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ABSTRACT: Expressions for analyzing small-angle scattering data from semidilute
solutions of polymers in a good solvent over a broad range of scattering vectors are
examined. Three different scattering function expressions are derived from Monte
Carlo simulations. The expressions are similar to those of polymer reference interaction
site models, with a scattering-vector-dependent direct correlation function. In the most
advanced model, the screening of excluded-volume interactions beyond the overlap
concentration is taken into account. Two simpler expressions, in which the screening of
excluded-volume interactions is not included, are also applied. The three models are
tested against small-angle neutron scattering (SANS) experiments on polystyrene in
deuterated toluene for a broad range of molar masses and concentrations over a wide
range of scattering vectors. For each model, simultaneous fits to all the measured
scattering data are performed. The most advanced model excellently reproduces the
SANS data over the full range of the parameters. The two simpler models fit the data
almost equally well. On the basis of an extensive study, an optimal fitting strategy can
be recommended for experimentalists, who want to analyze small-angle scattering data
from polymers at any concentration. For data sets that do not contain data on the
single-chain scattering function, the simpler model is recommended; it uses a direct
correlation function equal to the form factor of an infinitely thin rod, which is indepen-
dent of the concentration and molar mass. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B:
Polym Phys 42: 3081-3094, 2004
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INTRODUCTION

The properties of dilute and semidilute polymer
solutions have fascinated scientists for a long
time because of the universal behavior that they
exhibit, which is independent of the chemical de-
tails of the polymer—solvent systems under con-
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sideration. The behavior and properties are
mainly determined by the connectivity and flexi-
bility of the polymer chains and by the presence
or absence of excluded-volume interactions. Al-
though the solution properties are universal,
their detailed and quantitative theoretical de-
scription remains a real challenge, and many dif-
ferent approaches have been employed. Among
these are scaling theory,! which only provides
qualitative insight. Another approach is to use
renormalization group theory (RGT), which is
able to give a quantitative description.?~* The last



of the main approaches to be mentioned in this
context is the use of simulation techniques.® With
this approach, data and results for well-defined
models and systems can be generated, and the
results can be compared with experimental data
or used for testing various theoretical approaches.

The main experimental approach for obtaining
structural and thermodynamic results for dilute
and semidilute polymer systems is the use of scat-
tering techniques.® These techniques give direct
access to the ensemble averages of the character-
istic length scales and to the interparticle inter-
actions through either the virial coefficients or
the osmotic compressibility. For semidilute poly-
mer solutions, the scattering function [S(q)] at a
zero scattering vector modulus (¢ = 0) is inversely
proportional to the osmotic compressibility
[dII(c)/dc] of the system, whereas the correlation
length £ can be obtained from the initial ¢ depen-
dence of S(g) =~ S(0) [1 — &¢?], where S(0) is the
forward scattering. At very low concentrations, &
is given by the size of a single chain as £ = Rg/\/g,
where R, is the radius of gyration of the polymer
chains. S(0) is related to the second virial coeffi-
cient (Ay) by S(0) ~ 1 — 2cMA,, where c is the
polymer concentration and M is the polymer mo-
lar mass. At higher concentrations, above the
overlap concentration of the chains (¢*), £ is the
correlation length of the transient network of in-
terpenetrating chains. Both dIl(c)/dc and & can be
obtained by light scattering (LS), small-angle
neutron scattering (SANS), or small-angle X-ray
scattering measurements, depending on the mo-
lar weight of the polymer and the concentration.
In this study, we go beyond an analysis of the
low-g¢ data and examine the full dependence of
S(q) on q. The scattering function expressions are
derived from Monte Carlo simulations.”® They
are related to the expressions from the random-
phase approximation (RPA)'°'2 and the more
advanced polymer reference interaction site
model (PRISM).!2 The various model expressions
are tested against SANS data from polystyrene
(PS) in the good solvent toluene.

There are numerous reports in the literature
on previous studies of PS in good solvents. In this
context, we only summarize the publications that
are most important with respect to the work pre-
sented here. PS in good and 6 solvents was inves-
tigated by Yamamato et al.,’* Fukuda et al.,’® and
Miyaki et al.'® with LS. They provided scaling
reactions for R, and A,, which in some studies
have also been related to the interpenetration
function. Huber et al.'” employed LS in combina-
tion with SANS for the same purpose. Semidilute

solutions and the associated scaling behavior
with an emphasis on ¢ were investigated by Cot-
ton et al.,'® Daoud et al.,'® Wiltzius et al.,'®
Koberstein et al.,?° and Brown et al.?2! Most of
these studies were done with SANS. Brown et al.
further measured relatively high-concentration
systems and found a crossover into a dense re-
gime where the scaling breaks down. Daoud et
al.’® and King et al.?? established with SANS and
labeling techniques and with a determination of
R, as a function of the concentration the screen-
ing of excluded-volume effects in the semidilute
regime, as predicted by Flory.?® Finally, Brown
and Nicolai?* in 1990 have published an extensive
review on scattering studies of semidilute solu-
tions of PS.

