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Abstract

A model is presented of competition between sensory axons for trophic molecules (e.g. a neurotrophin

such as NGF), produced in a region of skin small enough to permit their free diffusion throughout it; e.g., a

touch dome, or a vibrissal follicle hair sinus. The variables specified are the number of high affinity trophic

factor receptors per axon terminal and the concentration of trophic factor in the extracellular space. Pre-

vious models of this class predicted the loss of all the axons innervating the region except the one requiring

least trophic factor for its maintenance, even with high rates of trophic factor production. In the present

model, we have imposed upper limits to axonal growth, thereby introducing new equilibria, and we show
by a global analysis using LaSalle�s theorem, and also by local analysis, that several axons can then coexist

if the rate of production of trophic molecules is sufficiently high.
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1. Introduction

Throughout the nervous system, competition between developing axons is a major determinant
of how they share their target territory between them. It strongly influences which of their parent
cell bodies will survive the acute phase of massive cell death that eliminates 30–70% of the neurons
in most neuronal populations while connections are being formed [1], and even after the period of
neuronal death axons continue to compete. Even in adults, section of a sensory nerve is followed
by the ingrowth of axons from adjacent nerves into the denervated territory, presumably due to
the elimination of some kind of competitive or repulsive influence that had been exerted by the
nerve before it was sectioned. Both during and after the neuronal death, these interaxonal inter-
actions are believed to be due largely to competition for �neurotrophic� (or simply �trophic�) mol-
ecules produced in the axonal target territory. This paper is concerned with the competition
between sensory axons during both periods –– during and after neuronal death.

1.1. Interaxonal competition as a determinant of neuronal death in sensory ganglia

The classic interpretation, which we shall call the competitive matching hypothesis, is that neur-
onal death is regulated by competition between neurons for a trophic factor produced in their ax-
onal target territory and that it serves to match the number of neurons to the �size� (or trophic
factor producing capacity) of the target [1,2]. Whilst this view is too simple to account for the
complexity of events in the central nervous system, where electrical activity and the receipt of aff-
erents strongly influence neuronal survival [3–5], it is widely accepted for sensory ganglia for the
following reasons. First, although axial level differences in size of spinal ganglia are not purely the
result of neuronal death [8], there is less of it at the brachial and lumbar levels (which innervate
the limbs) [9]. Second, enlarging the periphery by means of transplantation reduces neuronal
death in sensory ganglia [2,10–12]. Third, when a few ganglia are ablated or are prevented from
developing by partial lesions of the neural crest, the adjacent ganglia exhibit hypertrophy and in-
creased neuronal numbers, presumably because of reduced competition between the ganglia
[13,14]. Fourth, even the developing sensory neurons that normally survive die if deprived of
an essential trophic factor during the cell death period. For many sensory neurons including those
expressing substance-P the trophic factor is NGF, but some classes of sensory neurons depend on
other members of the NGF family (called �neurotrophins�), notably BDNF and NT-3 [15–20], or
members of other protein families [21]. Fifth, NGF-dependent sensory neurons obtain their NGF
exclusively from their target territory, where it is synthesized, and remove it by retrograde trans-
port in sufficiently large quantities to greatly deplete its concentration in the target [22,23]. This
provides a possible basis for competition, as is illustrated by the fact that removing the sympa-
thetic innervation of a region can lead to an almost threefold increase in the level of NGF in
the sensory ganglia innervating it [24]. Sixth, raising the concentration of NGF (or other neurot-
rophins) in the axonal target region above normal levels reduces neuronal death, causing gangl-
ionic hypertrophy [6,7]. Most such experiments involved the systemic administration of exogenous
trophic factor, but Albers et al. [25,26] showed that transgenic mice overexpressing NGF in the
epidermis (but not elsewhere) were subject to greatly reduced death of sensory ganglion neurons,
and a similar approach has subsequently been used to show reduced ganglion neuron death fol-
lowing cutaneous overexpression of NT-3 [19] or BDNF [18].

