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ABSTRACT: Spin-orbit coupling has been introduced into our newly developed ligand
field density functional theory (LFDFT), using the zero-order regular approximation as
implemented into the Amsterdam density functional (ADF) code. Application of the formalism
to a series of NiX4

2� (XAF�, Cl�, Br�, I�) compounds shows the increasing importance of intra-
ligand spin-orbit coupling across the F, Cl, Br, I series, to lead to sign reversal (in the case of Br�

and I�) of the spin-orbit splitting within the t2-orbitals manifold of Ni2�. Symmetry lowering
from Td to D2d, due to the Jahn–Teller coupling for the e4t2

4 configuration of NiX4
2�, is used to

manifest further the effect of bonding changes on the sign and magnitude of the spin-orbit
constant. Ligand field and spin-orbit coupling matrices are found to be correlated, with the
higher erxtent of antibonding being accompanied by lower values of the spin-orbit coupling
constant. In cases of little or no symmetry, this leads to situations in which ligand field and
spin-orbit coupling cannot be neatly separated in the mathematical description. Using these
results, the electronic energy levels of this series of compounds are predicted to be in good
agreement with available spectral and magnetic data from literature.

Key words: spin-orbit coupling; density functional theory; ligand field theory; Jahn–
Teller effect; zero field splitting

1. Introduction

coupling is an essential constituent
of the Hamiltonian for electronic states origi-

nating from dn-configurations of transition metals

in ligand fields (LF). It governs the fine structure of
the electronic multiplets and, for the ground state it
is mainly responsible for the zero-field splitting and
the anisotropy affecting the spectroscopic and mag-
netic behavior of TM compounds with open
d-shells. Recently, we proposed a ligand field den-
sity functional theory [1, 2] (LFDFT), which is a
DFT-based method to determine ligand field pa-
rameters. Modern functionals, which are all based
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on quantum Monte Carlo treatment of a homoge-
neous electron gas, contain most of the dynamical
correlation. The nondynamical or near-degeneracy
correlation however is missing. The key feature of
our approach is the explicit treatment of near-de-
generacy correlation using ad hoc configuration in-
teraction (CI) within the active space of Kohn–Sham
(K–S) orbitals with dominant d- or f-character. The
calculation of the CI matrices is based on a symme-
try decomposition and/or on a ligand field (LF)
analysis of the energies of all single determinants
(micro-states) calculated according to density func-
tional theory (DFT) for frozen K–S-orbitals corre-
sponding to the averaged configuration, eventually
with fractional occupations, of the d- or f-orbitals.
This procedure yields multiplet energies with an
accuracy within 2,000 cm�1. The accuracy of this
approximation can be judged from the agreement
between calculated and observed transition energy
[1, 2]. We extended the domain of application of
this formalism to more than one TM. This allowed
us [3, 4] to treat exchange coupling and mixed
valency on the same footing.

In this contribution, we extend the LFDFT with
the inclusion of spin-orbit coupling. A good oppor-
tunity to achieve this consist in using the zero-order
regular approximation [5] (ZORA), which permits
the inclusion of spin-orbit coupling effects varia-
tionally. ZORA has been implemented into the Am-
sterdam density functional (ADF) program [6] and
has been proved to work well.

This contribution is organized as follows. Section 2
describes spin-orbit coupling in Td symmetry and in
its subgroup D2d. Section 3 presents the implementa-
tion of the formalism along the lines of LFDFT. Thus,
it is possible to obtain symmetry consistent spin-orbit
coupling parameters without recourse to the implicit
use of orbital reduction factors. We intend to show
that orbital dependence of that kind can be larger than
one might expect. We will show that it is possible to
apply the formalism, using data from DFT-ZORA
calculations. Finally, we apply the theory to the NiX4

2�

(XAF�, Cl�, Br�, I�) series of compounds and com-
pare the results with experimental data from the lit-
erature. An outlook toward an extension of the theory
to systems with little or no symmetry will also be
given.

2. Spin-Orbit Coupling

Spin-orbit coupling cannot be ignored when ions
or molecules contain heavy elements. The effect is

not very large for first-row elements and is more
pronounced in their magnetic properties. However,
for second- and third-row transition metals, as well
as for the f-elements, even qualitative accounts of
electronic absorption spectra cannot neglect spin-
orbit effects. Similarly, for molecular orbitals calcu-
lations in which ligands play an important role,
spin-orbit coupling due to ligands, e.g., iodide or
bromide, must be considered.

2.1. THEORETICAL DESCRIPTION

The nature and origin of spin–orbit coupling
have been discussed by many investigators [7].
Misetich and Buch [8] have shown that the spin-
orbit Hamiltonian of a molecule can be approxi-
mated reasonably well as

ĤSO � �
N,i

�N � l�i,N � s�i � �
i

u� i,N � s�i, (1)

where �N, the spin-orbit coupling constant of nu-
cleus N, is incorporated into the molecular operator
u� i for electron i.

To carry out a spin-orbit calculation, it is neces-
sary to relate the resultant splitting of many elec-
tron states and also the interaction of different
states to one-electron spin-orbit coupling matrix
elements. This can be done most conveniently on
the basis of micro-states (single determinants), as
shown in Refs. [1, 2, 9] for the calculation of multi-
plets, using Slater’s rules. Indeed, the calculation of
matrix elements of one- and two-electron operators
between determinantal N-electron wave functions
is straightforward. For the spin-orbit interaction,
only one-electron operators are involved. Calcula-
tion of the corresponding matrix elements is de-
scribed next.