The expressions for the scattering functions
used in this work are derived from Monte Carlo
simulations. In the past, simulation techniques
have been widely used for supporting the results
from scattering experiments.® The simulation
techniques are ideally suited for systems with
many degrees of freedom to obtain statistical av-
erages of various parameters and scattering func-
tions. There have been attempts to do full atom-
istic simulations on polymer systems®® with the
aim of describing the properties down to the mo-
lecular and atomic levels. However, such simula-
tions are not feasible for semidilute solutions of
macromolecules because of the gigantic number of
atoms and interactions that have to be consid-
ered. More useful are mesoscale models, such as
the united-atom model for polyethylene,?® which
takes chain rigidity and the torsion angle poten-
tial into account. The model uses effective inter-
actions without specifically considering the sol-
vent molecules. Such models allow single-chain
and multiple-chain systems to be investigated. To
reproduce or describe typical small-angle scatting
data, such relatively realistic and detailed models
are required. The models have to describe semi-
flexibility and excluded-volume interactions cor-
rectly and should allow the finite cross section of
the chains to be taken into account when the
scattering functions are calculated for comparison
with the experimental data. We have previously
shown that a mesoscale model”™ provides a good
description of the properties of PS with almost
atomic resolution. The model consists of semiflex-
ible chains?’” with excluded-volume interactions
generated by hard spheres placed along the chain.
It is somewhat more coarse-grained than the
united atom because it considers neither the tor-
sion potentials nor the phenyl side groups of PS.



However, it is simple enough to allow quite large
systems to be investigated.

The model was originally developed for study-
ing wormlike micelles,?®?° and most of the appli-
cations published in the literature are related to
this type of system. The model has also been used
in various modified forms for studying electro-
static interactions in charged wormlike micelles,
so-called equilibrium polyelectrolyte chains.?9 32

A brief account of some of the results in this
article has been published previously.® In the pre-
vious article, the expressions for the scattering
functions derived from a Monte Carlo simulations
are not given, and only one model is applied for
fitting the concentration series from only one mo-
lecular weight of PS. In this article, we describe
the details of three models of different complexi-
ties, which are similarly derived from Monte
Carlo simulations. The full expressions are given
because this will allow other investigators to use
them in the future. The applicability of the three
models is investigated using them for a large
SANS data set recorded for six different molar
masses of PS. In contrast to the previous publica-
tion, this allows the fitting results to be investi-
gated as a function of the molar mass, and this
makes it possible to obtain a much more detailed
cross-check of the consistency of the models and
the data.

The article is organized as follows. In the next
section, we describe the simulations and the
model. In the third section, the expressions for
the scattering function of the models are given.
The experimental conditions are summarized in
the fourth section. The results from a scaling
analysis, a virial analysis, and the models of S(q)
are described in the fifth section, whereas a dis-
cussion and a summary of the work are given in
the final section.

SIMULATIONS

The model expressions presented in the next sec-
tion are based on an extensive Monte Carlo sim-
ulation study of the scattering functions of semi-
flexible chains interacting with a hard-sphere po-
tential. The polymer model has a fixed valence
angle (0) and free rotation around the bonds.”%27
The fixed valence angle 6 gives rise to the semi-
flexibility. Hard spheres are placed along the
chain to simulate the excluded volume of the poly-
mer. In the simulations, the chains have six-to-
eight spheres per statistical segment (Kuhn)
length (b), and the full multiple-chain system typ-

ically contains 10000-30000 spheres of radius
R/b = 0.1. The contour length of a chain is L
= Nl,, where N + 1 is the number of points/
spheres along the chain and [, is the distance
between them. b is related to 6 by b = [,(1 + cos
0)/(1 — cos 6). A box with periodic boundary con-
ditions has been used to reduce the influence of
the finite size of the system.

In the dilute region, pivot moves”?-3* have been
used for moving the chains, and the longest part
of a chain has been pivoted as this gives rise to
movements of the center of the mass. The pivot
moves are very effective at low concentrations but
become quite inefficient at higher concentrations.
Therefore, reptation (cut-and-paste) moves have
been used at higher concentrations. The total
number of moves in a simulation is typically
10%-10".

The scattering functions have been calculated
as described in refs. 37 and 38 and sampled to-
gether with the square of R,. Both the single-
chain [P.(q)] and full-system [S(q)] scattering
functions have been sampled. Standard errors for
S(q), P.(q), and R, have been determined by
block analysis.