R. Kohli et al. / Mathematical Biosciences 191 (2004) 207–225



1.2. Competition between sensory axons without neuronal death

When the neuronal death period has ended, the sensory axons continue to compete for trophic
molecules. This phase of competition has been studied less extensively than the neuronal death
phase, but the occurrence of some kind of competition, even in adults, is implied by the classical
phenomenon of collateral sprouting, in which denervation of a skin territory by section of a sen-
sory nerve leads to the outgrowth of new axonal branches (mainly from C-fibers) from adjacent
nerves into the denervated territory [27,28]. Moreover, NGF continues to be expressed in the skin
of adult rodents [29], depletion or inactivation of NGF prevents the collateral sprouting phenom-
enon, and intradermal injections of purified NGF increased the sprouting and were even able to
evoke sprouting de novo in normally innervated skin [28,30].

2. Choice of system to model and approach

Interaxonal competition is believed to occur throughout the nervous system, but we choose to
focus on the competition between sensory axons for peripheral neurotrophins because it is partic-
ularly well established, and because it is free from many of the complications that make compe-
tition in other systems difficult to analyse. Since sensory neurons do not receive synapses, their
survival is not influenced by the complicating factor of afferent control. In the case of motoneu-
rons, there is evidence against competition (at least, in the straightforward sense), because in Xen-
opus frogs reared with a single hindlimb innervated by both sides of the spinal cord, an almost
normal number of motoneurons can survive on both sides [31]. However, in the very same exper-
imental animals, the total number of sensory neurons surviving on both sides approximates the
number on one side in normal frogs [32], as the competition hypothesis would predict. Another
complication in the case of virtually all neurons except sensory neurons is that their axonal com-
petition is strongly influenced by electrical activity, possibly involving activity-mediated modula-
tion of the synthesis and release by the target cells of several different trophic factors [33]. In
contrast, NGF-production in the skin is independent of the innervating axons and of their elec-
trical activity [34,35].

2.1. Choice to model competition for a single trophic factor in a small region of skin

At least five different trophic factors––the neurotrophins NGF, BDNF and NT-3 and NT-4;
and glial cell line-derived neurotrophic factor (GDNF)––are expressed in the skin and can medi-
ate the survival of sensory neurons [21,23,36,37]. Each of these trophic factors normally occurs in
the extracellular space as a homodimer, and binds to low and high affinity receptors [38]. In the
case of the neurotrophins, each binds to the same low affinity receptor (whose identity as the p75
neurotrophin receptor is currently controversial––[39]), but almost specifically to a single high
affinity receptor that is a member of the trk family (NGF to trkA (or trk), BDNF to trkB,
NT-3 to trkC although also to trkA and trkB with lower affinity, NT-4 to trkB) [40]. At any given
moment most sensory neurons depend on only a single trophic factor, and while some neurons
switch their dependency, for example from BDNF or NT-3 to NGF [36] or from NGF to GDNF
[41], at least 40% depend exclusively on NGF [42]. Mouse strains lacking a particular trophic
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factor or its corresponding high affinity receptor lose the corresponding population of sensory
neurons [42].

We therefore propose a model involving competition between sensory axons for a single trophic
factor. It could in principle be applied to any of the four neurotrophins mentioned here, or to
GDNF, but to simplify discussion we shall assume it to be a neurotrophin, and in some cases
we shall focus specifically on NGF. Since it is not our present purpose to model the spatial aspects
of axonal competition, we envisage the competition as occurring within a region of skin suffi-
ciently small to permit free diffusion of neurotrophin throughout it, leading to a relatively uniform
spatial distribution of the trophic molecules. Such a region could be a touch-dome (also called
�haarscheibe�) or a vibrissal follicle hair sinus. Touch domes are heavily innervated sensory recep-
tor structures, about 50 lm across, and innervated generally by a small number of axons, e.g. 1–3
in the cheek pouch mucosa of young adult hamsters [43]. The axons terminate on Merkel cells.
Touch domes are difficult to identify during the first days of interaxonal competition, which
occurs throughout the period of naturally occurring neuronal death (last week of embryonic life
in mouse trigeminal ganglion––[44] and continues, without further neuronal death, into the first
few weeks of the postnatal period.

