we will follow the framework for model-based diagnostics pre-
sented in (Kohlas et al., 1998), therefore also the one in (Reiter, 1987) and
partially (De Kleer et al., 1992a). For further literature and an introduction
see also (Kohlas et al., 1998). We will focus on the computation of conflicts
and diagnoses as well as their probabilities, but we also show how to compute
arguments for or against any hypothesis on the system (cf. chapter 8).

In the first section, we show how this work is influenced by (Kohlas et al., 1998).
In section 7.2, argumentation system are used for model-based diagnostics, and
we show that argumentation systems are the right framework for this task,
because all concepts needed for model-based diagnostics can clearly be defined
therein. Several examples illustrate the use of argumentation systems for model-
based diagnostics in section 7.3.

7.1 Precursors of the Concept of Argumentation
Systems

Reiter’s “theory of diagnosis from first principles” (Reiter, 1987) introduces a
purely logical approach to model-based diagnostics. His goal is to find diag-
noses, where a diagnosis is a collection of components whose malfunctioning
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is sufficient to explain the observations on a system. Usually, there are many
diagnoses and Reiter proposes to make additional measurements to reduce their
number. He shows that the diagnoses (and the conflicts) can be computed using
theorem proving techniques. Using the additional measurements, he defines an
incremental process for computing the diagnoses, but the number of diagnoses
in this process is not monotone.

Our approach of argumentation system is very much inspired by the one con-
sidered by Kohlas et al. (1998), whose logical part is clearly influenced by
Reiter (1987), but also by the approach restricted to propositional logic of
Provan (1990) and Laskey & Lehner (1989). Kohlas et al. consider a very gen-
eral language Lx ! for modeling information about the system. This language
contains the propositional language Sk built from the propositions AB(¢;),
i =1,...,n, where ¢; is a component of the system. The predicate AB(¢;) is
true if and only if the component ¢; is in an abnormal mode, i.e. if it is not
working correctly. The knowledge, i.e. the information about the system to be
monitored, is expressed in the language Lx. An instantiated formula f € Lk
is a formula in which every proposition AB(¢;) has been replaced by its re-
spective evaluation under a specified system state. A system state, as in our
approach, defines the working mode of every component ¢;, and the set of all
system states is defined in (Kohlas et al., 1998) by Q, such that the formulae
in Sk are representations of subsets of Q.

Note that Kohlas et al. do not specify the language L5 any further, besides that
there must be a test for consistency for sets of instantiated formulas. So they
consider a system state s and a set of formulas, instantiate each formula by this
system state s, and the test for consistency returns then either true if the instan-
tiated formulas are consistent, or false if they are inconsistent. Using this test
for consistency, they define the notion of conflicts and diagnoses, support and
doubt, etc. Further they introduce probabilistic information about the system
states which allows then to weight formulas in Sg. Note that this approach is
different from the one described in (De Kleer & Williams, 1987) which is based
on Bayes’ rule for the computation of probabilities and therefore needs to make
additional, somewhat unjustified assumptions on the probabilistic information
(see (Kohlas et al., 1998) for a comparison in details).

Generalizing the idea of components with only two possible working modes, we
have constructed a language FSC of finite set constraints with atoms M (¢;, V')
(cf. chapter 5). An atom M(c;, V) is true if and only if the actual operating
mode of component ¢; is contained in the set V. The set of system states {2 is
then defined as the cartesian product of the sets of all possible modes for every
component (5.1). The language FSC is therefore a generalization of Sk . In the
case where every component has only two modes, the resulting FSC language
can be reduced to a propositional language where the mode of every component
is denoted by a binary variable, and the resulting language is equivalent to Sf.
Note that even more general ideas are possible: consider two components ¢; and

!The subscript K is used to denote the concepts defined in (Kohlas et al., 1998) in order to
distinguish their notations from ours.



98 7. Model-Based Diagnostics

c¢; and the corresponding predicate M (c;, ¢j, V') which is true if and only if the
pair (v;, v;) of actual states of the components ¢; and ¢; are contained in the set
V. This can be generalized to n components. Reasoning with such predicates
is possible, but the reasoning process gets rather complex. We do not include
such predicates in our framework because in the examples modeled so far there
was no need for such predicates, and because every predicate M (c;,c;, V') can
be replaced by a FSC formula containing only predicates of the form M/(c;, V')
and M (cj, V"). Nevertheless, note that if in a situation where such predicates
appear to be quite handy, the concept of FSC language can be generalized to
incorporate the generalized predicates over several components; the description
of the reasoning process and the process itself just become more complex.

The language Ly as defined in (Kohlas et al., 1998) is very general and does not
have a lot of structure. Apart from the test for consistency, we have no informa-
tion about this language. But there are two different concepts of information
which are mixed in Lx: the language Sk contained in Lx expresses a special
kind of information which is different from the rest of the information contained
in Lx, namely information about the system states Qx. In our approach of
argumentation systems, we explicitly separate the two different concepts of in-
formation occurring in Lx by means of the mapping y in the argumentation
system (FSC,x, L,F). If x(f) = X, then f € FSC describes the part of the
information which is uncertain, unsure, but for which additional probabilistic
information is usually available, whereas X C L describes the other part of
information which often depends on a system state. The notation x(f) = X
is interpreted here as a conditional sentence: if f is true in the actual world,
then the information described by the subset X must hold for sure. This gives
a structure to the knowledge base which explicitly separates the probabilistic
from the non-probabilistic data, an idea already mentioned in chapter 3.

The vaguely formulated concept of a test for consistency of instantiated formulas
used in (Kohlas et al., 1998) can therefore be replaced here by the clearly defined
concept of a consequence relation C* (6.16) in the argumentation system AS
based on the entailment relation = in the language FSC for the probabilistic
data and the entailment relation - in the language £ for the non-probabilistic
data. The decomposition of the reasoning process lets us define the concepts for
model-based diagnostics more clearly. Indeed, argumentation systems appear
as the appropriate concept for doing model-based diagnostics because the basic
structures used for doing model-based diagnostics can be defined within this
concept.

7.2 Model-Based Diagnostics Using Argumentation
Systems

The goal of this section is to present a theory of diagnosis which can be used
to identify faulty components in a system. The identified components can then
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be replaced or repair strategies can be built using the diagnoses. Further, a
probabilistic model allows to weight diagnoses and other formulas.

Consider a system to be monitored which consists of several interacting compo-
nents. Assume that we can describe this system and the corresponding obser-
vation or measurements using the argumentation system AS = (FSC, x, L,F)
(chapter 6), i.e. we have a finite set constraint language FSC which models the
modes of the components, an information system (£,F) which models the in-
formation about the behavior of components, and a partial mapping y between
FSC and (L,F). Additionally, we may have additional probabilistic informa-
tion pr such that the argumentation is a probabilistic argumentation system
AS = (FSC, x, L,F,pr). In the sequel, we will usually consider probabilistic
argumentation systems, note however that those results which are not based on
pr are also applicable to non-probabilistic argumentation systems. Examples
of argumentation systems and their application to model-based diagnostics are
presented in section 7.3.

In chapter 6 we have shown how a generalized hint H = (Q,T', ®, D, A, P) is
constructed from an argumentation system. An allocation of support can be
built from the hint using results from chapter 3. In section 3.5.5, the con-
flicts C'S and the diagnoses DS have been defined, and in section 5.4, logical
representations Conf and Diag of these sets have been presented.

In the framework of an argumentation system, these concepts now get a clear
meaning. Consider an element w € CS. By definition, this element induces the
null element z € ® via the focal mapping I" of the generalized hint H constructed
on AS, i.e. w is an element which describes a system state which is not possible.
That means that w describes the working mode of every component in the
system, and, considering this information and the knowledge modeled in Yy, i.e.
the knowledge about the behavior of the system together with the observations,
this implies then the null element z of the information algebra (®, D). But this
null element z is a representation of the null element | of the language £, an
element which “cannot be true” and which implies therefore anything else in
L (see chapter 4). This means that the system state w, which implies the null
element, is a system state which an impossible one for the present situation.
Therefore by definition, the set CS contains all interpretations or system states
which are not possible given the actual system description and, especially, the
observations. In contrast, an element w € DS is a diagnosis of the system,
i.e. an interpretation which explains the current behavior of the system and is
consistent with all the knowledge available and especially with the observation
of the system. Hence, such a system state w specifies the working modes of
all components in the system, and, together with the knowledge about the
behavior of the system and the observations, it implies by the mapping I" an
element ¢ # L in the information algebra (®,D), which is consistent, i.e.
which describes the possible behavior of the system given the modes of the
components.

So the concept of an argumentation system allows to compute the sets of con-
flicts and diagnoses. Additionally, a probabilistic argumentation system also
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allows to weight the system states, for example the prior probability of every
system state can be computed using the probability pr and (6.8).

If there is only one element in the set DS, then clearly this is the actual system
state, and we know with certainty the precise working mode of each component,
hence we have enough information to replace the ones which are specified as
defective by the diagnosis, and we are sure that after the replacement of these
components, the system will be working correctly. Yet normally, the set DS
contains several elements, usually even a great number of elements. Often there
exists quite a short logical representation of these elements by formulas in the
language FSC, for example the disjunction of the minimal diagnoses in FSC as
defined in section 5.4. In the case where only one minimal diagnosis d exists, it
describes the mode of some components in the system, and whatever the modes
of the other components are, the resulting interpretation is a diagnosis for the
system, i.e.

INw) # 2 for every w € N(d). (7.1)

However, d does not describe the modes of all components. So even after
replacing all components denoted as faulty by d, we are not sure that the
system is working correctly, but the behavior of other faulty components may
have been “hidden” by the replaced ones. In this case, additional measurements
have to be made and a second diagnostic process has to be started.

Usually, there are several minimal diagnoses for a given situation, and the prob-
lem is to select one of them. One method consists in weighting these minimal
diagnoses according to the posterior probability p’ (this will be discussed in
chapter 9) and selecting the most probable one. Another method is to gather
additional information by a measurement of a part of the system (for example
unobserved in- or output-values or some internal wires in an electronic circuit),
and this new information will possibly reduce the number of diagnoses; this will
be discussed in chapter 11. The selected diagnosis can then be used to fix a
repair or replacement strategy for the system.

Yet even further, any formula f in £ can be considered as a hypothesis about
the state of the system to be monitored, and the arguments in favor, gs(f) and
sp(f), or against, rs(f) (cf. section 3.5), can be computed and weighted (see
section 9.1 for the computation of the weights). A degree of support represents
the strength with which the knowledge and the observations tend to “prove”
the information represented by the formula. Arguments can be used as addi-
tional information for a repair strategy, e.g. for a component ¢, the formula
sp(M (e, {ok})) represents the arguments which support the hypothesis that ¢
is in mode ok, i.e. that c is working correctly.

The probabilistic layer on top of the system states contains additional infor-
mation, which is very useful for example for making decisions and computing
strategies for further measurement (cf. chapter 11), for comparing diagnoses or
arguments, etc. This layer was not considered in (Reiter, 1987); only De Kleer
& Williams (1987) introduced probabilistic information, but their approach de-
pends on additional assumptions on the probabilistic information; see (Kohlas
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et al., 1998) for a discussion. Here, we do not need any additional assumption,
but the probabilistic layer is well-defined using the theory developed in chap-
ter 2, i.e. the degrees of quasi-support (support, ...) functions define belief
functions in the sense of section 3.7. The computation of probabilistic informa-
tion will be focused in chapter 9.

In the next section, we will explain these concepts using several examples.

7.3 Examples

The examples in this section are intended to clarify the ideas of model-based
diagnostics using argumentation system presented in the section above. We use
several small, well-known examples to show the strength of the concept. The
examples are first presented as ABEL code (see chapter 12 for more information
about the modeling language ABEL), because most of them are taken from
(Anrig et al., 1999).

Example 7.1: Three Serial Inverters

Consider the simple digital circuit introduced in example 1.1, which is built out
of three serial inverters and connected as in fig. 7.1.

mxyout

Figure 7.1: Three serial inverters.

Every component has two working modes. If an inverter ¢ is in its correct
working mode, then it inverts the incoming signal, i.e. its output signal is the
negation of its input signal; this mode will be denoted by ok and the signals will
be modeled by binary variables. If an inverter is in its faulty mode (faulty =
—0k) then nothing is said about its behavior, so every combination of in- and
output signals is possible, among which also the correct one. Assume that the
initial probability of a failure of an inverter is 0.01. The set of components is
C = {iy,i2,i3}, and the variables for the connectors are in, z, y, and out. In
ABEL (cf. chapter 12), this can be written as follows?:

(tell
(type mode-type (ok faulty))
(ass i1 i2 i3 mode-type (0.99 0.01))
(var in x y out binary)

(-> (= i1 ok) (<> in (not x)))

2See section 11.5 for a better description of the example in ABEL using the modular structure
of the situation.
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(> (= i2 ok) (<-> x (nmot y)))
(-> (= i3 ok) (<-> y (not out))))

In addition, the input- and output values are measured as 1, therefore

(observe in out)

Apparently, these observations imply that the system is not functioning cor-
rectly, because the predicted output (0) of the system is in conflict with the
observed one (1) if the input is 1.

The corresponding argumentation system AS = (FSC, x, L,t,pr) is then de-
fined as follows: the language FSC consists of the finite set constraints over
the three variables i1, i2 and i3 with frames Vi = Vo = V3 = {0k, faulty}. The
language L is a propositional language over the propositional variables in, x, y,
and out with the usual propositional connectives. Furthermore, - denotes the
usual propositional entailment relation in £. Then the representation = of y is

M(i1,{ok}) — (x < —in)

= = M(ig,{ok}) — (y < —x)
Mis, {ok}) — (out = —y)

T — wn A out

where the first three lines represent the information of the components 7 to ig,
the fourth line represents the observations. The probability pr is given by

pr(i; = ok) =0.99 and pr(i; = faulty) = 0.01

for j =1,2,3.

The argumentation system allows then to construct the generalized hint and
an allocation of support QSS. Define Q := {0,1}® where the j-th component
of a vector (wi,ws,ws3) €  means that component ¢; is working (w; = 1) or
not (w; = 0). From =, the focal mapping I' of the hint H = (Q,I", ®, D, P) can
be constructed, where the information algebra (®, D) is the algebra of subsets
of the cartesian product {in,in} x {z,Z} x {y,y} x {out,out} (the notation T
means that the variable x is false):

((i17i27i3))

(in, out, x,y), (in, out, x,7), }
(in,out, z,y), (in,out,T,7y)
in? OUt7 x??)’ (in7 OUt7j7 y)}
in,out,x,7), (in,out,T,y)}
in,out,z,y)}

)
)
in,out,T,y),
)}
)}

.. r
(ZlaZ27Z3) -

I

(in, out, T, 7)}
in,out, T,y
mn, out, T,y

S e Y Y Y
NN N S S
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The first line for example means that if all three inverters are not working cor-
rectly, i.e. (i1,42,i3) = (0,0,0), then under the present knowledge one of the ele-
ments of the set on the right hand side is the actual state of the variables in, out,
x, and y, that is one of (in, out, z,y), (in,out, x,7), (in, out, T,y), (in,out,=,7y)
is the “right” one. The last line indicates the situation where all three inverters
are working correctly, i.e. (i1,42,73) = (1,1,1), but the empty set on the right
hand side means that under the actual knowledge there is no actual state of the
variables in, out, x, and y which is consistent with that. Therefore (1,1,1) is
a system state which is inconsistent with the present knowledge together with
the observations.

The conflict set and the quasi-support sets are then constructed from I' using
the definition from section 6.2, so for example

cs = {(1,1,1)}
QSS(—z) = {(1,0,0), (1,0,1), (1,1,0),(1,1,1)}
QSS(inny) = {(1,1,0),(1,1,1)}

Further, the conflict and the quasi-support function gs can be computed, for
example

Conf = M{(iy,{ok}) N M(iz,{0k}) A M(i3, {ok})
gs(—~x) = M(i1, {ok})
gs(in Ny) = M(i1,{ok}) N M(ig,{0k})

using (6.10). Support, quasi-supports and refutation of other hypotheses are
computed analogously.

The set of diagnoses DS is then Q— CS, which contains seven elements. So there
are seven diagnoses which explain the behavior of the system. Using (5.30), the
logical representation Diag of the set of diagnoses DS can be computed, i.e.

Diag = —Conf
>~ M(iy, {faulty}) vV M (ig, { faulty}) vV M (iz, { faulty}),

and there are three minimal diagnoses for this problem, namely M (i1, { faulty}),
M (ig, { faulty}), and M (is, { faulty}), which, by the way, happen to have an equal
posterior probability of 0.337 (see chapter 9 for details on how to compute this
probability). Note however that in practice, the logical representation of the
conflicts Conf and of the diagnoses Diag are computed first, and only after-
wards, if at all necessary, the representations as sets C'S and DS respectively
(cf. chapter 8).

Assume now that a further measurement is taken at point x (cf. fig. 7.1) and
that its result is positive, i.e. we denote it by x. This implies that either
the argumentation system is “updated” or a second one is created and the
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respective hints or allocations of support are combined. We denote these new
mappings by a prime ’ in order to distinguish them from the ones defined
above. The new information is represented by a second argumentation system
AS" = (FSC, X/, L,+,pr) where X’ is represented by the set =’

g = {Tr—ua},

(the other parts of the argumentation system are identical to the ones from AS)
and this implies the hint H’ with focal mapping I'" whose image is constant, i.e.

(ininis) 5 T'((in,i2,45)
(0,0,0) — {in,in} x {out,ouf} x (=] % 5,7}
(0,0,1) — {in,in} x {out,out} x {z} x {y,7}

(1,1,1) —> {in,in} x {out,out} x {z} x {y,y}.
The induced support function is then
QSS'(f) = {(0,0,0),...,(1,1,1)}
for any formula f with N(f) C N(z), and
QSS'(f) = {}
for any formula f with N(f) € N(z). We now combine the two hints H and H’

by combining their focal mappings I and I”, which results in a new hint with
focal mapping I' ® I

(i1,i2,33) & (D@ I')((i1, in, i3))

(0,0,0) — {(in,out,x,y), (in,out,z,7)}
(0,0,1) — {(in,out,z,y)}

(0,1,0) — {(in,out,z,y)}

(0,1,1) — {(in,out,z,y)}

(1,0,0)0 — 0

(1,0,1) — 0

(1,1,0) — 0

(1,1,1) — ¢

The conflict set CSrgr and the quasi-support QSSpgp are then constructed
from ' ¢ TV, so

CSrerr = {(1,0,0), (1,0,1), (1,1,0), (1,1,1)}
QSSFEBF’(_'QJ) = {(1’070)7 (1,0,1), (17170)’ (171>1)}
QSSrer (inNy) = {(1,0,0), (1,0,1), (1,1,0), (1,1,1)}
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As above, the logical representation can be computed, i.e.

Confrer = M{(iy,{ok})
@srer (mz) = M(ir, {ok})
@sper(in Ny) = M(ir, {ok})

and, using again (5.30),
Diagrgr =2 —Confrgr = M(iy, { faulty}).

We see that now there is only one minimal diagnosis left, i.e. M (i1, {faulty}),
so we have found a minimal diagnosis explaining the behavior of the system,
i.e. we can say with certainty that the component 7; is defect. Note that we
do not know if iy and i3 are really working correctly because we have not (yet)
measured the value of y. S

Example 7.2: Arithmetical Network

This well-known example was introduced by (Davis, 1984). Subsequently, it was
used in several papers on model-based diagnostics (Reiter, 1987; De Kleer &
Williams, 1987; Kohlas et al., 1998). The network consists of three multipliers
my1, mo, mg and two adders ay, as. These components are connected as shown in
fig. 7.2. The values of the in- and outputs of the system are observed according
to fig. 7.2.

a=3 &———— X
*
my
b=2 ® + f=10
a
c=2 &9 * y
my
d=3 ® + 9=12
&
*
e=3 @&—— z
m3

Figure 7.2: An arithmetical network with measured values.

The behavior of a component is expressed by a material implication, e.g. an
adder is specified by

(adder = ok) — (out =inj +ing),
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i.e. if the adder is working correctly then its output is the sum of its inputs,
and nothing is known about the behavior of a faulty component. Assume that
the probability of a component working correctly is 0.95 for adders and 0.97 for
multipliers. Then the situation can be modeled in ABEL as follows:

(tell
(type mode-type (ok faulty))
(ass m1 m2 m3 mode-type (0.97 0.03))
(ass al a2 mode-type (0.95 0.05))
(var a b cd e f g x y z integer)

(-=> (=ml ok) (= (x a c) x))

(> (=m2 ok) (= (* b d) y))

(> (=m3 ok) (= (*x c e) z))

(> (= a1l ok) (= (+ x y) £))

(> (= a2 ok) (= (+y 2) g))
(observe

(a3 (=b2) (=c2) (=d3) (=e3) (=110 (=g 12))

Apparently, these observations imply that the system is not functioning cor-
rectly, because the predicted output (12) at point f is in conflict with the
observed one (10).

We construct the corresponding argumentation system (FSC, x, L,F,pr): the
language FSC consists of the finite set constraints over the variables my, ma,
ms and a1, ag with equal frames V' = { ok, faulty}. We call atoms the variables a
to g and x, y, z, as well as the constant values 1, 2, .... An expression is either
an atom or a formula (expressionkexpression) or (expression+ expression) where
parentheses are omitted using the normal precedence of operators. A constraint
is a formula expression = expression or the symbol L. A formula is then either
a finite constraint or one of (constraint A constraint) or (constraintV constraint).
The language £ consists of all (finite) formulas built using this scheme.

Denote by Z the integers. An element of
70 =d(a) x - x d(g) x d(z) x d(y) x d(2)

(where d(a) = Z is the domain of the variable a, ...), also called an assign-
ment, can now be used to instantiate atoms, i.e. every element ¢ in Z° de-
fines the value of every atom of the language £. For example the element
(2,0,0,0,0,0,0,0,0) € Z° states that a = 2 and all other variables have the
value 0,ie. 0 =b=---=g=ax=y = 2.

The instantiation o(f) of a formula f € £ by an assignment o is the formula f
where all occurrences of variables have been replaced by the respective constants
in 0. A formula f € £ evaluates to true under o if the instantiation o(f) is
valid, where the validity of an instantiation g is defined by the following rules:

a) If g = L then g is not valid.
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b) If g = g1 V g2 then g is valid if a least one of g; and g9 is valid.
c) If g = g1 A g2 then g is valid if both ¢g; and g are valid.
d) Otherwise g is a constraint and is valid if and only if g is a correct equation

in the sense of usual integer arithmetic.

The concept of instantiation can be used to define an entailment relation on L:
For X C £ and f € £ we define X F f if and only if for every assignment under
which every formula in X evaluates to true, the formula f evaluates to true as
well.

The representation = of x is then:

M(mq,{ok}) — (z=(axc)) )
M (mg,{ok}) — (y=(bxd))
M(ms,{ok}) — (2=(cxe))
g = M(a1,{ok}) — (f=(z+y))
M(az,{ok}) — (9= (y+2))
T — (a=3)Ab=2)A(c=2)AN(d=23)
Ne=3)A(f=10)A (g =12)

The probability pr is given by
pr(m; = ok) =0.97 and pr(m; = faulty) = 0.03
pr(a; = ok) =0.95 and pr(a; = faulty) = 0.05

for i = 1,2,3, j = 1,2. This completes the specification of the argumentation
system AS.

Define Q := {0,1}° where the j-th component of a vector (wy,...,ws) € Q
means that component ¢; is working (w; = 1) or not (w; = 0), where i1 = my,
io = ma, i3 = mg3, 14 = a1, i5 = ao. From =, the mapping I' of the hint H =
(Q,I',®, D, P) can be constructed. The elements of the information algebra
(®, D) are subsets of Z°:

r
(mi,ma,m3,a1,a2) — I'((m1,ma,ms,a1,a2))
(0, 0,0,0, 0) — {(3, 2,2,3,3,10,12,1, 7, k‘) 21,4,k € Z}
(1,0,0,0,0) e {(3,2,2,3,3,10,12,6,4,K) : j, k € Z}

(1,0,0,0,1) — {(3,2,2,3,3,10,12,6,4,12 — j) : j € Z}
(1,0,1,0,1) — {(3,2,2,3,3,10,12,6,6,6)}

(1,1,1,1,1) — 0

Quasi-support sets and other concepts can then be defined on these hints as in
the previous example. The logical representation of the conflict set is

Conf = (M(al,{ak;})/\M(ml,{ok})/\M(mg,{ok})>

\/(M(al, {ok}) A M(as, {ok}) A M(my, {ok}) A M (ms, {ok}))
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and, using (5.30), we get

Diag =~ —|C’0nf
= M(ay, {faulty}) vV M (mq, { faulty})
v <M(a2, {faulty}) A M (mo, {faulty}))

Y (M(mg, {faulty}) N M(ms, {faulty})) .

So there are four minimal diagnoses, namely

In order to discriminate between these diagnoses, either they are weighted by
the posterior probability p’ as will be explained in chapter 9, or additional
knowledge has to be obtained by, for example, measurements of internal vari-
ables (see chapter 11). If no probabilistic information is available, often the size
of the minimal diagnoses is considered and the shortest diagnosis is selected as
information for the repair or replacement strategy. Here, this means that the
adder a; as well as the multiplier m are good candidates for replacement or
repairing. S,

Example 7.3: Multiple Operating Modes

In a technical system, consider a component ¢ having two input ports and
one output port. Let in; and ino denote the value of the input ports and
let out denote the value of the output port. Figure 7.3 shows this component
graphically (cf. (Anrig & Monney, 1999)).

in
"1 out
|n2

Figure 7.3: The component ¢

The value of the output port is a linear function of the values of the two input
ports, i.e.

out =« -ing + B - ins.

The component can be in one of four possible operating modes, each character-
ized by some specific values of o and 3:

e mode I: a=1,=1

e mode2: a=1,0=-1
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e mode 3: a=—-1,=1

e mode 4: o = —1,0 = —1.

A priori it is assumed that the probability of the component being in mode 1
is 0.4, and the probability of its being in mode 2, resp. 3, resp. 4 is 0.3, 0.2,
0.1 respectively. Now consider three of these components ci, co, and ¢3 which
interact according to the diagram of figure 7.4. Every component ¢; has its own
values «; and ;. The variables y1,...,y4 in figure 7.4 represent the value of
some ports in the system, the variables 1 and x9 internal variables.

C X
y;=1 @&———— 1 X

yo=-1 @——— y4=1

C3

y3=1

Figure 7.4: A system with components c1, ¢g and c3

Now suppose that we observe the values of the ports y1,...,y4 being 1, —1,1,1
respectively. Of course, this implies that some system states are no longer
possible. The ABEL-code is then

(tell
(type mode-type (1 2 3 4))

(module COMPONENT ((var inl in2 out integer))
(ass mode m-type (0.4 0.3 0.2 0.1))
(> (= mode 1) (= out (+ inl in2)))

-> (= mode 2) (= out (- inl in2)))

-> (= mode 3) (= out (- in2 in1)))

-> (= mode 4) (= out (- 0 inl in2))))

~ ~

(COMPONENT :cl y1 y2 x1)
(COMPONENT :c2 x1 y3 x2)
(COMPONENT :c3 x1 x2 y4))

(observe (= y1 1) (= y2 -1) (= y3 1) (= y4 1))

Note that we used the concept of module in ABEL, so as to shorten the de-
scription of the model; see chapter 12 for this concept.
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Let ¢; denote the variable indicating the operating mode of component number i.
The domain of every ¢; is V := {1,2,3,4}. The possible interpretations, i.e. the
set (2, is then defined by

Q = V() x V() xV(ez) = {1,2,3,4}3.