Simulations have been performed as a function
of the chain length and concentration. The chain
lengths are L/b = 3.2, 10.88, 30, 90, and 270. For
PS, b is about 20 A,39%° the projected contour
length of a monomer (Ipg) is about 2.50 A, and the
molar mass per monomer (Mpg) is 104. From
these parameters, the corresponding molar mass
can be estimated as M = Mpg(L/b)b/lpg. The L
values thus correspond to molar masses of about
2700, 9100, 25,000, 75,000 and 225,000. For each
value of L/b, the concentration has been varied
from very dilute concentrations well below ¢* up
to concentrations with volume fractions of 7
= 0.1-0.25.*1 For PS, the highest volume frac-
tions are close to the melt density.*?

MODELING

In this section, we present the model expressions
that are to be tested by being fitted to an exten-
sive data set from PS in toluene. A very detailed
comparison between the simulations and experi-
ments is possible through a comparison of the full
g dependence of S(g). As the simulations and ex-
periments have not been performed with exactly
the same concentrations and contour lengths, a
comparison requires an interpolation of the sim-
ulated functions. The derivation of such expres-



sions also allows them to be used by others in the
future.*®

Full Model Based on Simulations

The agreement of the sampled scattering func-
tions with the classical RPA results!®-123%

P (q)

Srealq) = 1+ BP.q) (1)

was initially investigated. In eq 1, P..(q) is the
single-chain form factor. B is related to the
strength of the interaction potential; however, to
obtain agreement for S(0), B must fulfill B
= 8(0)"! — 1, and we can use the RGT results for
estimating B. P, (q) varies with the concentration
because of the screening of excluded-volume ef-
fects and the corresponding variation of R, at
high concentrations.

The function Sgps(q) is not able to describe the
simulation data, and large deviations are found,
particularly for large concentrations at high q. An
alternative approach is to use the polymer version
of the integral equation theory of liquids**
(PRISM), which in the equivalent site approxima-
tion gives'?

P.(q)

Sprism(@) = 1+ Belq)Pulq) (2)

where c(q) is the normalized Fourier transform of
the direct correlation function for the spheres on
the chains.

The various dependencies and functions enter-
ing eq 2 have been analyzed in detail, and a series
of empirical parameterizations have been ob-
tained. These are summarized in the following.

The expression for P.(q) is based on the pa-
rameterization (method 1) of Pedersen et al.”
However, it is also necessary to included the
screening of the excluded-volume interactions at
high concentrations. R, at low concentrations is

R2 = R%,a(L/b)? (3)

where R, , is the radius of gyration of ideal semi-
flexible chains:*®

, Lb b? 1 1 1 oL /b
©0=6 4 arp syl P2

4)

a(x) is the expansion coefficient originating from
excluded-volume interactions:

a(®)? = [1 + (x/xy)® + (x/x,)°]% (5)

The values x, = 3.12, x4 = 8.67, and € = 0.170
have been determined from single-chain simula-
tions.”

The screening of excluded-volume interactions
at high concentrations results in a rescaling of R,

R,= SR, (6)
where Sy is a concentration-dependent scale fac-
tor less than or equal to unity, so that Rg is always
smaller than or equal to R,. The screening of
excluded-volume interactions at high concentra-
tions depends on the reduced concentration (X),
which is approximately c/c*. X is chosen in agree-
ment with the RGT calculation:?

16

X = ?AzCM (7)

where c is the concentration (g/mL). The following
empirical expressions can describe Sg_of R,:

_ [(Cr)*™ + (Bg)“T"™

SRg - [1 + (CRg)oq]l/oq (8)
where
a(x)
Crn == P ©
and
BRg =[1+ Xa)"] (10)

In these expressions, the following parameters
are determined via fitting to the simulated scat-
tering functions: «; = 38.72, B; = 0.01381, v,
= 0.995, and y, = —0.1156. The parameter a,
relates the reduced polymer concentration calcu-
lated from the polymer concentration of the sam-
ples in the experiment to the reduced concentra-
tion calculated volume fraction in the simula-
tions. Therefore, we have taken it as a variable
parameter and optimized it during the fitting to
the scattering data. In this way, it is possible in
the fit to have the screening of the excluded-vol-
ume interactions occurring correctly with respect



to the reduced concentration for the polymer sys-
tem.

P.(g) has been sampled in the simulations,
and the full ¢ dependence can be described by an
empirical expression similar to the one used in
ref. 8:

Psc(q) = [Pchain(q)(]- - X(qa La b))
+ ProdX(Q7 L7 b)]r(Q7 Ly b) (11)

where P ,;,(q) is the scattering function of flexi-
ble chains, P, 4(q) is the scattering function of an
infinitely thin rod, and x(q,L,b) and y(q,L,b) are
crossover functions. Expressions for these two
functions can be found in ref. 8. In the high-
concentration region, in which the excluded-vol-
ume interactions are strongly screened, P,.;n(q)
is steeper than the Debye function for Gaussian
chains (as discussed later) in the region in which
the function crosses over to power-law behavior.
Therefore, the following expression has been
used:

Pchain(Q) = MAX{PAmp(q)7 PGauss(q)a Pexv(q)} (12)