The spin-orbit operator in Eq. (1) enables the
expression of matrix elements of spin-orbit cou-
pling in and between subshells in terms of molec-
ular orbitals. Thus, any arbitrary one-electron spin-
orbit coupling matrix element can be written as:

�sms, a��ĤSO�sm�s, b�� � �sms, a��u� � s��sm�s, b��

� �
k�x,y,z

�sms�sk�sm�s�

� �a��uk�b��, (2)

where s is the spin of a single electron with com-
ponent ms; a and b are the irreducible representa-
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tions (irrep.) of the molecular orbitals; and � and �
are the corresponding components in the case of
degeneracy. The first term on the right-hand side of
Eq. (2) is no more than the Pauli matrices and the
second term can be further reduced using Wigner–
Eckhardt’s theorem:

�a��uk�b�� � �a��b�, t1k��a�u�b�, (3)

where �a��b�, t1k� are coupling coefficients for the
tetrahedral group and �a�u�b� are reduced matrix
elements. Combining Eqs. (2) and (3) enables us to
express any arbitrary spin-orbit matrix element as a
product of symmetry coefficients and reduced ma-
trix elements:

�sms, a��ĤSO�sm�s, b�� � �a�u�b� �
k�x,y,z

�s, ms�ŝk�sm�s�

� �a��b�, t1k�. (4)

To estimate the still unknown reduced spin-orbit
coupling matrix elements �a�u�b�, we shall map Eq.
(4) onto a ZORA-DFT calculation and adjust the
reduced matrix elements to reproduce the calcu-
lated ligand field levels as done previously in LF-
DFT. This task requires a symmetry adaptation of
the K–S molecular orbitals to the double-group T*d,
i.e.,

e R �6(�, �) � �8:

��8	e
 : �� � ��e�, ��;

��8	e
 : 	� � �e
, ��;

��8	e
 : �� � ��e
, ��;

��8	e
 : �� � �e�, ��;

t2 R �6(�, �) � �8:

��8	t2
 : �� �
1

�6
�t2
, �� �

i

�6
�t2�, ��

�
2

�6
�t2�, ��;

��8	t2
 : 	� � �
1

�2
�t2
, �� �

i

�2
�t2�, ��;

��8	t2
 : �� �
1

�2
�t2
, �� �

i

�2
�t2�, ��;

��8	t2
 : �� � �
1

�6
�t2
, �� �

i

�6
�t2�, �� �

2

�6
�t2�, ��

t2 R �6(�, �) � �7:

��7	t2
 : ��� �
1

�3
�t2
, �� �

i

�3
�t2�, ��

�
1

�3
�t2�, ��;

��7	t2
 : ��� �
1

�3
�t2
, ��

�
i

�3
�t2�, �� �

1

�3
�t2�, ��, (5)

where the notation of the double-group represen-
tation is according to Bethe, and their components
are Griffith’s [10]. Using this basis transformation
along with spin-orbit coupling elements (Appendix
1), the one-electron spin-orbit coupling and LF ma-
trix reduces to:

�8	e
 �8	t2
 �7	t2


�8	e
 hee � �3
2 i�et2

t1 0

�8	t2
 �3
2 i�et2

t1 ht2t2 �
1
2 �t2t2

t1 0

�7	t2
 0 0 ht2t2 � �t2t2

t1 ,
(6)

where hee and ht2t2
are the one-electron ligand field

matrix elements, the ht2t2
–hee difference being the

cubic field splitting �, and �et2

t1 and �t2t2

t1 the reduced
matrix elements:

�et2

t1 � �e�s�u� 	t1
�t2�

�t2t2

t1 � �t2�s�u� 	t1
�t2�, (7)

which we derive in a form to be directly compared
with the free Ni2� spin-orbit coupling constant (630
cm�1). Section 3.3 describes a procedure of obtain-
ing these parameters from ZORA-DFT calculations.

The 3T1 ground state of Ni2� (d8) in a tetrahedral
(Td) ligand field is Jahn–Teller unstable and distorts
toward tetragonal D2d symmetry with elongation
along the S4 axis of the tetrahedron. For this point
group, the symmetry species t2(
, �, �) and e(
, �)
split into e(
, �) � b2(�) and a1(
) � b1(�), respec-
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tively. Symmetry adaptation of the K–S molecular
orbitals to the D*2d double group yields
a1 R �6(�, �) � �6:

��6	a1
, ��� � �a1
, ��

��6	a1
, ��� � �a1
, ��

e R �6(�, �) � �6:

��6	e
, ��� �
1

�2
�e
, �� �

i

�2
�e�, ��

��6	e
, ��� �
1

�2
�e
, �� �

i

�2
�e�, ��

b1 R �6(�, �) � �7:

��7	b1
, ��� � ��b1�, ��

��7	b1
, ��� � �b1�, ��

b2 R �6(�, �) � �7:

��7	b2
, ��� � �b2�, ��

��7	b2
, ��� � �b2�, ��

e R �6(�, �) � �7:

��7	e
, ��� �
1

�2
�e
, �� �

i

�2
�e�, ��

��7	e
, ��� � �
1

�2
�e
, �� �

i

�2
�e�, ��, (8)

where again double-group representations are ac-
cording to Bethe. Using this basis transformation
along with the spin-orbit coupling matrix elements
(Appendix 1), we obtain the spin-orbit coupling
and LF matrix for this symmetry

�6	a1
 �6	e
 �7	b1
 �7	b2
 �7	e


�6	a1
 ha1a1 �3
2 i�a1e

e 0 0 0

�6	e
 � �3
2 i�a1e

e hee �
1
2 �ee

a2 0 0 0

�7	b1
 0 0 hb1b1 �i�b1b2

a2
�i

�2
�b1e

e

�7	b2
 0 0 i�b1b2

a2 hb2b2

�1

�2
�b2e

e

�7	e
 0 0
i

�2
�b1e

e
�1

�2
�b2e

e hee �
1
2 �ee

a2, (9)

where ha1a1
, hee, hb1b1

, hb2b2
are the (diagonal in this

case as well) one-electron ligand field matrix ele-
ments and �ij

k are the reduced matrix elements:

�a1e
e � �a1�s�u� 	e
�e�

�b1b2

a2 � �b1�s�u� 	a2
�b2�

�b1e
e � �b1�s�u� 	e
�e�

�ee
a2 � �e�s�u� 	a2
�e�

�b2e
e � �b2�s�u� 	e
�e�. (10)

We note that in D*2d symmetry, the cubic quantities
�et2

t1 and �t2t2

t1 split into three and two different re-

duced matrix elements, respectively, yielding a to-
tal of five independent parameters. In LF studies,
thus far the variation of spin-orbit coupling be-
tween the various symmetries of the involved LF-
orbitals have been approximated in terms of orbital
reduction factors. In the next section, we derive a
rigorous procedure that allows us to deduce these
quantities from DFT-ZORA calculations.