Touch domes become clearly recognizable (in skin from the flank and back of mice) at about
embryonic day 17 [45]. In transgenic mice overexpressing NT-3 in the skin, the innervation density
of touch domes is greatly enhanced, apparently through reduced interaxonal competition for
NT-3 [19].

Vibrissal follicle hair sinuses are spindle-shaped structures, about 500 lm in diameter, contain-
ing a vibrissal follicle surrounded by a mesenchymal sheath and embedded in a vascular sinus. The
follicles are heavily innervated and express NGF; and cutaneous overexpression of NGF increases
their innervation density [46].

2.2. Modeling axonal competition as a determinant of neuronal death

The competition model developed here finds its roots in [66] and is a modification of the one
given in [47]. While our basic model relates to competition between axons, it is directly relevant
to neuronal death, and in particular to the competitive matching hypothesis, which has never been
formalized in an explicit model. Any such model must incorporate the notion that the neurons
that die are not inherently maladapted, but lose in competition between almost-equals. The ques-
tion arises, then, as to how minor differences between axons could be used to select for the survival
of just the right number of neurons for a given target. In one class of models, involving what we
shall call one-stage competition, selection would occur directly, without any prior change in com-
petitive capacity. For example, a region of skin with rate of neurotrophin production Q might be
innervated by sensory neurons each requiring for survival a rate U of neurotrophin-uptake.
Clearly, the maximum number that could survive would be N ¼ Q

U, independently of the initial
number. At first sight, this model may seem to provide an ideal mechanism for making neuron
survival proportional to peripheral NT production, but there are at least three serious problems
with it. First, there is abundant evidence that the rate of uptake is not constant, but varies with
axonal growth or regression under the influence of trophic molecules. Second, their production
would have to be preprogrammed with inordinate precision; the slightest deviation from the �cor-
rect� level would greatly affect the number of surviving neurons. Third, the dynamics of the model
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are problematic. Although N ¼ Q
U sets an obvious maximum to the number of neurons that could

survive, it is by no means clear that this would be the actual number. When trophic factor is re-
moved completely from neurons in culture, there is a time delay of more than 12 h before neur-
onal death occurs. During such a delay in vivo, excessive competition would bring the uptake of
most or all neurons below the critical level, causing the final number to be much lower than
N ¼ Q

U.
Because of these problems, we postulate a model of neuronal death due to two-stage competi-

tion. The idea is that an initial stage of competition between axons would affect not cell death but
the capacity to take up trophic factor, leading ultimately to major differences between the uptake
rates of different axons, even if the rates were initially similar. In the second stage, neurons would
indeed die, not because their uptake was slightly lower than that of the survivors, but because
their axonal arbors had so diminished that they were receiving almost no trophic factor at all.

Our previous model of interaxonal competition, which incorporates these features, solves the
above problems [47]. But it introduces a new one: when competition modifies the competitive
capacity, the fittest axon becomes so strong that it eliminates all the others. This competitive
exclusion appears indeed to occur in certain situations, such as the elimination of polyneuronal
innervation of muscle fibers during development [49,50] or the mosaic organization of skin inner-
vation by rapidly adapting terminals in salamanders [51], but not in others such as the overlapping
arrangement of axonal fields in the skin of frogs [52]. Moreover, this earlier model predicted that
competitive exclusion would still occur even with very high levels of trophic factor production,
implying that the total number of axons innervating a region would not be increased, but exper-
iments involving the overexpression of neurotrophins in the skin have shown that innervation
density does increase in the skin in general [46], and in touch domes in particular [19].

