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aInstitut für Theoretische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
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Abstract

We have obtained new inelastic neutron scattering (INS) data for the molecular magnet Mn12-acetate which exhibit

at least six magnetic peaks in the energy range 5–35meV. These are compared with a microscopic Heisenberg model for

the 12 quantum spins localised on the Mn ions, coupled by four inequivalent magnetic exchange constants. A fit to the

magnetic susceptibility under the constraint that the spin of the ground state be S ¼ 10 yields two dominant exchange

constants of very similar value, J1 � J2 � 65K (� 5:5meV), and two smaller exchange constants J3 and J4: We

compute the low-lying excitations by exact numerical diagonalisation and demonstrate that the parameters determined

from the ground state and susceptibility fit provide qualitative agreement with the excitations observed by INS.

PACS: 75.30.Et; 75.50.Xx; 78.70.Nx
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Magnetic molecules present a fascinating new class of

materials with a wide variety of applications (for a

recent review see Ref. [1]). Coherent quantum phenom-

ena in these mesoscopic systems are one focus of recent

research [2]. Despite being among the first generation of

molecular magnets to be synthesised, Mn12-acetate [3]

remains that with the largest barrier to thermally

activated tunnelling. Although much work has been

devoted to Mn12-acetate over the past decade, the

microscopic mechanisms for the observed low-energy

phenomena have remained controversial.

Here we discuss a microscopic exchange model for

Mn12-acetate. Twelve quantum spins Si are coupled by

Heisenberg exchange interactions

H ¼
X

i;j

Jij Si � Sj (1)

with four different exchange constants J1; J2; J3 and J4;
as represented in Fig. 1.

Many experimental studies, including inelastic neu-

tron scattering (INS) [4], show that the ground state

(GS) of Mn12-acetate has total spin S ¼ 10: This may be

rationalised by considering an arrangement of eight

parallel spins S ¼ 2 on the crown Mn3þ ions oriented

antiparallel to four aligned S ¼ 3
2
spins on the core Mn4þ

ions (Fig. 1). The S ¼ 10 GS imposes a strong

constraint on the allowed exchange constants in Eq.

(1), excluding [5,6] a number of parameter sets proposed
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in the literature, such as that obtained by the ab initio

local density approximation [7].

The magnetic susceptibility w is a valuable quantity in

the determination of magnetic exchange constants. Fig.

2 shows two results for w; measured with an ordinary

sample under an applied field of 1T [8], and with a

deuterated sample at 0.1 T [6]. Both data sets agree well

for temperatures between 40 and 300K despite the

different conditions, demonstrating the reliability of the

susceptibility measurement at high temperatures. Ex-

change constants can then be determined by comparison

with a symbolic high-temperature series expansion. In

combination with a numerical test of the S ¼ 10 ground-

state requirement, this restricts the possible parameters

to a narrow region around J1 � J2 � 60K,

J3 � J4 ¼ 5–10K [6].

Columns A, B and C of Table 1 list three choices of

parameters in this region (parameter set A was used in

[6]). Columns D and E contain the parameter sets

proposed in Refs. [9,10] respectively. The lines in Fig. 2

show the susceptibility w obtained from an average of

four different Padé approximants to the eighth-order

high-temperature series [6] evaluated with the corre-

sponding parameters. The last row of Table 1 lists the

effective g-factor entering the absolute value of w
(electron paramagnetic resonance [11] yields

geff ¼ 1:968). Parameter sets A, B and C yield good

agreement with the experimental results, whereas the

results for sets D and E are in clear disagreement. We

conclude that the exchange constants proposed in Refs.

[9,10] are incompatible with w:
A number of magnetic excitations in the range of

5–35meV has been observed by INS experiments

performed on different spectrometers [12,6]. The points

in Fig. 3 show the spectrum obtained on the MARI

spectrometer at ISIS with an incident energy

Ei ¼ 17meV. Five magnetic excitations can be identified

unambiguously in this data, and are shown by the lines

in Fig. 3, which are fits with Gaussian curves on a linear

background. Analysis of their Q- and T-dependence

identifies these five excitations as magnetic and at least

the lowest two of spin S ¼ 9 [6]. A further magnetic

excitation at 27meV is the first candidate for an S ¼ 11

excitation [6], in accordance with high-field magnetisa-

tion measurements; this energy sets a lower bound for

the numerical calculations.

We have performed exact diagonalisation for the

model Hamiltonian (1), both to verify the S ¼ 10

GS and to determine the low-lying excitations. The

lowest excited states in the sectors with spin 8pSp11

are listed in Table 1 in ascending order of energy (for

sets A, D and E these extend results presented in Refs.