In these equations, Py,,,(q) is equal to (1 — exp
Y)Y, where Y = 2R2q%3, Pg,..(q) is equal to
2exp Z — 1 + Z/Z? where Z = R’ is the
scattering function of Gaussian chains, and
P_..(q) is the scattering function of self-avoiding
chains with R,.

c(q@), which also has a concentration depen-
dence, can be described by the rod scattering func-
tion:

C(CI) = Prod(q7 Rg@) (13)

The ¢ dependence is given by the following pa-
rameter:

R;(q) = [SIRZZ exp(—(X, + 3)%/2) + 8,]b
for X, = -3,

R(? = [8,R? + 8,]b elsewhere (14)

In these equations, X, is equal to log(a,c), where
ay is again a parameter that relates the polymer
concentration in the experiment to the volume
fraction in the simulation. It has been taken as a
fitting parameter and obtained via fitting to the
SANS data. The function eq 14 approaches the
(length-independent) hard-sphere fluid value at a

high concentration, and the parameter a, controls
the approach. The parameters are determined
from the fitting of the simulation results: §;
= 0.2368, 6, = 0.7340, and 85 = 0.155.

The parameter 3 in eq 2 can be described by a
function based on a result from RGT.>? We use

1
— (1 - UX2) log [1 + X, Ve ] X
X expl—(asce,)] (15)

where the first part of the expression is a modified
version of the RGT, in which the scaling from the
simulations is included. The last part of the ex-
pression describes the crossover to the high-con-
centration regime, in which the scaling breaks
down. In the expression, X; = Xe, is a reduced
concentration parameter.*® a; is the last param-
eter relating the polymer concentration in the
experiments to the volume fraction in the simu-
lations.*” It has been taken as a fitting parameter
and optimized via fitting to the SANS data. The
rest of the parameters have been determined via
fitting to the simulation results: e, = 2.565, €,
= 3.200, €5 = 1.050, and €, = 0.9087. ¢, gives the
scaling S(0) o ¢~ 172565 = =139 f41 yalues of ¢
large in comparison with c*.

The differential scattering cross section nor-
malized by the concentration is given by

do )
a0 (@) = MAp;,Sprism(@)Sxs(x) + B (16)

where Ap,, is the excess scattering length density
of PS in toluene per unit of mass of the polymer
and B is a constant accounting for residual inco-
herent background. The cross-section scattering
function is

9B,(qR) 2
i )} 17

st(x) = |:q.R

where B,(x) is a first-order Bessel function and R
is the cross-section radius.

Simpler Models

The parameterizations of the screening of excluded-
volume interactions in the single-chain scattering
functions lead to rather complicated expressions. In
experiments, the screening cannot be observed di-



rectly unless special labeling schemes are applied.
The RPA/PRISM expression can be used to explain
this. In full-system measurements at finite concen-
trations, the nominator and denominator of the
RPA/PRISM expression are approximately the
same at low g, at which the screening effects occur
in the single-chain scattering function. Thus, the
screening cannot be observed directly. We have,
therefore, attempted to use simply the single-chain
scattering functions of excluded-volume chains in
the PRISM expression. One further complicated
component of the full model is the concentration
and contour length dependence of c(q). We have
tested two alternative simpler approximations for
this function. The first model (I) is a simple corre-
lation hole model, which uses the following expres-

sion for ¢(g):*®

3[sin(q2Rys) — qg2Ryuscos(q2Rys) ]
(quHS)

c(q) = (18)

where Ryg is an effective hard-sphere radius. For
B, which is directly related to the forward scatter-
ing by S(0) = 1/(1+B), we use eq 15.

The second model (II) uses a direct correlation
function equal to the form factor of an infinitely
thin rod as done in the full model, but it takes R,
related to the interaction distance, to be indepen-
dent of the concentration and chain length. For g,
we again use eq 15.

EXPERIMENTAL

Full-system scattering functions have been deter-
mined experimentally by SANS measurements on
PS in a good solvent deuterated toluene (d-tolu-
ene). The polymers were standards from various
sources with low polydispersity indices (<1.1).
The M values were 3000, 13,000, 28,000, 68,000,
120,000, and 350,000 Da. d-Toluene with a degree
of deuteration higher than 99% was acquired
from Sigma. Samples with concentrations of 5, 10,
25, and 50 wt % were prepared gravimetrically
and left for a week. The samples with 50 wt % of
the 120,000 and 350,000 Da polymers were too
viscous to be transferred to the quartz cells used
for the SANS measurements, and they were,
therefore, not measured. Samples with lower con-
centrations (for the 350,000 Da polymer down to
0.05 wt %) were prepared by dilution.