We here avoid competitive exclusion by setting a limit to the growth of each axon, which pro-
foundly complicates the behavior of the model, introducing new equilibria corresponding to the
persistence of multiple innervation when the production of trophic factor is sufficiently high. We
adopt a mathematical rather than a computational approach, partly because there is currently
insufficient data for us to be able to specify the precise parameters and functions that would be
needed for computer simulations. The generality of our mathematical analysis avoids this diffi-
culty. The conclusions of this paper were briefly reported in a conference proceedings [53].

3. Development of a mathematical model

3.1. The role of neurotrophin receptors

Neurotrophins are not merely survival factors, but have immediate positive effects on the
growth and maintenance of axon terminals [54–56]. For simplicity, we here focus on NGF, but
the same principles apply to the other neurotrophins.

Receptor binding studies have indicated the equilibrium dissociation constants of the specific
high affinity NGF receptor (KdH � 10�11 M) and of the low affinity receptor (KdL � 10�9 M)
[57,40]. Cultured chick spinal ganglion cells have 1000–3000 high affinity NGF receptors per cell
and 23000–45000 low affinity receptors [58]. The binding of NGF to the high affinity receptor
dimerizes trkA and activates the tyrosine kinase activity of each trkA, leading to a chain of second
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messenger reactions in the terminal. Binding to the low affinity receptor can also initiate second
messenger reactions, and in many cases these promote neuronal death rather than preventing it
[38], but in the skin during the phase of competition between sensory axons the NGF concentra-
tions appear to be only of the order of 10�12 M [23], which is probably too low to significantly
affect signaling from the low affinity receptor (but see Section 5). We shall therefore assume that
the growth promoting effect of NGF is a function of the proportion of bound high affinity
receptors.

3.2. Equations for binding of NGF

We thus consider the competition between n axons (or axonal branches, or terminals) for NGF
in a touch dome (or similar small region) where the concentration S(t) of NGF in the extracellular
space is sufficiently uniform for us to be able to ignore any spatial variation. Then, the propor-
tions of bound high and low affinity receptors, respectively PH(S) and PL(S), can conventionally
be expressed by the Michaelis-Menten (or Langmuir) equation as PHðSÞ ¼ S

KdHþS and

PLðSÞ ¼ S
KdLþS, KdH and KdL being the equilibrium dissociation constants of the high and low affin-

ity receptors [59]. This assumes the internalization of NGF by endocytosis to be negligible in com-
parison to its constant exchange between the bound compartment and the extracellular space,
which is probably true for NGF [58,60]. But even if internalization were rapid, we can show that
the form of the equation would not change. In unit time, SK1(1 � P(S)) molecules will be bound,
K�1P(S) molecules will dissociate, and hP(S) will be internalized, where K1 and K�1 are the rate
constants of association and dissociation and h is also a constant. Hence,
(K�1 + h)P(S) = SK1(1 � P(S)) and PðSÞ ¼ S

SþK�1þh
K1

. Thus Kd ¼ K�1

K1
would merely have to be re-

placed by K�1þh
K1

. Despite the plausibility of the Michaelis–Menten equation, we shall not need
to assume its exact validity, but shall make the weaker assumption that PH(S) and PL(S) are
increasing functions of S. Also, it follows from the definitions of PH(S) and PL(S) that
PH(0) = PL(0) = 0 and PH(1) = PL(1) = 1.

3.3. Equation for axonal growth or regression

Of the many axonal parameters that grow or decay, we choose to deal with the number of high
affinity receptors, since it is these that mediate axonal growth and NGF-removal. Let xi(t) be the
number of these receptors on axon i. We assume that the rate of growth will depend on the level of
some second messenger in the receptor-bearing (terminal) region of the axon, and that this will be
an increasing function of the proportion PH(S) of bound high affinity receptors. Since PH(S) is
likewise an increasing function of S, the level of second messenger F = F(S) is one also. But since
growth is negative in the presence of a low or zero level of NGF, we assume that the rate of
growth will be proportional to F ðSÞ � F ðST