3. Computational Procedure

The DFT calculations have been performed with
the aid of the ADF program code (release 2003.01)
[6]. For the exchange-correlation functionals, both

4



the local density approximation (LDA, for geome-
try optimizations) and the generalized gradient ap-
proximation (GGA) (for energies of electronic
states) have been used. For LDA, we adopt an X�
functional for exchange (� � 0.7) [11] and Vosko,
Wilk, and Nusair functional for correlation [12].
The GGA has been introduced in the form given by
Perdew–Wang [13]. The frozen-core approximation
was used for inner core electrons. The orbitals up to
3p for Ni, 1s for fluorine, 2p for chlorine, 3d for
bromine, and up to 4d for iodine were kept frozen.
The valence shells were described by triple zeta
plus one polarization function (TZP basis set). Spin-
restricted relativistic ZORA calculations have been
done by adopting the ZORA basis set (TZP) [14].
Using basis functions of icnreasing quality from
TZP to TZ2P to TZ2P� does not change results
significantly (see Section 4.4).

3.1. GEOMETRY OPTIMIZATIONS

Geometry optimizations of the NiX4
2� species

have been done in nonrelativistic spin-unrestricted
(Ms � 1) formalism, using the LDA-only functional,
which we know from experience [2] to yield TM–
ligand bond distances in good agreement with ex-
periment. To study the Jahn–Teller activity within
the 3T1 ground state, separate optimizations impos-
ing a D2d geometry have been carried out following
the guidelines of accounting for the Jahn–Teller
effect within DFT [15]. It should be noted that, as a
single determinant method, DFT is unable to yield
optimized geometries in the case in which two or
more configurations mix with each other. This is the
case in our study, where two 3A2 states (originating
from 3T1 in tetrahedral symmetry), corresponding
to the ground configuration (e4t2

4) and to the excited
configuration (e3t2

5), mix and reduce the extent of
the structural distortion and of the Jahn–Teller sta-
bilization (EJT) [16]. A procedure to solve this prob-
lem is briefly outlined in Appendix 2 and is used
here to obtain ground-state D2d geometries for all
NiX4

2� species.

3.2. LFDFT CALCULATIONS

The LFDFT method is well documented [1, 2]. In
short, the following steps are considered. Having
chosen a reference geometry (see Section 3.1), an
average of configuration spin-restricted (AOC) cal-
culation is performed with eight electrons distrib-
uted evenly over the five 3d-molecular orbitals. The
latter are identified as such, according to their dom-

inant metal character, inspecting the K–S eigenvec-
tors. Constraining the electron density to this dis-
tribution of charge, the energies of all 45 Slater
determinants are calculated in a spin-unrestricted
way. Using the two 5 
 5 matrices of K–S 3d-
eigenvalues (diagonal matrix) and their MO coeffi-
cients along with the energies of the SD our formal-
ism (implemented into a MATLAB script) yields
the parameters of interelectronic repulsion B and C
and the 5 
 5 LF matrix, which in our case takes a
diagonal form with two different energies (e and t2)
for Td and four different energies (ha1a1

, hb1b1
, hb2b2

,
and hee) for D2d. (MATLAB 6.1 scripts and programs
written for each system can be obtained from the
authors on request.) At the same time, the program
yields the energies of all 45 electronic states in an LF
multiplet calculation. This corresponds to a CI pro-
cedure within the DFT formalism.

3.3. CALCULATION OF REDUCED MATRIX
ELEMENTS OF SPIN-ORBIT COUPLING FROM
ZORA-DFT

Let us consider the K–S eigenvalues in the basis
of the double group symmetry adapted fragment
orbitals (SFO) and the symmetry adapted fragment
spin-orbitals [see Eqs. (5) and (8)]. To be more spe-
cific let us take as an example NiCl4

2�. Focusing on
the Td complex, the 5t1, 16t2, and 8e spin-orbitals
give rise to a total of 29�8 and 16�7 K–S-orbitals,
from which we identify the 6�8, 7�8, and 4�7 ones
with dominant 3d character. We correspondingly
occupy these evenly in the ZORA input with occu-
pation numbers and ZORA eigenvalues taken from
the output listed in Eq. (11). We further find from
the table of the SFO, 8, 5, and 16 species of E, T1, and
T2 symmetry, yielding a total of 29 basis functions
for �8 and 16 T2 species, giving rise to the same
number of �7 species. These yield the coefficients of
the 6�8, 7�8, and 4�7 K–S-ZORA eigenvectors. We
thus obtain truncated ZORA-K–S eigenvectors and
(diagonal) eigenvalues matrices U and � [Eqs. (11)]:

U �

e
t2

t2

6�8 7�8 4�7

��0.842 �0.135 0.0
�0.104 0.789 0.0

0.0 0.0 �0.816
�

� �

6�8

7�8

4�7

�2.940 0.0 0.0
0.0 3.458 0.0
0.0 0.0 3.509

� (11)