The measurements were performed at the
SANS instrument at Risg Natlonal Laboratory>®
and covered ¢ = 0.004-0.5 A~! with a wave-

length resolution of 18% (full width at half-max-
imum). The sample—detector distances and neu-
tron wavelengths were, for the three settings
used, 10mand28A 30mand45A and 6.0 m
and 10.0 A. The samples were measured in stan-
dard Hellma quartz cells with a path length of
1-10 mm, which depended on the concentration
(0.0005-0.56 g/mL). The SANS data were con-
verted to an absolute scale with a 1-mm-thick
water sample as a secondary standard. In connec-
tion with the use of water for absolute calibration,
an empirical wavelength-dependent factor was
used. This factor takes into account multiple scat-
tering, neutron thermalization in the water, and
the wavelength dependence of the detector effi-
ciency.*® For the Risg SANS, the correction factor
of the detector was not determined experimen-
tally, and we used a factor based on literature
values. This led to significant uncertainty on the
absolute scale of the data. However, as this is just
a constant and is the same for all data, it has no
influence on the conclusions in this article.

We corrected minor concentration errors intro-
duced during the dilutions by scaling the data at
high g beyond the cross-section Guinier region.
An incoherent background of 0.287 cm ! ml/g
from PS was subtracted from all data sets.

RESULTS

The SANS data are shown in Figure 1. The data
for the different molar masses show qualitatively
similar behaviors. At the lowest concentrations,
the influence of the concentration is modest, and
the data approach the single-chain scattering
function. It behaves as ¢~ '®7 at intermediate g
values, and at higher g values, at which it is
expected to cross over to g !, the cross-section
scattering function sets in and results in a strong
decrease in the intensity.®4°

Scaling Analysis

To establish the scaling behavior of S(0) and ¢, we
have analyzed the simulated and measured full-
system scattering functions with the same ap-
proach. This also allows a first comparison be-
tween the simulations and experiments. S(0) and
¢£have been determined by the fitting of the Debye
expression for Gaussian chains®®

$(q) = SO Pgule) = 5(0) 2P Z 114

(19)
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Figure 1. S(q) for PS samples of different molecular weights. For M = 350,000, the ¢
values are, from bottom to top, 0.271, 0.102, 0.0539, 0.0270, 0.0103, 0.00329, 0.00251,
and 0.00102 g/mL. For M = 120,000, the ¢ values are, from bottom to top, 0.269, 0.108,
0.0539, 0.0283, 0.0109, 0.00523, 0.00206, and 0.000908 g/mL. For M = 68,000, the ¢
values are, from bottom to top, 0.562, 0.279, 0.114, 0.0552, 0.0279, 0.0111, 0.00548,
0.00279, and 0.00119 g/mL. For M = 28,000, the ¢ values are, from bottom to top, 0.517,
0.279, 0.162, 0.0808, 0.0542, 0.0269, 0.0107, 0.00536, and 0.00267 g/mL. For M
= 13,000, the ¢ values are, from bottom to top, 0.557, 0.277, 0.0897, 0.0545, 0.0276,
0.0112, and 0.00505 g/mL. For M = 3000, the ¢ values are, from bottom to top, 0.541,
0.271, 0.103, 0.0541, and 0.0253 g/mL. The curves are fit using a PRISM-type param-
eterization of Monte Carlo simulation results.
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Figure 2. Parameters £ and S(0) as functions of X: (a) £ for SANS of PS for M = (@)
3000, (W) 13,000, (A) 28,000, (¥) 68,000, (4) 120,000, and (@) 350,000; (b) S(0) for SANS
of PS for M = (@) 3000, (W) 13,000, (A) 28,000, (¥) 68,000, (4) 120,000, and (@) 350,000;
(c) & for the simulations for L/b = (@) 3.2, (H) 10.88, (A) 30, (¥) 90, and (4) 270; and (d)
S(0) for the simulations for L/b = (@) 3.2, (l) 10.88, (A) 30, (¥) 90, and (¢ ) 270. The full

curves are the RGT results of Schifer.

to the low-q portion of the data. This function
describes the data to higher ¢ values than a stan-
dard Onstein—Zernike (OZ) expression: S(q)
= 8(0)/(1 + £&¢?). In the Debye function, x is equal
to Rz,qz, but to obtain a correlation length in
agreement with the usual definition from the
Lorentzian, we set x equal to 3¢%g% The Debye
function has been fitted to the data with ¢¢ < 1.
The OZ expression corresponds to an exponen-
tially decaying correlation function and has tra-
ditionally been used because it is possible to de-
rive S(0) and ¢ from a plot of 1/S(g) versus g° by a
straight-line approximation. However, the Debye
expression takes into account the connectivity
and flexibility of the chain (although in an ap-
proximation without excluded-volume), and so it
gives a good fit to higher ¢ values and is conse-
quently easier to apply during fitting. The appli-
cability of the expression to lower g values is
important for SANS data, which are often diffi-
cult to obtain at low g values. The OZ and Debye
expressions give the same results when the fits
are limited to very low values of g.