We assume that the random variables ¢; are stochastically independent, which
implies that the prior probability of a vector v = (ki, k2, k3) in ©, a so-called
system state, is given by

P(U) :P(Cl :kl)'P(CQZkQ)'P(ngkg). (72)

Equation (7.2) completely specifies a probability distribution on 2. The lan-
guage L and the entailment relation F are defined as in the previous example 7.2
but with subtraction “—” instead of multiplication “x”. The mapping y deduced
from the ABEL-code above is represented by Z:

“ 2

M(c1,1) — w1 =y1 +y2
M(c1,2) — z1=1y1— 2
M(c1,3) — x1=—y1+ 2
M(c1,4) — x1=—y1 — ¥
M(eg,1) — ys =1 + 22
M(c,2) — ya =1 — T2
= = M(c2,3) — ys=—x1 + 2
M(c2,4) — ys=—x1 — T2
M(c3, 1) — m2=x1+ys
M(03,2) — X9 = T1 — Y3
M(c3,3) — w2=—x1+ys
M(c3,4) — w3 =—1—y3
T — (=D A@=-1DAym=1)A(yuu=1)

This specifies the argumentation system AS = (FSC, x, L,F,pr). The hint H
constructed from AS contains then the focal mapping I':

(c1,c0,¢c3)  —  {(y1,Y2,¥3,Y4,71,22)}
(1,1,1) —_— {( 1,1,1,0,1)}
(1,1,2) — 0
(1,1,3) — {( 1,1,1,0,1)}
(1,1,4) — 0
(1,2,1) — 0
(1,2,2) —_— {( 1,1,1,0,—1)}

Suppose that we are interested in the set of all diagnoses DS. This can be
computed using the definitions from section 6.2, and we get

(1,1,1), (1,1,3), (1,2,2), (1,2,4), (1,3,1), (1,3,3),

s —  (L42), (1,4.4), (2,1,3), (2,2,2), (2,3,1), (2,4,4),
~ ) (3,1,3), (3,2,2), (3,3,1), (3,4,4), (4,1,1), (4,1,3),
(4,2,2), (4,2,4), (4,3,1), (4,3,3), (4,4,2), (4,4,4)



7.8. Examples 111

Here, a diagnosis does not tell us which components are faulty because there is
no faulty mode specified for the components; we only know that every compo-
nent has exactly four possible working modes. But a diagnosis explicitly states
the actual working mode of every component. If there are modes which are not
allowed in specific situations, then the diagnosis tells us which components are
in such a mode. If those modes are specified only afterwards, the diagnosis can
always be reinterpreted to match this criterion.

The following formula represents the diagnoses in a logical form

Diag = (M(ca, {2}) A M(ca, {21)) V (M(cz, {1}) A M(cs, {3}))
V(M (e, {3}) A M(es, {11)) V (M (ea, {4}) A M(es, {4}))
V(M(er, {1,43) A M(es, {2,4}) A M(cs, {2,4}))
V(M(er, {1,4}) A M(ea, {1,3}) A M(es, {1,3}))

and we see that there are six minimal diagnoses in this example. e

Example 7.4: Binary Adder

Digital circuits are a nice example for doing model-based diagnostics, first be-
cause they are quite easy to model (cf. also example 7.1), and second because
larger composite devices can be built up quite easily from small ones. This will
be presented here using binary adders of different sizes.

Consider the digital circuit for a binary adder as shown in fig. 7.5. The system
consists of five components: the logical gates and;, ands, xori, xory, and or.
The input and output values of the components are the logical values true and
false (interpreted as 1 and 0).

If every component works correctly, then the actual input and output values (cf.
fig. 7.5) of the binary adder are in conflict with the expected behavior (according
to the definition of a binary adder). Therefore, one or several components must
be faulty, and the question is which ones.

in=le—
) Xor .
in,=0e0——e¢— sum=1

inc=1e—p—

carry=0

Figure 7.5: A binary adder built out of logical gates.

Suppose that each component has exactly two different operating modes, which
are characterized by a binary predicate ok. A correctly functioning component
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means that ok is true, whereas for a faulty component ok is false (respectively
-0k is true). Figure 7.6 shows an and-gate with two inputs in; and ing and
one output out; the xor- and or-gates are constructed similarly.

inl o————
and out

in, e—|

Figure 7.6: An and-gate.

Suppose that only the behavior of a correctly functioning component is known,
whereas the error mode is not further specified. An and-gate can then be
described as follows:

ok — (out < iny Aing).

The other components, i.e. the or- and the zor gate, are treated analogously.
Further, we have some probabilistic information about the functioning of the
components: the probability for a correct functioning of a and-gate is 0.99, for
a or-gate it is 0.98, and for a xor-gate it is 0.95. For each type of component,
a corresponding module is defined in ABEL (cf. chapter 12 for details about
modules in ABEL):

(tell
(module AND-GATE ((var inl in2 out binary))
(ass ok binary 0.99)
(-> ok (<> out (and inl in2))))

(module OR-GATE ((var inl in2 out binary))
(ass ok binary 0.98)
(-> ok (<=> out (or inl in2))))

(module XOR-GATE ((var inl in2 out binary))
(ass ok binary 0.95)
(-> ok (<-> out (xor inl in2)))))

According to the circuit topology of fig. 7.5, a module for an entire adder is
defined as follows:

(tell
(module ADDER ((var inl in2 inc sum carry binary))
(var ok binary)
(var vl v2 v3 binary)

(AND-GATE :AND1 inl in2 v3)
(AND-GATE :AND2 inc vl v2)
(XOR-GATE :XOR1 inl in2 v1)
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(XOR-GATE :XO0R2 inc v1 sum)
(OR-GATE :0R v2 v3 carry)

(<-> ok (and AND1.ok AND2.ok XOR1.ok XOR2.ok OR.ok))))

This module is instantiated with the actual variables, i.e. the input and the
output variables of the adder according to fig. 7.5. Further, the instance of the
module is give the name :ADDER:

(tell (ADDER :ADDER inl in2 inc sum carry))

Note that in ABEL it is not necessary to explicitly declare all the variables used
in the model. The types of the variables are determined according to their first
occurrence in a module instantiation (cf. chapter 12). For example, in; (in the
instantiation of the adder :ADDER) is a binary variable as defined within the
module ADDER.

Finally, the ABEL model is completed by the input and output values of the
system as shown in fig. 7.5:

(observe inl (not in2) inc sum (not carry))

The corresponding argumentation system AS = (FSC, x, L,t,pr) is then de-
fined as follows: The language FSC consists of the finite set constraints over
the variables andl.ok, and2.ok, xorl.ok, zor2.0k, and or.ok with equal frame
V' = {ok, faulty}. We abbreviate the finite set constraint M (zorl.ok,{ok}) by
zorl.ok and M (zorl.ok, {faulty}) by ~zorl.ok, and similarly for the other vari-
ables. The language £ is built up from the propositional variables inl, in2, inc,
sum, carry, vl, v2, and v3 with the usual propositional connectives =, A, V and
—. Further, we use the usual propositional entailment relation denoted here
by F. Then the representation Z of y is given by first the formulas representing
the information of the components of the adder, i.e. the and-, the zor-, and the
or-gates,

andl.ok — v3 < (inl Ain2)
and2.0k — v2 < (inc Avl)
zorl.ok — vl ((inl A =in2) V (minl A in2)) (7.3)
zor2.0k — sum < ((inc A —wl) V (minc A vl))
or.ok — carry < (v2Vv3),

then a formula which represents the connection between the variable adder.ok,
which denotes the working mode of the whole adder, and the variables denoting
the state of the individual components,

—(adder.ok < (andl.ok A xorl.ok A\ xor2.0k Nor.ok)) — L, (7.4)
and finally the observations

T »— anl A —in2 Ainc A\ sum N\ —carry,
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The probability pr is given by

pr(andl.ok) = pr(and2.0k) = 0.99
pr(zorl.ok) = pr(zxor2.0k) = 0.95
pr(or.ok) = 0.98

Let © := {0,1}® be the set of interpretations of the language FSC where the
components of a vector w in €2 correspond to the variables ok, andl.ok, and2.0k,
zorl.ok, xor2.ok, or.ok in that order. From the argumentation system, we can
deduce a hint H = (Q, T, ®, D, P) where the elements of the information algebra
(®, D) are subsets of the cartesian product

{inl,in1} x {in2,in2} x {inc,inc} x {sum,sum}
x{carry,carry} x {vl,v1} x {v2,v2} x {v3,v3}.

The focal mapping I' of the hint H is then deduced from Z, i.e. we get:

w 5 ['w)

(inl,in2,inc, sum,carry, vl, v2,v3),

(0,0,0,0,0 O) (WlLW, inc, Sum’ﬁﬂﬂ,vlﬁ)j
> Yo Mo Mo M —

(inl,in2,inc, sum,carry, vl, v2,v3)

(0,0,0,0,0,1) — {

(inl,in2,inc, sum,carry, vl, v2,v3),
(inl,in2,inc, sum, carry, vl, v2, v3)
(0,1,1,0,1,1) — {(inl,in2,inc, sum,carry, vl,v2,v3)}

(1,0,0,0,0,0) — 0

(1,1,1,1,1,1) —

=

Quasi-support set, diagnoses, conflicts, etc. can then be computed using this
hint H. Here, we are especially interested in the diagnoses, which, in a logical
representation, are

Diag = -—worl.okV (ﬂor.ok A —|:L'O’I°2.0k') \% (—mmdQ.ok: A —|x07“2.0k>.

We have three minimal diagnoses: one which consist of only one faulty com-
ponent, i.e. ~zorl.ok, and two which consist of two faulty components, i.e.
—or.ok A\ zor2.ok and —and2.0k A xor2.ok. These diagnoses can be weighted by
the probability pr and, if we consider the prior probability, we get

pr(—zorl.ok) = 1-0.95 = 0.05
pr(—or.ok A ~zor2.0k) = (1—-0.98)(1—-0.95) = 0.001
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pr(—and2.0k A —xor2.0k) = (1-0.99)(1—0.95) = 0.0005,

and clearly in the present situation, the diagnosis —xorl.ok is far more probable
than the other two. Considering the huge difference in the probability of the
diagnoses, usually we would replace or repair the component xorl first.

A module for a simple 1-bit adder as constructed above can be used for building
other, more complex systems. For example, two 1-bit adders can be used for a
2-bit adder. Similarly, two 2-bit adders can be used for a 4-bit adder, and so
on. In this sense, 2-bit and 4-bit adders can be modeled as follows:

(tell
(module ADDER2 ((var inl in2 in3 in4 inc
suml sum2 carry binary))
(var ok v binary)
(ADDER :A1 inl in2 inc suml v)
(ADDER :A2 in3 in4 v sum2 carry)
(<=> ok (and Al.ok A2.0k))))

(tell
(module ADDER4 ((var inl in2 in3 in4 inb5 in6 in7 in8 inc
suml sum2 sum3 sum4 carry binary))
(var ok v binary)
(ADDER2 :A21 inl in2 in3 in4 inc suml sum?2 v)
(ADDER2 :A22 inb5 in6 in7 in8 v sum3 sumé carry)
(<-> ok (and A21.0k A22.0k))))

Further modules for 8-bit and 16-bit adders are defined similarly. Consider now
the situation where a modular 16-bit adder is faulty. Suppose that all input
and output values are 0, except the value of the last output suml6 is 1.

(tell
(ADDER16 :ADDER16
in01 in02 in03 in0O4 in05 in06 in07 in08 in09 inl0
inl1l inl12 in13 inl14 inl5 inl6 inl7 inl18 inl9 in20
in21 in22 in23 in24 in25 in26 in27 in28 in29 in30
in31 in32 inc
sum01 sum02 sum03 sum04 sum05 sum06 sumO07 sum08
sum09 suml0 sumll suml2 suml3 suml4 sumlb5 suml6 carry))

(observe
(not in01) (mot in02) (not in03) (not in04) (not in05)
(not in06) (mot in07) (not in08) (nmot in09) (not in10)
(not in11) (not ini12) (not ini3) (not ini14) (not inilb5)
(not in16) (mot inl17) (not ini18) (nmot in19) (not in20)
(not in21) (mot in22) (not in23) (not in24) (not in25)
(not in26) (mot in27) (not in28) (nmot in29) (not in30)
(not in31) (mot in32) (not inc)
(not sum01) (not sum02) (not sum03) (not sum04) (not sumO5)
(not sum06) (not sum07) (not sum08) (not sum09) (not sumiO)
(not sum1l) (not suml2) (not sumi3) (not sumi4) (not sumilb)
(not carry) suml6)
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Clearly, such a system can also be modeled as an argumentation system AS =
(FSC, x, L,F,pr) following the example of the 1-bit adder above. Yet the re-
sulting spaces are too big to be represented explicitly here. Nevertheless, we
show in chapter 12 that ABEL can compute diagnoses, conflicts, supports, etc.
for such a system, for example ABEL computes the 47 minimal diagnoses of
this problem:

? (ask (sp (not ADDER16.0k)))

QUERY: (SP (NOT ADDER16.0K))
35.2%, : (NOT ADDER16.A82.A42.A22.A2.X0R2.0K)
35.2% : (NOT ADDER16.A82.A42.A22.A2.X0R1.0K)
14.1% : (NOT ADDER16.A82.A42.A22.A1.0R.0K)
7.0% : (NOT ADDER16.A82.A42.A22.A1.AND2.0K)
7.0% : (NOT ADDER16.A82.A42.A22.A1.AND1.0K)

We show here only the most probable ones (according to the prior probability
pr of the argumentation system). So there are two minimal diagnoses which
are equiprobable (see chapter 9 for how to compute their probabilities). This
means that in general, further information has to be gathered about the system,
for example with an additional measurement (cf. chapter 11).

So far in this example, we considered components, i.e. gates, which have two
operating modes: either they work correctly and we know their input-output
relation, or they do not work correctly and we know nothing about their behav-
ior. Now, suppose that in a more elaborated model we have explicit knowledge
about one or several fault modes of a component. For example, consider an
and-gate with three different possible fault modes:

sto: the output is always 0 (stuck at 0),
st1: the output is always 1 (stuck at 1),

inv: the output is always the negation of the correct output (inver-
sion).

Assume that the probabilities for ok, stg, st1, and inv are 0.93, 0.01, 0.01, and
0.05, respectively. In an argumentation system, this can easily be modeled. The
language FSC is now built over the finite set constraints with the variables andl,
and2, . ..and the respective domains {st, st1,inv,ok}. The corresponding line
from (7.3) for the and-gate andl is replaced by the four lines

M(andl,{ok}) — 3 < (inl Ain2)

M (andl, {st0})

M(andl,{stl}) — v3

M (andl, {inv})

— 03

— 13— =(inl Ain2),

and similar for other components. If all gates have possible fault modes accord-
ing to this scheme, then the rule (7.4) of = changes into

M (andl,{ok}) N M (zorl,{ok}) )) — .

~(adder.ok ( AM (zor2, {ok}) A M (or,{ok})



7.8. Examples 117

Using such an extended model for the gates, it is possible to compute more
precise diagnoses, but clearly with more computation effort.

Note that in ABEL, this situation can be modeled as well (cf. also chapter 12):
a new variable type is created to deal with this kind of operating modes. The
domain of the variable consists of the fault modes together with the correct
operating mode ok:

(tell (type modes (ok stO stl inv)))

The corresponding module in ABEL can then be written as:

(tell
(module AND-GATE ((var inl in2 out binary))
(ass mode modes (0.93 0.01 0.01 0.05))
(-> (= mode ok) (<-> out (and inl in2)))
(-> (= mode st0) (not out))
(-> (= mode stl1) out)
(=> (= mode inv) (<-> out (mot (and inl in2))))))

Similar modules can be defined for the other components. S

Example 7.5: Failure Trees

The concept of failure trees (or event trees) can help to determine possible
causes of a system failure, and it provides a useful structure for the computation
of the probability of the system’s working mode. In the case of an ordinary tree,
the possible causes are rather easy to detect. Yet in the literature, the term
failure tree is somewhat misleading because in general, the structure considered
is a causal network and not a tree. In this more general case, the computation
of the causes is more difficult.

The failure tree of the following medical example was originally modeled in
(Simonaitus et al., 1972), described in (Barlow & Proschan, 1975) and adapted
to the context of model-based diagnostics in (Anrig et al., 1999). The purpose
is to analyze the electrical shock hazard to a patient using a certain heart assist
device:

“The intra-aortic balloon (IAB) circulatory assist device is intended
to provide temporary circulatory assistance following obstruction
of blood circulation from the heart. In its application, a balloon-
catheter positioned in the thoracic aorta is synchronously inflated
and deflated with the action of the heart, resulting in decreased
heart work, increased coronary blood flow, and support of the gen-
eral circulation.

A synchronization of the balloon with the heart is obtained through
monitoring of the electrocardiogram (ECG) of the patient by a con-
trol console. This console provides all of the control, monitoring
display, and alarm functions required for operation of the balloon
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device. In addition, provision is made for automatic deflation of the
balloon in the event of an anomaly in the ECG signal or functioning
of the balloon.

A major hazard to the patient is electrical shock, either macroshock
or microshock. Macroshock can cause heart failure (ventricular fib-
rillation) by currents entering the body through connections at the
skin. Microshock can cause heart failure by currents having a con-
ductive path directly to the vicinity of the heart.

Other hazards to the patient are balloon inflation during the con-
traction period of heart function and balloon overpressurization.”

A detailed structure of the example is shown in fig. 7.7. Note that the example
is only treated partially here. In order to reduce the tree’s complexity, some
terminal nodes have been introduced to hide some subtrees. The abbreviations
for the nodes introduced in the figure (e.g. HPO for the top node) will be used
in the ABEL model in order to keep the source code readable.

The structure of the tree of fig. 7.7 can easily be implemented in ABEL. The
terminal nodes of the tree are modeled as binary assumptions, and the non-
terminal nodes as binary variables.

(tell
(var HPO binary)

(ass BI1 binary 0.01)
(ass BO1 binary 0.01)
(var ES1 binary) (<-> HPO (or BI1 BO1l ES1))

(var MI2 MA2 binary) (<=> ES1 (or MI2 MA2))

(var PI3 PG3 binary)
(ass PE3 binary 0.01) (<=> MI2 (and PI3 PG3))
(<-> MA2 (and PE3 PG3))

(ass TB4 binary 0.08)
(ass TE4 binary 0.06)
(ass TO4 binary 0.02) (<=> PG3 (or TB4 TE4 T04))

(var PE5 PP5 binary) (<=> PI3 (or PE5 PP5))

(var CA6 BC6 BK6 binary)
(ass AP6 binary 0.01) (<=> PE5 (or CA6 BC6))
(<-> PP5 (or BK6 AP6))

(var PL7 HL7 PE7 binary)

(ass CP7 binary 0.01)

(ass SV7 binary 0.05) (<=> CA6 (and PL7 HL7))
(<-> BC6 (and HL7 PE7 CP7))
(<-> BK6 (and CP7 SV7))
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Figure 7.7: The failure tree of the heart assist device.
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(ass EG8 binary 0.05) (<-> HL7 EG8)

(ass AP9 binary 0.15)

(ass TO9 binary 0.01)

(ass SI9 binary 0.01)

(ass OP9 binary 0.01) (<=> PL7 (or AP9 T09))
(<=> PE7 (or SI9 0P9)))

In reliability theory, minimal paths and reliabilities are calculated for such
systems. Here, this means to compute the support for the top event HPO, whose
results are the minimal paths, and the degree of support of HPO, whose result
is the reliability of the system.

The corresponding argumentation system AS = (FSC, x, L,F,pr) is then de-
fined as follows: The language FSC consists of the finite set constraints over
the variables

BI1, BO1, PE3, TB4, TE4, TO4, AP6, CPT,
SV7, EGS, AP9, TO9, SI9, OP9

with frames {on, off }. Again, because there are only two elements in the frames
the finite set constraint M (BI1, on}) is abbreviated by BI1 and M (BI1, off })
by =BI1. The language L is the propositional language over all other variables,
i.e. HPO, ES1, MI2, MA2, ..., PL7, HL7, PET7, together with the usual
entailment relation. The representation = of y consists of 44 rules. For example,
the first ABEL rule (<-> HPO (or BI1 BO1 ES1)) translates into the set of
rules

BI1 — HPO
B01 — HPO
T — HPOVES]
-BI1AN-Bl — ES1V-HP0

This is done by using the special structure of the example, namely we can
considering the rule as a formula in the propositional language built over all
atoms, i.e. HP0 « (BI1V BO1V ES1)), bringing the rule in a conjunctive
normal form CNF, i.e.

(=BI1V HPO) A (-B01vV HPO) A (HPOV EST)
A(BI1V B1V ES1V —HPO0)

and transforming every disjunction into the desired form. The information
algebra (®, D) is built as in the previous example, and the hint H, which
corresponds to this argumentation system, can be constructed. But the focal
mapping cannot be shown here explicitly due to its size. Nevertheless, we can
compute results using ABEL, for example the arguments for the hypothesis
HPO, i.e.
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? (ask (sp HPO))

QUERY:

40

NN
o

O OO O OO OO ODOOOOOOFHNNNWOW

(SP HPO)
.7% : BI1
7% : BO1
.3% : PE3
.3% : AP6
.4% : PE3
.4% : AP6
.4% : AP9
.8% : AP9
.8% : PE3
.8% : AP6
.6% : AP9
.2% : EG8
.2% : CP7
.1% : EG8
.1% : CPT
.0% : EG8
.0% : CP7
.0% : CP7
.0% : CP7
.0% : CP7
.0% : CP7
.0% : CP7
.0% : CP7

TB4
TB4
TE4
TE4
EG8
EG8
T04
T04
EG8
TB4
Sv7
TE4
Sv7
T04
Sv7
EG8
EG8
EG8
EG8
EG8
EG8

TB4
TE4

T04
TO9
TB4
TO9
TE4
TO9
T04
SI9 TB4
0P9 TB4
SI9 TE4
0P9 TE4
SI9 TO4
0P9 TO04

ordered by prior probability. These calculations and results are well-known in
reliability theory, and a number of tools can be used for them. However, using
the argumentation system, we can do more than that. Assume that there has
been a hazard to the patient (HPO). Furthermore, suppose that neither balloon
inflation during systole (BI1) nor balloon overpressurization (BO1) has been
observed. So in terms of the argumentation system, we have the additional

rules

Using ABEL, we compute the minimal diagnoses for this situation:

T »— HPOA-BI1A-BOL.

? (ask (sp tautology))

QUERY:
17.
17.
13.
13.
13.

9.

O O O W b b

(SP HPO)
5% : PE3
5% : AP6
2% : PE3
2% : AP6
2% : AP9
9% : AP9
.4% : PE3
.4% : AP6
.3% : AP9
.9% : CP7
.9% : EG8
.7% : CP7

TB4
TB4
TE4
TE4
EG8
EG8
T04
T04
EG8
Sv7
TB4
Sv7

(NOT BI1) (NOT BO1)
(NOT BI1) (NOT BO1)
(NOT BI1) (NOT BO1)
(NOT BI1) (NOT BO1)
TB4 (NOT BI1) (NOT BO1)
TE4 (NOT BI1) (NOT BO1)
(NOT BI1) (NOT BO1)
(NOT BI1) (NOT BO1)
TO4 (NOT BI1) (NOT BO1)
TB4 (NOT BI1) (NOT BO1)
TO9 (NOT BI1) (NOT BO1)
TE4 (NOT BI1) (NOT BO1)
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0.7% : EG8 TE4 T09 (NOT BI1) (NOT BO1)
0.2% : CP7 SV7 T04 (NOT BI1) (NOT BO1)
0.2% : EG8 T04 T09 (NOT BI1) (NOT BO1)

ETC.

In total, there are 21 minimal diagnoses. Each diagnosis reflects the possible
causes for the top level event, the hazard to the patient. Note that every
diagnosis contains also the observed assumptions BI1 and BO1. In the present
case, there are several causes within a certain interval of probability, so some
mechanisms have to be applied to discriminate between these diagnoses. For
example, another variable (or assumption) of the system can be measured (see
chapter 10) or numerical queries can be helpful for a better analysis of the
situation (see chapter 9). S



Computing Conflicts
and Arguments

In this chapter, a general architecture for computing conflicts and symbolical
arguments using local computations is presented. In general, for computing con-
flicts or arguments, the whole knowledge base has to be marginalized to some
sublanguage or in a system with variables several variables have to be elim-
inated, but often such a global marginalization is infeasible due to the num-
ber of pieces of information which are generated during the marginalization.
Generalizing concepts of Lauritzen & Spiegelhalter (1988), Shenoy & Shafer
developed a concept called Computation in Hypertrees (or Valuation Networks)
serving to “break down” this process into small pieces, which hopefully are
small enough to be processed (Shenoy, 1989; Shenoy & Shafer, 1990; Shafer,
1991; Lauritzen & Shenoy, 1995). Others have used this concept for probabilis-
tic assumption-based reasoning (Kohlas, 1993b; Haenni, 1995; Haenni, 1996;
Kohlas et al., 1999b), for information systems (Kohlas, 1997b), for informa-
tion algebras (Kohlas & Stark, 1996a; Kohlas & Stark, 1996b), for valuation
algebras (Shenoy & Kohlas, 2000), and for propositional information systems
(Kohlas et al., 1999b), and there are a lot of applications to other calculi. The
advantage of this approach is that, once a hypertree is generated and the pieces
of information distributed on the nodes, all computations for messages between
the nodes take place within the respective sublanguages which are attached to
the nodes. Clearly, one is interested in “small” sublanguages on the nodes in
order to make the computations efficiently.

The results of the following sections are presented in terms of a general marked
information algebra (®, D). But in the present context, the results will specifi-
cally be applied to the marked algebra (Pg, D), which corresponds to the algebra
of allocations (P, D) defined in section 2.4, and to (Le,S) and (Hg, S) which
correspond to (Lg,S) and (Hg, S) respectively defined in section 6.3.

So in the sequel (®, D) denotes a marked information algebra with combination
operation (¢1, @) — ¢1 ® ¢o and marginalization (¢1,x) — ¢1 for ¢1, ¢ € @
and z € D.

123
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Note that this architecture can also be used for computations in information
systems and hence also for computations in argumentation systems, because
they are special case of information systems. This is presented in section 8.3
together with an example which shows concrete computations.

The first section introduces the concept of a hypertree and Markov tree. Then
propagation of information on Markov trees is defined, in section 8.2 the in-
ward phase, in section 8.4 the outward phase. Further, the problem of com-
puting marginals on domains which are not contained in the tree is addressed
in section 8.5. Finally, section 8.6 treats the concepts of compilation versus
propagation “on demand”.

The following sections form a short introduction into the main topics of com-
putations on hypertrees within the framework of marked information algebras;
for more details and further publications on hypertrees and related concepts
see (Shafer, 1991; Haenni, 1996; Berge, 1989). In (Kohlas et al., 2000), the
hypertree is not constructed explicitly anymore but its structure is used only
implicitly.

8.1 Hypertrees

Let ¢ be a marked information in (®, D). For the computation of conflicts
and quasi-supports, the problem is now to compute a marginal (¢, L’) for some
sublanguage L' € D such that (¢, L") = (¢, L>lLl. Assume that there is a de-
composition of (¢, L) consisting of marked information (¢;, L;) fori =1,...,m
such that

(0, L) = (¢1,L1) ® (p2,L2) ® D (dm, Ln)- (8.1)

This implies that L = Ly V ---V Ly, for L; = d({¢;, L;)) and L = d({(¢, L)).
Assume further that this decomposition satisfies that for every i = m,m —
1,...,2 there is a b(i) < i such that

1—1
LiNLyy = Lin |\ L;]. (8.2)
j=1

A family of languages {L1, ..., L,,} which satisfies the property (8.2) is called a
hypertree with the hypertree construction sequence Ly, ..., L,,. The decom-
position is called the hypertree decomposition. Starting from a marked state-
ment, the determination of such a hypertree decomposition is not a easy task
(Arnborg et al., 1987), but very efficient heuristics have been developed. How-
ever, this task is not considered here, see (Haenni & Lehmann, 1999; Kohlas,
1997b; Kohlas & Monney, 1995) for algorithms and further literature and (Cano
& Moral, 1995) for a comparison of different heuristics.