S � U � UT (12)
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h � �h��� � S�	1/ 2
U�UTS	�1/ 2
 (13)

h �

e	�8

t2	�8

t2	�7


e	�8
 t2	�8
 t2	�7


�2.951 �0.074i 0.0
0.074i 3.447 0.0

0.0 0.0 3.509
�. (14)

After manipulations as described in Eqs. (12) and
(13), we obtain the one-electron Hamiltonian matrix
[Eq. (14)]. The comparison with Eq. (6) yields di-
rectly the reduced matrix elements �t2t2

t1 and �et2

t1 , as
well as the cubic ligand splitting � (333, 487, and
4,166 cm�1, respectively). In a similar way, the ma-
trices of the spin-orbit coupling plus the LF for
NiCl4

2� in D2d symmetry are derived from matrix
15. Using definition Eq. (10), this yields the LF and

�6	a1

�6	e

�7	b1

�7	b2

�7	e


�
2.991 0.072i 0.0 0.0 0.0

�0.072i 3.582 0.0 0.0 0.0
0.0 0.0 2.950 �0.063i �0.040i
0.0 0.0 0.063i 3.301 �0.029
0.0 0.0 0.040i �0.029 3.623

	
(15)

spin-orbit coupling matrix elements listed in Table
II. Thus, from a single ZORA calculation, both the
ligand field and spin-orbit coupling matrices are
obtained. To facilitate the analysis of the ADF out-
put, a series of MATLAB scripts are used as inter-
faces.

4. Applications, Results, and
Discussion

4.1. JAHN–TELLER EFFECT AND THE
GEOMETRIES OF NIX4

2� (XAF�, CL�, BR�,
I�)

NiX4
2� (XACl�, Br�, and I�) are well studied

structurally [17, 18] and/or spectroscopically [19–
22] and found to exist as slightly distorted (NiCl4)
or almost regular tetrahedra (NiBr4 and NiI4).
NiF4

2� remains unknown, Ni2�–F� complexes tend-
ing invariably to adopt a regular octahedral geom-
etry. In line with these observations, our geometry
optimizations (Table I) show, that the extent of the
Jahn–Teller elongation (Fig. 1) and the stabilization
energy is strongly reduced due to mixing between
the e4t2

4 and e3t2
5 configurations (cf. Appendix 2), the

latter configuration being Jahn–Teller stabilized by
a D2d compression. In this respect, the e3t2

5 configu-
ration resembles very much the Jahn–Teller activity
in Cu2� with a single hole in the t2-shell, which
readily explains the different stereochemistries of
these two ions [16]. Table I (square brackets) also
lists geometries and EJT values of NiX4

2� neglecting
the 3T1(e4t2

4)–3T1(e3t2
5) mixing. It is this geometry,

with more pronounced distortions, that we use to
explore the effect of symmetry lowering on the
anisotropy of spin-orbit coupling. However, in the
discussion of electronic transitions and comparison
with the experiment, we make use of the correct
geometry.

TABLE I ______________________________________
Bond lengths (in Å), the extent of Jahn–Teller
elongation of the tetrahedral into the D2d ground-
state energy minima (��min in °) and the Jahn–Teller
stabilization energy EJT (in cm�1) for NiX4

2� (XAF�,
Cl�, Br�, and I�).*

X R �
min EJT

F 1.94 �5.2 [�8.3] �335 [�825]
Cl 2.29 �3.1 [�5.5] �83 [�260]
Br 2.44 �2.9 [�5.3] �62 [�198]
I 2.64 0.0 [�4.6] 0 [�49]

* Spin-unrestricted DFT geometry optimizations (VWN-LDA
functional) with and without (in square brackets) taking mix-
ing between 3T1(e4t2

4) and 3T1(e3t2
5) into account (still de-

scribed by single determinants) have been performed, using
a strategy described in Appendix 2.

FIGURE 1. Angle 
 describing the tetrahedral distor-
tion due to Jahn–Teller activity in NiX4

2 � .
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4.2. SPIN-ORBIT COUPLING IN TD
SYMMETRY

The (�, �)–e, t2(3d) spin-orbit coupling in Td sym-
metry gives rise to �8(e) and �8 � �7(t2) spinor
levels, whose ZORA energies we plot in Figure 2.
While spin-orbit coupling leads to splitting of t2(�,
�) in first order, it causes a mixing of �8(t2) and �8(e)
to second order. LF splitting � (Td) is calculated in
the range of 4370 (NiF4

2�) to 3395 (NiI4
2�) and dom-

inates over the spin-orbit coupling: �(Ni2�) � 630
cm�1; this is accounted for in Figure 2, where dom-
inant contributions from e and t2 are underlined.
We notice that when moving from NiF4

2� to NiCl4
2�,

the �8(t2 � e)–�7(t2) energy separation, which
equals (3/2) �t2t2

t1 [see Eq. (6)], becomes smaller and
is lowered further, going to NiBr4

2� and NiI4
2�. It is

important to observe that the sign of the splitting
changes in the latter two complexes. The analysis of
the energy levels (Fig. 2) in terms of the parameters
ht2t2

–hee, �et2

t1 and �t2t2

t1 [cf. Eq. (6), calculated values are
listed in Table II] shows indeed that �t2t2

t1 becomes
negative in the case of NiBr4

2� and NiI4
2�. As has

been pointed out previously [22], ligand spin-orbit
coupling (as large as 5,000 cm�1 for I�!) in combi-
nation with the metal (3d)–ligand (np) mixing can
strongly modify the effective spin-orbit couppling
constant; this contribution can be of different sign
and can even outweigh the spin-orbit coupling due
to the 3d electrons; this turns the sign of the �8(t2 �
e)–�7(t2) splitting. Our ZORA calculations lend full
support of this proposition, initially observed by
MCD data on NiI4