i Þ, ST
i being the concentration of NGF required for

zero growth of axon i. We assume that ST
i is a constant. Clearly dxiðtÞ

dt will also depend on xi (t).
We therefore write

dxiðtÞ
dt

¼ HiðxiðtÞÞ½F ðSðtÞÞ � F ðST
i Þ�:
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We assume also that the growth rate will be zero when xi = 0 or when xi becomes so large that
the capacity of the cell body and axon to maintain it becomes saturated. To express these condi-
tions, we can write Hi (xi) = xi (xi � Xi)Gi(xi), Xi being a constant and Gi (xi) any bounded, non-
zero function of xi. Hence,

dxiðtÞ
dt

¼ xiðtÞðxiðtÞ � X iÞGiðxiðtÞÞ½F ðSðtÞÞ � F ðST
i Þ�:

3.4. Equation for the changing concentration of NGF

Since the cutaneous production of NGF is not modulated by the innervating axons [34,35], and
since the cutaneous cells express few if any high or low affinity NGF receptors [23], we shall as-
sume that the rate of NGF production Q is constant, and that the only means of NGF elimination
are by the innervating axons and by passive processes such as diffusion and degradation. NGF
removal by axons involves receptor-mediated endocytosis. The importance in this of the low affin-
ity receptors is uncertain, so we cannot ignore it. We assume that their number is maintained in
constant proportion to that of the high affinity receptors, and that the endocytosis mediated by
each kind is proportional to the number of bound receptors. Hence, the axonal removal rate
Ra(S) = xi[KHPH(S) + KLPL(S)]. We express the passive removal rate as Rp(S) = AS. Hence,

dSðtÞ
dt

¼ Q� RpðSðtÞÞ � RaðSðtÞÞ ¼ Q� ASðtÞ � ½KHPHðSðtÞÞ þ KLPLðSðtÞÞ�
Xn
i¼1

xiðtÞ

¼ Q� ASðtÞ � W ðSðtÞÞ
Xn
i¼1

xiðtÞ;

where W(S) = KHPH(S) + KLPL(S).

4. Mathematical analysis

The preceding considerations lead to the following system:

_SðtÞ ¼ Q� ASðtÞ � W ðSðtÞÞPn
i¼1

xiðtÞ;

_xiðtÞ ¼ xiðtÞðX i � xiðtÞÞGiðxiðtÞÞðF ðSðtÞÞ � F ðST
i ÞÞ; i ¼ 1; . . . ; n;

8<
: ð1Þ

where W, F and Gi, i = 1, . . . ,n are real-valued and continuously differentiable functions defined
over Rþ ¼ ½0;1�. Moreover, W and F are strictly increasing over Rþ and there exist numbers
W and Gi, Gi, i = 1, . . . ,n, such that 0 ¼ W ð0Þ < W ðSÞ 6 W , 0 = F(0) < F(S) 6 1, 0 < Gi 6
GiðxiÞ6Gi < 1, i = 1, . . . , n.

For i = 1, . . . ,n, the parameters Q, A, Xi, are strictly positive and ST
i are non-negative, ordered

according to 06 ST
1 6 ST

2 6 � � � 6 ST
n < 1.

We introduce the notations F T
i ¼ F ðST

i Þ, W T
i ¼ W ðST

i Þ and D ¼ fðS; x1; . . . ; xnÞ 2
Rnþ1 j SP 0; 06 xi 6X i, i = 1, . . . , n}, the latter being called physiological domain for obvious
reasons.
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4.1. Existence and unicity

Theorem 1. For every given initial condition S(0) P 0, 0 6 xi(0) 6 Xi, i = 1, . . ., n, system (1)
admits a unique solution (S(t), x1(t), . . .,xn(t)) defined over [0, 1), such that for all t > 0, either
S(t) > 0 and 0 < xi(t) < Xi, or xi(t)�0, or xi(t)�Xi according to whether 0 < xi(0) < Xi, or xi(0) = 0,
or xi(0) = Xi.