The hypertree can be represented as a normal tree (which is then called a
Markov tree or a join tree) if the L;’s are considered as the nodes of the tree
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and the edges between them as (L;, Ly;)) (see for example fig. 8.1). Shenoy
& Shafer (1990) show that the so constructed graph is indeed a tree with the
additional property that for any node Lj on the (unique) path from L; to L;
in the tree the condition L; A L; C Lj, holds. In the sequel, if L; is a node then
often it will be addressed as node 7, and the language L; is called the label of
node 7, written d(i) = L;. The Markov tree is then usually represented as a pair
(E, N) where E is the set of nodes and N the set of edges, hence N C FE x E.

Figure 8.1: A Markov tree with nodes L; labeled by i for i =1,...,10.

Note that there is always a trivial hypertree decomposition ¢ = ¢. In general,
the mapping ¢ is a combination of different pieces of information in the infor-
mation algebra, and this structure usually does not build a hypertree but can
be used to construct a hypertree.

We assume in the sequel that there is a hypertree decomposition and use it for
our computations.

8.2 Inward Propagation

The main result used for the so-called inward propagation is the following the-
orem. The idea behind it is a propagation process of pieces of information from
the leafs towards a so-called root node in which the information is collected.
In the sequel, we usually omit the label of the marked information in order to
simplify notation.

Theorem 8.1 (Shenoy € Shafer, 1990) Let (8.1) be a hypertree decomposition
of ¢ and define

gbg-m) = ¢ forj=1,...,m. (8.4)
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If, fori=m,m —1,...,2, we set
. olLinLuy
¢l()(i)1) = le( ) " @ ¢I(2()i)’ (8'5)
of ™V = @ forje 1. i-1)—{(i)}, (8.6)
then, fori=m,m—1,...,1
o =g ool @ @el”,  and  de)))=L; (87)

For a proof see (Kohlas, 1997b).

Using this theorem, we can sequentially compute the marginal of ¢ with respect
to Hy,—1,Hpy_o,...,Hy. If Ly = L' then the problem is solved because H; = L.

Initially, on every node L;, the information ¢; = gbgm) is stored. This is step
i=m. Fori=m—1,m—2,...,1 the step (according to theorem 8.1) can then
be represented as the message passing scheme in fig. 8.2, focused on the nodes
i and b(7), because on all other nodes we have ¢§-Z_1) = (ﬁy).

(i-1),_ (i)
b(i) = Wi® Oy

¢

b(i)

Figure 8.2: Message passing during inward propagation in step number ¢ focused
on nodes i and b(7).

So a step i consists in fact of sending a message from node i to node b(i) and
combining the information thereon with the message. This graphical interpre-
tation shows that parallel, distributed computing is possible. We call the node
b(i) the inward neighbor of node i. Therefore, every leaf node of the tree
can send its message to its inward neighbor. Every node which is not a leaf
waits until it has received the messages from all outward neighbors, combines
those messages with the information contained in the node itself and sends a
message 1; (see fig. 8.2) to its inward neighbor. The only node without any
inward neighbor is called the root node, and the process stops if this node has
received all messages from its outward neighbors and combined them with the
information contained on itself.

This process is called the inward propagation or collect phase. An example
with nodes 1 to 10 is depicted in fig. 8.3; the arrows show the direction of the
messages.

After step i, the information contained in node j is qﬁgi), and at the end of the
inward phase we have therefore on node 1 the information

= gt = gt (8.8)
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(a) An arrow denotes the direction of the message which is (b) The corresponding
passed on the (undirected) arc. function b.

Figure 8.3: General message passing scheme during inward propagation towards
the root node 1.

If the hypertree construction sequence is given, this sequence can always be
reordered such that any of the nodes is the first node of the sequence. Therefore
in the hypertree every node can be chosen as the root node for the inward
propagation, and the resulting information on that node is then ¢ marginalized
to the domain of the node. Thus one hypertree can be used to compute different
marginals.

There are two main advantages in this computational scheme: first, the com-
putations can be made in parallel (as illustrated in fig. 8.3); second, all com-
putations are done within a domain of some node of the tree. Therefore, if
combination and marginalization on the domain of every node in the tree are
feasible, then this ensures that all computations for the marginal of the whole
information ¢ on any node of the tree are feasible. However, if several marginals
have to be computed at once, then it is not efficient to start the process several
times from scratch: in section 8.4, a solution for this problem is presented.

The concept of idempotency is not used in the inward phase, therefore this
scheme is also useful for Bayesian or Belief networks (Shenoy & Shafer, 1990).

8.3 Computing Conflicts in Argumentation
Systems

As already mentioned, this local computation concept can also be used for
information systems (Kohlas, 1997¢) and for argumentation systems as they
are a special case of information systems.
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Consider the argumentation system AS = (FSC,x, L,F) as an information
system. In chapter 4, we defined the concept of marginal and combination for
information systems. Using these concepts, we can apply the concept of local
computation. For a set of formulas = and a language L we usually avoid to
compute the marginal = = (C/(Z), L), but instead only a marginal which
is easy to compute and represent (cf. definition of a marginal in section 4.2);
nevertheless in this section, we use the notation =¥ for denoting any marginal.
Further, often it is only necessary to consider minimal sets of formulas, that is if
fr— ¢ is aformula in X then X does not need to contain any formula fAg— ¢
for g € FSC. This is correct because at the end of the information processing
we are either interested in conflict sets, support sets, etc., which are unions
of system states (see (6.25) and (6.27)), or their logical representations, i.e.
conflicts, supports, etc., which are disjunctions over FSC formulas (see (6.26)

and (6.28)), but in both cases the results are equivalent.

We consider here especially the problem of computing conflicts (and diagnoses),
therefore we construct the hypertree such that it contains a node with an
“empty” label. “Empty” in this case means that the label is the language
Ly:={(f— L): f e FSC}, which is a sublanguage of the language L' of the
argumentation system. The node with label Ly is in the sequel usually denoted
by (). Now, this node is considered as the root node of the inward propagation
such that at the end of this process, the information available on the node 0 is
Zp ~ =lLo and it can be used to compute the conflicts, because

Conf=  \[f = \[f =\ (8.9)

(f—L)ECHE)  (f HL)ecg@ (= (F—LEE

where the first equivalence is (6.26), the second follows from 1 € L and the

—

last one is true because Zj and C’Z@ (2) are equivalent.

Using the same techniques, we can also compute arguments (quasi-supports,
supports, ...) in argumentation systems.

The following example illustrates these computations.

Example 8.2: Continuation of example 7.2

Consider the representation = of the argumentation system of example 7.2. The
interesting sublanguages are defined by languages over a part of the variables
a,b,..., f,x,y, z together with any FSC of FSC. A sublanguage over the vari-
ables z,y is denoted by {z,y}. The first five elements of = are contained in
the sublanguages {a, ¢, z}, {b,d,y}, {c,e, 2z}, {f, z,y}, and {g, y, z} respectively.
The element T—(a = 3) A--- A (g = 12) is split into a set of equivalent ele-
ments T—(a=3), ..., T—(g =12), and each of these elements is contained
in at least one of the sublanguages above. Therefore, using these sublanguages
together with the sublanguage Ly, a Markov tree is constructed (fig. 8.2), where
each piece of information from = is represented within the corresponding edge
whose label (represented as a capital letter) represents a sublanguage contain-
ing the piece of information. If an information can be put in several edges, for
example (¢ = 3) can be put either in ACX, CXY, or CEZ, then one of the nodes
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BDY

(my=0k) ->(bx d=y)
(b=2)
(d=3)

(g =0K) ->(x +y=f)
(f = 10)

(@=0K)->(y+z=09)
(9=12)

ACX CXZ CEZ
(my=0k) -> (a* c=x)
@=3)
(c=2)

(my=0k)->(c* e=2)
(e=3)

Figure 8.4: Markov tree of example 8.2

is selected arbitrarily. As an abbreviation, we write (i = ok) for the finite set
constraint M (i, {ok}).

We select the node with label () as root node. The propagation algorithm starts
now by sending messages my, —n, from node n; to ng, so for example consider
the knowledge on node BDY, that is

Tr—b=2
¢ppy == T—d=3 : (8.10)
(mg = ok) —(bxd=1y)

then the message towards its neighbor XY7Z7 is
mppyxvz = ooyt = {(mg=ok)—(y=6)}.

How is this marginalization computed? In fact, we have to compute all formulas
(f—X)ecLt (v} which are implied by the knowledge on node BDY, that is

{(f—=X)eLl": X CLyy, dpy F (f—X)}.

In this example, we are dealing with very simple equations, so we can use
variable elimination for computing a minimal representation of the marginal,
i.e. we isolate the variables to be eliminated on one side of the equation and
replace their occurrences in the other formulas together with a simultaneous
updating of the corresponding FSC part of the formula. Concretely, first we
eliminate the variable b, so we isolate b on one side of the equation, which
is already the case in T — b = 2 and replace the occurrences of b in the other
formulas: there is not change for T — d = 3 and for the last formula, we replace
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the occurrence of b by the constant 2 and add the FSC formula T conjunctively
to the left hand side of the equation, that is we get (mg = 0k) AT —(2xd = y).
This formula is clearly equivalent to

(mg =o0k) — (2xd=y).

We have now eliminated the variable b from ¢ppy and have two formulas left,
namely T —d =3 and (mg = ok) —(2*d = y). From these formulas, we have
to eliminate the variable d, and this is done just as the elimination of b before,
so we get one formula (mg = 0k) A T —(2 % 3 = y), which is equivalent to

(mg =ok) — (6=y).

The result of the elimination of d and b from ¢ppy is therefore the set {(mo =
ok)—(6 = y)} consisting of just one formula in £*yy. For this formula, we
have

¢Bpy F (m2 = ok) —(6 =y)

and even Cfry}(quDy) = C'Fy}({(mg = 0k)—(6 = y)}) such that this formula

is a representation of the marginal.

Analogously, the messages from the other leaves are computed:

mayz—xvz = {(ag=o0k)—(y+z=12)}
mrxy—xvz = {(a1=o0k)—(x+y=10)}
macx—cxz = {(m1=o0k)—(x=6), T —(c=2)}
megpz—cxz = {(mg=o0k)—Bxc=2)}.

Then the information on CXZ is the union of the two incoming messages from
ACX and CEZ, that is macx—cxz U megpz—cxz = {(m1 = ok) —(x =
6), (mg = ok) —(3xc=z), T —(c=2)}, and the next message is

mexz—xyz = (macx—oxz UmcEzﬂcxz)l{X’Z}
= {(ml :0]{;))-?(.'1:’:6)7 (mg:Ok‘)H(Z:G)}7

such that on node XYZ we have the formulas

Exyz = mBpy—xyzUmagyz_xyzUmrxy_.xyzUmcxz—xyz
(mg =ok) — (y=6)
(ag =0k) — (y+2z=12)}
= (a1 =o0k) — (z+y=10)}
(m1=ok) — (x=6)
(m3 = ok) — (2=06)

Now, we continue the inward propagation towards the node (), that is, we com-
pute the message mxy g, that is

mxyz—o = Exvz'™
(a1 = ok) A (m1 = ok) A (mg =0k) — L,
= (a1 = ok) A (ag = ok) A (m1 = ok) A (m3 =ok) — L,
(a1 = ok) A (ag = ok) A (m1 = ok) A\ (ma2 =0k) — L.
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(a4 = ok)A(my = 0k)
Al(m, = 0k) -> L

(ay = ok)A(8; = k)

A(my = ok)A(mg = 0ok) -> L

(M, =0k) > (bx d=y)
(b=2)
(d=3)

FXY

(= 0k) > (x +y =)
(f = 10)

(M, = oK) > (y = 6)
(8= 0K) > (y+2=12)
(8, = 0K) > (x+y = 10)
(my = oK) -> (x = 6)
(M, = oK) -> (2= 6)

(@ =0k)->(y+z=g)
(9=12)

CEZ

(my=o0k)->(c*x e=2)
(e=3)

(m; = 0k) -> (ax c=x)
(a=3)
(c=2

(m, = ok) > (x = 6)
(mg=o0k)->(3*c=2)
(c=2

Figure 8.5: Markov tree with the node having an empty label.

The third element is subsumed by the first one and can be dropped. Therefore
on node (), we now have the information Zy = myyz_y which is equivalent
to =0, The actual situation with the information on the nodes after the
propagation is depicted in fig. 8.5.

The conflicts can be computed on node () using the formula above, that is
Conf = \f
(f—L)€=o

((al = ok) A (m1 = ok) A (mg = 0k)>

Il

\/((al = ok) A (az = ok) A (m1 = ok) A (mg = ok:)).

This result is equal to the one obtained in example 7.2. )

8.4 Outward Propagation

If the inward phase has been terminated and one marginal on the root node has
been computed, the following theorem can be used to subsequently compute the
marginals on all other nodes in the tree.

Theorem 8.3 (Kohlas, 1997b) Let ¢l(-i) denote the marked statement obtained
at step i =m,m —1,...,2 of the inward phase. Then

¢lLi _ ¢LLi/\Lb(¢)@¢§i)_ (8.11)



132 8. Computing Conflicts and Arguments

Doing sequential computations from ¢ = 2 to m, this theorem allows to compute
every marginal ¢'% on the corresponding node i. According to the theorem,
every node ¢ # 1 can do the computation and send messages toward its (even-
tual) outward neighbors only after its inward neighbor b(7) has sent the message
i = (gt 00
mation gﬁgl) on node ¢ (the node i = 1 can start immediately because it has no
inward neighbor). But 7@ = pLir) | therefore ¢ptli = gHliMam @ gbgl). This
message passing scheme is called the outward phase or compilation and is
illustrated in fig. 8.6.

and this message has been combined to the actual infor-

b(i)

Figure 8.6: Message passing during outward propagation in step number ¢
focused on nodes i and b(7).

The computations can again be represented in the Markov tree, fig. 8.7, but
this time computations start at the root node and go towards the leaf nodes of
the tree. If every leaf node has got the message from its inward neighbor and
combined it with its actual information, then the process is stopped.

~
T
S
<
~—

—_
[an}

N Wk OOy 5 00 ©
=N NN O W~ Ot

(a) An arrow denotes the direction of the message which is (b) The function b.
passed on the (undirected) arc.

Figure 8.7: General message passing scheme during outward propagation to-
wards the leafs.
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Note that this theorem depends on the axiom (M9) of idempotency (see sec-
tion 2.1.2). Other ideas have been developed for uncertainty calculi which do
not respect this axiom, see for example (Bissig et al., 1997; Pearl, 1988; Shenoy,
1995; Lepar & Shenoy, 1998; Stérk-Lepar, 1999).

8.5 Computing Marginals on Other Domains

The concept of local propagation described in the previous section allows to
compute marginals on the domain of any node in the tree. Yet often this is not
enough, because we are not only interested in these marginals, but in marginals
with respect to other domains. So we go further. Assume that the marginal
'L on node i has been computed.

Depending on the domain L of the marginal we want to compute, we have to
consider two cases:

e If there is a node 7 in the hypertree such that L; C L, then, using the
transitivity property (M9) from definition 2.5, we have

gL = (i)', (8.12)

and therefore the marginal can be computed on the node i. Note that
the computations take place entirely within the domain of node i and are
therefore feasible. If several nodes are available whose label is a superset
of L, then one can select any of these nodes to compute the marginal ¢'7.
Yet in order to simplify the computations, a node with a small domain is
usually a good choice.

e Otherwise L. € L; for all nodes i in the hypertree. This means that
there is no node in the actual hypertree on which the computations can
take place. Therefore the actual hypertree has to be changed such that a
new node is included whose domain is bigger than L. A similar problem
appears in a more general context in chapter 10, where additions of new
information to the hypertree are considered. The problem here can be
reformulated as adding first an empty information with domain L to the
hypertree (this problem is addressed in section 10.1.3), which adds a node

i’, and then computing ¢pt- = (qﬁlLi’)lL on the new generated node where
LCLj.

8.6 Compilation of the Hypertree

The results above imply that if only one marginal has to be computed then the
corresponding node is selected as the root node of the hypertree, and the whole
inward propagation has to be done towards that node. If a second marginal is
needed, then a partial outward propagation can be done from the root towards
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the node corresponding to the second query. This implies that usually, there is
no need to do the whole inward and outward propagation, but propagation is
only done “on demand”.

The other extreme, that is the computation of all marginals on all nodes, can
be useful if there are a lot of queries on the same (unchanged!) knowledge base;
this approach is also called the compilation of the hypertree.

For further information on this subject and especially a method for answer-
ing queries by negating the hypothesis (in cases where a negation is defined),
that is doing only several inward propagations, see (Lehmann & Haenni, 1999;
Lehmann, 2000).



Computing Probabilities

The structure of a probabilistic argumentation system as defined in chapter 6
can be used to weigh the symbolical argument computed for a hypothesis h.
The straightforward way to do this is to consider the subspace in 2 which
represents the set of arguments, and to compute its weight using the probability
measure P, for example P(QSS(h)). But usually, this is infeasible due to the
size of 2. In chapter 5, we have shown how formulas in FSC can be used
to represent subspaces of 22, So, instead of computing QSS(h) explicitly, we
computed a formula which is logically equivalent to its representation gs(h)
according to chapter 8, and the problem is then to weigh any formula in FSC
using the measure P. In this chapter, we explain how the probability of such
formulas can be computed directly, that is without computing the corresponding
subspace in 29,

In the sequel, we suppose that the measure P on 2% is defined as in (6.8), so
we are in a case where the domains of the different set constraints are all finite.
The generalization of the results of this chapter to non-finite set constraints
together with a probability algebra, as for example in a generalized hint, has
not yet been done.

In the first section, we show how arguments can be weighted by probabilities.
In section 9.2 probabilities of FSC conjunctions are computed, and several ap-
proaches for computing the probability of FSC DNF’s are presented.

Since most of the results of the reasoning process (computation of QSS,...)
produces FSC DNF’s; and all the other formulas in FSC can be transformed
(often efficiently) into an equivalent FSC DNF (cf. section 5.1), we only have
to specify an algorithm to compute p(f) for FSC DNF’s f.

9.1 Numerical Evaluation of Arguments

Consider a hypothesis ¢ in ®. In section 3.5 and 5.5 we showed how to com-
pute the arguments, as a subset of 2% and in logical form respectively, which
are supporting the hypothesis, that is the quasi-support and support of the

135
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hypothesis. Subsequently, these formulas can be weighted by the measure P.
This can be done by considering the extended belief function bel. defined in
section 3.7. Note that the belief function is normalized, that is bel.(e) = 1,
therefore define the degree of support dsp(¢) of ¢ by

dsp(¢) := bele(¢) (9.1)

as the strength of the proper arguments supporting the hypothesis. Sometimes,
we denote by dgs the unnormalized belief function. Define the probability
function

p(f) = PN(f)) (9-2)

for f € FSC. The following lemma shows how the degree of support dsp can
be computed:

Lemma 9.1 dsp(¢) can be computed by using the representation by subsets of
22 as well as by using the representation by formulas in FSC as follows:

P(55(9)) P(Q55(¢)) — P(C5)

dpl@) = —ppsy T T 1- PGS (9:3)
~psp(e))  plas(¢)) — p(Conf)
PO = Diag) T 1-p(Conp) )

Proof of lemma 9.1 Follows from the definition of bel., section 3.7 and the
normalization of hints, section 3.2. O

The formulas gs(¢) and Conf are usually given as FSC DNF’s, therefore we
have to compute probabilities of FSC DNF’s. This problem is addressed in the
next section.

Given the information Conf, we are sometimes interested in the posterior pro-
bability of an interpretation, a diagnosis, or even a more general formula in
FSC. Denote by f € FSC such a formula resp. the representation of the inter-
pretation(s). Then the posterior probability p/(f) is defined by

P(f) = p(f]~Conf) (9.5)
_ plf A=Conf) _ p(f) — p(f A Conf)
1~ p(Conf) 1= p(Conf)

Usually Conf is an FSC DNF, then f A Conf can also be represented as an
FSC DNF and we have to compute the probability of two FSC DNF’s. Hence
the computational problem is analogous to the one presented above.

Example 9.2: Computing Numerical Supports

For simplification of the notation, we abbreviate in this example M (i, {ok}) by
i and M (i, {faulty}) by —i for any component i = ay, az, mi, ma, ms, because
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the components have only two possible modes and can therefore be represented
as binary variables. Consider the formula for Conf computed in example 7.2,
that is

Conf = (a1 AmyAma)V (a1 Aag Amy Ams),

and assume the probability given there, that is

pr(m;) = 097 and pr(-m;) = 0.03 fori=1,2,3,
pr(a;) = 095 and pr(-a;) = 0.05 forj=1,2.

Now, consider the hypothesis h = mgy (= M (mq, {0ok})) for which we want to
compute dsp(h). According to lemma 9.1, we have to determine P(gs(h)) and
P(Conf). First we compute gs(mz) analogous to example 7.2:

gs(ma) = maV (a1 Aag Amy Ams),

and for the computation of the probability, we have to split the disjunction into
disjoint parts, so

P(gs(mg)) = P(maV (a1 Aag Amqg Ams A —ms3))
= P(mg)+ P(ai AN ag A my Amz A —mz)
= 0.97+0.95%-0.97%*-0.03
= 0.9955,

and similar for P(Conf),

P(Conf) = P((a1 AmiAm2)V (a1 Aaz Amy Ams A —msa))
= P(a; Amy Amz)+ Play Aag Amy Amg A —mz)
= 0.95-0.97% +0.95%-0.97% - 0.03
= 0.9193.

The splitting of the disjunction into disjoint parts is made using an ad hoc
method; in the next section we present several algorithms for this purpose.

So finally, using lemma 9.1, this leads to

~plgs(h)) —p(Conf)  0.9955—0.9193
dplme) = = o~ i—ooos oM

9.2 Probabilities of Disjunctive Normal Forms

First, we show how to compute the probability of an FSC conjunction. In the
subsections 9.2.2 to 9.2.4, we present generalizations of three algorithms which
have been developed for computing probabilities of formulas in propositional
logic. This section follows the ideas presented in (Monney & Anrig, 1998).
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9.2.1 Probabilities of Conjunctions of Set Constraints

Consider an FSC conjunction
co= M(c1, X1)N--- ANM(cp, Xp). (9.6)
The advantage of the structure of a FSC conjunction is that its probability is

very simple to compute, because, by definition, two literals in co do not contain
information with respect to the same variable. Therefore we have

p(co) = P(N(co)) = P(N (/\M%Xi)))
=1
= P ﬂN(M(CuXi))> = HP(N(M(Ci7Xi>))
=1 i=1

= HP(XZ-). (9.7)

However, in the case of argumentation systems (chapter 6), the sets V; are finite,
so (9.7) can be written as

pleo) =[T| X plei=2) |- (9.8)

9.2.2 Inclusion-Exclusion

Consider an FSC DNF d = co1 V - - - V cop,. The well known inclusion-exclusion
formula for computing probabilities of unions of events in probability theory
can as well be applied to such a logical formula:

p(d) = P(N(coyV---Vcoy)) = P (U N(coi)>
i=1
= Z (—1)|I‘+1P (m N(coi))

0AIC{L,...,m} iel
= Z (-)li+1p (N (/\ coi>> .
0£IC{L,....m} iel

A typical term of the sum in the last equation is then a conjunction ¢ which
has to be simplified to an FSC conjunction ¢’ (see subsection 5.1.1), and its
probability p(¢’) is then easy to compute using (9.8). The big problem in this
approach is that the number of terms in the sum grows exponentionally with
m and therefore cannot be computed for larger formulas.
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9.2.3 A Generalization of the Algorithm of Abraham

Given a formula in DNF, the algorithm of Abraham (1979) is based on single
variable inversion, such that the output of the algorithm is a disjoint DNF. The
original algorithm is restricted to monotone formulas with binary variables.
Kohlas & Monney (1995) present a generalization to non-monotone formulas
with binary variables. A generalization to polytomic variables is presented in
(Anrig et al., 1997c) and (Monney & Anrig, 1998; Monney & Anrig, 2000).
An alternative approach, using an explicit representation of the information
that every component is in exactly one mode is presented in (Anrig & Monney,
1999). This second approach deals with explicit representation whereas we use
here finite set constraints as implicit representation, so it will not be considered
here.

In this subsection we follow (Monney & Anrig, 1998) and present a method for
computing the probability p(f) of a formula f € FSC, for example a logical
representation Conf of C'S. Two formulas f and g in FSC are called disjoint
if fAg2= 1, and in this case we write f + ¢ instead of f V g. The following
lemma describes a necessary and sufficient condition for a test for disjointness
in the special case of FSC conjunctions, which will be used later on:

Lemma 9.3 (Monney & Anrig, 1998) Let fi = Nief, M(ci, Xi) and fo =
Nier, M(ci,Y3) be two FSC conjunctions different from L. Then fi and fa
are disjoint if and only if there is an i € Iy N Iy such that X; NY; = (.

The lemma inspires then the next result, which describes a method to split
two not necessary disjoint FSC conjunctions into several mutually disjoint FSC
conjunctions. This is the main ingredient for the generalized algorithm of Abra-
ham:

Lemma 9.4 (Monney & Anrig, 1998) Let fi = Ny, M(ci, Xi) and fo =
/\Z-GI2 M (¢, Y;) be two FSC conjunctions different from L. For alli € Iy — I
define Y; :=V;, and so

f2 = A\M(ci, Vi),

i€l +(I2—11)

and let I :=={i el :Y; Z X;}. Then,

o if [ =0, then f1V fa = f1,
o if I #0, then let {i1,...,i:} denote the set I. Then
v = fi + (foAM(cy, Vi, — Xi)))
+ (fQ/\M(CilaXh)/\M(CiQ?ViQ_Xi ))

+  (fa AM(ciy, X)) A
A M(Cit—l’Xit—l) A M(Ciw‘/it - Xlt))
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Using the equivalence relations of section 5.1, the result of the lemma is an FSC
DNF which is equivalent to f1V fo. Now the generalized algorithm of Abraham
called Abraham* can be formalized:!

Algorithm Abraham*

(* input: an FSC DNF f = \/ fi
i=1
(* output: the sets P;; with j =1,...,randi=1,...,5—1%)
begin
forj=1ton
Boj = {fi}
fori=1toj—1
Pij=0
for all d in Pi—l,j
if d and f; are disjoint then add d to P ;
else define [ := {i1,...,%} as in lemma 9.4
with respect to f; and d
if I # () then add all the following formulas to P, ;:
d A M(Ch"/il - Xi1)
d A M(ciuXil) A M(Ciwvlé - Xiz)

d/\M(Cil,Xi_l) AR
oA M<C7:t—l7X7;t—l) A\ M(Cit, ‘/;:t — Xz't)
end.

Note that lemma 9.3 can be used to test whether d and f; are disjoint in the
algorithm. The following theorem shows that the result is correct:

Theorem 9.5 (Monney & Anrig, 1998) Let P;; denote the sets generated by
the algorithm Abraham™* when it is applied to the FSC DNF f = fiV -V fp.
Then the sets P; ; contain only FSC conjunctions and

fo ZZ{der_Lj}.
j=1

In order to compute the probability p(f) of any formula f in FSC, we have to
apply the following steps:

1. Determine an FSC DNF g such that f = g.

2. Apply the algorithm Abraham* to the FSC DNF g. This leads, by theo-
rem 9.5, to an FSC DNF h =d; + - - - + d,. such that g = h.