2� [22]. Contrary to earlier inter-
pretations [23], our results indicate that spin-orbit
coupling undergoes a stronger decrease with in-
creasing metal–ligand covalency than Stevens’s
orbital reduction factors in the magnetic moment
operator (amenable from a fit to magnetic suscep-
tibilities). Indeed, with increasing covalency from
F� to Cl� to Br� to I�, �et2

t1 and �t2t2

t1 show a much
stronger reduction than deduced from orbital re-
duction factors as the squared MO coefficients c3d

2

for 3d in the e and t2 MOs and their combinations
[0.82, 0.72, 0.68, 0.66 (e) and 0.75, 0.63, 0.60, 0.56 (t2)
for F�, Cl�, Br�, I� complexes, respectively]. The
order of values for the reduced matrix elements in
a given complex �et2

t1 � �t2t2

t1 (obeyed for all cases in
Table I) reflects also subtle changes in the metal–

FIGURE 2. Relative energies of Kohn–Sham orbitals
with dominant 3d character from a ZORA spin-orbit
calculation of [NiX4]2 � (XAF�, Cl�, Br�, I�).

TABLE II ______________________________________________________________________________________________
Ligand field (diagonal) matrix elements and reduced spin-orbit coupling matrix elements for Td and elongated
Td 3 D2d (in square brackets) DFT optimized (spin-unrestricted, LDA-functional) [NiX4]2� (XAF�, Cl�, Br�, I�)
geometries from ZORA (spin-restricted, LDA � PW91 functional) calculations.

Td [D2d]

[NiF4]2� [NiCl4]2� [NiBr4]2� [NiI4]2�

Td [D2d] Td [D2d] Td [D2d] Td [D2d]

hee [ha1a1
(dz2)] �2622 [�1904] �2500 [�2410] �2277 [�2310] �2037 [�2150]

[hb1b1
(dx2

� y2)] [�3600] [�2736] [�2386] [�2151]

ht2t2
[hb2b2

(dxy)] 1748 [�990] 1667 [95] 1518 [178] 1358 [310]
[hee(dxz, dyz)] [3247] [2526] [2259] [1945]

�et2

t1 [�a1e
e ] 588 [576] 488 [474] 373 [337] 375 [222]

[�b1e
e ] [566] [461] [300] [198]

[�b1b2

a2 ] [598] [510] [452] [410]

�t2t2

t1 [�ee
a2 ] 518 [516] 332 [326] �242 [�242] �832 [�824]

[�b2e
e ] [516] [329] [�253] [�837]
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ligand overlap (differential covalency) being larger
for the more strongly (� � �)-antibonding t2, com-
pared with the only weakly (�)-antibonding e or-
bital.

4.3. SPIN-ORBIT COUPLING IN D2D
SYMMETRY

Going to the D2d distorted Td complex, the e(dz2,
dx2�y2) and t2(dxy, dxz, dyz) orbitals split into a1(dz2) �
b1(dx2�y2) and b2(dxy) � e(dxz, dyz) species and the
ligand field matrix becomes fully defined in terms
of 10 Dq plus the t2 and e splitting parameters 3�2
and 2�1, respectively. This is illustrated in Figure 3
with parameter values pertaining to NiCl4

2�. In par-
allel with this increase in the level of parameteriza-
tion, the matrix of spin-orbit coupling becomes de-
pendent on five reduced matrix elements [Eq. (9)].
Figure 5 shows their variation with the angular
geometry for NiCl4

2�, changing the 
-angle in wide
range from elongated to compressed D2d structures.
It is striking that the variations of the spin-orbit
coupling parameters �ij

k follow the same trends as
the energies of the correspondingly involved i and
j orbitals (Figs. 4 and 5); the stronger the extent of
antibonding (increasing the energy of the involved
i and j orbitals), the stronger the �ij

k reduction. Thus,
in an attenuated way, the �ij

k parameters reflect the
angular dependence of the LF matrix. In classical
LF theory, the parameter � has been deemed to
have an atomic nature, being scaled by some reduc-
tion factor, occasionally accounting for axial anisot-
ropy as well. In view of our results, we suggest that
such treatments are incomplete. The strong interre-

FIGURE 4. Reduced matrix elements of the spin-orbit
coupling operator from ZORA-ADF calculations in the
Td and D2d geometries of the NiCl4

2� and their depen-
dence in the geometrical angle 
 (see Fig. 1).

FIGURE 5. Dependence of Kohn–Sham orbital ener-
gies from nonrelativistic calculation with average-of-
configuration occupancies (Td: e3.2t2

4.8; D2d:
a1

1.6b1
1.6b2

1.6e3.2) on the geometric angle 
 for NiCl4
2�

(R � 2.29 Å, PW91-functional, TZP basis). Orbital en-
ergy expressions on the right-hand side refer to the
limiting case of a compression–square planar geometry
and angular overlap model expressions (see Section
4.4).

FIGURE 3. Orbital level splittings and notations for a
symmetry based description of the D2d distorted (elon-
gated) NiCl4

2� complex for a geometry obtained without
correction for 3T1(e4t2

4)–3T1(e3t2
5) missing.
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lation between the LF and molecular spin-orbit
forces can even invalidate the common opinion of
the two physical effects, being opposite to each
other [24]. In cases of very low symmetry (causing
nonzero off-diagonal elements in the matrix h��), it
can even prevent the separation of the one-electron
Hamiltonian, in part due to LF and spin-orbit cou-
pling. Fortunately, this is not the case here (h�� is
fully diagonal) to permit a neat separate analysis of
the two effects.