[6,9,10]). Spatial symmetry is described by a momentum

k such that the wave function acquires a phase factor eik

under a 90� rotation of the model in Fig. 1. The letters in

Fig. 3 show the energies of the lowest S ¼ 9 excitations

for the corresponding data sets in Table 1. A constant

shift of 1:29meV is added to all computed energies [6] to

account for the uniaxial cluster anistropy. Parameter set

D [9] provides only four instead of the observed five

levels in the energy range of the figure. Although set E

[10] yields qualitative agreement with the lowest S ¼ 9

excitations, it is not only inconsistent with w; but also
fails to explain the magnetic excitations observed by INS

around 30meV [6].

Parameter sets A, B and C all provide qualitative

agreement with the five S ¼ 9 excitations, and the lowest

S ¼ 11 excitation, observed by INS. Set A yields the best
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Fig. 1. Magnetic exchange model for Mn12-acetate. Arrows

denote the twelve Mn ions: eight Mn3þ ions on the crown have

local spin S ¼ 2 while four Mn4þ ions in the core have S ¼ 3
2
:

Lines show exchange paths with interaction parameters J1; J2;
J3 and J4:
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Fig. 2. Static magnetic susceptibility. Filled and open circles are

measured respectively on a deutered sample under a field of

0.1 T [6] and on a non-deuterated sample at 1 T [8]. Lines are

obtained from an 8th-order high-temperature series for the

parameter sets in Table 1.
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quantitative agreement [6], while B and C yield an

estimate of the error bars: although the individual Ji

values differ by no more than 3:2K, the low-lying S ¼ 9

levels may shift by as much as 16K (1.4meV) from set A

to set C. This demonstrates the high sensitivity of the

excitation spectrum to small changes in the exchange

constants.

Transitions from the S ¼ 10 GS to states with Sp8

are not observable by INS due to selection rules.

However, our results predict further low-lying excita-

tions with So9: In particular, the S ¼ 8 excitations in

Table 1 may be interpreted as scattering states of a pair

of the lowest S ¼ 9 states (k ¼ �p=2).
In summary, we have determined the microscopic

exchange parameters of Mn12-acetate as

J1 � J2 � 65K, and J3; J4 � 5–10K. Earlier proposals

[5,9,10] are inconsistent with the magnetic susceptibility,

and do not match our new INS results. Further

improvements to the optimal parameter set would

require a treatment of the uniaxial anisotropies at the

single-ion level, which would be expected to reduce the

spread of the S ¼ 9 levels, thereby improving agreement

with the INS data.
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Table 1

Energy E and symmetry k of low-lying excitations for a Mn12-acetate exchange model with different parameter sets

(A) [6] (B) (C) (D) [9] (E) [10]

J1 ¼ 67:2; J2 ¼ 61:8; J1 ¼ 64:5; J2 ¼ 60:3; J1 ¼ 64; J2 ¼ 65; J1 ¼ 119; J2 ¼ 118; J1 ¼ 115; J2 ¼ 84;
J3 ¼ 7:8; J4 ¼ 5:6 J3 ¼ 4:2; J4 ¼ 6:3 J3 ¼ 11; J4 ¼ 4 J3 ¼ �8; J4 ¼ 23 J3 ¼ �4; J4 ¼ 17

E (K) k E (K) k E (K) k E (K) k E (K) k

S ¼ 8 56:52 p 58:07 p 57:13 p 68:12 p 78:39 p
59:49 p 61:08 p 60:18 p 69:81 0 82:26 0

61:07 0 61:78 0 62:37 0 73:55 p 83:49 p

S ¼ 9 28:48 �p=2 29:15 �p=2 28:92 �p=2 33:99 �p=2 39:13 �p=2
44:47 p 40:71 p 48:22 p 35:76 p 45:43 p
91:46 0 81:82 0 102:96 0 65:11 0 77:12 0

119:67 �p=2 113:42 �p=2 132:51 �p=2 174:55 �p=2 124:63 �p=2
159:61 p 154:43 p 175:62 p 267:13 p 179:93 p
304:45 0 297:02 0 308:05 p 501:03 0 436:52 0

S ¼ 10 293:74 �p=2 285:63 �p=2 295:02 �p=2 507:87 p 435:95 p
297:30 p 289:27 p 297:79 p 509:01 �p=2 436:83 �p=2

S ¼ 11 285:58 0 274:17 0 287:41 0 510:38 0 429:66 0

303:23 �p=2 313:84 �p=2 290:80 �p=2 696:91 �p=2 537:96 �p=2

geff 1:935 1:935 1:92 2:12 2:1

Exchange constants are given in Kelvin (K). The GS has spin S ¼ 10 in all five cases. No energetic correction is applied for uniaxial

anisotropy of the cluster.
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Fig. 3. Magnetic excitations. Points show the INS spectrum

obtained on MARI with T ¼ 8K, Ei ¼ 17meV and

1pQp2 Å�1: Lines are Gaussian fits on a linear background.

Letters represent numerical results for the S ¼ 9 excitations

listed in Table 1 for the corresponding parameter choices. A

constant energy 1:29meV has been added to all calculated

energies to account for magnetic anisotropy effects [6].
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