3. Then

P = Dol (9.9

We use the same notation as in (Monney & Anrig, 1998): A star * at the end of a function
or algorithm denotes the generalized version of the function or algorithm.
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and the probability of every conjunction d;, ¢ = 1,...,r, can be computed
using (9.8).

The above is true because

p(f) = P(N(f)) = P(Nkh) = P(N (Zdi))
=1
= P(UN(@)) = Y P(N(dy)) = > p(d
=1 3 =1

Example 9.6: Application of the Algorithm

Assume that we want to compute p(Diag) of the formula Diag computed in
example 7.3. This formula is already an FSC DNF, so we can directly apply
the algorithm to the formulas

fi = M(c2,{2}) A M(c3,{2}),
fo = M(ca, {1}) A M(cs,{3}),
fs = M(ca, {3}) A M(cs, {1}),
fa = M(ca, {4}) A M(cs, {4}),
fs = M(cr, {1,4}) A M(c2,{2,4}) A M(c3,{2,4}),
fo = M(c1,{1,4}) A M(co,{1,3}) A M(cs,{1,3}).

So we start the algorithm:

7 =1: Set P071 = {fl}

Jj=2: Set Ppa := {f2} and, because fy is disjoint with fi, set Pi o := Pyo =
{f2}.

j =3: Analogous, P273 = P173 = P073 = {f3}
j =4 Analogous, P3,4 = P2’4 = P174 = P0’4 = {f4}

j=05:Set Pos :={fs} and d := f5. d is not disjoint with f;, so we have to
define I according to lemma 9.4, that is I = {2,3}. This means that
I # () and therefore

M(c1, {1,4}) A M(cz,{2,4}) A M (c3,{2,4})
AM (c2,{1,3,4}),

M(er, {1,43) A M(c2,{2,4}) A M(c3,{2,4})
AM (c2,{2}) A M (cs,{1,3,4})

{ M(cr, {1,4}) A M(ca, {4}) A M(c3,{2,4}), }
M{er, {1,4}) A M(ca, {2}) A M(c3, {4}) '

The second set contains the simplified conjunctions, that means FSC
conjunctions. Both conjunctions in P 5 are disjoint with fo and f3,
therefore P35 := Po5 := Pi 5. The second one is also disjoint with fy,

Ps =
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so it is put unchanged into P, 5. The first one is not disjoint with fy,
hence I = {3} and this leads to

J { M (e, {1,4}) A M(c2,{2}) A M(cs, {4}), }
5 M (e, {1,4}) A M(co, {4}) A M (c3,{2,4}) A M(c3,{1,2,3})
— { M(Clv{174}) /\M(027{2}) /\M<C37{4})7 }
M (e, {1,4}) A M(co, {4}) A M(cs,{2}) |~

Jj=06: Set Pos:={fs}. fo and f; are disjoint, therefore P; g = Pys. Set now
d = fs, then d is not disjoint with fo, hence I = {2,3} which leads to
(already simplified)

P L { M(Cl7{1?4})/\M<627{3})/\M(037{173})7 }
267 M(ey, {1,4)) A M(ca, {13) A M(cs, {1}) :

)

The second disjunction in P¢ is disjoint with f3, and therefore put
unchanged into P3¢. The first one is not disjoint, therefore I = {3},
such that

P - { M(Cla{174})/\M(027{1})/\M(C3a{1})7 }
36 M (1, {1,4}) A M(cq, {3}) A M(c3,{3}) [~

)

Both conjunctions in P3¢ are disjoint with f4 and f5, therefore P5¢ :=
P476 = P376.

Finally, the interesting sets are P;_1;, 7 = 1,...,6, and according to theo-
rem 9.5 we have the following disjoint FSC DNF representation of Diag:

Diag = M(cz,{2}) A M(c3,{2}) + M(cz, {1}) A M(c3,{3})

+ M(co, {3}) A M(c3, {1}) + M(co, {4}) A M (c3, {4})
+ M(c1,{1,4}) A M(ca, {2}) A M(cs,{4})
+ M(c1, {1,4}) A M(ca, {4}) A M(c3,{2})
+ M(er, {1,4}) A M(ez, {1}) A M(c3,{1})
+ M( ) A M(ea, {3}) A M (e, {3}),

and the prior probability of this formula is computed as the sum of the proba-
bilities of the conjunctions, that is

Cc

617{174} c

p(Diag) = p(M(cz {2}) A M(es, {2})) + p(M(c, {1}) A M(cs, {3}))

+p(M(cr, {1,4}) A M(eo, {3}) A M(cs,{3}))
= 03-03+04-02+ -+ (04+0.1)-0.2-0.2
= 0.39.
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9.2.4 A Generalization of the Algorithm of Bertschy-Monney

In contrast to the algorithm of Abraham, the algorithm of Heidtmann is based
on multiple variable inversion techniques. Therefore the resulting formula is
not a DNF anymore but, more general, a so-called mixed-product, a disjoint
disjunction of formulas consisting of conjunctions and negated conjunctions.
The original algorithm (Heidtmann, 1989) is restricted to monotone formulas
with binary variables. Bertschy & Monney (1996) present a generalization to
non-monotone formulas with binary variables, and a generalization to polytomic
variables is presented in (Monney & Anrig, 1998).

In this subsection we follow (Monney & Anrig, 1998) and present the general-
ization of this algorithm. In the presentation of the algorithm, we use special
formulas in FSC called F'SC mix-products, which have the following form:

r

d = | N\ M. Xe) | AN~ N\ M X2) | (9.10)

kely s=1 kels

where Iy, I1,...,I, are subsets of {1,...,n} such that I, N I, = 0 for all
u # v, and X C Vj for all k € U,_yI;. For s € {0,1,...,r}, the formula
Aker, M(ck, Xi) is an FSC conjunction in FSC. The parameter 7 can be zero,
in which case the FSC mix-product is simply an FSC conjunction. Given an
FSC DNF f, the algorithm presented in the sequel will compute a collection of
mutually disjoint FSC mix-products dy, ..., d; such that

f 2 di+-+d. (9.11)
Then it is easy to compute p(f) because we have

l
o) = S p(d), (0.12)
=1

and p(d;) is easy to compute according to the following lemma.

Lemma 9.7 (Monney & Anrig, 1998) Let d be the FSC mix-product in (9.10).
Then

<

pd) = J[P&xo)-T1(1- 11 P&w) |,

or in the case where all domains are finite,

r

pd) = J[| D pei=a)]-T](1-T] | D plei ==)

kelp ze Xy, s=1 kels reXy
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Let f = p1V...V¢, be an FSC DNF. First, we define the function decompose*

whose inputs are a family of disjoint FSC mix-products my, ..., my and a family
of FSC conjunctions ¢y, ...,cs, and its output is a collection of disjoint FSC
mix-products di, ..., d; such that
l s k
(Zmz> rMaVel = D d (9.13)
i=1 j=1 i=1

This function can then be used to find the FSC mix-products dy . . ., d; satisfying
(9.11). Indeed, since

fo= zr: (s@z A <ﬂ Z_\/l S‘%)) (9.14)

i=1 k=1
always holds, applying decompose* with the arguments m; = ;, £ = 1, and
€1 = @1, ..., Cs = i1 for every i = 1,...,r gives a collection R of disjoint
FSC mix-products dy, ..., d; such that

l
fo= > d, (9.15)
t=1

because decompose”® transforms each formula p; A <ﬁ \/2;11 gok> into a sum of
FSC mix-products. So the algorithm is the following:
Function bertschy-monney* (o1, ..., ¢r);
(* The output is the set R of disjoint FSC mix-products *)
begin
R:=1
for i =1 to r do R := RU decompose™* (@i; 01, .., pi—1)
end.

In order to define the function decompose* we are going to use a function called
find-disjoint*, to be defined below, whose arguments are an FSC mix-product
m and an FSC conjunction ¢, and which returns a family of disjoint FSC mix-
products q1, ..., g, such that

mA-c = ZQi' (9.16)
1=1

To define decompose™, note that
l s ¢ s
(Z mi> Al \/ | = Z m; A | - \/ c; . (9.17)
i=1 j=1 i=1 j=1

Since the terms m; A (—| \/‘;:]L cj> are disjoint, for the function decompose* to

find a representation of

)4 s
(Z m2> AN B \/ Cj (9.18)
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as a sum of FSC mix-products, it is sufficient that it finds one for every term

S
min =\ ¢ | (9.19)
j=1

Yet

s

s
m; A\ /\ ¢ = (TTLZ A —|Cl) /AN B \/ ¢,
j=1 =2

[l

s
m; N\ | — \/ Cj
Jj=1

and the function find-disjoint* can then be invoked to obtain a collection of
disjoint FSC mix-products ¢;,,v = 1,...,n; such that

n;
m; N ey = Z qi, - (920)
v=1
Then
s n; s
m; A\ | - \/ Cj = (Z qiu> AN Bl \/ ¢l (9.21)
j=1 v=1 j=2
and a recursive call to the function decompose* with arguments ¢;,,v =1,...,n;
and co, ..., ¢ finally gives a representation of m; A <ﬂ \/;:1 cj) as a sum of FSC

mix-products. The function decompose* is well defined, because the number
of conjunctions in the recursive call is one less than in the original argument,
and the basis of the recursion is reached when there is no conjunction at all as
second argument, in which case decompose* simply returns myq,...,m,. Also
note that if there is no mix-product at all as first argument, then decompose*
is defined to return the empty set. So we define the procedure decompose* as
follows:

Function decompose®(my,...,mg;c1,...,¢s);
(* The set R denotes the output of the function *)
begin

if =0 then R:=10
else if s =0 then R := {mq,...,my}
4
else R := U decompose* (find-disjoint* (m;, c1); ca, ..., Cs)
i=1

end.

Now what is left is the definition of the function find-disjoint*. Its inputs are
an FSC mix-product

r

mo o= | N\ Me, X)) | AN [~ N\ Mer, Xe) (9.22)

kely s=1 kels
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and an FSC conjunction

c = N\ M Yi) (9.23)
kel.

Note that the FSC’s of the mix-product m are with respect to sets X; and the
ones from the conjunction ¢ with respect to sets Y;.

Its output is a family of disjoint FSC mix-products ¢, . . ., g, such that mA—-c =
> i1 gi- Let’s introduce some notations. For the FSC mix-product m and the
FSC conjunction ¢ let j(m,c) denote the number of sets I, 1 < s < r, such
that Is N I. # 0. If j(m,c) = 0 then let a = A,y ;o M(ck, Yi). If j(m,c) >0
then arbitrarily select so € {1,...,r} such that I.N I, # () and define

m'’ = /\M(Ck,Xk) /\/\ _‘/\M(Ckka) :

kely 87580 kel
my = /\ M(Ck’7 Xk)7
kel.nls,
my = [\ M(ck,Xp).
kelsy—1Ic

Then the function find-disjoint* is defined as follows:

Function find-disjoint™*(m, c);
(* The set R denotes the output of the function *)
begin

if already-disjoint*(m, c) is true then R := {m}

else if j(m,c) =0

then if I. N Iy = () then R := {m A —c}
else let {i1,...,i,} =1.N Iy

(m A —a,
mAaAN-M(c,,Y),

mAaANM(c,,Yi,) N-M(ci,, Yi,),
set R := .

mAaNM(cy,Yi)) AN
\ o ANM(ciyy,Yi, ) N M (e, Y5,)
else select so € {1,...,7} such that I.N I, # 0;
R := (find-disjoint*(m1 A =mo Am”  c)) U {=m1 Am}

7

end.

The function already-disjoint* returns true if m and ¢ are disjoint, and false
otherwise:



9.2.  Probabilities of Disjunctive Normal Forms 147

Function already-disjoint™(m, c);
begin
if X, NY, =0 for every k € I.N Iy
or there is sg € {1,...,r} such that Iy, C I,
and Xj DY}, for every k € I,
then return true
else return false
end.

Considering the developments in this section, all that remains in order to prove
that the algorithm bertschy-monney™ is correct is the proof that the function
find-disjoint* is correct.

Theorem 9.8 (Monney & Anrig, 1998) The function find-disjoint™ terminates
and its output R is a set of disjoint FSC miz-products {q1,...,qn} such that

n
mA-c = Zqi.
1=1
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10

Adding New Information

In some situations, it can occur that only a part of the knowledge is known at
the very beginning of the decision process, but new information arrives sequen-
tially and has to be added to the knowledge base. Suppose that between these
additions of new knowledge, reasoning has to take place, and that we cannot
wait with processing the data until the whole information has arrived; usually
there is no criteria to tell us when the whole information has arrived. There-
fore the results of the reasoning process have to be revised, updated, and are
possibly not valid anymore. In the first part of this section, we suppose that
the new information cannot be split into pieces, otherwise we just consider it
as a sequence of new information, which will be treated strictly sequentially; in
section 10.3 we will reconsider this approach.

Information can be added at several levels (see also fig. 6.1). Consider an
argumentation system and the induced generalized hint, allocation of support,
allocation of probability, and belief function. Then the problem of adding new
information can always be interpreted as the combination of the already known
information with the new one. We have already considered the combination of
information in the form of

e argumentation systems: see chapter 6,
e generalized hints: see section 3.3 on the combination of generalized hints,

e (quasi-)support functions: see section 3.6 on the combination of support
functions,

e allocations of probability: see section 2.4 on the combination of allocations
of probability,

e belief functions: see section 2.6 on the combination of belief functions.

In this chapter we will focus on the situation where we have a knowledge base
and, in addition, the corresponding minimal conflicts and minimal diagnoses
are known, that is, have already been computed using the techniques presented

149
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so far. This means that some information processing has already been done,
and the purpose is to re-use as much as possible of these computations. So
for example consider the argumentation system AS = (FSC,x, L,F), with
the representation =, and the corresponding conflicts Conf(Z) and diagnoses
Diag(Z). New information AS = (FSC, X/, L,F) on the same language FSC
and information system (£,F) with representation =’ becomes available and
has to be combined with the old one, and new conflicts and diagnoses have to
be computed, denoted by Conf(ZUZ') and Diag(EUZ'). The idea is clearly
that as much of the already computed solution, that is Conf(Z) and Diag(=)
should be used for the determination of Conf(ZUZE’) and Diag(EUZ') in order
to keep the computational effort low.

In the context of a set of languages, where every language can be represented
by a set of variables and the meet of two languages by the intersection of the
corresponding sets of variables, we will in some situations consider a special type
of additional information, a simple one called a measurement. A measurement
restricts the actual values of one variable to a well specified subset (or interval)
of its possible values, usually to a point."! For example in the argumentation
system AS with variables, if the variable ¢; is measured and has the value vj,
then we assume that a simple restriction corresponding to this information is
part of the language £, and we write n = {¢; = v }. By a simple restriction we
mean that, for any language in S described by a set of variables V', the label of
the information 7 is contained in V' or has no intersection with V. Usually, in a
system with variables, these pieces of information will be represented by finite
set constraints, or more general, by set constraints. This special case occurs for
example very often in an interactive procedure where new measurements are
taken in order to reduce the number of diagnoses of a non-functioning system
as far as possible; this will be discussed in chapter 11.

Some of the approaches presented in this chapter are restricted to specific knowl-
edge representation, or additional knowledge (besides Conf(Z) and Diag(Z)) is
needed:

e Section 10.1 describes knowledge updating in the context of local propa-
gation in Markov trees and is therefore an extension of chapter 8. Knowl-
edge updating starts from a complete inward propagation in the tree, and
therefore requires more information than just conflicts and diagnoses, that
is, it requires that all messages having been sent during the inward prop-
agation, as well as the resulting formulas on the nodes, are still known.

e Section 10.2 presents an approach restricted to propositional logic, using
so called characteristic clauses. This approach is incremental, such that
it starts from its own data structure already used for the computation
of the conflicts and diagnoses so far; therefore, this approach also needs
more information than just conflicts and diagnoses.

"We consider here only measurements with no errors involved. If errors are involved, the
measurement is treated as a general new information.
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e Another approach, presented in (Hou, 1994), is essentially based on just
conflicts and diagnoses, together with the new information as input. This
approach is restricted to first order logic. It computes the result mainly
by means of a search strategy in a tree, together with a theorem prover.

The first approach has the advantage that also quasi-support and support, etc.,
can be computed at the end of the propagation algorithm.

10.1 Using the Structure of the Markov tree

Consider an argumentation system AS = (FSC,x, L,F) and its representa-
tion Z. Suppose that a Markov tree for processing the information = has been
constructed and used to compute the minimal conflicts Conf(Z) as has been
described in chapter 8. So the whole inward propagation has been computed
(additionally some outward propagation might have been done too), and on the
root node n, a marginal of the whole knowledge to the label of n, is available,

i.c. on n, we have the information Ztdnr) = C’*(C;'(HT)(E)).

Now, consider a new piece of information =" arriving. This knowledge has to
be added to the old one, and the conflicts and diagnoses with respect to ZUZ’
have to be computed.

Yet in the present section, we present this concept using the concept of a marked
information algebra (®, D) like in chapter 8. Therefore, what we are presenting
can especially be applied to (Ls,S), (He,S), ..., AS = (FSC,x, L,}) as
explained in chapter 8.

So consider a marked information algebra (®, D) and an element ¢ € ® which
represents the actual information. Further, as defined in chapter 8, a Markov
tree (E, N) has been built and a full inward propagation has been done in
the tree towards a root node n, € N, that is the marginal of the combined
information to the label of n, has been computed. All messages and results
on the different nodes are still available. In the context of an argumentation
system, this means that the minimal conflicts and diagnoses with respect to ¢
have been computed following section 8.3.

Now a new knowledge n € ® is available. The goal is again the computation
of the marginal on n, of the knowledge. In the context of the argumentation
system, we of are interested in the conflicts and diagnoses with respect to ¢ &7
which are denoted by Conf(¢ @ n) and Diag(¢ @ n).

The first and naive idea is to throw away all structures and information pro-
cessed so far, that is the Markov tree, all messages and marginals, and start
from scratch with the new information ¢ & n by using the same procedure as
for the computation of the marginal (or minimal conflicts and diagnoses in the
case of an argumentation system) with respect to ¢ (chapter 6 resp. 8). This
approach is usually not very efficient. Here, we present an approach which re-
uses much of the information processed so far for the computations with respect
to the updated knowledge base.
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Consider the Markov tree (E, N) constructed for the information ¢ € ®. De-
pending on the label d(n) of the new information 7, we have to specify on which
node 7 has to be put and which messages have to be sent in the tree in order to
compute a new marginal of ¢ & n on the root node n,, and subsequently in the
case of an argumentation system, conflicts and diagnoses can then be computed
from this marginal as presented in chapter 8. Consider several different cases:

If the label of the new information 7 is contained in a label of one (or several)
nodes of the Markov tree, then the Markov tree (E, N) does not have to be
changed, and the algorithm for the computation of the new conflicts is pre-
sented in subsection 10.1.1; this case will also be treated in the special case of
propositional logic in subsection 10.1.2.

If n can be decomposed (for example according to the structure of the tree), the
pieces of the decomposition can be placed on several different nodes and we have
the problem of adding several pieces of information at once, see subsection 10.3.

In the general case, the label of the new information 7 is not contained in any
of the labels of the nodes in N, therefore 1 cannot be placed on any node of the
Markov tree. The first idea is to add a new node to the Markov tree whose label
is equal to the label of 7, but in the general case the Markov property will not
hold anymore for the resulting tree. So in this case the very structure of the tree
has to be changed. Algorithms for this case are presented in subsection 10.1.3.

10.1.1 New Information Compatible with the Markov Tree

As mentioned above, in this subsection we consider new information 1 which
is compatible with the Markov tree (E, N). This means that the label of 7 is
contained in one or several nodes of (E, N). It then has to be incorporated
in the structure of the present Markov tree. So assume that there is a set of
nodes N, such that for every node n in N, the label d(n) is contained in d(n).
The question is now, in which of those nodes should we put the information n?
The answer seems to be clear: We put the information into the node n’ € N,
which is — in some sense — not far from the root node n, of the previous inward
propagation. Then we pursue the inward propagation from node n’ to the
root node n, (using the previously computed information) and obtain finally
a marginal on the new information on n,, namely (¢ ® n)ld(m). Using this
marginal, the minimal conflicts Conf (¢ @ n) can then be obtained on the node
n, by computing a further marginal of the information on n,, cf. lemma 5.14
or section 6.4. Let’s formulate this more precisely. Two questions remain:

e What is the general way to choose the node n’ € N7

e How can we re-use as much information of the original inward propagation
as possible?

Let’s begin with the first question. Consider several cases:
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------

root node \ root node

(a) This situation cannot occur, because (b) This is a possible situation.
the tree is Markovian.

Figure 10.1: The problem of the nearest node in the set NV,,.

1. If the old root n, is contained in N, then we clearly choose n’ = n,, and
the new marginal (¢ ® n)id(m) on this node is simply the old one ¢+d(r)
combined with the new information 7, that is

(p@n)drr) = gldn) gy, (10.1)
because d(n) C d(n;).
2. If the set N, consists of only one node, the selection problem is trivial.

3. Finally, if the set N, consists of two or more elements, we have to choose
one of them as the one on which we will put the information n. Assume
that the root node n, is not contained in N,, (otherwise we are in case 1),
then, because the tree is actually a Markov tree, there is a unique node n’
in NV,, which is contained in every path from the old root node n, to any
node in the set N, — {n'}. Consider a situation where there is no such
node, that is, for example the situation depicted in fig. 10.1(a). However,
this situation is not possible, because d(n) is contained in the label of all
nodes in NV,), and therefore, because the tree is Markovian, has also to be
contained in the label of every node on the path from one node in the set
N, to any other node in this set; so for example d(n) has to be contained
in d(n,) and therefore n, € N,, which was excluded in fig. 10.1(a). So
clearly, there is a unique node n’ which will be called the “nearest” node
of Ny, to n,, i.e. only situations like the one in fig. 10.1(b) are possible.

Now we turn to the second question: How do we efficiently re-use the infor-
mation of the inward propagation towards the old root n,?? Again we have to

2See also p. 159 about using the information of the previous outward propagation for the special
case of propositional logic.



154 10. Adding New Information

look at the three different cases. For case 1, we have already shown how the
marginal (¢ ® n)id("r) has to be computed in (10.1), and from this marginal,
the minimal conflicts and diagnoses can then be computed using techniques
presented in chapter 6. The cases 3 and 4 are considered in the sequel.

Kohlas et al. (1999b) consider the problem of computing marginals on all nodes,
therefore updating some information on one node n’ induces an outward prop-
agation on the whole Markov tree starting with the new root node n’. Yet the
ideas of that article can as well be used in our case where we want to compute
the new marginal on the old root node n, and do not consider the outward
propagation. New work in this area discusses the idea of replacing the outward
propagation completely by inward propagation in the case where we are not
interested in all marginals (Lehmann & Haenni, 1999; Kohlas et al., 1999a).

Consider cases 3 and 4, i.e. assume that on the path from node n’ to the
root node n, are the nodes nq,...,ng in this sequence, as shown in fig. 10.2.
Denote the messages previously computed during the inward phase towards the
root ny by ¥n—pn,, Ynj—n;y, for j = 1,...,8 =1, and ¢y, p,. The inward
messages towards the node n’ do not have to be recomputed, because they are
independent of the knowledge 1 which is to be put on node n’. The same is
true for all the messages toward n;41 besides the one from n;, j =1,...,5—1,
and also for all messages toward n, besides the message from ng. So the only
information processing which has to be done is on the path from n’ to n, as
shown in fig. 10.2. The new messages which will be computed in the sequel
and sent along this path are denoted by an asterisk (e.g. ¢:L’—>n1) in order
to distinguish them from the ones already sent during the previous inward
propagation. The old knowledge on node n’ is denoted by ¢,/ and similarly
on nj by ¢n;. By old we mean either the information available on this node
after the inward phase, or if the outward phase has (maybe only partially) been
computed, the updated information after this phase; the underlying calculus is
idempotent, therefore incorporating the same information more than once does
not influence the final result, but it can influence the speed of the computation,
because there might be information coming from node n; which is sent back
to it in the new message ¢, , which is not necessary. It is therefore better
to save the information present at the end of the previous inward phase on the
nodes and use this information together with the new information 7 to compute
the new message.

In the sequel, we first concentrate on the computation of the message :/—»nl'
The other messages w,ﬁj_}nj 1) forj=2,...,s,and ¢, ., are computed simi-
larly. The idea is that the information previously sent to n; should not be sent
again, therefore we would like to define the message 1, ~as the division of
the marginal by the message v/, that is

R G ) AN )

n’—n
! wn’—>n1

I
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Figure 10.2: The part of the Markov tree containing the nodes between n’
and n, and the messages of the inward propagation towards n, before the new
information 7 has been added.

but clearly, there is no division operation in the general context. Yet written
multiplicatively, the new message ¢, ~has to satisfy

(O @ n)ld(n’)/\d(nl) = Phn, DU (10.2)

that is, the new message ¢, ~combined with the old message v,/_n, has to

be equal to a message computed with respect to the knowledge ¢, & n from n’
to ny.

The equation above has one trivial but computationally expensive solution, i.e.
define the new message ¢, .~ to be the equal to the marginal on the left-
hand side, but this in fact would mean that the new messages contain all the
information of the previous messages, and therefore the information concerning
only ¢,/ is sent again through the tree and not only the updated part of it.
For the general case, there is no better solution, but for special cases, better
solutions exist. As an example, we consider the special case of propositional
logic in the next subsection.

Example 10.1: Continuation of example 8.2

Consider the Markov tree from fig. 8.5, where the conflicts with respect to
the actual knowledge = have been computed. As further information, we are
told that the variable x is measured to have the value 6, which is represented
in the present framework as T —(x = 6). This information must now be
included into the Markov tree. There are several possible nodes, where this
information fits, namely the four nodes XYZ, FXY, ACX, and CXZ. Following
the considerations above, we put the information T —(z = 6) on node XYZ
because this is the nearest node from the root () among the four. Due to the
structure of the tree, the only message which has to be recomputed is the one
from XYZ to 0, Myyy_g» Which we will do in the present case by simply
computing the marginal of the combined information, that is

Myyz_g = (ExyzU{T—(z =6}
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Cﬂ_} (EXYZ U {T >—>(.Z‘ = 6)})
A (me =0k) — L
= (a1 = ok) A (ag = 0k) A (mg =0k) — L
)A (mg=0k) — L

where the marginal is computed as in example 8.2. On node () we have now

— [ = *
Zp = ZpUmyxyy g

{ (a1 = ok) A (ma = ok) — J_}
(a1 = ok) A (ag = ok) A (mg =ok) — L

where the subsumed formulas have been omitted. The situation after the prop-
agation is depicted in fig. 10.3.

BDY %]
(m;=0k) ->(b+ d=y)
(b=2)
(d=3)

(ay = 0k)A(m, = ok) -> L
(ay = 0k)A(a, = 0k)
A(mg=o0ok) -> L

XYz
(m, =0k) > (y=6)
(@ = 0k) -> (y+z=12)
(ay = 0k) -> (x+y = 10)
(m; = ok) -> (x = 6)
(Mg = 0k) -> (2= 6)
(x=6)

*
Myvza

FXY

(3 =0k)->(x+y=H)
(f = 10)

(8,=0k)->(y +2=0)
(9=12)

CEZ

(M, = ok) > (x = 6)
(mg=o0k)->(3*c=2)
(c=2)

(m; = 0ok) -> (a*x c=x)
(@=3)
(c=2)

(my=o0k)->(c*e=2)
(e=3)

Figure 10.3: The updated Markov tree

According to (8.9), the representation of the conflict Conf is then

Conf = \/ f

(f—1L)egy
= ((al = ok) A (mg = 0k)> Y <(a1 = ok) A (az = ok) A (mg = ok)).
The set of minimal conflicts pConf (cf. section 5.4) can be obtained on the
node () by first computing the prime implicates of the result (cf. for example

(Birkhoff, 1948; Haenni, 1996)), and then applying the theorem of Reiter &
De Kleer (1987), such that finally we get

{(a1 = ok) A (mg = ok), (a1 = ok) A (a2 = ok) A (m3 = ok)}.
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The set of minimal diagnoses pDiag is therefore

{(a1 # ok), (a2 # ok) A (ma # ok), (ma # ok) A (mg # ok)}.