4,57

To investigate the scaling, it is appropriate to
plot the parameters as a function of X = ac/c* =
(16/9)cA,M, where « is a constant of order unity.?
The scale factors for the concentration axis in the
SANS and simulation data have been determined
through the fitting of S(0) = 1/[1+8] with 8 from
eq 15 to the data. These scale factors from S(0)
have also been used for the ¢ data.

The simulation and SANS data for S(0) and &,
shown in Figure 2, are in very good agreement
and do display scaling. The results also agree well
with the RGT results of Schifer.* The results of
Schafer have been scaled so that the definition X
= (16/9)cA,M from ref. 2 is valid. In the plot, some
deviations from scaling can be observed at high
concentrations as the dense region is entered.?!

Virial Analysis

Before analyzing the full sets of data, we have
checked the consistency of the data sets for each
of the molar masses by making a Zimm/RPA-type
analysis of only the three lowest concentrations in



the low-q region. The following expression has
been used:

dl( ) — Scal PGauss(ng)
dQ VT P T4 (OMA,Pg(qR,)

(20)

where Sg..s(@R,) is the scattering function of
Gaussian chains with R,. Scale, A,, and R, are
fitting parameters. The Debye expression is here
again used because of its more realistic inclusion
of correlations within the polymer system in com-
parison with the usual Zimm expression, which is
similar to the OZ expression.

The scale factor fulfills Scale = MAp?, and
should thus scale linearly with M. A double loga-
rithmic plot is shown in Figure 3(a). The curve is
a fit with a straight line. The good agreement
confirms the expected linear dependence, which
gives confidence in the consistency of the data
sets. The scale factor follows: Scale = (0.001812
+ 0.000091)M cm ™! g/mL.

A value for the scale factor can be calculated
from the partial specific densities and the neutron
scattering lengths. For a PS density of 1.09 g/cm?®
51 and a number density of d-toluene molecules
calculated from the density of protonated toluene
of 0.867 g/cm® and the molar mass of protonated
toluene, we can obtain a contrast per gram of PS
of Ap,, = 3.84 X 10'° cm/g. When M of PS is used,
the scale factor is given by Scale = MApZ/N,
= 0.00246 M cm ! g/mL, where N, is Avogadro’s
number. There is a quite large deviation of about
30% between the observed and calculated scale
factors. We believe that this is associated with a
systematic error from the conversion of the data
to the absolute scale. Huber et al.'” in their SANS
and LS study found a disagreement in the masses
derived from the two types of experiments and
reported that the masses from SANS were 5-20%
lower than the corresponding masses from LS.
Therefore, we have to consider whether the dis-
crepancy could be due to a common error in the
SANS approach. Huber et al. ascribed the dis-
crepancy to an inaccuracy in the determination of
the contrast factor. In this study, we have used
the measured apparent specific volume of PS in
toluene® in our calculation of the contrast fac-
tors, and we have also checked the value with a
Paar DMA5000 density meter.’? Therefore, our
contrast factor should be correct with respect to
this factor. We note that Huber et al. did not
quote the partial specific density that they used in
their calculation of the contrast factor. The only
alternative explanation that we can suggest is the
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Figure 3. Results from Zimm-type fits of the low-q
portion of the data: (a) a scale factor with a linear fit
passing through (0,0), (b) R, with a power-law fit, and
(c) A, with a power-law fit.

possibility that inelastic effects influence the scat-
tering data and give a general reduction of the
measured intensity.



Table 1. Scaling Relations for R,

Relation Reference
R, = 0.143M°°%° A Yamamoto
et al.1*

R, = 0.1212 M°5™ A Miyaki

. et al.1®
R, = 0.152M°°%° A Fukuda

. et al.’®
R, = 0.125M°>%° A . Huber et al.'”
R, = (0.120 = 0.021)M°?%% = %916 A" This work

R, is shown in Figure 3(b). It displays a power-
law behavior:

R, = (0.120 + 0.021)M°53+0:016 A (21)

where M (as in the expressions later for R, L, and
A,) is measured in grams per mole. The exponent
in the equation is in agreement with the exclud-
ed-volume value (0.588) found by RGT*® and sim-
ulations.’* The behavior is in good agreement
with previous studies'**7 of PS in good solvents
(see Table 1).
A, is shown in Figure 3(c). The data follow:

A, =(0.020 = 0.025)M°36=016) mT, mol/g* (22)

It displays a somewhat noisy behavior, and the
errors for the prefactor and exponent are quite
large; however, the overall behavior is in agree-
ment with the literature'® 72 (see Table 2).

Having now established the consistency of the
data, we can continue and test the three models
presented in the third section for fitting the full
range of scattering vectors and concentrations of
the SANS data.

Full Model
We have fitted simultaneously all data sets for

the various concentrations and molar masses. For

Table 2. Scaling Relations for A,

each molar mass, an overall scale factor, a con-
tour length, a second virial coefficient, and a con-
stant to account for residual incoherent back-
ground have been fitted. For all molar weights, a
common Kuhn length b and scale factors a4, as,
and a; have been fitted. b is determined from the
g region in which the data cross over to ¢! and in
which the cross section scattering function be-
comes important. The adjustment of the contour
length influences only R, of the chains at infinite
dilution and thus allows this parameter to be
optimized.