4.4. LIGAND FIELD PARAMETERS, GROUND
AND EXCITED STATES ENERGIES OF NIX4

2�

(XACL�, BR�, I�) AND COMPARISON WITH
EXPERIMENTAL DATA

A list of LF parameters, the (diagonal) LF matrix
and the B and C values for NiX4

2� halide complexes
in Td and D2d symmetry, is presented in Table III.
There is a good agreement between the LFDFT

values of 10 Dq for NiCl4
2� (4,150 cm�1) and the one

deduced from a direct fit to the spectrum (3,500
cm�1 [19] referred to hereafter as “experimental”).
However, values of B and C are, correspondingly,
64% and 68% off from the experimental ones (810
and 3,150 cm�1, respectively) [19]. This can be
traced back to the functionals in use that overesti-
mate 3d-electron delocalization. A list of LF param-
eters dependent on the functionals offered by the
ADF code (Table IV) shows a weak sensitivity with
respect to this choice. Likewise, use of more sophis-
ticated basis functions, such as a quadruple 3d basis
for Ni2� (TZ2P�) does not alter the values of �
[causing an increase in � (Table II) by 3–4%]. Ex-
cited state energies (Table V) for geometries, corre-
sponding to the Td and D2d energy minima [in this
case taking 3T1(e4t2

4) 3 3T1(e3t2
5) mixing into ac-

count] shows good agreement between LFDFT and
experimental values for the energies of the transi-
tions 3T13

3T2 and 3T13
3A2, while the energies of

the spin-forbidden transitions to 1T2, 1E, and 1T2,
1T1, 1A1, as well as the spin-allowed one to 3T1 are
found to be by �4,000 cm�1 and 5,500 cm�1 smaller
than the experimental ones. This is in accordance
with the smaller B and C values and the stronger
dependence of the energies of the mentioned states
on B and C.

It is interesting that LF matrices from a non-
relativistic LFDFT calculation and from ZORA
differ from each other. These are compared in
Table VI, taking the b1 3 a1, b1 3 b2, and b1 3 e
energy differences. It can easily be shown, when
taking the angular geometry into account, that
these differences can be translated into an angu-
lar overlap parameterization to yield values of

TABLE IV _____________________________________
Racah’s parameters determined with LFDFT method
for [NiCl4]2�, using the exchange and correlation
functionals available in ADF2003.01.

Experiment
[19]

B C �

810 cm�1 3,150 cm�1 3,500 cm�1

GGA PW91 521 cm�1 2,136 cm�1 4,155 cm�1

PBE 518 cm�1 2,196 cm�1 4,147 cm�1

RPBE 535 cm�1 2,218 cm�1 4,106 cm�1

revPBE 530 cm�1 2,212 cm�1 4,115 cm�1

BLYP 521 cm�1 1,576 cm�1 4,220 cm�1

LB94 359 cm�1 1,596 cm�1 3,041 cm�1

TABLE III _____________________________________________________________________________________________
Ligand field (diagonal) matrix elements and interelectronic repulsion B and C energies (in cm�1) for Td and
elongated Td–D2d (in square brackets) DFT-optimized (spin-unrestricted, LDA-functional) [NiX4]2� (XAF�, Cl�,
Br�, I�) geometries from LFDFT (LDA � PW91 functional) calculations.

Td [D2d]

[NiF4]2� [NiCl4]2� [NiBr4]2� [NiI4]2�

Td [D2d] Td [D2d] Td [D2d] Td [D2d]

hee [ha1a1
(dz2)] �2494 [�1696] �2428 [�2320] �2274 [�2321] �2034 [�2226]

[hb1b1
(dx2

� y2)] [�3528] [�2666] [�2363] [�2032]

ht2t2
[hb2b2

(dxy)] 1662 [�999] 1619 [146] 1516 [247] 1356 [445]
[hee(dxz, dyz)] [3111] [2420] [2218] [1906]

B [B] 715 [713] 521 [521] 462 [458] 401 [399]
C [C] 2732 [2685] 2136 [2126] 1944 [1948] 1804 [1844]
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the parameters for �- and �-bonding and for
mixing of dz2 and 4s (which, being of the same
symmetry, i.e., a1, in D2d can mix with each
other), yielding e�, e�, and esd, respectively. Re-
markably, ZORA results reflect a distinctly larger
extent of �- and �-antibonding and esd-mixing
compared with the nonrelativistic LFDFT result.
The effect of sd-mixing has a crucial influence via
the Fermi contact terms � on the hyperfine struc-
ture tensor A. This is the topic of a separate study
[25]. We also notice that the value of the param-
eter �t2t2

t1 for NiCl4
2� we deduce from the ZORA

results (332 cm�1, Table II) is found in excellent
agreement with the one deduced from a fit to

magnetic susceptibility data (380 cm�1) [23]. It is
this parameter (in combination with the 3T1 
 e
ground-state Jahn–Teller activity, see Appendix
2), that affects the 3T1 ground-state splitting.
These are shown in Figure 6 for NiX4

2� (XACl�,
Br�, and I�). In accordance with large negative
�t2t2

t1 value for NiI4
2� an inverted zero-field split-

ting pattern for the ground state is calculated
with a T2 ground state and an E excited state 33
cm�1 higher in energy. In NiBr4

2� an intermediate
coupling scheme is realized with an E ground
state and T2 next in energy. A D2d distortion leads
to an A1 ground state, as is the case in NiCl4

2�;
however, it originates from the tetrahedral E,

TABLE V ______________________________________________________________________________________________
Multiplet energies (in kK � 103 cm�1) for NiX4

2� (XACl�, Br�, I�) complexes from LFDFT calculations (zero
spin-orbit coupling) in their Td and D2d-elongated geometries [from DFT geometry optimizations taking mixing
between 3T1(e4t2

4) and 3T1(e3t2
5) into account] in comparison with experimental data from literature.