10.1.2 Special Case: Propositional Logic

In this subsection, we present the ideas of (Kohlas et al., 1999b) which allow to
compute the new message ¢, ~more efficiently in the special case of propo-
sitional logic. This approach uses an incremental process for the computation

of this message. Note that it can also be generalized to finite set constraints.

Consider the lattice S of propositional languages £, over subsets of variables
p of the set of variables. As an abbreviation, we denote the language £, by p,
such that £, A L,; is denoted by p N p', etc. The notation from the previous
subsection is used here in the special case of propositional logic.

Assume that the marginalization of information on n’ to d(n’) N d(n) requires
the deletion of a propositional symbol® p, and define

ET}FI = the set of clauses in ¢, containing p positive,

¥ = the set of clauses in pn containing p negative,

28’/ = the set of clauses in ¢,y not containing p at all, (10.3)
ZZ = the set of clauses in 7 containing p positive,

¥ = the set of clauses in 1 containing p negative,

¥ = the set of clauses in 7 not containing p at all.

The new clauses are computed,
YU = (T Ut usy us)) — (ST usy usD),
oM = (2T ust ust ush) — (M usy us)),
and the new message can be defined as

Eg U {p(gafl) : g [ Ei:ﬂru’ 5/ c Eyiiﬁnl}
Viem=n| o UbEEEEX T C R | (104)
U{p(£,&):£exy, ¢ exr—m}

A clause ¢ subsumes a clause ¢ if ¢ = ¢ vV ¢” for another clause ¢’ and the
operator p removes all subsumed clauses from a set of clauses. p denotes the
so called resolution: for two clauses ¢ and d with p € ¢ and —p € d, that is
c=pV<d and d = —pVd where ¢ and d' are clauses, the resolvent p(c,c) is
the concatenation of ¢ and d’ where multiple occurrences of literals have been
removed. p(c,d) = T if there is another literal p’ # p with p’ € ¢ and —p’ € d
(or p’ € d and —p’ € c).

3See example 10.3 for how to delete more than one propositional symbol.
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Consider the special case where the new information n has a very simple form,
that is a literal, so either a positive or negative variable, therefore in the algo-
rithm the expression “the set of formulas in the new information...” refers to
either only {n} or the empty set. So the formulas can be simplified, because only
one of the sets X'}, ¥ and ¥ is non-empty, and the message %, ~usually
can be computed rather easily despite the complicated formalism used above.
Yet in the algorithm we stated it more generally, because the message ¢y, is
sent to the node ny, on which we again have to compute a new message 5, ..,
to node ng, depending on the new information on n;. This new information
on nq, i.e. the message 1, ' py» 181D general a set of clauses, and therefore we
do not have another special case on this node, but a more general updating of
information. Yet the algorithm presented above is general enough to work with
these structures, i.e. it can compute a new message 1y, _.,,, depending on the
information ¢y, and the new information v,  ~(see also the example 10.3 at
the end of this subsection). The other messages 1), forj=2,...,s—1,
and 1, ., are computed similarly.

nj—Nj+17

Lemma 10.2 The message 1* defined by (10.4) fulfills equation (10.2).

n'—mnq
Proof of lemma 10.2 We have to proof that

((pn’ @ n)ld(” )md(nl) = w;kz’—ﬂn @ 17Z)TL’~>TI,1 :
Using theorem 8.1, the right-hand side develops into

w:’—wnl ® wn’ﬂnl = w:l’—ml o) Spn/ld(n )ﬂd(nl).

Using (10.4) and the definition of marginalization, we have

SgU{p(6,€) €Dy ¢ exr My

Uniomy = M U{p(6.€) e X ™™, ¢ e ) :
U{p(£,&):€ex, ¢ exr ™™}
oo I = S U (€, ) € €T, € e VY

and, combining these equations,
Yy @ i 0T
—n1
= (zg USy U{p(§,€): € ez UTIT™, € e XU E’i’%l}) :
which, in fact, is the same as (¢,y ® n)ld("/)md(”l)
clauses. O

up to eliminated subsumed

This lemma drastically reduces the computation on the Markov tree. After
choosing the node n’ € N where the new information 7 is added, we simply
have to compute the messages ¢*, on the path from that node to the root
node and update the information on the nodes in-between.



10.1. Using the Structure of the Markov tree 159

The same ideas can clearly also be applied if parts or the whole outward prop-
agation have already been done before the new information 7 has been added.
In this case, if we are only interested in the minimal contradictions and the
minimal diagnoses, all we have to do is to look for the nearest node from n’ on
which the outward propagation has been done (this node clearly is unique) and
to consider this node as new root node. The new “inward propagation” of the
updated knowledge has then to be done only towards this new root node. If
afterwards there is also a new “outward propagation” from this new root node,
then the already computed messages on the respective paths can be re-used as
well by applying the ideas presented above.

Example 10.3: Continuation of example 7.1

The information expressed in example 7.1 can very well be express in proposi-
tional logic. Assume that the variable m; represents the state of component 1,
that is inverter ¢ is working correctly if m; is true. Further, assume that the
mapping of the argumentation system (—) is considered here as a logical im-
plication. Then, the knowledge of the example is represented by the formulas

m; — (x> —in)
my — (y < —x)
ms — (out < )
m
out

We usually use the corresponding conjunctive normal form to represent this
information, that is

-m1VaVin, -m;V-ozV —in,
moVyVz, -mgV-yV z,
—m3 VoutVy, -m3V —outV —y,
in, out.

(1]
I

(10.5)

We consider the set of literal {x,y,in, out} for the construction of the Markov
tree, and therefore we get a Markov tree with three nodes, see fig. 10.4.

For the computation of the conflicts, we add a node with an empty label to one
of the three nodes, like in the previous subsection. For the inward computation,
first the message from A to B is computed using variable elimination according
to (10.4):
ma—p = {—-miVazVin, -myV -z V —in, in}_i”
= {-myV x}

and similar the ones from B to C and from C to {:

mpoc = ({~maVyVe, -maV gV -z} Umap) "

{—-my1 VvV —ma Vy}
me_g = ({-ms3VoutVy, -mzV-outV -y, out} Ump_c) ¥

= {—|m1 V —mo V —|TTL3}
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—m,vxvin

=Mm,v=Xv=in
in

—Mmyvoutvy
“Myv-0utv-y
out

—Myv=yv=X
—“M,VyVX

Figure 10.4: A Markov tree for the example 10.3.

So on the empty node, the information is {—m; V —mg V —mg3}. After the
complete inward propagation on the Markov tree towards the additional empty
node, the situation looks like in fig. 10.5.

—m;voutvy
—=Myv=0utv-y
out
My vMgvy

Figure 10.5: Inward propagation towards the node with empty label.

Now assume that further information about the system becomes available,
namely that z is true, n = {x}. This information can be added to node A
or B but because B is nearer to the root node (), we choose B. According to
the algorithm described above and (10.4) we compute the new message with
the literal « to be eliminated, 1};_, ~ using the sets defined in (10.3)

Ef = {-maVyVuz} o= {a},
B = {-mgV-yV -z, —myV -z}, o= 0,

B
B o= 0, 1=,

and therefore

0.

SfC={a}, ®FC
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The new message to be sent is finally

w*B—»C = {_‘mz V 2y, _‘ml}a

and this information denoted by 7y is considered as the new information on
node C. A new message ¢,_,; depending on the “old” information on node C,
i.e. the four clauses

—m3 V out Vv, out,
(10.6)
—mg V —out V -y, —myV-moVy,

and the “new” information 7; has to be sent now. Therefore two atoms y and
out have to be eliminated; we first consider the elimination of ¥ and compute
therefore

Eg = {ﬁmg V out V Yy, 7y V 1My vV y}, EZ_I = ®7
2 = {-m3V -outV -y}, ¥ o= {-maV -yl
ng = {out}, it = {-m},

and

This gives the intermediate result computed by (10.4):

A~

v = {=my, -mg V out}.

zﬂ contains still the atom out which has to be eliminated. Applying (and slightly
generalizing) the ideas from the algorithm above, we compute the new set
(marked with a hat "),

f]g = the set of clauses in C containing out positive
and not containing y at all = {out}
¢ = the set of clauses in C' containing out negative
and not containing y at all = 0,
3§ = the set of clauses in C' containing
neither out nor y = {-m},
537]: = the set of clauses in ¢ containing out positive = {—mg3 V out},
S = the set of clauses in ¢) containing out negative = 0,
S = the set of clauses in ¢ not containing out at all = {-m;}

and using the definitions of the algorithm,

SO0 _p SO0y,
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This finally delivers the message computed by (10.4)

Yog = {~ma},

which is sent to the node () and added to the actually present knowledge on it.
Therefore on node ) the actual information is Zg = {—m1V-maV-mg}U{-m1},
where the first element is subsumed by the second one and can therefore be
eliminated. Fig. 10.6 shows the result of the propagation on the Markov tree
towards the root node .

“Myvoutvy
“Mgv-0utv-y
out
myvay
-my

Figure 10.6: The information on the Markov tree after the updating.

So the conflict is

Conf(EUn) = \/—\f =mj.

PISEN)

The minimal conflicts ;2 Conf (2Un) can be obtained on the node () by computing
the prime implicates of the result (cf. for example (Birkhoff, 1948; Haenni,
1996)), and applying the theorem of Reiter & De Kleer (1987), which in this
simple is trivial, such that finally we get

pConf(EUN) = {mi}.

The only minimal diagnosis (with respect to ZUn) is —my, i.e. the first multiplier
is not working correctly. S)

10.1.3 Changing the Structure of the Markov Tree

Now we are going to consider the case where the label d(n) of the new informa-
tion 7 is not contained within the label of any node in the Markov tree (E, N).
This means that 1 cannot be put on any node in the tree. Nevertheless, we have
to take into account the new information 7, therefore the previous structure of
the information representation, i.e. the Markov tree, has to be changed. There
are several possible strategies we can consider, e.g.
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e Change only “small parts” of the original Markov tree, such that “a lot”
of already computed messages and marginals can be re-used.

e Minimize the size of the labels of newly generated nodes in order to get a
good Markov tree.

e Minimize the computations for the determination of the new Markov tree.

We present several approaches, which fulfill some of these optimization issues.

Rebuild the Whole Markov Tree

A first and straightforward approach is to throw away the present Markov
tree and build a new one for the knowledge ¢ @ n. This results in loosing all
messages and all marginals on nodes computed so far, therefore wasting a lot of
computation. On the other hand, this possibly generates a Markov tree which is
strictly better than any other constructed by the methods presented hereafter.

In some special cases, this approach might be a good strategy, especially when
the Markov tree is very small or when a lot of new information with various big
labels arrives.

Xu’s Modification Method

Xu (1995) presented a method for computing marginals whose labels are not
contained within a node in the Markov tree. It is mainly a method to modify
the tree, in such a way that finally the marginal can be computed on a newly
generated node in the tree. Generalizing this approach, we can apply it to our
problem.

The interesting part of the label of the new information, that is the part of the
sublanguages already occurring in the Markov tree, is denoted by

d =d(n) A ( \/ d(n)) . (10.7)

neN

Then the following pseudo-algorithm will generate a new Markov tree which
contains a node whose label does include d(n).
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Pseudo-Algorithm Xu

(* Input: Markov tree (E, N), new information n *)
(* Output: Markov tree (E', N') *)

k
1. Find a set b={EY,...,E]} C N such that d' C \/ d(E}).
i=1
2. Build a set a which contains b as well as all nodes on the paths
between the nodes in b.

3. Let N' :== N U {n,} where n, is a new node with

d(ny) = d(n) v \/(d(X;) A d(X;)).

Xi,Xan
(X, X )€EE

4. Remove all edges among the nodes in a and add the edges between
n, and the nodes in a, i.e.

E = (E — {(Xz,X]) : Xi,Xj S CL}) U {(nn,Xl) : X, € (I}.

Ezxzample 10.4: (Xu, 1995)

Consider a system with variables where the sublanguages are characterized by
sets of variables (e.g. {a,b}) and the intersection of two languages (e.g. {a,b}
and {b,v}) is a language characterized by the intersection of the variables (e.g.
{b} = {a,b} N {b,c}). Let (N, E) be a Markov tree with

N = {{a,b},{b,c,d}, {d, g}, {¢c,d, e}, {d, e, [}, {c,e; h}}

and F as in fig. 10.7(a). Now, an new information n with label {a, g, 7} has to
be added. According to the steps of the pseudo-algorithm of Xu,

b = {{a,b},{d,g}},
a = {{a,b},{b,c,d},{d,g}},

and this gives us the label of the new node ny

dtn7) = {a,g,i}U ({a, by N {b, e, d}) U ({b, e, dyn{d, g})
= {a,b,d,g,i}.

The updated Markov tree (N U {n7}, E’) is shown in fig. 10.7(b). o

Xu also shows that this pseudo-algorithm indeed yields a Markov tree and that
there is always a smallest possible set a which can be chosen in step 2 of the
algorithm so as to get the smallest possible label d(n,). Note that this does not
imply that the generated Markov tree is optimal, i.e. there might be a strictly
“better” tree for the combined knowledge ¢ & 7.
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(a) Original Markov tree (N, E). (b) Modified Markov Tree (N U {nz}, E').

Figure 10.7: Example of Markov tree modification.

Lemma 10.5 (Xu, 1995) For the algorithm of Xu applied to the Markov tree
(N, E) and the new information n we have:

a) The resulting tree (N', E') is a Markov tree.

b) There is a node ny, € N’ satisfying d(n) C d(ny).

The marginals and the messages computed so far in the original Markov tree can
partially be re-used in the resulting tree. If the root of the inward propagation
is the same as before, n, takes the newly computed messages of its outward
neighbor nodes and sends the new inward message in direction of the root node.
So the messages which have to be re-computed are the ones coming to the new
node n, from its neighbor and the ones on the path from n, to the root node.
The first ones are usually easy to compute if the intermediate results of the
computations of the original messages are kept in memory, because the label
of the old message is a subset of the new messages (which is clearly a subset
of the label of the node itself). The messages on the path from n, to the root
node can be computed using the techniques presented in section 10.1. These
computations are illustrated by an example.

Example 10.6: Continuing example 10.

Fig. 10.8(a) shows the messages 1, computed on the original Markov tree
(N, E) from fig. 10.7(a) during the inward phase towards the root node nz. After
the new information with label {a,g,i} has been placed on the newly created
node n7 (see fig. 10.7(b)), fig. 10.8(b) shows where the updated messages have
to be sent. The new messages to n; from its outward neighbors are denoted by
Cns—n, and Cpg—n,, the new messages computed using the techniques presented
in section 10.1 from n7 towards the root node n3 by ¢y, and ¢; ... ©
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root
node

Ny
(a) The messages ... which have been (b) The new messages which have to be
sent on the original Markov tree (N, E). sent on the modified Markov tree (N U
{n7}, EY).

Figure 10.8: Example of where new messages have to be sent when the Markov
tree has been changed according to the algorithm of Xu.

An improved method

Taking into account the ideas of Xu presented above, we define a pseudo-
algorithm which computes a Markov tree which is better than (or a least equal
to) the one generated by the algorithm of Xu. The idea is to make only local
changes to the Markov Tree, but, in contrast to the algorithm of Xu, we also
allow nodes of the actual Markov tree to be changed.

Define d’ as in (10.7). The result of the following pseudo-algorithm is the
Markov tree (E’, N'):

Pseudo-Algorithm Improved Version

(* Input: Markov tree (E, N), new information n *)
(* Output: Markov tree (E', N') *)

k

1. Find a set b= {EY,...,E]} C N such that d' C \/ d(E}).

2. Build a set a which contains b as well as all nol(;els on the paths
between the nodes in b.

3. Create a new node n, with d(n,) = d(n).

4. Build a set ¢ which contains a as well as all neighbors of elements
of a and also n,,.

5. Compute a new Markov tree (E*, N*) of the elements in c.

6. Let N/ be the union of the elements of N —c and N* where subsumed
neighbor nodes are (eventually) eliminated, i.e. “devoured” by the
subsuming neighbor nodes, which also take over the corresponding
edges, therefore let E’ be defined according to this.
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A node a is subsumed by a node b if d(a) C d(b). Formally, the last step of the
pseudo-algorithm can be written as

set done := false
set N/ := (N —¢)UN*
set B/ := E*U{(n,n') € E:n,n' ¢ c}
while done = false do
begin
if ny1,ne € N' with d(nq1) C d(n2) and (nq1,n2) € E or (ng,n1) € E
then set N':= N — {n;} and
E ={(n,n') € E':n#ny #n'}U{(n,n2): (n,n1) € E'}
U{(ng,n’) : (n1,n’) € E'}
else set done := true
end.

The resulting tree has the desired structure as mentioned in the corollary which
follows from lemma 10.5 and (Xu, 1995):

Corollary 10.7 Applying the improved pseudo-algorithm above to the Markov
tree (N, E) and the label d(n) of the new information n we have:

a) The resulting tree (N', E') is a Markov tree.
b) For every node n € N — c there is a node n’ € N’ with d(n) C d(n’).

¢) There is a node n' € N’ satisfying d(n) C d(n’).

Example 10.8:

We re-use example 10.4. So consider the Markov tree in fig. 10.7(a), to which
should be added the information n with label {a,g,i}. The sets computed in
the algorithm are:

b = {{a,b},{d g}}
a = {{a,b},{b, G d},{d,g}}
c = {{a,b},{b,c,d}, {d,g}.{c.d,e}}.

The elements of ¢ are then used to construct the Markov tree (N*, E*) shown
in fig. 10.9(a). This tree is then “added” to the rest of the tree (N, E), and
the nodes ny4+ and ng4, which both have the label {e, ¢, d}, are identified (they
subsume each other, and one of them is therefore “devoured” by the other one).
The resulting Markov tree is shown in fig. 10.9(b).

Comparing this result with the result of example 10.4 in fig. 10.7(b), we see
that the maximal size of the labels of the nodes is two less in the improved
algorithm than in the algorithm of Xu, which is a big advantage in view of the
propagation on the Markov tree. O

It is clear that the result of the improved algorithm is not necessarily glob-
ally optimal, but we call it locally optimal because the newly computed nodes
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(a) Intermediate Markov tree (N*, E*). (b) Resulting Markov tree (N, E’).

Figure 10.9: The improved algorithm applied to example 10.8.

form an optimal Markov tree (with respect to whatever optimality criteria are
specified in the respective algorithm).

Note that, analogous to the algorithm of Xu, the marginals and messages com-
puted so far in the original Markov tree can partially be re-used in the resulting
Markov tree. There are not necessarily fewer messages to be sent than in the
original algorithm of Xu, but the label on which they are computed are smaller,
and clearly, the computation of several messages with small labels is usually
more efficient than the computation of one message with a big label.

Step 5 of the improved method can further be improved such that it works not
with the labels of the nodes, but with the labels of the information contained
on them?, together with the labels of the neighbor nodes:

5. compute a new Markov tree (E*, N*) based on the labels of the pieces of
information contained in the nodes a as well as the labels of the nodes in
c—a.

It can be proved that the resulting tree (E’, N’) is also a Markov tree. The
advantage of this approach is that in general the resulting Markov tree is bet-
ter. The disadvantage is that there might exist one (or several) node in the
original Markov tree whose label is not contained in the label of a node of the
resulting tree anymore, this means that we cannot re-use the marginals (and
the respective messages) on this node anymore. However, depending on the
application, this algorithm might be interesting.

4This makes sense because the labels of these nodes are mainly joins of labels of pieces of
information created during the construction of the Markov tree.
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Comparing the Algorithms

Table 10.1 shows a short comparison of the three algorithms in general. The
comparison includes first the quality of the final Markov tree (e.g. the maximal
size of the labels of nodes, or another criteria), secondly how many of the
old marginals and messages processed so far can be re-used, and thirdly the
computations necessary to achieve the result (i.e. constructing/changing the
Markov tree and the subsequent message passing).

H Rebuild Markov T. ‘ Xu’s Algo. ‘ Improved Algo.

Markov Tree good (optimal) rather bad | locally optimal
Old Marginals || lost re-usable partly re-usable
Computations || expensive fair fair

Table 10.1: Comparing the algorithms.

10.2 Using Characteristic Clauses

Based on (Inoue, 1991; Inoue, 1992; Siegel, 1987), Kohlas & Monney (1993)
presented algorithms for an incremental computation of the diagnoses and con-
flicts, or more generally quasi-supports and supports, in propositional systems.
The algorithms have been implemented a.o. by Hénni (1997) in the framework
of assumption-based reasoning. These ideas can also be used in the present case
of updating a knowledge base by a new information, but they are restricted to
propositional logic.

Consider an argumentation system AS = (ﬁ{al,...,ap}7 X, Lp, ) analogous to the
one in example 10.3 where Ly,, 4 ) denotes the propositional language over
the atom {a1,...,a,} and Lp is the propositional language over another set
of atoms, say B. The entailment relation F is the usual one in propositional
logic. This approach restricts the formulas in Ly, 4.} being conjunctions and
the formulas in £ being clauses, but clearly, the argumentation system can be
transformed as to fulfill this restriction.

The representation = of x is

_ (aﬁ/\"~/\a§-i)>ﬁ(ﬂ’{\/--~\/ﬂ,"§i)‘:izl,...',n,
Oéll /\'“/\Oé;»i S E{ah...,ap}v ,Bi \/'“\/ﬂ;ﬂi € Lp '

—_—
—
—

In the sequel, the mapping — will be interpreted as the usual connective “—” in
the language £ := Ly, .. 4,3 VLp such that the elements of = can be represented
as clauses in L,

- _ {ﬁoﬂiv‘...vﬁa;’.i'\/ﬂ{\/...\/g;‘%;11'217,,_,'” }
all/\.../\a;_ Eﬁ{al,...,ap}7 ﬂi\/\/ﬁ}cl €Ly
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A production field P is a nonempty set of clauses in the language L. It is
called stable if every clause ¢ in £ which is subsumed by a clause of P is also
in P, ie. if c € Pand ¢ C ¢ then ¢ € P. Define =P := {-p:p € P}. An
interesting production field is for example the set of all clauses in L4, 4.} € £,
which is denoted by Piq, . 4.}

Definition 10.9 Let P be a stable production field. Then the characteristic
clauses of = with respect to P are

Carc(Z,P) = p(CT(E)NP). (10.8)

The next theorem shows the relation between characteristic clauses, minimal
conflicts and quasi-supports.

Theorem 10.10 Let f € L, then

pConf(Z) = =Carc(Z, Py, a,}) —{@i AN—a;ii=1,...,p}
and therefore
Conf(Z) = \/{~Carc(E, Pay, . a})} (10.9)
as(f,2) = \/{~Carc(EU{~f}, P, 0} (10.10)

Proof of theorem 10.10 Follows from theorem 5.17 of (Kohlas & Monney, 1993)
by taking into consideration that the set of characteristic clauses contains the
trivial clauses of the form a; V —a; (if they are not subsumed by other clauses),
whose negations a; A —a; are, by definition, not part of the minimal conflict and
have therefore to be removed. O

The following interesting result shows how these characteristic clauses are com-
puted incrementally based on the set Prod(Z, ¢, P) using the concept of skipped
ordered resolution on structured clauses. For a definition of Prod(Z,c, P)
see (Kohlas & Monney, 1993) based upon work of Inoue (1991; 1992) and
Siegel (1987); for a discussion of an implementation see (Hénni, 1997).

Theorem 10.11 (Inoue, 1991; Kohlas & Monney, 1993) If ¢ is a clause in L
and P a stable production field, then

Carc(0,P) = {pV-peP:peia,...,a,} UB}, (10.11)

Carc(2U{c},P) = wu(Carc(Z,P)U Prod(Z,c, P)). (10.12)

These results, together with (10.9), can be used to compute the minimal conflict
of the new knowledge base = U {n},
puConf(EU{n}) —Carc(EU{n}, Pa,,...a,})
= T (CCM”C(E, P{a1,...,ap}) U PTOd(E'7 7, P{al,...,ap}))
= U (ﬁConf(E) U Prod(Z,n, P{al,_“’%})) (10.13)
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and, similarly, the quasi-support for a clause ¢ € L with respect to the updated
knowledge base can be computed using the minimal contradictions of Z U {n},
ie.

as(e.2U{n}) = \/{-u(=Conf(EU{n}) U Prod(EU {n},¢, Pa;, _a,)) }

Example 10.12: Continuation of example 10.3

Consider again the information in (10.5). We use (10.8) or more efficiently
(10.12) and (10.11) to compute its characteristic clauses with respect to the
productions field P := Pq, 45.m1,mo.ms}s

—m1V —mg V —ms,
Carc(E,P) = a1V —ar, as V —as,
my V omy, mg V 2ma, mg V ms,

where the elements of the second and third line are the trivial characteristic
clauses.

Now again, new information becomes available, i.e. we have the new information
n = {x}. First, let’s compute the newly produced clauses with respect to the
production field P, i.e.

Prod(E,n,P) = {-mi}
and, using (10.13), this allows to compute the new minimal conflicts,

uwConf(2U{z}) = —w(Carc(E, P)U Prod(=, z, P))

— {al/\—ul, as N\ —ag, my A —mq, ..., mg/\—|m3}
—mi V 2 mg V mms,
= U a1V —ay, as V —as, U{-m}
my VvV -omy, ..., m3V ms,
- {al/\—ul, as N\ —ag, my A\ —mq, ..., mg/\—|m3}

= {m}.

10.3 Adding Several Pieces of Information at Once

Sometimes, not only one new piece of information becomes available, but several
pieces at the same time, say {ni,...,n,}. Clearly, we can update the actual
argumentation system incrementally by considering one piece of information
after the other, and applying the concepts introduced so far incrementally. Yet
often, this is not efficient.

In the approach of propagations on Markov trees (section 10.1), adding several
pieces of information at once is no problem. Usually, every piece of information
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can be put onto several different nodes, so the only problem is to choose those
nodes which allow to do the computations of the marginal on the root node
efficiently. So the idea is to put the new information onto nodes “close to each
other”, and then to do the inward propagation only from these nodes.

The concept of characteristic clauses (section 10.2) allows an incremental ap-
proach, and theorem 10.11 shows how to compute the conflicts incrementally.
The only problem here is to find a “good” ordering of the new information

7717"'777(]'

10.4 Removing Information

Consider now the inverse problem of the one presented in the previous section,
i.e. the minimal conflicts and the minimal diagnoses of a knowledge base = have
been computed, and now an element ¢ € = is considered not valid anymore and
therefore has to be removed from the knowledge base. Typically { could be an
observation which has changed in time and is not true anymore. The problem
is the same as before: find an algorithm which computes the minimal conflicts
and diagnoses with respect to the knowledge base = — {(} and uses as many of
the messages and marginals already computed as possible for this task.

In non-trivial cases, we do not know of an approach allowing to use characteristic
clauses (presented in section 10.2) besides throwing all previously computed
information away and re-starting from scratch. Nevertheless, the third approach
(subsection 10.1) of computations on a Markov tree and the ideas developed
there can partly be used for this problem as well.