The fits to the data are shown in Figure 1. The
fits are excellent with a reduced y* value of 7.5.
This means that the root-mean-square deviation
is only about 2.7 times the standard error for the
data from counting statistics. Most of the residu-
als are found at the highest concentration, and we
believe that they are due to an experimental ar-
tifact. The data at high concentrations display a
slight decrease with smaller scattering vectors.
We think that this is due to local saturation ef-
fects in the SANS detector due to the relatively
high count rates that exist even for a quartz cell
with a 1-mm path length. The detector is slightly
poorer at the center because of the higher count
rates (and possible associated deposits on the
wires) that this part of the detector usually expe-
riences for typical samples investigated with the
instrument.

bis 17.5 = 0.03 A, and the scale factors are a;
= 0.736 * 0.024, a, = 0.06831 = 0.00077, and aq
= 0.7075 £ 0.0014. We note that b is in good
agreement with the literature values.?>*° The
cross-section radius is R = 5.36 + 0.01 A.

a; is a scaling parameter for the reduced con-
centration and can be expected to be close to
unity, which it is. The variable X, = log(asc) in
the c¢(g) function is, when the simulation data are
parameterized, X, = log m, where 7 is the volume
fraction of the spheres on the model chains.
Therefore, the fit results in the relation 7
= 0.06831c, where c is the concentration (g/cm?).

Relation

Reference

0.0145M °2® mL mol/g®
5 = 0.0117M %262 mL mol/g?

5 = (0.020 + 0.025)M 036 = 016 ;m], mol/g?
5 = (0.00793 + 0.0026)M0-268 = 0.030) ], mol/g?

A
A
A, = 0.00436M °293 mL mol/g?
A
A

Fukuda et al.'®

Miyaki et al.'é/Brown and
Nicolai?*

Huber et al.'”

This work: Virial analysis

This work: Modeling




From the chain density in the melt with a mass
density of ¢ ~ 1.1 g/em®, we can estimate®® 7
= 0.154. This results in an expected value of a, of
0.14, which deviates somewhat from the deter-
mined value but has the correct order of magni-
tude. The parameter a5 also relates the volume
fraction in simulations to the concentrations in
the experiments. We should then expect this pa-
rameter to be similar in magnitude to a,, but it is
much larger. The crossover into the dense region
of S(0) is influenced by chemical details, which for
PS are related to the quite large phenyl side
groups. The influence of the side groups might be
smaller on c(g), and so a, is smaller than a.

The scale factors and the L and A, values are
plotted in Figure 4. All of these parameters dis-
play scaling behavior as a function of M. The
values of A, are much less noisy than the values
determined by the Zimm-type fits. We find the
following scaling relations:

Scale = (0.001627 = 0.000091)M cm ™' g/mL
(23)

L =(0.01906 = 0.00067)M A (24)

A, =(0.00793 = 0.0026)
X M(70.26810.030) Il'lL mol/gZ (25)

The scale factor again deviates significantly from
the expected value. As before, we believe that the
main reason for this is the uncertainty on the
absolute scale of the SANS data.

An expression for L can be derived from the
expected tetrahedral coordination of the carbon
backbone atoms and an expected carbon—carbon
distance of [ = 1.54 A. Using this value and con-
sidering the projection of the C—C bond on the
contour (cos 35.3°) we obtain L = 2/ cos 35.3°/Mpg
= 0.0241 M. The prefactor obtained from the fit is
thus about 20% smaller than expected, probably
because of a lower expansion of the chains in
comparison with the one predicted by the simula-
tion expression (eqs 3-5). In the expression for R,
L enters effectively as L% and so the smaller
prefactor only results in about 10% lower values
of R, than expected from the calculated prefactor.
The R, values calculated from the prefactor (eq
24) and b = 17.5 A are in good agreement with
those determined in the virial analysis. The rela-
tion for A, is in good agreement with the litera-
ture'®1724 (see Table 2).
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Figure 4. Results from the simultaneous fitting of
the full model to the SANS data: (a) a scale factor with
a linear fit passing through (0,0), (b) L with a linear fit
passing through (0,0), (c) and A, with a power-law fit.

Simpler Model with Hard-Sphere c(q)

The simpler model with a hard-sphere direct cor-
relation function, which is independent of the con-



tour length and concentration, gives a worse fit
than the full model. The agreement with the data
of the simpler model is x* = 11.5, corresponding to
a root-mean-square deviation of about 3.4 times
the standard error for the data from counting
statistics. However, this average deviation be-
tween the data and model is only 23% worse than
that for the full model, so it is still quite reason-
able. In fact, a plot of the fit to the data, as shown
in Figure 1, would be almost indistinguishable.
We note that most of the additional deviations are
for the high-concentration data, for which one is
most sensitive to the form of c(g).

bis 16.7 = 0.04 A, and a3 is 0.6919 = 0.0018. R
i8 5.39 = 0.01 A, and Ryqis 4.27 = 0.02 A, in good
agreement with R. The scale factors for the indi-
vidual molar masses, the contour lengths, and the
virial coefficients (not given) are in good agree-
ment with the values for the full model.