Electronic state
Td(D2d)

NiCl4
2� NiBr4

2� NiI4
2�

LFDFT Exp. [21] LFDFT Exp. 20] LFDFT Exp. [22]

3T1(3A2, 3E) 0.0 (0.0, 1.87) 0.0 (0.0, 1.65) 0.0 (0.0, 1.24)
3T2(3E, 3B2) 3.48 (4.20, 6.21) 3.84–4.76 3.28 (3.86, 5.80) 2.93 (3.39, 4.99)
3A2(3B1) 7.53 (9.03) 6.90 7.06 (8.41) 6.40 6.32 (7.47)
1T2(1B2, 1E) 7.64 (7.67, 9.40) 11.69 6.89 (6.92, 8.44) 6.22 (6.34, 7.46)
1E(1B1, 1A1) 7.99 (7.80, 10.08) 12.22 7.19 (7.03, 9.02) 6.47 (6.44, 7.98)
3T1(3E, 3A2) 10.74 (11.44, 13.57) �14.70 9.69 (10.32, 12.01) 8.49 (9.09, 10.19)
1T2(1E, 1B2) 12.69 (13.61, 15.10) 18.18 11.50 (12.26, 13.75) (16.50, 17.44) 10.30 (10.94, 12.22)
1T1(1E, 1A2) 14.01 (14.55, 17.06) 19.48 12.71 (13.23, 15.24) 18.13 11.35 (11.97, 13.28) (13.60, 14.64)
1A1(1A1) 13.79 (15.49) — 12.47 (14.03) 11.15 (12.45) 14.08
1E(1B1, 1A1) 16.38 (17.78, 18.09) 22.08 14.99 (16.25, 16.42) 19.00 13.43 (14.59, 14.66) (15.75, 15.62)
1A1(1A1) 30.12 (31.55) — 27.29 (28.56) 24.58 (25.89)

TABLE VI _____________________________________________________________________________________________
Orbital interpretations of ligand field energies from LFDFT and ZORA calculations in terms of the AOM
parameterization scheme (e�, e�, esd) along with values of 10 Dq and the t2-splitting 3�2 for tetragonally (D2d)
elongated [NiX4]2� (XAF�, Cl�, Br�, I�).

[NiF4]2� [NiCl4]2� [NiBr4]2� [NiI4]2�

LFDFT ZORA LFDFT ZORA LFDFT ZORA LFDFT ZORA

E(b1 3 a1) 1832 1696 346 326 42 76 �194 10
E(b1 3 b2) 2529 2610 2812 2831 2610 2564 2477 2461
E(b1 3 e) 6639 6847 5086 5262 4581 4645 3938 4096

e� 6488 6688 4980 5350 4457 4735 3734 4231
e� 2612 2690 1594 1857 1379 1622 1012 1397
esd 2277 2629 3402 4094 3910 4382 4359 4562
10 Dq 4353 4597 4155 4289 3903 3913 3548 3550
3�2 4110 4237 2274 2431 1971 2081 1461 1635
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rather than from the tetrahedral A1, state as in
NiCl4

2�. It follows that the sign and magnitude of
the parameter �t2t2

t1 is of crucial importance for the
ground state splitting. This, as well as the Jahn–
Teller activity in the 3T1 ground state, is a further
experimental challenge for these systems. For
more conclusive results, these compounds should
be studied with more modern tools, such as res-
onance Raman and high-field– high-frequency
EPR. We hope this study will motivate further
experimental work in this direction.

5. Conclusions

In this work we extended our LFDFT proposed
recently [1– 4] with spin-orbit coupling, develop-
ing a procedure allowing one to extract spin-orbit
coupling matrix elements from spin-restricted
ZORA calculations. Using symmetry analysis, we
show that a set of spin-orbit coupling parameters,
rather than a single value or values scaled for
anisotropy using (Stevens) orbital reduction fac-
tors are needed for a proper description of a
realistic situation. In particular, highly covalent
ligands such as Br� and I� and their own spin-

orbit coupling contributions can lead to unex-
pected, unprecedented splitting patterns of the
ground state (zero-field splitting), which deserve
further theoretical justification and testing and
motivates further experimental work. In subse-
quent contributions, we will extend the formal-
ism to systems with lower or no symmetry, cal-
culating zero-field splitting for systems well
characterized by EPR, thus extending the appli-
cability of our LFDFT approach to fine structure
tensor and hyperfine coupling effects.
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FIGURE 6. Splitting of the 3T1 ground state in Td ge-
ometry due to spin-orbit coupling and in the lower D2d

symmetry minimum [for NiCl4
2� and NiBr4

2�, 3T1(e4t2
4)–

3T1(e3t2
5) mixing is taken into account]. Data for NiBr4

2�

are plotted schematically, not following the energy
scale for NiCl4

2� and NiI4
2�.
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Appendix 1: Spin-Orbit Coupling
Matrix Elements in Td and
in D2d Symmetry

�a1[e]�s�u�(e)�e[t2]� � �a1e
e , �b1[e]�s�u�(e)�e[t2]� � �b1e

e ,
�b1[e]�s�u�(a2)�b2[t2]� � �b1b2

a2 , �e[t2]�s�u�(a2)�e[t2]� � �ee
a2,

�b2[t2]�s�u�(e)�e[t2]� � �b2e
e , (notations in square brack-

ets refer to the parentheses from the tetrahedral e
and t2 species).

Symmetry notations for the real 3d orbitals in D2d

are written on the left-hand side along with con-
ventions for the e-components given in the ADF
code. For Td symmetry, one has to take

�e�s�u� 	t1
�t2� � �et2

t1 � �a1e
e � �b1e

e � �b1b2

a2

�t2�s�u� 	t1
�t2� � �ee
a2 � �b2e

e .