Assume that a Markov tree for the information = is present and every node
knows the previous information it has contained, namely the information which
was put on it initially and the information contained after the (last) inward
propagation. The node on which the information ( initially has been put is
denoted by n’. Because the minimal conflicts are known, the inward propagation
towards the root n, has been completed. Possibly also some parts (or even
the whole) of the outward propagation have been computed. These parts of
the outward propagation have to be deleted, because the computed messages
contain the knowledge ¢ which has to be removed, and we do not know of an
algorithm which “divides” the information ¢ out of the messages.

Two cases are now possible: either the Markov tree cannot be simplified, be-
cause the information on n’ besides ¢ does not allow it, or the Markov tree can
be changed.

First, look at the case when the Markov tree will not be changed after the
removal of ¢, for example if there is still information on n’ whose label is equal
to the old label. So in fact, we are in the same situation as presented in
fig. 10.2, i.e. we compute a new information on the node n’ which is the original
information minus ¢, combined with the incoming messages from its outward
neighbors. Then we continue the new inward phase towards the root node
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n, by recomputing only the messages ¥ _, as in fig. 10.2, and the respective
information on the nodes. After this process, the information on n, is the
marginal (2 — {¢ })id(m), and the minimal conflicts and minimal diagnoses can
be computed on n, as described in section 10.1.

Secondly, consider the case where, due to the removal of ¢ from n’, it would now
be possible to simplify the Markov tree. Here the same techniques as presented
in subsection 10.1.3 can be applied and the same problems arise: if the tree is
changed in a non-trivial way, then usually some messages and information on
nodes are lost and have to be recomputed.

Yet as already mentioned, the information ¢, which has to be removed, will in
general not have a very big label, usually ¢ will be just an observation. In this
case it does not make sense to change the structure of the tree, because this
implies heavy computations and does not allow to build a much better tree,
because after the elimination of the observation (, this variable will typically
still be present in some pieces of information in the tree.

Eventually changes of the tree are possible and should be made, like removing
leafs containing no information, or eliminating subsumed nodes by taking over
the information contained in them and the connections by the subsuming node.

10.5 Mutations — Changing Information

In this section, we will consider a combined problem, namely changing some
information, by which we mean that some information ( has become obsolete
and is removed from the knowledge base =, therefore =/ = = — {(}, and some
new information 7 is available which has to be added to the knowledge base ='.
A typical example is the change of a measurement in time, e.g. the variable z
was known to have the value 3, but now its value changes to 5.

In a first approach, this can be done by first removing (, using the ideas of
section 10.4, and then adding n by using section 10.1. In the approach of
propagation on Markov trees, we can usually do better than this, especially if
¢ can be placed on the same node as the one from which 7 has to be removed.
Then, the ideas of sections 10.1 and 10.4 can be straightforwardly combined,
and only one inward propagation towards the node n, is needed.
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The Decision Problem

So far, given a probabilistic argumentation system AS = (FSC, x, L, F, p), tech-
niques for computing explanations for the malfunctioning of the system, also
called diagnoses of the system (Reiter, 1987) have been shown, but the problem
is that generally there are a lot of different diagnoses (even minimal ones). The
goal clearly is either to identify just one diagnosis or to compute a “good” rank-
ing of the diagnoses and propose this to the user, or, possibly, tell the computer
how to make a decision automatically; so in the sequel, we understand by a
user also a computer. This means we have to give decision support to the user.

One way to rank the diagnoses is to weigh them according to the posterior
probability as presented in section 9.1, and select the most probable one. This
approach is useful if there is one diagnosis which is much more probable than the
other ones, but problematic if there are a lot of diagnoses with almost identical
posterior probability. Yet already a definition of “much more probable” is not
easy and depends highly on the problem. Another ranking is the length of the
diagnoses: a short diagnosis is supposed to be more probable than a long one.
However, both approaches are problematic, because in general, there is always
a worst case where the ranking is not optimal at all.

In this chapter we will focus on another method: we try to get more information
about the actual system state by making additional measurements, thereby re-
ducing the set of possible diagnoses and updating posterior probabilities; thus
we aim to get a more informative picture of the actual situation. For this pur-
pose, we have to choose points where additional measurements (observations)
should be made (subsection 11.1). Given the resulting information after the
measurement, the user can then choose to make either further measurements,
to replace some components by functioning ones, or to stop the process. Dif-
ferent versions of this strategy are discussed in section 11.2. Every strategy
leads then to a decision tree. Several data are used for the tree: probabilistic
data (section 11.3) like the probability that a measurement at a given point
results in a given value, and non-probabilistic data (section 11.4), like costs of
measurements or of replacements of a component. So for every possible point
of measurement, we have to compute the measurement’s expected utility. The
utility is mainly based on cost of additional measurements, of replacements
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and penalties for unnecessary actions. A strategy requires several sequential
measurements, therefore a decision analysis process has to be executed and a
global optimum for the utility has to be computed. This is presented in sec-
tion 11.5. The computation of a global optimum is in general too complex due
to the size of the decision tree as well as the computation of the probabilis-
tic data. Therefore in section 11.6, an algorithm is presented which allows to
choose a point, the so-called best next measurement, with a one step look-
ahead strategy. A main ingredient of such an algorithm is the computation of
a kind of information content; several aspects of this notion are presented in
section 11.7. Examples using one step lookahead strategies are discussed in sec-
tion 11.8. Finally, section 11.9 will discuss some comparisons of these different
approaches.

Note that we consider here only the situation where every component which
has been faulty in the beginning of the diagnosis process stays faulty until it
is detected and replaced, and similarly, a component which has been working
correctly stays working for the whole diagnosis process. Also, measurements do
not induce the change of any values.

A major restriction in this chapter is that we consider only argumentation
systems with variables; therefore we can measure the values of variables at a
specific point and formulate the result of such a measurement as an information
in the information algebra. In the sequel we restrict ourselves to the case where
the measurements are correct and do not include error terms in order to simplify
the concepts.

In the sequel, we will consider questions with respect to different argumentation
systems. Therefore, we specify explicitly the underlying argumentation system,
e.g. for a hypothesis h and an actual argumentation system AS, we write

qs(h, AS),  sp(h, AS), dsp(h,AS),
QSS(h, AS), SS(h, AS), CS(AS),

to emphasize AS, or we replace the argumentation system AS by its represen-
tation =.

11.1 Where Can Measurements Be Made?

How do we choose points, where is it possible to make a further measurement?
The best way to do this is to make a choice during the modeling process and
explicitly specify these points. For example in the case of a system built of
modules, the connections between the modules and to the outside world are
often good points for a measurement. Otherwise two general strategies are
possible:

e Every variable is assumed to be a possible point for a measurement, or

e Every variable which does not describe the functioning of a component
is a possible point for a measurement; this is motivated by the idea that
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the determination of the actual mode of a component requires more than
one measurement, therefore it is better to measure the connectors inde-
pendently.

These restrictions allow to reduce the complexity of the computations; from a
theoretical point of view, we can always compute a ranking for all points in
the system and only afterwards select an optimal point within those where a
measurement is really possible.

In the sequel, we always specify during the modeling process those variables
where measurements can be taken.

In the strategies discussed in this chapter, for every point where a measurement
could be made, the possible outcomes have to be known. This work was in-
fluenced by working with ABEL (see section 12) restricted to binary and FSC
variables as well as integer-valued variables in special situations. For the first
two types the interesting values of each point are always known already dur-
ing the modeling process, but for variables with more than a finite number of
possible values, techniques have to be developed to get information about the
values which are really probable to occur in the system'; in the case where only
a finite number of values are probable to occur, the presented methods can be
applied as well.

11.2 Strategies for Decisionmaking

As mentioned in the introduction to this chapter, a lot of different strategies
are available for the diagnosis process. The strategies may include

e replacement of components,
e measurement of some unobserved variables,

e measurement of variables which have been observed before but whose
values may have changed due to the replacement of components,

e changing the input configuration of the system and re-measuring variables.

Many combinations are possible, but we focus on three versions presented in
subsections 11.2.2 to 11.2.4. For representing and evaluating these versions, we
will first give a short introduction to decision trees in the following subsection.

It is well known that decision trees are not an optimal representation for com-
plex decision situations. Better possibilities for handling the complexity of the
decision process exist, see for example (Xu, 2000) for an introduction into net-
work based decision algorithms. One possibility are so called influence diagrams

!Consider the combined information with respect to the variable in question. This results in
a belief function with respect to the variable, and possibly the focal elements can be used to
characterize the “interesting” values.
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introduced in (Howard & Matheson, 1981; Miller et al., 1976). An influence
diagram is a network representation of the decision problem. Originally, it was
only a representation and afterwards transformed into a decision tree, which was
then evaluated, but solutions for directly evaluating influence diagrams have
later been presented in (Olmsted, 1983; Schachter, 1986a; Schachter, 1986b),
and a lot of further work has been done for speeding up the computations and
extending the approach. A second, more recent possibility is called valuation-
based system, introduced by Shenoy (1992a; 1992b); this approach can also be
used in more general contexts. Both approaches try to factorize the decision
problem in order to reduce its complexity. But in the sequel, we will not dis-
cuss these approaches, because our decision problem also generates influence
diagrams or valuation based systems which are too big, and therefore we will
focus on a approximation strategy based on decision trees (section 11.6).

In order to simplify notations, we assume in the sequel that the components of
the system are c1,...,c,, and for every component ¢; there are one or several
fault modes, but only one correct working mode denoted by ok, so the compo-
nent ¢; is working correctly if and only if M (¢;, ok) is true. More general cases
can be treated similarly.

Assume that measurements can be made at some specified points x1, ..., T,
in order to get more information about the state of the system. The range
of every measurement is known and finite, i.e. the possible values at point x;
are v, ..., Uir,. The goal is to identify the faulty component(s) and to replace
them with lowest possible overall costs in order to get a working system.

The language £ of the argumentation system AS = (FSC,x, L,F) must be
general enough to contain the formulas M (z;, X;), X; C {vi,..., v, } for ¢ =
1,...,m. For simplification, we use also the abbreviation (z; = v) and (x; # ')
and omit parentheses.

11.2.1 Decision Trees

Following (Raiffa, 1968), we now offer a short introduction into the field of
decision trees for representing the diagnosis process. The two main elements of
a decision tree are presented in fig. 11.1: decision nodes and chance nodes.

A decision node is a place where, under the actual knowledge (sometimes ex-
plicitly specified within the node), the user can decide between a known set of
alternatives x1 to x,. A chance node is a node where “nature” decides between
a known set of alternatives x; to x, with respect to the probability p given by
p(x;) = p; where p; > 0 and p1 + -+ +pp, = 1.

The decision process is then a walk through the tree: Starting at the top level
node, at the decision nodes, the user makes a decision, at the chance node,
nature decides, and once the user is at a leaf node, he obtains the outcome
marked at that leaf node (the leaf node is usually omitted and only the path to
it is drawn).



11.2. Strategies for Decisionmaking 179

(a) A chance node with possible out- (b) A decision node with possible deci-
comes 1 to x, and respective probabili- sions x1 to xp.
ties p1 to pn with p1 +--- +pn = 1.

Figure 11.1: The two main elements of a decision tree.

In order to complete the decision tree defined in the next subsections, the payoffs
for every leaf (subsection 11.4.2), the cost of the different actions to be taken
at the decision nodes (subsection 11.4.1), and the path probabilities for every
probabilistic node (section 11.3) have to be specified. The well known operation
of roll-back analysis (Raiffa, 1968) can then be applied on this decision tree in
order to solve the problem, that is, to find a sequence of decisions at the decision
nodes with maximal expected outcome, see section 11.5.

11.2.2 Method 1
The first method consists of only two steps:

1. decide whether to take some measurements and which ones,

2. decide whether to replace some components and which ones.

Figure 11.2 shows a possible decision tree for this situation, the probabilities
having been omitted. The measurements are considered as sequentially ordered,
therefore after each measurement the user can choose to end the measuring
process and start with the replacing process.

The actual knowledge is denoted by the representation = of the argumentation
system. Starting point is the node on the left-hand side labeled with D. The
two possibilities to proceed are now either to

e replace component(s), that is, proceed to node R, or to

e make a measurement, that is, proceed to node M,

a choice which is denoted by the decision node D. In the first case, the user can
then choose at node R to replace any set of components {c¢;,i € I}, which is
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Figure 11.2: The decision tree for method 1.
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denoted by the node C7. After a replacement, the system either works correctly
or not which is indicated by the two arrows starting at node Cf.

In the second case, i.e. at node M, the user can choose to measure at one
point x;. Depending on the measured value v;; of x; the process continues then
at node D;;. During this process, the result of every measurement x; = v
is added to the knowledge base (see node D;;). The process then continues
at node Dj; with the actual knowledge = U {T —(z; = v;)}, abbreviated in
fig. 11.2 as E, {x; = v}

In the sequel this method will be used for the examples.

11.2.3 Method 2

A generalization of the method above allows to do measurements and replace-
ments of components in an arbitrary order. This means that the user can take
some measurements, then replace some components, take some measurements
again, then replace some components, and so on until he stops the process.
This idea can be represented by a decision tree (fig. 11.3) similar to the one in
fig. 11.2.

After the replacement of components {¢;,i € I'}, some of the already measured
values are not valid anymore. If we can distinguish between measurements of
input, output and internal variables, then clearly the measured values of the
input variables are still valid, but some of the measurements of output and in-
ternal variables are not valid anymore. If the model permits to detect the ones
which are still true (without explicitly remeasuring them), for example due to
a modular structure, then the knowledge after the replacement is denoted by
=* consisting of the knowledge = minus the measurements which are not valid
anymore, that is those where the value measured has bee changed. If the still
valid measurements cannot be detected from the model, then Z* represent the
knowledge = where all measurement of output and internal variables have been
removed. (For a slightly different version see subsection 11.2.4.) Addition-
ally, the replaced components are functioning, that is we have the information
M (¢, {ok}), i € I, at node Cy, or written in the formalism of argumentation
systems, this means M (¢;, {0k}) — L for i € I.

This method is clearly more general than method 1, but the loss of information
after the replacement of one or several components is big, therefore in the case
where measurements are expensive, method 1 is much more efficient, but if the
measurements are cheap, then this method can give more accurate results if
only few components are replaced in every step.

11.2.4 Method 3

The third method consists of first taking some measurements, then replacing
some components and predicting the new output values, then taking some mea-
surements again, replacing some components, and so on.
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Figure 11.3: The decision tree for method 2.
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This method is similar to method 2, but here the new output values are not
measured but predicted from the available knowledge, that is = and the replaced
components {c¢;,i € I'}. The knowledge clearly allows to compute a belief func-
tion on each output variable, and then either this belief function is considered
as the new knowledge on the variable, or better, using the pignistic probability
(defined in subsection 11.3.2), a concrete value of the output variable is chosen
to be the actual one and this information is added to the knowledge.

A main problem in this approach is first of all the specification of input, out-
put and inner variables, which in general is not possible. Furthermore, the
computation of the belief functions on the output variables and the respective
pignistic probabilities is computationally expensive, and often the modes of the
components are not full specified, for example, there is a fault mode, and noth-
ing is said about the behavior of the relations between the connectors of the
component if it is in this fault mode. But in this case, nothing can be said
about the output variables.

11.3 Probabilistic Data

There are two types of probabilistic data which have to be known in order
to be able to do computations in the decision tree: the probability that the
system works normally (subsection 11.3.1) and the probability of the outcome
of a measurement (subsection 11.3.2).

11.3.1 Normal Working of the System

For I C {1,...,n}, consider the path probability after the replacement of the set
{c;,i € I} of components, that is the path right upwards from the choice node
Crin fig. 11.2. The actual knowledge, before replacing components, is denoted
by =. Remember that we assume that a replaced component is always working
correctly. So after replacing the components {¢;,7 € I}, we are interested in
the event system ok and especially the

probability that the system is ok given = U {M (¢, {ok}),k € I}  (11.1)

where =* is, like in the previous section, the knowledge = minus the old output
and internal observations plus the new output observations, because after the
replacement of the components {c;,i € I'}, the output and internal values of
the system might be different from before and therefore have to be re-measured
(or possibly predicted). This means that all measurements which directly or
indirectly depend on components which have been replaced or repaired, have to
be re-made and the new results of these measurements replace the corresponding
previous ones in the knowledge base.
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The question is now: what does the event system ok mean in this situation?
Our interpretation is that the observed output values of the system must be
equal to the predicted ones. So we would like to compute:

probability that the new observed output is equal to
the predicted output given = U {M (c,{ok}),k € I} (11.2)

The problem in (11.2) is that the new output values have to be measured or
predicted in order to allow actually to describe =%, but we do not want to do
this because of its complexity. So we need another way to do the computation.

Assuming that all the replaced components {c;,i € I} do work correctly, we
know that the new output values will correspond to the predicted ones when all
the components ¢; with ¢ ¢ I (i.e. the ones which have not been replaced nor
repaired) are working (but the contrary is not necessarily true). Furthermore,
we assume that those components which worked before the replacement of other
components are still working afterwards. So therefore we can use the previous
measurements to get information about the working modes of the components
{ci,i ¢ I}. The conjunction A;4; M(c;, {ok}) represents the event that all
component {c¢;,i ¢ I} are working correctly, and the posterior probability of
this conjunction, defined in (9.5) by p’ (/\i¢[ M(c;,{ok})), can be used as a
value for the future functioning of the system.

In the sequel we will use the notation = (System ok, AS,I) to denote the path
probabilities of the path leaving node Cf right upwards in fig. 11.2, i.e. the path
representing the system being ok after the replacement of the components ¢;,
i € I, with previous knowledge AS (represented by Z), therefore we define

w(system ok, AS,I) :=p (/\ M (¢, {0k}),AS> , (11.3)

il
and the probability of the other path, namely the event that the system is not
working correctly, is just the difference to 1, i.e.

m(system not ok, AS,I) := 1 — w(system ok, AS,I), (11.4)

and we therefore have a probability distribution on these paths.

11.3.2 Results of Measurements

Second, the path probabilities of the outcomes of a measurement have to be
specified. In a first attempt one would like to compute the probability of the
event {z; = vy} given the knowledge AS’. But how should this be computed?

The function dsp is a belief functions, therefore we have the following lemma:

Lemma 11.1 Let x; be a point of a possible measurement with the domain
{Uil, . 7Uiri}- Then

i:dsp({xizvik}a/l«?) < 1L (11.5)
k=1
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This lemma implies that there is a problem in defining the path probability,
because usually the underlying DS-belief function on x; is non-Bayesian. So
what can be done? In the sequel, we will present different solutions to this
problem and mention some of their advantages and disadvantages. The formula
m({x; = vir}, AS) will be used to denote the probability of the path for which
the measured value of x; is v;; and the knowledge before the measuring was
AS, for example in fig. 11.2 the path from node P; to D;j.

Note that we always assume that the domains of the respective variables are
finite; if infinite or even continuous domains of variables occur, then other
approaches have to be developed, but this problem will not be treated here.

Degrees of Support and Plausibility of the Singletons

The first idea is that we can work with the degrees of support of the singletons
dsp({z; = vi}, AS) and ignore the degrees of support of disjunctions, i.e. set

mi({zi = vik}, AS) := dsp({zi = vi }, AS). (11.6)

e Advantage: the computations are relatively simple.

e Disadvantage: there is a loss of information, and the result does not
specify a proper decision tree, because 71 is in general not a probability
measure, i.e. > * m({x; = vip}, AS) does not necessarily equal 1 as
shown in lemma 11.1.

Similarly, we can take into consideration only the degrees of plausibility of
the singletons dpl({z; = v}, AS) and ignore the plausibilities of disjunctions,
but an analogous problem arises, because ) ;" ; dpl({z; = vy}, AS) > 1. In
between these two extreme possibilities, there are a lot of possibilities using the
weighted sum adsp({z; = vir }, AS) + (1 —a)dpl({z; = vi}, AS) for 0 < o < 1,
but the problem is then the estimation of the parameter a.

Distributing the “Rest” Equally

Another approach to define a probability measure using the normalized belief
function dsp was presented in (De Kleer & Williams, 1987; De Kleer et al.,
1992b). In the sequel we present a variant of this approach.

First, compute the rest of the probability not “used” by the degrees of support
of the singletons, i.e.

T
rest; :=1— Z dsp({z; = vir.}, AS), (11.7)
k=1
and then distribute this rest equally on all singletons, that is, define
rest;
m({zi = vir}, AS) == dsp({z; = vir}, AS) + ——. (11.8)

T
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e Advantage: the computations are relatively simple and the result specifies
a decision tree, i.e. my is a probability measure,

Z?TQ({.IZ' =i}, AS) = L.
k=1

e Disadvantage: there is a loss of information.

Distributing the DS-belief (Pignistic Probability)

Another method to be considered is the concept of pignistic probability (Dubois
& Prade, 1982; Smets & Kennes, 1994; Smets, 1990; Smets & Kennes, 1990).
The function dsp defines a belief function on the information algebra of hy-
potheses in the sense of the Dempster-Shafer theory of evidence (Kohlas et al.,
1998; Kohlas, 1995; Shafer, 1976). Therefore it seems natural to use the con-
cept of pignistic probability, a theory for decisionmaking with belief functions,
sometimes also called the betting probabilities based on the belief function. This
comes from the idea that it is a probability on how we would bet on the outcome
of an event if we know “only” the belief function on the results of the events.

Every belief function can also be represented as a mass function. This concept
will be of interest in the sequel. The normalized mass function associated
with dsp with respect to the variable z; will be denoted by m(-) or m(-, AS)
to stress the argumentation system AS, and it can be defined on the finite set
constraints associated with the measurement point x; as the posterior proba-
bility of every argument which implies the finite set constraint but does not
imply any subset of the finite set constraint, i.e. for ) # K C {v;1,...,vip, },

m(M(x;,0)) = 0 (11.9)

m(M (25, K)) = P(;S)P QSS(M(:@,K))—KQKQSS(M(%K’))

Lemma 11.2 The function m defined by (11.9) is a mass function, i.e. it is
positive and sums up to one.

Proof of lemma 11.2 By definition, m(-) > 0. In addition to this we have to
show that the sum over all subsets is equal to one:

S m(M(i, K))

KC{vi1,e30ir; }

- 3 1133 S P QsS(M(x, K)) — | JQSS(M (as, K'))
( ) KC{vit,e Vi, } K'CK
1

- P(DS)P | @SS(M (i, K)) — QSS (M (:,0))
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= g PP = L

O

For other relations between belief functions, mass function, commonality func-
tions, and g-functions see for example (Smets & Kennes, 1994; Smets, 1990).
The definition of the mass function is rather complex, but in concrete situa-
tions, (hopefully) only few formulas have a non-zero mass (the so-called focal
sets of the mass function).

Generalizing the idea of the previous approach, the belief that is accorded to
a formula M (x;, {vk,vie}) is divided in two and added to the belief of each
“single formula” {z; = vy} and {x; = vy}. The same idea is then used for
longer disjunctions. Thus we define

mo({as = v}, AS) = o M) )

card(K)
K, € KC{vi1,,vir, }

The function 73(+, AS) is called a pignistic probability to the belief function
(Smets, 1990; Smets & Kennes, 1990; Smets & Kennes, 1994) and is really a
probability measure, because m3({z; = v}, AS) > 0 and
& & m(M(z;, K))
i =vig}, AS) = — N
Zm({x Vik}, AS) Z Z card(K)
k=1 k=1 K:’Uz‘kGKg{Uﬂ,...,v”i}
m(M(zi, K))
D#K C{wi e vir; } 0#K C{vit e Vi, }
= 1—m(M(z;,0)) = 1.

The definition of pignistic probability happens to reflect the generalized in-
sufficient reason principle, but Smets & Kennes (1990) provide an axiomatic
justification for the definition of pignistic probability and justify it. They also
show that pignistic probability has nice properties when belief functions are
combined and specialized.

e Advantage: there is no information lost and the result does specify a
decision tree, i.e. Y ;' m3({z; = vir}, AS) = 1.

e Disadvantage: the computations are more complex.

In the sequel, this definition will be used in the examples due to its advantages.

Generalized Decision Trees

Another, quite different approach to the problem are the so-called generalized
decision trees for the modeling of decision analysis using belief functions pro-
posed in section 3.2 of (Strat, 1990). Generalized decision trees, in contrast to
usual decision trees introduced in subsection 11.2.1, allow
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1. disjunctions of events on branches emanating from chance nodes,
2. intervals as payoffs for leaf nodes, and

3. branches emanating from chance nodes representing a mass function, i.e.
the masses still sum up to one, but the events are no longer disjoint.

Strat proposes a method to evaluate generalized decision trees. Define

Euz) = > inf(4) me(4),
Ao

E*(z) = Z sup(A4;) - mo(4;),
A;€0

where mg is a mass function on the frame of discernment ©. The operators inf
and sup select the smallest respectively largest element out of a set A C ©, in
fact Strat assumes that the frame of discernment © is a set of scalar values.

A chance node represents a belief function and its value, an interval, is computed
as

E(z) = [E(x), E"(x)].
The utility of every branch of a decision node is computed as
E(z) = E.(z)+ (- (B (2) — Ex(2)),

with a parameter £ € [0,1]. The maximal value of the branches is then the
value of the decision node.

Note that a strategy is needed for estimating a concrete value of the parameter
¢ in the interval [0, 1]. Strat defines ¢ to be the “probability that ambiguity will
be resolved as favorably as possible”. This seems to be a rather clear definition of
the parameter ¢, but we do not now how it could generally be used to estimate
¢ in our framework in a computationally tractable way.

We believe that in the actual context, the approach of Strat is not that inter-
esting. The different branches emanating from chance nodes do not represent
actually possible measurements any more; so in fact, if we re-model our de-
cision tree using generalized decision trees, we would eventually get branches
labeled with the event {x; = v;x} V {x; = v;¢}. This makes the decision tree
to grow exponentially, which is in contrast to the goal we are focussing in sec-
tion 11.6, namely to approrimate (and therefore simplify) the computations in
the decision tree. Therefore we will not use this approach in the sequel.

11.4 Non-Probabilistic Data

There is also some non-probabilistic data which has to be modeled in the deci-
sion tree: costs of action and payoffs at leaf nodes.
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11.4.1 Costs of Measurements and Replacements

In the decision tree, two actions require costs, namely

e measuring at point z; costs Measure(z;),

e replacing component ¢; costs Replace(c;).

We assume that these costs are constant through time, i.e. the total cost of the
measurements does not depend on the order of the measurements, and that the
cost of several measurements or replacement which are done at once is simply
the sum of the individual costs. These are slight simplifications which can be
justified in most cases. The general case can be treated as well, but it only
adds a lot of branches to the decision tree without including new concepts; so
we will not consider it here.

Sometimes it make sense to simplify these functions such that they are inde-

pendent of the actual point x; or component ¢;, i.e.

Measure(x;) = measure-c, (11.11)

Replace(c;) = replace-c, (11.12)

where measure-c and replace-c denote constant values.

11.4.2 Payoffs

The payoff of a good replacement, i.e. a replacement after which the system
appears to work correctly, is defined to be zero. In the case where the wrong
components have been replaced, we introduce a so-called penalty, so: if the
system does not work correctly after the components {c;,7 € I}, have been
replaced, then a penalty Penalty(l) is due.

Usually, the penalty function can be simplified such that it depends only on the
number of components which have been replaced,

Penalty(I) = card(I)penalty-c, (11.13)
or in some cases, it is even reasonable to define it constant,

Penalty(I) = penalty-c. (11.14)

11.5 Exact Computation in the Decision Tree

Using the definitions from the previous sections, the decision tree introduced in
subsection 11.2.2 is completely specified, and so we can compute the path with
minimal expected cost using the well-known roll-back analysis scheme (Raiffa,
1968). We will present these computations using the decision tree in fig. 11.2;
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the decision trees of other methods introduced in subsection 11.2.3 and 11.2.4
can be treated similarly. The first subsection shows how these computations are
done generally, and in subsection 11.5.2 some examples illustrate the process.