Proof. We first discuss system (1) in the interior D�of D. Since its right-hand member is contin-
uously differentiable over the open set D�, the general theory of differential systems [61] (p. 73) and
[62] (Corollary 3.2) provides, for every initial condition in D�, the existence and unicity of a solu-
tion (denoted y(t)) defined over a maximal right interval J. Moreover, the right-hand member
being continuous over the closed set D, either J = [0,1), or J = [0,d] with d >1 and y(d) 2 oD,
or J = [0,d) with d < 1 and ky(t)k !1 as t ! d. As long as t 2 J, the following integral repre-
sentations hold:

xiðtÞ ¼ xið0Þ exp
Z t

0

ðX i � xiðuÞÞGiðxiðuÞÞðF ðSðuÞÞ � F T
i Þdu

� �

¼ X i � ðX i � xið0ÞÞ exp �
Z t

0

xiðuÞGiðxiðuÞÞðF ðSðuÞÞ � F T
i Þdu

� �
:

The second representation of xi(t) follows from _xiðtÞ ¼ d
dt ðX i � xiðtÞÞ and the differential equation

for _xiðtÞ rewritten for the unknown function (Xi � xi(t)). Clearly, for t 2 J, we get 0 < xi(t) < Xi.
Moreover, S(t) remains strictly positive over J; indeed, let us denote by t* the first non-negative
time for which S(t*) = 0. Since S(0) > 0, _Sðt�Þ6 0 but the equation for S entails _Sðt�Þ ¼ Q > 0, a
contradiction. Consequently, for all t 2 J, yðtÞ 2 D�, ruling out the configuration J = [0,d] with
d <1. Since xi(t), i = 1, . . .,n, are bounded over J, the only way to achieve J = [0,d) with
d <1 is limt!dSðtÞ ¼ 1. Thus one can find a sequence 0 < uk "d such that S(uk) is strictly increas-
ing and S(uk) !1 for k!1. For each k, the mean value theorem provides uk < vk < uk + 1 for
which _SðvkÞ > 0. However, in

_SðvkÞ ¼ Q� ASðvkÞ �W ðSðvkÞÞ
Xn
i¼1

xiðvkÞ;

the first term is constant, the third one is negative and the second one goes to �1, a contradic-
tion. Therefore we can conclude that J = [0,1).

For initial values on the boundary of D, one can extend (even linearly) the right-hand member
of system (1) to a continuously differentiable function defined on an open set D* containing D.
Each time xi(0) is 0 or Xi, the preceding integral representations entail that the unique solution is
xi(t) = xi(0) over the maximal right interval of existence. Moreover, if S(0) = 0, then _Sð0Þ ¼ Q > 0
and S(t) is thus strictly positive over some interval of the form (0, a). It is now clear that the same
argumentation as before can be repeated by starting with some t0 > 0 and reducing the dimension
each time an xi is constant.

Consequently, every solution of system (1) starting in D at t = 0 is uniquely defined for all
t P 0 and remains in D. h
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4.2. Critical points and local stability

Straightforward considerations show that the set E of critical points of system (1) in D is given
by E1 [ E2 where:

E1 ¼
(
ðS0; x01; . . . ; x

0
nÞ 2 D j x0i ¼ 0 or x0i ¼ X i; i ¼ 1; . . . ; n and S0 with

Q� AS0 ¼ W ðS0Þ
Xn
i¼1

x0i

)
and;

E2 ¼ [n
r¼1

(
ðS0; x01; . . . ; x

0
nÞ 2 D j S0 ¼ ST

r ; x0i ¼ 0 or x0i ¼ X i;

i ¼ 1; . . . ; n; i 6¼ r and x0r ¼
Q� AS0

W ðS0Þ �
Xn

i¼1;i 6¼r

x0i

)
:

The set E1 contains exactly 2n elements. For each 1 6 r 6 n, the corresponding subset of E2

contains 2n � 1 points but not necessarily in D since xr0 may not belong to [0,Xr]. Consequently
E contains at most (n + 2)2n � 1 elements.