��	dxy
� 
 ��	dxz

� 
 
�	dyz
� 
 ��	dx2�y2

� 
 
�	dz2
�
 ��	dxy

� 
 ��	dxz
� 
 
�	dyz

� 
 ��	dx2�y2
� 
 
�	dz2

�


b2
���	dxy

� 
 i�b1b2

a2 � i
2 �b2e

e 1
2�b2e

e

e : 2���	dxz
� 
 � i

2 �ee
a2 i

2�b2e
e � i

2 �b1e
e 
3

2 �a1e
e

e : 1�
�	dyz
� 
 i

2�ee
a2 � 1

2 �b2e
e � i

2 �b1e
e �
3

2 i�a1e
e

b1
���	dx2�y2

� 
 �i�b1b2

a2 1
2�b1e

e i
2�b1e

e

a1
�
�	dz2

�
 �
3
2 �a1e

e 
3
2 i�a1e

e

b2
���	dxy

�
 � i
2 �b2e

e � 1
2 �b2e

e �i�b1b2

a2

e : 2���	dxz
�
 i

2�b2e
e 1

2�b1e
e �
3

2 �a1e
e i

2�ee
a2

e : 1�
�	dyz
�
 1

2�b2e
e � i

2�b1e
e �
3

2 i�a1e
e � i

2�ee
a2

b1
���	dx2�y2

� 
 �1
2�b1e

e i
2�b1e

e i�b1b2

a2

a1
�
�	dz2

�
 
3
2 �a1e

e 
3
2 i�a1e

e

Appendix 2: DFT Treatment of
Jahn–Teller Activity in the Case of
Mixing of Electronic States

The Hamiltonian of the 3T R e Jahn–Teller prob-
lem in a linear approximation

H � 	1/ 2
 Ke	Q

2 � Q�

2
 � I � VeQ
 � C
 � VeQ� � C�,

(A2.1)

where I is the identity matrix and C
 and C� are 3 

3 matrices taken on the basis of the T1 �, �, and �
wavefunctions:

C
 � �
1
2

0 0

0
1
2

0

0 0 �1
	; C� � ��

�3
2

0 0

0
�3
2

0

0 0 0
	.

(A2.2)
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Q
 and Q� are the higher and lower symmetric
components of the e-vibration, which distorts the
tetrahedron into D2d and D2 geometries, respec-
tively. If we restrict ourselves to distortions of the
Q
 type and define Q
 as being positive for tetrago-
nal compression, Eq. (A2.1) simplifies to Eq. (A2.3)
for the nondegenerate ground state (3A2 in D2d) and
to Eq. (A2.4) for the degenerate higher energy state
(3E). Minimization of Eq. (A2.3)

3A2 : E	T1, �
 � 	1/ 2
 KeQ

2 � VeQ


(A2.3)

3E : E	T1, �, �
 � 	1/ 2
 KeQ

2 � 	1/ 2
VeQ


(A2.4)

with respect to Q
 yields the equilibrium geometry
Q°
 and the Jahn–Teller stabilization energy EJT:

Q°
 � Ve/Ke (A2.5)

EJT � �	1/2
Ve
2/Ke. (A2.6)

If we take 
 (in °) to be the angle between the S4 axis
and the TM–ligand bond (for the tetrahedron we
have 
Td

� 54.73°) Q°
 (in radians � Å) can be calcu-
lated from Eq. (A2.7):

Q
 � R	
° � 
Td
	�/180
. (A2.7)

In tetrahedral NiX4
2� complexes, the 3T1 wave func-

tion �(3T1) is given by:

�	3T1
 � c1 �	3T1, e4t2
4
 � c2 �	3T1, e3t2

5
,

(A2.8)

where c1 and c2 (Table A2.1) are given by the
ground state eigenvector diagonalizing the matrix

3T1	e4t2
4
 3T1	e3t2

5


� 0 6B
6B 9B � 10 Dq�. (A2.9)

The 3T1(e4t2
4) and 3T1(e3t2

5) states before the mix-
ing are described by single determinants and
their equilibrium geometries (elongation, Table I
and compression, Table A2.1) and energies EJT
can be calculated from separate DFT geometry
optimizations to yield corresponding parameters
Ke and Ve [via Eqs. (A2.5) and (A2.6)]. Let us
denote these parameters by K�e, V�e, and K �e, V �e,
respectively. Then Ke and Ve after mixing are
given by:

Ke � c1
2K�e � c2

2K �e (A2.10)

Ve � c1
2V�e � c2

2V �e. (A2.11)

Substitution into Eq. (A2.5) yields the equilibrium
distortion Q°
 and using Eq. (A2.7) we get the equi-
librium angle 
°. This is given in Table I. Parameter
values summarizing the logical steps of this proce-
dure are listed in Table A2.1.

TABLE A2.1 __________________________________________________________________________________________
Mixing coefficients c1 and c2 of 3T1(e4t2

4) and 3T1(e3t2
5) in the 3T1 ground-state function, DFT optimized angles

��° � �° � �Td
and EJT values for 3T1(e3t2

5), force field constants, and vibronic coupling parameters K�e, V�e, K�e,
V�e, and Ke, Ve of 3T1(e3t2

5), 3T1(e4t2
4) and the 3T1 ground state (taking mixing into account) for NiX4

2� (XAF�,
Cl�, Br�, I�). *

Species c1 c2 �
 EJT K�e V�e K�e V�e Ke Ve

NiF4
2� �0.944 0.330 34.4 �8655 12792 14883 22234 �6049 21206 �3770

NiCl4
2� �0.953 0.303 15.5 �2599 13721 8447 10549 �2334 10840 �1344

NiBr4
2� �0.955 0.297 13.3 �1907 11948 6752 7686 �1747 8064 �998

NiI4
2� �0.956 0.292 10.1 �1247 11517 5360 2122 �453 2921 43

* For values of �
° and EJT for the 3T1(e4t2
4) DFT optimized single determinant energy, see the entries in square brackets in Table I.

Ke, Ve, and EJT parameters have been expressed in cm�1/Å2, cm�1/Å, and cm�1, respectively, �
 in °.
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