In this section we always define the path probabilities by the pignistic proba-
bility function (11.10).

11.5.1 Roll-Back Analysis

For every node in the decision tree, its profit can be computed based on the
respective values of its direct successors. Every type of nodes has to be treated
differently:

Leaf Nodes: The profit is equal to the payoff.

Probabilistic Nodes C7, 0 £ I C {1,...,n}: The profit of a node C7 is the
sum of the payoffs weighted by the respective path probabilities:

Profit(Cr) = 0-n(system ok, AS,I)
— Penalty(I) - w(system not ok, AS, I). (11.15)

Decision Node R: The profit is computed as the maximum value of the prof-
its of its successor nodes minus the costs of the replacement of the respec-
tive components,

Profit(R) = max " {Proﬁt(C’I) - Z Replace(ci)} . (11.16)

0AIC{1,... =

Probabilistic Nodes P, ..., P;,: The profit of P; is the sum of the possible
profits of its successor nodes weighted by the respective path probabilities,

ProfitP) = 3" mil{ = v}, AS) - Profit(Dy),  (1117)
k=1

and the values Profit(D;;) have to be computed recursively.

Decision Node M: The profit of M is the maximum value of the profits of
its successors minus the costs of the respective measurements,

Profit(M) = miélx (Profit(P;) — Measure(x;)) . (11.18)

Decision Node D: The profit of D is the maximum of the profits of R and M,
Profit(D) = max{R,M}. (11.19)

The difficulty is that in general, these computations are not possible for bigger
problems as on one hand the complexity of the tree increases too fast and on
the other hand the computations of the path probabilities are rather complex,
even if we take into consideration the simpler definition of costs and penalties
described in (11.11), (11.12) and (11.14). This problem will be addressed in
section 11.6.
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11.5.2 Examples

We restate some examples presented by de Kleer (1987; 1990) in order to show
how to do the exact computations. The examples are presented in the language
ABEL (see chapter 12).

Ezxample 11.3: Three Serial Inverters

Consider the example 7.1 consisting of three serial inverters presented in sec-
tion 7.3. The minimal diagnoses have been computed as M (i}, {faulty}), j =
1,2,3. All three happen to have an equal posterior probability of 0.337. So we
need to make further measurements to discriminate between the diagnoses.

The corresponding decision tree is (partly) shown in fig. 11.4, the bold arrow
on the left denotes the starting point of the diagnosing and measuring process.
The decision nodes are labeled by the letters Di, Mi and Ri with ¢ = 1,2, ...
by generalizing the notation from fig. 11.2; the probabilistic nodes will be ref-
erenced in the sequel by their name (e.g. “AB”) and their preceding decision
node (e.g. “R2”) in brackets (e.g. “AB[R2]”) . The actual knowledge at the
beginning (D1) is the argumentation system AS described in ABEL, and A, B,
and C denote the replacement of components i1, 72, and i3 respectively.

The values beneath the “gates” (a line with two dots “@—@”) denote costs which
are due when the branch is passed: M is the cost of a measurement, R, 2R and
3R are the costs of replacing 1, 2 and 3 components. The values at the end of the
arrows denote the final payoffs: either the system is fixed, i.e. “system ok” with
a revenue of 0, or the system is still faulty, i.e. “system not ok” where a penalty
P is due. The values on the branches are the corresponding probabilities. Let’s
see how we compute these values in the tree. For this example, we fix these
values:

e P =100, so a penalty is a hundred units,

e R =20, replacing a component costs 20 units, and

e M =5, taking a measurement costs 5 units.

As an example, we show the detailed computation at the subtree of node R6 in
fig. 11.5.

The actual knowledge on node R6 is AS as well as a measurement = and a
measurement (not y); see the branches leading from the start node D1 to node
R6 in fig. 11.4. So the probabilities of the arrows of node A[R6] are computed
according to (11.3):

m(system ok, AS U {x, (not y)},{A})
= dsp (M (B,{ok}) N M(C,{ok}), AS U {z, (not y)}) = 0.81,

w(system not ok, AS U {z, (not y)}, {A})
=1 — 7n(system ok, AS U {z, (not y)},{A}) = 0.19,
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Figure 11.4: Decision tree for the tree inverters.
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and similarly for the nodes B[R6], C[R6], etc. Again, AS U {z, (not y)} is an
abbreviation for ASU{T —xz, T —(not y)}.

The profits of the nodes are marked on the left side of the respective node in
fig. 11.5. The profit of the probabilistic node A[R6] is computed according to

(11.15)

Profit(A[R6])

= 0-7(system ok, ASU{z, (noty)},{A})
— P - w(system not ok, AS U {z, (noty)},{A})
- —019P = -19,

and the profit of the decision node R6 according to (11.16)

Profit(R6) =

Profit(A) — R, Profit(B) — R,
Profit(C) — R, Profit(AB) — 2R,
MY Profit(AC) — 2R, Profit(BC) — 2R,

Profit(tABC) — 3R
-0.19P - R, - P—- R, —P — R,

max< —0.1P—-2R, —0.1P — 2R, —P — 2R,
0—-3R

—39.

Now everything is specified in the decision tree in fig. 11.5, and we see that the
optimal decision at node R6 is to replace component i1 (node A).

0.81  yslemgk

15
—-100

0.19 system not'c

~ 100, B 0 0
@ O——1

—-40 _ —100
AC 09 0
T3
—-60

0.1 - 100
BC 0 0
—106) : 100
ABC 1 0
0 . 0 ~100

Figure 11.5: The subtree of node R6.
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The other nodes in the tree are treated similarly, and the final situation is
presented in fig. 11.6, where the not-optimal branches are “cut off” by double
lines and most of them have been left out. Note that the branches starting at
decision node M1 have the same profit, so the decision at this node is arbitrary
and no branch is cut off; this observation is not a surprise, as the problem itself
is clearly symmetric.

It is interesting to discuss the impact of the parameters P, R and M on the final
result. In fact, the decision tree can be solved formally without specifying these
values. In order to get the same optimal path as above, several restrictions have
to be put on their values:

R < 0.35P, (11.20)
R > 0.095P, (11.21)
R > M +0.09P. (11.22)

The first inequality (11.20) means that if the cost of a replacement R is too big
with respect to a penalty P, then it is not worth replacing a component, but
the penalty is accepted as final profit.

Inequality (11.21) means that the cost of replacing a component R must not be
lower than that of 0.095P, because otherwise every component will always be
replaced.

And finally the last inequality (11.22) means that the replacement of a compo-
nent must be more expensive than a further measurement plus a small percent-
age of a penalty. e

Example 11.4: The “Three Bujffers”

Consider the example consisting of three buffers in figure 11.7 introduced in
(De Kleer, 1990). If a buffer is working correctly, then its input values equals its
output value; this mode is denoted by the propositional variable i.OK. Nothing
is known about the behavior of a faulty buffer. Two measurements are specified
in the figure. This specifies an argumentation system and is modeled in ABEL
as follows:

(tell
(module BUFFER ((var in out binary))
(ass ok binary 0.9)
(-> ok (<-> out in)))

(BUFFER :A in x)
(BUFFER :B x outl)
(BUFFER :C x out2))

(observe (not in) outl)

The system is apparently not working correctly, as the measured output-value
outl is in contradiction with the predicted one. So ABEL can compute the two
minimal diagnoses:
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_ x |
|n._i A | B o OUt,

| C o OUL,

Figure 11.7: A network consisting of three buffers.

(NOT A.OK)
(NOT B.OK).

There are two possible points to measure at, namely x and out2. The different
outcomes of a measurement then imply a division of the diagnoses according to
the following results:

gs(—z) = {NOT B.OK}

gs(x) = {NOT A.OK}
gs(—out2) = {NOT B.OK, (NOT A.OK) A (NOT C.OK)}
gs(out2) = {NOT A.OK, (NOT B.OK) A (NOT C.O0K)}

Note that we work with minimal diagnoses, whereas in (De Kleer, 1990) only
single fault diagnoses are considered.

The optimal point to be measured at is obviously x, as more information is
gained and better discrimination of the diagnoses is obtained. Assume the same
values of the parameters replace-c, measure-c and penalty-c as in the previous
example. The corresponding decision tree is constructed in figs. 11.8 and 11.9
where the computed profits are shown on the left-hand side of the respective
nodes and the not-optimal branches are “cut off” by with double lines. S)
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11.6 One Step Lookahead Methods

In this section we present the main concepts of one step lookahead methods.
Together with the concepts of the previous section, this can easily be gener-
alized to n-step lookahead methods. A major ingredient, a kind of measure
of information® gained by a measurement, is only afterwards introduced and
discussed in section 11.7.

11.6.1 The Method

Due to the complexity of the decision tree for bigger problems as presented in
the previous section, we have to introduce techniques for approximating the
computation on the tree, i.e. the roll-back analysis. Considering the decision
tree in fig. 11.2, we need an approximation strategy for the profits Profit(D;)
such that in (11.17) there is no more need to make recursive steps, but ev-
erything can be computed by just “looking one step ahead” from the actual
situation (described by the knowledge AS) in the decision tree. So for every
possible point x; for a measurement, we have to compute a kind of informa-
tion H(z;) which is available after the measurement at point z; has been done,
and then select the point where a measurement has a maximal expected gain
of information; such a point is called a best next measurement. Different
possible concepts for the computation of this kind of information are presented
in section 11.7. In the present section, we assume that we have selected one of
them and denote it by H.

Note that H(z;) represents not an approximation for the value Profit(F;), but
is only a value Profit*(P;) which can be compared with the values Profit*(P;),
j # i. Therefore, in the decision tree (fig. 11.2) we can compute the value
Profit* (M), but this value cannot be compared directly with Profit(R) in order
to compute the overall profit Profit(D), because Profit*(M) is not an approxi-
mation. Other techniques are needed for the decision at node D, i.e. the decision
when to stop the diagnosing and measuring process and start with replacing
component(s). This problem is discussed in section 11.6.2.

The one step lookahead process in this form is inspired by (De Kleer et al.,
1992b). They also mention that these kinds of strategies are “pretty good”,
i.e. their experiments show that the number of measurements needed to isolate
a single fault using their one step lookahead method is rarely more than 20%
higher than the number of measurements needed in a complete decision tree, but
because of the complexity of computations they do not consider multiple faults
in their experiments. These results apply also to our case. The concepts can be
generalized easily by looking several steps ahead in the decision tree, so called
n-step lookahead methods, see also (De Kleer et al., 1992b) for comparison of
one step with n-step lookahead methods.

2The term “information” is used here with a very general meaning, and it should neither be
confused with the concept of information algebras presented in chapter 2, nor with the sense
in which Shannon (1948) uses it.
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In the whole section we assume that the cost of all measurements are equal.
Ideas on how to include varying measurement costs are presented in (De Kleer
et al., 1992b).

11.6.2 Stopping the Process

During the full computations on the decision tree the complete path is specified,
so the whole process is known. But when we use one step lookahead methods, a
criterion is needed which indicates when to stop the diagnosing process and to
begin with the replacement of component(s), because, as noted above, we do not
compute an approximation of the value Profit(M) (cf. 11.2), but a value which
cannot be compared directly with Profit(R); so we need another algorithm to
make the decision at node D.

The information available at node D is AS, therefore an intuitive idea is that
we compute all minimal diagnoses of AS and weight them according to the
posterior probability defined by AS. If the probability of the most probable
diagnosis is far higher than the probability of the second most probable one, the
diagnosing process is stopped and the components are replaced according to the
most probable diagnosis, i.e. we continue the decision tree at node R, otherwise
a new measurement is selected according to node M. Another method, proposed
by de Kleer et al. (1992b), is to fix a threshold (e.g. 0.9) and to stop diagnosis
if the probability of the most probable candidate approaches this threshold.

The only open question within both strategies is: how much higher should the
probability of the most probable diagnosis be compared with the probabilities
of the other diagnoses? There is no general answer, but this value has to be
specified depending on the concrete case and on the seriousness of a misdiag-
nosis.

11.7 Computing Information

In this section we present several approaches for computing a value for the
expected gain of “information” for a measurement at a given point with re-
spect to the diagnoses. The first approach in subsection 11.7.1 deals with the
“size” of the contradictions. The one presented in subsection 11.7.2 goes in the
same direction as the idea of de Kleer. And finally the approach presented in
subsection 11.7.3 consists of computing the information about variables.

11.7.1 Increasing the Contradictions

As discrimination of the different possible points of measure, we will use here
the weight of the contradictions relative to the whole knowledge. The idea is
that a measurement should enlarge the space of contradictions CS and so reduce
the space of explanations of possible failures, the space of diagnoses DS which,
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hopefully, will then discriminate then better between minimal diagnoses. So we
are looking for a point (or a set of points) where the expected enlargement of
the contradiction implied by the outcome of the measurement is maximal.

Before the measurement is taken, the contradictions with respect to the avail-
able information AS are CS(AS) and, after measuring at point x; the value v;,
are CS(AS U {x; = vi}). These formulas are then weighted by the probability
measure P.

In other words, some sort of “size” of the added contradictions after measuring
at point z; can be computed. An expected value of this “size” (in the sequel
called score) is thus the weighted sum

Hy (;) (11.23)

= 3 m(fa = vad) (P(CS(AS U {as = o)) — P(CS(AS)))
k=1

= > m({wi = vi}) P(CS(AS U {m; = vy })) — P(CS(AS)).
k=1

Often, the argumentation system contains a negation operation for the set con-
straints describing the measurements: The formulas x; = v, are clearly disjoint
and exhaustive, and if an operation “\/” is defined, \/}'_;{z; = vix} = [T], then
the negation of the hypothesis z; = v in L is

—|{xi == 'Uik} = . \/{xz = ’Uij}, (11.24)

and this implies that CS(ASU{x; = vi}) = QSS(—{x; = vi }, AS). Therefore,
Hy can also be written as

H, (i) (11.25)
= iﬁ({xi = vik}, AS) <P(QSS(_'{-Z'1' = v}, AS)) — P(CS(AS)))
—  P(DS(AS))
. kZ:m({mi - s ) PLOSI ot =t 45) (O (43)
= P(DS(AS)) im({xi = v}, AS)dsp(—{z; = vy}, AS).

The advantage of this second formulation is that the computations of the differ-
ent degrees of support all take place on the same knowledge base AS, while in
the first formulation, conflicts with respect to a changed argumentation system
have to be computed, and therefore, the second variant can be computed more
efficiently.

The point at which the subsequent measurement should be taken is the one (or
one of the set) that maximizes H;. In order to simplify the computations, one
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could easily drop the first multiplicative factor P(DS(AS)) in the definition of
H;.

The method presented above does not take into consideration the different
diagnoses and their respective probabilities obtained after measuring a value
at some point. This would lead to a different approach, which consists in
computing for every possible value v;; for a point x; the most and the second
most probable diagnoses with respect to AS U {x; = v;r}. Then the optimal
point for a measurement is the one which maximizes the expected difference of
probabilities. But computations for concrete examples show that this approach,
without considering the expected enlargement of the contradictions, does not
give good results. Nevertheless, this idea can be combined with the method of
expected enlargement of contradictions, in particular this will supply a criterion
for choosing a point in the case where two (or more) different points x; and z;
lead to the identical values Hi(x;) = Hi(x;).

11.7.2 Entropy

If a set of n different possible events with respective probabilities p1, ..., p, is
given and nothing is known about which event will occur, then a measure of
how much information is “produced” can be the Entropy (Shannon, 1948)

n
H = —K) plogpi, (11.26)
=1

where K is a positive constant and we will subsequently set it to 1. In the sequel,
an event will be interpreted as “measuring a specified value at a specified point”.
For a discussion of the properties of entropy see (Guiasu, 1977; Shannon, 1948).

De Kleer (1990) shows that, assuming that any measurement does not influence
the value measured, the expected entropy He(z;) of candidate probabilities after

measuring a quantity x; with possible values v;1, ..., vy, is
i
He(wi) = —> ms({xi = v}, AS)H(zi = vir),
k=1

where H(x; = v;) denotes the entropy resulting if x; is measured to be vj.
Minimal expected entropy results then in maximal security.

Depending on the eventually observed in- and output variables of the system,
de Kleer first computes the set of all candidates whose size is less than some
predefined constant. During the process of making new measurements, these
candidates are then either eliminated if they are contradictory to the mea-
surement or otherwise their probabilities are updated by dividing them by the
probability of the measurement {z; = v;;}. But in the case where some candi-
dates (say g of them) predict no value for the point of the measurement, their
probabilities have also to be updated, and in this case de Kleer assumes that
every possible value for z; is equally likely and divides the probability of all
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such candidates by the probability of the measurement p({x; = v;;}) and the
number of such candidates ¢q. At the end, just one candidate should be left
which explains the misbehavior of the system.

Starting from the entropy (11.26), de Kleer (1990) considers the p; as prob-
abilities that a candidate C; is the actual candidate given the hypothesized
measurement outcome. De Kleer then defines a so-called score of measuring at
point z; by

T

$(zi) = > erlogey, (11.27)

k=1

where ¢, denotes the number of candidates of a predefined maximal size s which
predict {z; = v }. This formula applies in the simplified case when every
candidate predicts a value for the point of the measurement. The more general
formula for the score computes first the probabilities p(S;;) of the candidates
S;i supporting a specified possible value v;; of the point z;. The “rest” of the
probability measure, p(U;), is then equally distributed onto all values. More
formally:

Flw) = D (p<5i )+ @) log, (pwik) " WZ'))

i i

1
—p(U;) log —, (11.28)
T
where S denotes the set of diagnoses which predict that probing point x; will
obtain value v;;, and U; the set of candidates which predict no value for x;.

De Kleer defines his score (or entropy) as a sum over candidates, and he restricts
the size of the candidates to be considered to some fixed value in order to reduce
computations. De Kleer also mentions that this approach is not optimal, as in
some examples the optimal solution can only be computed if this restriction is
relaxed (cf. page 388 of (De Kleer, 1990)). Another approach would therefore
be a sum over all possible candidates, but the computation of such a sum is
usually not possible due to the number of candidates.

Transferring these ideas to our framework, the idea is to replace, in the simpli-
fied approach (11.27), the number of candidates by the pignistic probabilities
73 and so we define

m

Hy(zi) = = ms({zi = vir}, AS)logms({i = vix}, AS). (11.29)
k=1

In the more general approach (11.28) we replace the probabilities p(S;x) of the
set containing only the candidates of restricted size by the degrees of support:

= ti 1
Hi(x;)) = — ZT (dsp({a;i = v}, AS) + e ) + rest; log o

r;
k=1 K3 (2
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where
Y(t) = tlogt
rest; = 1— i dsp({z; = v}, AS),
k=1
or, using (11.8),
Hy(zy) = — iwz({xi — v}, AS) log mo({z; = v}, AS) + rest; log rl
k=1 ‘

As in the other methods, the point which maximizes Hy resp. Hs is the one
which should be chosen for a further measurement.

11.7.3 Computing the Information about a Variable

Inspired by ideas in (Kohlas & Monney, 1994) and, again, the concept of pig-
nistic probability (subsection 11.3.2), the information contained in an belief
function relative to a variable which represents a point for a possible measure-
ment can be computed. Using the mass function m defined in (11.9), we define
the total information relative to the variable x; as

m(M (x;, V))

Hy(z)) = — Y m(M(z;,V))log card(V)

£V C{vi,esvir; b

(11.30)

The best next measurement is then the one with maximizes Hy.

11.8 Examples

We re-use the examples from sections 7.3 and 11.5 as well as others from
(De Kleer & Williams, 1987; De Kleer, 1990) to illustrate the computations.

In the results shown below, the scores of those points where a measurement
has already been taken are not mentioned, because they always have score 0 in
every method. The best point, i.e. the point with the highest score, is marked
in boldface.

Example 11.5: Three Serial Inverters

We continue the example 7.1. Every component is equally likely to fail and
nothing is said about the faulty behavior of a component, so the best next
measurement should (intuitively) be equidistant from the two measured points,
i.e. the scores of the points x and y should be equal.

Let’s for example compute the score of x using the first method Hy. The degree
of support of 2 and of -z can be computed using ABEL, dsp(z, AS) = 0.330 and
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dsp(—x, AS) = 0.663, and the probability of the conflict set is P(CS(AS)) =
0.993, therefore

Hl(l‘)

= (1 — P(QSS(L,AS))) ZW?,({in = vt }, AS)dsp(—~{z; = vir.}, AS)
k=1

= (1 P(QsS(L, AS))

2

. (7T3(;U, AS)dsp(—z, AS) + m3(—x, AS)dsp(z, AS))
= (1-0.99%)((0.330 4 0.0035) - 0.663 + (0.663 + 0.0035) - 0.330)

= 0.01310.
The scores of the other points are computed similarly. The results of all methods
are consistent with the idea above as shown in table 11.1. e
Point Utility
Hy Hy Hs Hy

z 0.01310 0.6366 0.6318 0.6763
Y 0.01310 0.6366 0.6318 0.6763

Table 11.1: Results for the three inverters example.

Example 11.6: Four Serial Inverters

Let’s extend the example above by one inverter:

in in out, in, out, in, out, in, out, out
X y y4

Figure 11.10: Four serial inverters.

(tell
(module INVERTER ((var in out binary)
(ass ok binary 0.99))
(-> ok (<-> out (not in))))

(INVERTER in x ok-1)
(INVERTER x y  ok-2)
(INVERTER y z  0k-3)
(INVERTER z out ok-4))
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Consider several different cases of measurements:

(a) No measurement has been taken. In this case the different methods do
not predict a best point to measure at, but all scores are equal.

(b) Measurement in. Clearly out is the best point to measure at in this case.

(¢) Measurements in and —out. These measurements conflict with the pre-
diction (i.e. out) if all components are assumed to be working correctly.
Because every component is equally likely to fail, this situation is sym-
metric, therefore the best point for a measurement is the one that is
equidistant from the extremities, i.e. y.

(d) Measurements in and out. The measurements do not conflict with the
prediction, but still there might be a double fault in the system, and
again the best point to measure at is y.

(e) Measurements in and —out, but consider the special case where the com-
ponents are not equally likely to fail: assume the component number 1
has probability 0.025 of a failure whereas the other ones still have 0.01.
This implies that the point of the best next measurement is (intuitively)
no more equidistant from the extreme points, but should be nearer to the
component which is more likely to fail.

The results presented in table 11.2 show that all methods are consistent with
the remarks above and propose the (intuitively) correct points. o

Example 11.7: The “Three Bujffers”

We continue the example 11.4. The values of the utility functions for measuring
at a specified point are shown in table 11.3. Note that the results of the different
methods are not the same.

As already shown in example 11.4, the optimal point to measure at is z, as more
information is gained and better discrimination of the diagnoses is obtained. So
in this case, the results of methods H; and Hs appear to be better than the
ones of method Hy and Hy. In fact, if we define the path probabilities by (11.6)
instead of (11.10) then the results of method Hs are worse: the point out2 is
then computed as being the optimal point, whereas method 1 still computes the
optimal solution; de Kleer already describes this problem in (De Kleer, 1990).
e

Example 11.8: Arithmetical Network

Consider the arithmetical network of example 7.2. The system has four minimal
diagnoses:
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Point Utility
H,  Hy Hy Hy
m 0.6931 0.0 0.6931 0.0
x 0.6931 0.0 0.6931 0.0
Y 0.6931 0.0 0.6931 0.0
z 0.6931 0.0 0.6931 0.0
out | 0.6931 0.0 0.6931 0.0
(a) No measurement.
Point Utility
H, H, H; H,
T 0.0050 0.0314 0.0245  0.0629
Y 0.0098  0.0558 0.0420 0.1114
z 0.0144  0.0773  0.0567  0.1543
out | 0.0969 0.0696 0.1934 0.0189
(b) Measurement in.
Point Utility
Hy H, H; Hy
T 0.0146  0.5635 0.5571  0.6056
Y 0.0195 0.6962 0.6862 0.7494
z 0.0146  0.5635 0.5571  0.6056
(c) Measurements in and —out.
Point Utility
Hy H, H; Hy
T 0.00015 0.0015 0.0013 0.0029
Y 0.00020 0.0019 0.0016 0.0038
z 0.00014  0.0015 0.0013 0.0029
(d) Measurements in and out.
Point Utility
H,y Hy Hs H,
T 0.02642 0.6894 0.6798 0.7619
Y 0.02459  0.6549  0.6459  0.7228
z 0.01578  0.4729  0.4675 0.5188

(e) Measurements in and —out and p(ok:) = 0.975.

Table 11.2: Results for the four inverters example.
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H,q Hy Hj Hy
x ‘0.09000 0.69315 0.6567 0.8993

Point ‘ Utility

out2 | 0.08100 0.69315 0.5910 1.1113

Table 11.3: Results for the three buffers example.

The integer variables have been considered as infinite, but it makes sense to
restrict them to a finite interval, therefore we restrict them to be finite, say
maximally 15, that is

0<a,b,cde,f gzy 2z<15. (11.31)
The mass functions can be computed, and for example for the point x we have

0.58830 K = {4}
0.39111 K = {6}

m(M(z,K)) = 0.00227 K ={0,...,10}
0.01832 K ={0,...,15}
0 otherwise

and therefore the pignistic probability, needed for H; and Ho, is

0.58965 v =4
iyl = o)) = 0.39246 v =6
AL ~ ) 0.00135 v=1,2,3,57,...,10

0.00128 v =11,...,15.

The restriction of the value of y to the interval [0..15] has created a focal set
K ={0,...,10} with positive mass. This is due to the fact that the observed
output value f = 10 and the value of y being non-negative imply that x must
be less than or equal to 10. If y was not restricted but just an integer, this focal
set would be empty.

The values for the points y and z are computed similarly. The values of the
different methods for computing best next measurements are presented in ta-
ble 11.4, and again the results of the different methods are equivalent, even in
this example where several different focal sets exist?. O

11.9 Comparing the Approaches

So the big question now is: which of the approaches presented in section 11.7
should be chosen in a concrete situation?

3This is in contrast to the previous examples where all variables have been binary, therefore
only four different focal sets could possibly be non-empty.
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Point Utility
Hy Hy Hjy Hy
x 0.03939 0.8015 0.7414 0.8226
Y 0.00717  0.2099 0.2015 0.2179
z 0.00468  0.1625  0.1500 0.1679

Table 11.4: Results for the arithmetical network example.

The answer is not easy at all. In the special case of binary variables there are
maximally four different focal sets for every variable z;, therefore the approaches
are quite similar to each other. Nevertheless, the examples in the previous
subsection as well as other examples show that the algorithms H; and Hj are
usually better than the other approaches. In the general case, the approaches
are quite different, and it is difficult to make general statements about their
behavior.

In concrete situations, the limiting element usually is time. Therefore the de-
cision trees presented in fig. 11.2 cannot be fully computed as in section 11.5,
but techniques for computing only one step ahead in the tree, i.e. computing
a best next measurement, have to be used as introduced in section 11.6. So
the computation of a best next measurement has to be both fast and good, but
not necessarily optimal. In view of this decision, we also can agree with the
fact that the discrimination of the different diagnoses will not be obtained by a
minimal set of measurements, but with some (only a few) more measurements,
which — in the general case — is computationally easier than to look for an
optimal solution. So in a concrete situation, the faster methods will be applied
to compute a best next measurement.
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An Implementation: ABEL

This chapter presents a brief introduction into the language ABEL, an As-
sumption-Based Evidential Language, following its main reference (Anrig et al.,
1997a). A main source for information about ABEL is its homepage

‘http://www—iiuf.unifr.ch/tcs/abel‘

(see (Haenni et al., 1999a)). There some examples, an introduction and even
the source code of the actual version as well as stand-alone applications for
different platforms are available.