Simpler Model with Rod c(q)

The model with a rod form factor describing the
direct correlation function gives a better fit than
the model with the hard-sphere direct correlation
function. The agreement is x> = 9.5, which is
almost as good as that for the full model, which
has ¥*> = 7.5. The average deviation between the
model and data is thus only about 12% larger
than that for the full model. The better agreement
is due to the more correct description of the form
of the direct correlation function. This function
can be isolated from the simulation with the sam-
pled full-system and single-chain scattering func-
tions,® and it has been found to be in good agree-
ment with a rod form factor. In the simulation, it
has been found that the function has a significant
concentration and contour length dependence.
Despite these effects being neglected in the sim-
pler model, the agreement is very good.

bis 16.7 = 0.04 A, and a5 is 0.7586 = 0.0017. R
is 5.43 * 0.006 A, R;'? is 6.460 = 0.033 A. The
values for the scale factors for the various molar
masses, contour lengths, and second virial coeffi-
cients (not given) are in good agreement with
those of the full model.

CONCLUSIONS

This article focuses on the scattering functions of
semidilute solutions of polymers in a good sol-
vent. The aim has been to find model expressions
that can describe experimental scattering data
over a broad range of scattering vectors for a large

range of concentrations and polymer molar
masses. The expressions are based on results
from an extensive Monte Carlo simulation study
in a model with semiflexible chains interacting
with a hard-sphere potential. The expression for
the scattering function is similar to that of
PRISM. To fit the experimental data, we have
fully parameterized (and thus also interpolated)
the simulated scattering functions. The full pa-
rameterization for S(q) takes into account the
following effects, which can be observed in the
simulation results:

1. The volume fraction dependence of R, in the
calculation of P_.(q).

2. The deviations from the scaling of S(0) at
high volume fractions.

3. The volume fraction and chain length de-
pendence of ¢(q), which is described by a rod
form factor.

The parameterization reproduces both P.(q)
and S(q). Two alternative and simpler models in
which effects 1 and 3 are not taken into account
have also been fitted to the data. In the first
model, c(g) is taken as the form factor amplitude
of a sphere, and in the second, it is taken as the
form factor of an infinitely thin rod.

The models have been tested against SANS
data from PS in toluene. In turn, the three models
have been fitted to the SANS data through the
simultaneous fitting of all the data sets for differ-
ent molar masses and concentrations. The full
model derived from the Monte Carlo simulations
provides excellent agreement with the measured
data. The determined Kuhn lengths, the contour
lengths, and second virial coefficients are in very
good agreement with the values and mass depen-
dencies reported in the literature. The simpler
model with a hard-sphere direct correlation func-
tion provides somewhat poorer, but still reason-
able, fits to the data. The model with a direct
correlation function equal to the form factor of an
infinitely thin rod provides fits to the SANS data
of almost the same quality as that of the full
model. Because of the simplicity of the model, we
recommend using this model for data for which
the single-chain scattering functions are not
available (which is usually the case). There are
also several examples in the literature of applica-
tions of the model to semidilute solutions of
wormlike micelles,?829:5556 wwhich basically be-
have as polymers.

In addition to the modeling, the scaling behav-
ior of S(0) and ¢ from the SANS data and the



simulation data has been checked. These two pa-
rameters, both from SANS and simulations, show
a universal behavior, with some deviations from
scaling when a high-concentration regime is en-
tered. The results are in excellent agreement with
the RGT predictions. The low-concentration be-
havior of the SANS data has been further inves-
tigated with a virial analysis. The results from
this analysis demonstrate, as expected, excluded-
volume scaling of R, with the molar mass. The
results are in good agreement with the literature.
The second virial coefficient has also been deter-
mined in the virial analysis, but the data are
quite noisy. The scaling behavior of the parame-
ters obtained by the full-scale modeling has also
been investigated. The scale factor, the contour
length, and the second virial coefficient all display
the expected behavior with the molar mass of PS.

This work has demonstrated that a mesoscale
model with semiflexible chains and an effective
excluded-volume interaction is able to describe
the observed static properties of PS in toluene.
Not only are the osmotic compressibility [dI1(c)/
dex S(0) '] and ¢ reproduced, but the full g de-
pendence of the scattering functions is repro-
duced as well. The SANS data extend to g«
= 0.5 A™!, which is quite high for a SANS exper-
iment, and the data cover about 2 decades on the
length scale. Therefore, the modeling gives a rel-
atively high-resolution interpretation of the data.
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