The development of the theory presented in this thesis and the language to-
gether with its solver have influenced each other strongly. The language is, in
some sense, a way to formulate data for some specific types of argumentation
systems.

The most popular numerical approaches to reasoning under uncertainty are the
theory of Bayesian networks (Lauritzen & Spiegelhalter, 1988), the Dempster-
Shafer theory of evidence (Shafer, 1976), and possibility theory (Dubois &
Prade, 1990). Implementations for these systems are available. Further, there
are various symbolical approaches, based on different non-monotonic logics.
De Kleer proposes assumption-based truth maintenance systems (ATMS), a
general architecture for problem solvers in the domain of uncertain reason-
ing (De Kleer, 1986a; De Kleer, 1986b), based essentially on propositional logic.
As noted in (Laskey & Lehner, 1989; Provan, 1990), the ATMS can be combined
with probability theory, which results in interesting additional dimensions for
both parts.

ABEL provides a languages for describing argumentation systems with vari-
ables, based essentially on propositional and multi-valued variables. Therefore
classical ATMS problems as well as Bayesian Networks can be formulated in
ABEL. Numerous examples from different areas are presented in (Anrig et al.,
1997a). In ABEL, uncertainty is expressed by assumptions, a special type of
variables. Assumptions represent unknown circumstances, risks, or interpreta-
tions. Often it is possible to assign probabilities to the values of an assumption.
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Furthermore, assumptions are the basic elements to build arguments for hy-
potheses.

12.1 Implementation

Based on the idea of probabilistic assumption-based reasoning (Kohlas & Mon-
ney, 1993; Kohlas & Monney, 1995), a first prototypic language ABL was de-
fined and implemented in a solver called EVIDENZIA (Lehmann, 1994) mainly
restricted to propositional logic. After experiences made using this implemen-
tation and the approach implemented in (Hénni, 1997), discussion was started
for a new, more general language, which was then called ABEL, Assumption-
Based Evidential Language, see (Anrig et al., 1997b; Anrig et al., 1997a) and,
in more detail, (Anrig et al., 1999). As a basis for this language, many of the
example applications discussed in these papers have been considered. The two
major issues of this language are:

e ABEL defines a new and general language to express uncertain knowledge
and corresponding queries.

e A general solver (also called ABEL) for this language has to be imple-
mented.

Clearly, the language is quite general and also allows to describe unsolvable
problems. First, reasoning with propositional variables was implemented and
then successfully extended to finite set constraints and now also partially to
discrete and continuos variables. Yet future steps will go further than that, and
this will also require a further development of the language. The actual state
of the solver is ABEL 2.2; its source code written in Common LISP (Steele,
1990), stand-alone applications for several platforms, and further up-to-date
information can be found on the ABEL homepage (Haenni et al., 1999a).

The implementation of this language led to a lot of problems in the field of
computer science which had to be solved, efficient data structures, efficient
hypertree generation, etc., see also (Haenni, 1996; Lehmann, 2000). The ex-
amples considered for the development of the language ABEL helped to see
and solve problems which are not problematic in theory, but in practice, so for
example different approximation strategies for numerical as well as symbolical
computations are being developed for dealing with big problems, for example
hierarchical, cost-bound, or modular focusing. However, these concepts are
not yet implemented in ABEL 2.2. Also the concept of decision or best next
measurements (chapter 11) are still subject to further research.

12.2 ABEL — the Language

In this section, a short introduction into the language ABEL is presented; for
details, the grammar of ABEL, and further literature see (Anrig et al., 1997b).
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This section is mainly intended to help the reader to understand the examples
presented in the previous chapters and in the following section.

The language is based on three other computer languages: from Common LISP
(Steele, 1990) it adopts prefix notation, from Pulcinella (Saffiotti & Umkehrer,
1991) it uses the idea of the commands tell, ask, and empty, and from the
existing ABEL prototype (Lehmann, 1994; Haenni, 1996) it inherits the concept
of modules and the syntax of the queries.

For a given problem, there are usually two different types of data: stable data, or
the problem formulation, which will usually be modeled in ABEL using the com-
mand tell (subsection 12.2.1). Then there are observations, or measurements,
which will usually be modeled using the observe command (subsection 12.2.2);
this type of data is, in contrast to the problem formulation, subject to change
in time, etc. Queries about the available information, stable data and observa-
tions, are then formulated using the ask command (subsection 12.2.3). Other
facilities which are useful for deleting parts of knowledge in the model or making
comments are also part of the language, but will be skipped here.

12.2.1 Modeling Information

Stable information is modeled in ABEL by a sequence of instructions inter-
preted conjunctively and treated in parallel, that is

(tell <instr-1>
<instr-2>

<instr-n>)

An instruction is a definition of type, variables, assumptions, or modules, a
statement, or an instance of a module (see below). Keywords may be added to
name a tell command.

Domains, or types, of variables are declared using the identifier type, where
integer, real, and binary denote pre-defined types which can also be con-
strained by limit values. Further, set types are defined by enumerating the
elements. For example

(type test (passed failed))

(type colors (red green blue yellow))
(type month (1 2 34567 89 10 11 12))
(type year integer)

(type month (integer 1 12))

(type size (real 0 250))

(type pos-integer (integer 0 *))

(type neg-real (real * 0))

Variables and assumptions are different identifiers. Assumptions represent
variables which, in the context of an argumentation system, are within the lan-
guage FSC, whereas variables are in the language L, therefore often a probabi-
lity distribution is attached to assumptions. Variable and assumption definition
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is done by specifying the type of the variables and, in the case of assumptions,
possibly probabilities. The type of a variable or an assumption is either a
pre-defined type or defined by a type command. Examples:

(var cl c2 colors)

(var a b n integer)

(var x y z real)

(var language (french german spanish english))
(var s (real 0 250))

(var pi 3.1416)

(var p q r binary)

(ass testl test2 test (0.8 0.2))

(ass weather (sun clouds rain) (0.5 1/3 1/6))
(ass k1 k2 k3 colors)

(ass ok? binary 0.75)

So far, assumptions must have finite domains.

Numerical constants and variables allow to build compound algebraic expres-
sions using the operators +, -, *, /, sqr, sqrt, exp, expt, log, abs, sin, cos,
tan, asin, acos, atan, mod, min, and max in prefix notations. The semantics
of these operators corresponds to Common LISP (Steele, 1990). Examples:

+xy 2

(/ (xxy) 2z

(- (max x y z) (min x y 2))
(abs (sin (sqrt x)))

Note that variables (e.g. x, y, c1, language), assumptions (e.g. testl, test2,
weather, ok?), numbers (e.g. 17, 1/3, -23.5), symbols (e.g. french, sun), and
sets (e.g. (german spanish), (1 2 4 5 10)) are also considered as (atomic)
expressions.

Expressions are then used to build constraints which are restrictions of the
possible values of variables and assumptions. For this purpose, there are the
operators =, <>, <, <= > >= with the usual meaning. Note that = and <>
can also be applied to sets or variables with a set type, and in restricts a first
parameter to be an element of the second parameter. Examples:

(= c1 blue)

(= n 17)

(<> (+ xy) 2)

(in language (german spanish))

(< x 23.5)
(>= (/ (sin x) (cos x)) (tan x))
ok?

Variables and assumptions of type binary (e.g. ok?, p, q) are also considered
as (atomic) constraints, and there are two predefined constraints tautology
and contradiction which have the constant logical values true and false re-
spectively.
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Logical statements are built of constraints using the usual logical connectors
and, or, not, ->, <->, and xor, again using prefix notation. Every constraint
is itself already an expression. Examples:

(and (= n 17) (= c1 blue))

(-> (= (+ x y) z) (in language (german spanish)))
(not (>= (/ (sin x) (cos x)) (tan x)))

ok?

A module is a step of abstraction in the modeling process. It has a unique
name, a set of parameters and a body. Parameters can be variables or assump-
tions, the body is a sequence of ABEL instructions. Its syntax is:

(module <name> (<par-1> <par-2> ... <par-n>)
<instr-1>
<instr-2>

<instr-n>)

Every set of parameters <par-i> is a specification of types of variables or as-
sumptions just like for defining variables and assumptions above. So every
parameter, variable, and assumption is typed.

An instance of a module with name <name> is created by
(<name> <p-1> <p-2> ... <p-n>)

where the p-i’s denote actual parameters, i.e. variables or assumptions. Note
that the types of the actual parameters are implicitly given by the parameter
specification of the module definition. It is therefore not necessary (but nev-
ertheless possible) to specify the types of the actual parameters outside the
module.

12.2.2 Modeling Observations

Observations are the part of the knowledge base which might change in time
or context. So we distinguish them from the knowledge modeled by tell com-
mands. This distinction is not reflected in the general theory of argumentation
systems where both types are represented using the same structure, but for
efficient handling of changing observations, clearly this information has to be
modeled differently from the stable part of the system. ABEL provides a com-
mand observe to specify observations. Examples:

(observe (= n 17)

(= c1 blue))
(observe (in language (german spanish)))
(observe ok?)

Keywords may be attached to observations like to tell commands.
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12.2.3 Formulating Queries

The command ask is used for queries with respect to the actual knowledge
base, that is the information modeled by tell and observe commands. A
query is a general term for computing symbolical or numerical arguments in
favor or against a hypothesis, that is minimal quasi-supports (qgs), supports
(sp), plausibilities (pl), doubts (db), and degrees of quasi-support (dgs), of
support (dsp), of plausibility (dpl), and of doubt (ddb). Examples:

(ask (sp (and (= n 17) (< x 5))))

(ask (gs (in language (german spanish)))
(sp (nmot ok?)))

(ask (dsp (and (= n 17) (< x 5))))

Arguments are conjunctions of normal or negated ABEL constraints over as-
sumptions. The minimal support of a hypothesis, for example, is the set of
all minimal conjunctions which allow to deduce the hypothesis from the given
knowledge base.

A second type of a query is the marginalization of the knowledge base to one
variable in order to get the information expressed using arguments with respect
to this variable, e.g.

(ask language)

and the result is also a set of arguments.

12.3 Modeling using ABEL

Several examples have already been modeled in ABEL in the previous chapters,
especially the examples in sections 7.3, 11.5.2 and 11.8. Many further examples
in different domains can be found in (Anrig et al., 1997a).

Here, we reconsider an example and show how modules can be used to add
structural information to the model in ABEL.

Example 12.1: Continuation of example 7.1

Consider again the simple digital circuit built out of three serial inverters and
connected as in fig. 7.1. The modeling presented in example 7.1 was:

(tell
(type mode-type (ok faulty))
(ass i1 i2 i3 mode-type (0.99 0.01))
(var in x y out binary)

il ok) (<-> in (not x)))
i2 ok) (<-> x (mot y)))

(> (
(> (
(-> (= i3 ok) (<-> y (not out))))
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The modular structure from the figure is not reflected in the modeling. However,
the concept of module in ABEL allows to represent and name components as
structures, i.e. a module INVERTER represents a general inverter component,
which is then instantiated three times with the actual parameters:

(tell
(type mode-type (ok faulty))

(module INVERTER ((var in out binary))
(ass i mode-type (0.99 0.01))
(> (= i ok) (<-> in (not out))))

(INVERTER :invl in x)
(INVERTER :inv2 x y)
(INVERTER :inv3 y out))

From the view of the argumentation system, both models are equal, because the
module structure is just a syntactic abbreviation. Yet from the computational
point of view, the modules add information which can be used for more efficient
construction of the hypertree as well as for modular approximations.

Input and output values are measured as 1, therefore, as in example 7.1, the
observations are modeled using the observe command, to which the keywords
:input and :output respectively have been added:

(observe :input in)
(observe :output out)

The keywords can later be used to delete or change the observations from the
knowledge base independently of each other; for details see (Anrig et al., 1997¢).

Querying this knowledge base, the results are the same as in example 7.1, i.e.

? (ask (sp tautology) (gs (not x)) (gqs (and x y)))
QUERY: (SP TAUTOLOGY)
33.3% : (= INV2.I FAULTY)
33.3% : (= INV1.I FAULTY)
33.3% : (= INV3.I FAULTY)
QUERY: (QS (NOT X))
100.0% : (= INV1i.I OK)
QUERY: (QS (AND X Y))
100.0% : (= INV2.I OK) (= INV3.I OK) (= INV1i.I OK)

Note that a variable defined in a module is prefixed by the name of the instan-
tiation of the module, for example the variable i of inverter INV1 is denoted by
INV1.T. ©

The examples presented in the previous chapters can also be reformulated more
clearly using modules in the same spirit, for example 7.2. For other modeling
issues see also (Anrig et al., 1999).
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Clearly, the modeling of a problem in ABEL (not only the use of modules) can
significantly influence the computations, on one hand of the computation of the
hypertree and on the other hand the message passing on the hypertree.

12.4 Model-Based Diagnostics using ABEL

In the previous section, we have shown how ABEL can be used for modeling
problems, stating queries about variables in the model, and how the results are
interpreted. Now, we go one step further and show how a diagnostic process
looks in the framework of ABEL, how the results of the example of the chap-
ters 7 and 11 are computed using ABEL. The main ingredients for this section
have been discussed in the previous chapters, especially the concept of best next
measurements in chapter 11.

We present model-based diagnostics in ABEL using three different examples
which show the main capabilities of the software. A lot of other features cannot
be presented in this limited context, see the homepage (Haenni et al., 1999a)
for plenty of further information.

Ezxample 12.2: Continuation of example 12.1

In example 12.1, we have shown that the digital circuit of three inverters to-
gether with the actual observations leads to three equiprobable diagnoses,

7 (ask (sp tautology))
QUERY: (SP TAUTOLOGY)
33.3% : (= INV2.I FAULTY)
33.3% : (= INV1.I FAULTY)
33.3% : (= INV3.I FAULTY)

that is, one of the inverters is not working correctly.

Usually, this result is considered as not being informal enough, especially be-
cause the probabilities of the minimal diagnoses are equal, hence the user has
no information on which of them he should choose. So additional information
has to be gained from the circuit and introduced into the ABEL model. In
the present situation, additional information means especially a measurement
at a specific point in the circuit, that is either at point x or at point y, because
these are the only points left where a measurement of a variable can take place;
the other variables of the model denote unobservable entities like INV1.I. Now,
techniques presented in section 11.6 are applied to compute a best next mea-
surement point. We will use here the method H; (11.25) and follow section 11.8.
So first, we have to compute the degrees of support of the values of the points,
that is

? (ask (dsp x) (dsp (mot x)) (dsp y) (dsp (mot y)))
QUERY: (DSP X)
0.330
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QUERY: (DSP (NOT X))
0.663

QUERY: (DSP Y)
0.330

QUERY: (DSP (NOT Y))
0.663

Using (11.25), the scores of the two points are computed:

0.441«c

Hi(z) = a((0.330 +0.0035) - 0.663 + (0.663 + 0.0035) - 0.330)

0.441cx

Hi(y) = a((0.330 +0.0035) - 0.663 + (0.663 + 0.0035) - 0.330)

Note that the multiplicative factor o has not to be computed, because we are
only interested in the proportion of the two values Hi(z) and H;(y).

Due to the identical degrees of support computed above, both points have the
same score, Hi(z) = Hi(y), and we can arbitrary select one of them, say z,
where the additional measurement has to be made. Suppose now that the mea-
sured value is x (that is the value is positive). This new information is modeled
as an argumentation system as well (see example 7.1), and its representation
can be described in ABEL. The combined argumentation system consists then
of the ABEL code above together with the new information modeled using the
observe-command:

(observe x)

Now the diagnoses have to be recomputed, because additional knowledge is
available:

? (ask (sp tautology))
QUERY: (SP TAUTOLOGY)
100.0% : (= INV1.I FAULTY)

Fortunately, there is only one diagnosis left indicating that the first inverter
is not working correctly and the diagnosis process comes to an end after one
additional measurement at x. This result corresponds to the one computed in
example 7.1.

Yet in general, one additional measurement is not enough. Consider for example
the case where the result of the measurement is not the value x as above but
—x instead. This means, that the additional information for ABEL is modeled
by the observe-command:

(observe (not x))

and the new diagnoses are
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? (ask (sp tautology))
QUERY: (SP TAUTOLOGY)
50.0% : (= INV2.I FAULTY)
50.0% : (= INV3.I FAULTY)

that is, there are still two equiprobable diagnoses. The process of next mea-
surements is now iterated, but as there is only one point left for a measurement,
namely y, the selection problem is trivial and the score of y is not computed.
Suppose, that the value measured is —y, therefore the additional information
modeled in ABEL is

(observe (not y))
and, computing the diagnoses

? (ask (sp tautology))
QUERY: (SP TAUTOLOGY)
100.0% : (= INV2.I FAULTY)

we see that there is only one diagnosis left which means that the second com-
ponent is not working correctly, and the diagnosis process comes to an end.

Now, consider the situation where the result of the second measurement is not
—y but y, that is its model in ABEL is

(observe y)

In this case, the resulting diagnosis is

? (ask (sp tautology))
QUERY: (SP TAUTOLOGY)
100.0% : (= INV3.I FAULTY)

that is, the third component is not working correctly. S)

The previous example shows that several measurements have to be made in
order to obtain a single minimal diagnosis. Yet in general, the user is not
always interested in obtaining a single diagnosis, but nevertheless one which is
quite probable and which is significantly more probable than the other ones.
The difference required between the most probable and the other ones depends
highly on the concrete situation and the user. Yet often it is not even possible
to reduce the number of diagnoses to just one, even if any number of additional
measurements have been made.

Example 12.3: Continuation of example 7.2

The arithmetical network together with the observations has four minimal di-
agnoses, as computed already in example 7.2, that is using ABEL, we have
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? (ask (sp tautology))
QUERY: (SP (NOT NETWORK-OK))
59.5% : (NOT M1)
35.7% : (NOT A1)
3.0% : (NOT M2) (NOT M3)
1.8% : (NOT A2) (NOT M2)

Now, either this is enough information for the user and he decides to repair
the circuit according to the most probable diagnosis, that is he replaces com-
ponent my, or he wants a better discrimination between the diagnoses. In the
latter case, additional information about the circuit has to be added, and again
this means that a further measurement has to be taken. In example 11.8 we
showed that the best next measurement hast to be taken at point z. So sup-

pose that the value measured at point x is 6, that is we add the following to
the ABEL model:

(observe (= x 6))

Now the minimal diagnoses with respect to the updated knowledge base are
computed, and we get

? (ask (sp tautology))
QUERY: (SP (NOT NETWORK-OK))
88.2, : (NOT A1)
7.4% : (NOT M2) (NOT M3)
4.4% : (NOT A2) (NOT M2)

that is, one very probable diagnosis (component a; is faulty) and two rather im-
probable diagnoses. Usually, the diagnosis process stops here, because the user
is satisfied of the discrimination between the different diagnoses and chooses
to replace component a;. But in critical situations, this discrimination is not
enough, and further information has to be gathered, that is further measure-
ments have to be taken so as to reduce the number of diagnoses and improve
the discrimination. Further measurements can take place at point y and z, so
assume that the user decides to make another measurement at y whose result
is 6, that is we add

(observe (= y 6))
to the ABEL model and get then

? (ask (sp tautology))
QUERY: (SP (NOT NETWORK-OK))
100.0% : (NOT A1)

that is only one diagnosis is left and the diagnosis process is stopped. S)

Example 12.4: Communication Network

Consider a communication network which consists of nodes connected by com-
munication wires, some of them one-directional, some of them bi-directional. If
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the wire is intact, then communication from its start node to its end node is
possible, if it is not intact, then communication through this wire is not possi-
ble. But instead, communication may be possible through other paths in the
network.

Assume that we have a communication network like in fig. 12.1. The nodes are
labeled by a, b, u, v, w, x, and y, the wires by wy, ..., wg. We look now at the
situation where a communication from node a to node b has to be guaranteed,
that is at least all wires of one of the paths from a to b have to be working.

Figure 12.1: Example of a communication network.

The model in ABEL begins with the declaration of the variables and assump-
tions, which have additional probabilities attached to them representing the
availability of the respective wire. As in previous examples, binary assumption
oki denotes the working mode of wire w; (with probability 0.6 for i = 0, etc.).

(tell

(var a b u v w x y binary)
(ass okO binary 0.6)
(ass okl binary 0.9)
(ass ok2 binary 0.9)
(ass ok3 binary 0.3)
(ass ok4 binary 0.5)
(ass ok5 binary 0.8)
(ass ok6 binary 0.9)
(ass ok7 binary 0.4)
(ass ok8 binary 0.2)
(ass ok9 binary 0.7))

The network is then modeled by a set of implications (and equivalences for
bi-directional communications), so for example the first implication describes
that if the wire wg is ok (denoted by ok0) then the communication from a to u
is possible, (-> a u).
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(tell

~
v

AN A A AN A A A A A
| |
V VV V V V V V.V

ok0 (> a w))
okl (<-> a v))
ok2 (<> u w))
ok3 (<> v w))
ok4 (-> u x))
ok5 (-> x y))
ok6 (<-> w y))
ok7 (> w b))
ok8 (-> v b))
ok9 (<->y b))

ABEL can now compute the reliability of the connection from a to b, the con-
nectivity of the network, etc., but here we are interested in diagnostic questions.
For example, consider the situation that someone at a wants to talk to someone
at b, but the message from a does not arrive at b; this can be modeled in ABEL
as:

(observe (not (-> a b)))

The possible diagnoses are then:

? (ask (sp tautology))
QUERY: (SP TAUTOLOGY)
44.2% : (NOT OKO) (NOT 0K3) (NOT OK8)
.4% : (NOT OK7) (NOT 0K8) (NOT OK9)
.9% : (NOT 0KO) (NOT OK1)
.5% : (NOT 0K2) (NOT OK3) (NOT 0K4) (NOT OK8)
.7% : (NOT 0K4) (NOT OK6) (NOT 0K7) (NOT OK8)
.5% : (NOT OK1) (NOT 0K3) (NOT OK7) (NOT O0K9)
.2% : (NOT 0K2) (NOT OK3) (NOT 0K5) (NOT OK8)
.9% : (NOT 0K5) (NOT OK6) (NOT 0K7) (NOT OK8)
.0% : (NOT OK1) (NOT 0K2) (NOT OK4)
.4% : (NOT 0K1) (NOT 0K3) (NOT OK4) (NOT 0K6) (NOT O0K7)
.4% : (NOT 0K1) (NOT OK2) (NOT OK5)
.4% : (NOT 0KO) (NOT OK2) (NOT 0K6) (NOT O0K7) (NOT OKS8)
.3% : (NOT OK2) (NOT 0K3) (NOT OK6) (NOT 0K8) (NOT 0K9)
.2% : (NOT OK1) (NOT 0K3) (NOT OK5) (NOT 0K6) (NOT O0K7)
.1% : (NOT 0K1) (NOT OK2) (NOT 0K6) (NOT OK9)

N
[od]

O O OO OO, NNP O

A diagnosis is a cut between the nodes a and b, that is a minimal set of wires
which, if all are not working, explain the behavior of the system (Kohlas, 1987;
Beichelt, 1993). The first diagnosis means that a communication between a and
b fails when the wires wg, ws, and wg simultaneously fail. Assume now that the
user is not satisfied by this result, i.e. he wants a better discrimination of the
diagnoses. So an additional measurement has to be made. Suppose here that it
is easy to check if the message has arrived at a node, but rather hard to check
if the wire itself is functioning. So we consider only the nodes as possible points
for a measurement. Again, we use method H; (11.25). First, we compute the
degrees of support of the possible values of the nodes, that is
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? (ask (dsp u) (dsp (mot uw)) (dsp v) (dsp (not v))
(dsp w) (dsp (not w)) (dsp x) (dsp (mot x))
(dsp y) (dsp (mot y)))
QUERY: (DSP U)
0.354
QUERY: (DSP (NOT U))
0.481
QUERY: (DSP V)
0.863
QUERY: (DSP (NOT V))
0.049
QUERY: (DSP W)
0.300
QUERY: (DSP (NOT W))
0.555
QUERY: (DSP X)
0.149
QUERY: (DSP (NOT X))
0.471
QUERY: (DSP Y)
0.249
QUERY: (DSP (NOT Y))
0.602

and then, using (11.25), we get

’ U v w x Y

Hi(-) | 0.409 0.125 0.395 0.258 0.362

Therefore, the next measurement should be made at node u. Assume that the
value measured is u, thus in ABEL:

(observe u)

Again, the diagnoses are computed:

? (ask (sp tautology))
QUERY: (SP TAUTOLOGY)
59.7% : (NOT OK7) (NOT 0K8) (NOT OK9)
11.6% : (NOT 0K2) (NOT 0K3) (NOT 0K4) (NOT OK8)

9.9% : (NOT 0K4) (NOT OK6) (NOT 0K7) (NOT OK8)

5.2% : (NOT 0K1) (NOT 0K3) (NOT OK7) (NOT OK9)

4.6Y% : (NOT OK2) (NOT OK3) (NOT 0K5) (NOT OK8)

4.0% : (NOT OK5) (NOT OK6) (NOT OK7) (NOT OK8)

2.1% : (NOT 0K1) (NOT OK2) (NOT 0K4)

0.9% : (NOT 0K1) (NOT OK3) (NOT 0K4) (NOT OK6) (NOT OK7)
0.8% : (NOT 0K1) (NOT OK2) (NOT OK5)

0.7% : (NOT 0K2) (NOT OK3) (NOT 0K6) (NOT OK8) (NOT 0K9)
0.3% : (NOT 0K1) (NOT OK3) (NOT 0K5) (NOT OK6) (NOT OK7)
0.1% : (NOT 0K1) (NOT OK2) (NOT 0K6) (NOT OK9)
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Now, the most probable diagnosis is much more probable than the second one.
Further information can be gained by computing the degrees of support of the
individual wires, that is

? (ask (dsp (not ok0)) (dsp (not okl)) (dsp (not ok2))
(dsp (not ok3)) (dsp (not ok4)) (dsp (not ok5))
(dsp (not ok6)) (dsp (not ok7)) (dsp (not ok8))
(dsp (not 0k9)))
QUERY: (DSP (NOT 0KO))
0.400
QUERY: (DSP (NOT OK1))
0.123
QUERY: (DSP (NOT 0K2))
0.231
QUERY: (DSP (NOT 0K3))
0.741
QUERY: (DSP (NOT 0K4))
0.582
QUERY: (DSP (NOT 0K5))
0.233
QUERY: (DSP (NOT OK6))
0.189
QUERY: (DSP (NOT OK7))
0.924
QUERY: (DSP (NOT OK8))
0.980
QUERY: (DSP (NOT 0K9))
0.773

The wires ws, w7, and wg, which occur in the most probable diagnosis, but also
w3, have a rather high degree of support of not working. It is therefore better
to replace these components or at least check them. Depending on the costs
of the measurements of wires and the checking or replacing of components, the
strategy will be different. S)

12.5 The Future

Several concepts are to be integrated in ABEL. First, some sort of meta-
language has to be developed in order to allow the user to explicitly specify the
type of the solver (numerical versus symbolical propagation), the approximation
method (cost-bound, modular, or hierarchical), and the degree of approxima-
tion (usually a numerical value). Further work is being done in automatic
determination of these parameters from the model and the actual query.

Further work is also being done in the framework of decisions. Actual decision
algorithms have to be incorporated into ABEL for automatic and user aided
decision making under uncertainty. The approach “Electre” described in (Roy,
1985) might be useful for this task.



226 12.  An Implementation: ABEL

A new architecture is being developed for testing and integrating this and other
new approaches for the ABEL language. It is called the ABEL workbench. For
further developments on this subject see the ABEL homepage (Haenni et al.,
1999a).
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