Our smoothness assumptions about the right-hand member of system (1) imply that local
asymptotic stability and instability of critical points can be deduced from the eigenvalues of
the Jacobian matrix at the point of interest [63].

Theorem 2. Let ðS0; x01; . . . ; x0nÞ be a critical point of system (1) in the physiological domain,
J 0 ¼ JðS0; x01; . . . ; x0nÞ its Jacobian matrix at ðS0; x01; . . . ; x0nÞ, r(J0) its spectrum and K =
maxi = 0, . . ., n{Re (ki)jki 2 r(J0)}. Then K < 0 if and only if P1 [ P2 [ P3 = {1, . . ., n}, where:

P 1 ¼ fj 2 f1; . . . ; ng j ST
j > S0 and x0j ¼ 0g;

P 2 ¼ fj 2 f1; . . . ; ng j ST
j < S0 and x0j ¼ X jg;

P 3 ¼ fj 2 f1; . . . ; ng j ST
j ¼ S0 and 0 < x0j < X jg:

Proof. The Jacobian matrix has the form:

J 0 ¼

J 00 J 01 . . . . . . J 0n

J 10 J 11 0 . . . 0

..

.
0 . .

. . .
. ..

.

..

. ..
. . .

. . .
.

0

Jn0 0 . . . 0 Jnn

0
BBBBBBBBB@

1
CCCCCCCCCA
;
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where the elements Jij are given by:

J 00 ¼ �A� dW
dS

ðS0Þ
Xn
i¼1

x0i ;

J 0j ¼ �W ðS0Þ; j ¼ 1; . . . ; n;

J i0 ¼ x0i ðX i � x0i ÞGiðx0i Þ
dF
dS

ðS0Þ; i ¼ 1; . . . ; n;

J ii ¼ ðX i � 2x0i ÞGiðx0i Þ þ x0i ðX i � x0i Þ
dG
dxi

ðx0i Þ
� �

ðF ðS0Þ � F T
i Þ; i ¼ 1; . . . ; n:

For any critical point in E1, we have:

J i0 ¼ 0; i ¼ 1; . . . ; n and J ii ¼ ðX i � 2x0i ÞGiðx0i ÞðF ðS0Þ � F T
i Þ; i ¼ 1; . . . ; n:

J0 is a triangular matrix whose eigenvalues are given by:

k0 ¼ �A� dW
dS

ðS0Þ
Xn
i¼1

x0i ;

ki ¼ ðX i � 2x0i ÞGiðx0i ÞðF ðS0Þ � F T
i Þ; i ¼ 1; . . . ; n:

We observe that the n + 1 eigenvalues of J0 are real, k0 being always negative. However, for
i = 1, . . .,n, the sign of ki depends on the values of ðX i � 2x0i Þ and ðF ðS0Þ � F T

i Þ. More precisely,
ki is negative if and only if x0i ¼ 0 and S0 < ST

i , or, x
0
i ¼ X i and S0 > ST

i . Thus ki < 0 if and only
if i 2 P1 or i 2 P2.

For any critical point in E2, we have:

J 0j ¼ �W T
r ; j ¼ 1; . . . ; n;

J i0 ¼ 0; i ¼ 1; . . . ; n; i 6¼ r;

Jr0 ¼ x0r ðX r � x0r ÞGrðx0r Þ
dF
dS

ðST
r Þ;

J ii ¼ ðX i � 2x0i ÞGiðx0i ÞðF T
r � F T

i Þ; i ¼ 1; . . . ; n; i 6¼ r;

Jrr ¼ 0:

Although J0 is not triangular, its first column contains only two non-zero elements and a simple
computation shows that its eigenvalues are:

ki ¼ ðX i � 2x0i ÞGiðx0i ÞðF T
r � F T

i Þ; i ¼ 1; . . . ; n; i 6¼ r;

k0 ¼ 1

2
�A� dW

dS
ðST

r Þ
Xn
i¼1

x0i �
ffiffiffiffi
D

p !
;

kr ¼ 1

2
�A� dW

dS
ðST

r Þ
Xn
i¼1

x0i þ
ffiffiffiffi
D

p !
;

where

D ¼ Aþ dW
dS

ðST
r Þ
Xn
i¼1

x0i

 !2

� 4x0r ðX r � x0r ÞGrðx0r Þ
dF
dS

ðST
r ÞW T

r :
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The real part of k0 is always negative and the same property holds for kr if and only if
4x0r ðX r � x0r ÞGrðx0r Þ dF

dS ðST
r ÞW T

r > 0, or equivalently 0 < x0r < X r. Thus Re(kr) < 0 if and only if
r 2 P3.

For i 5 0 and i5 r, we see that ki is real, its sign depending on the values of ðX i � 2x0i Þ and
ðF T

r � F T
i Þ. More precisely, ki is negative if and only if x0i ¼ 0 and STr < STi , or, x

0
i ¼ X i and

STr > STi . Thus ki < 0 if and only if i 2 P1 or i 2 P2.
Consequently system (1) admits one and only one locally stable critical point in the

physiological domain. h

4.3. Global stability

Theorem 3. The solutions of system (1) with initial conditions in D�have the following properties:

(i) if 06Q6AST
1 , then

lim
t!1

SðtÞ ¼ S�
1 ¼

Q
A
;

lim
t!1

xiðtÞ ¼ 0 for 16 i6 n;

(ii) if AST
1 < Q < AST

1 þ W T
1X 1, then

lim
t!1

SðtÞ ¼ ST
1 ;

lim
t!1

x1ðtÞ ¼ x�1 ¼
Q� AST

1

W T
1

;

lim
t!1

xiðtÞ ¼ 0 for 26 i6 n;

(iii) if AST
r�1 þ W T

r�1

Pr�1

i¼1X i 6Q6AST
r þ W T

r

Pr�1

i¼1X i for 2 6 r 6 n, then

lim
t!1

SðtÞ ¼ S�
r where W ðS�

r Þ ¼
Q� AS�

rPr�1

i¼1

X i

;

lim
t!1

xiðtÞ ¼ X i for 16 i6 r � 1;

lim
t!1

xiðtÞ ¼ 0 for r6 i6 n;

(iv) if AST
r þ W T

r

Pr�1

i¼1X i < Q < AST
r þ W T

r

Pr
i¼1X i for 2 6 r 6 n, then

lim
t!1

SðtÞ ¼ ST
r ;

lim
t!1

xiðtÞ ¼ X i for 16 i6 r � 1;

lim
t!1

xrðtÞ ¼ x�r ¼
Q� AST

r

W T
r

�
Xr�1

i¼1

X i;

lim
t!1

xiðtÞ ¼ 0 for r þ 16 i6 n;
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(v) if AST
n þW T

n

Pn
i¼1X i 6Q < 1, then

lim
t!1

SðtÞ ¼ S�
nþ1 where W ðS�

nþ1Þ ¼
Q� AS�

nþ1Pn
i¼1

X i

;

lim
t!1

xiðtÞ ¼ X i for 16 i6 n:

Although we shall proceed as in [47,66] by introducing a Lyapunov function and by using La-
Salle�s theorem [64,65], technical points have to be verified in this new situation. In certain
respects, all situations are treated in a similar way and we start the discussion with (iii).

Proof of (iii). We first introduce the following open set UD � Rnþ1:

UD ¼ fðS; x1; . . . ; xnÞ j S > 0; 0 < xi < X i þ D; i ¼ 1; . . . ; r � 1; �D < xi < X i;

i ¼ r; . . . ; ng; D > 0:

According to our basic assumptions, the right-hand member of system (1) is well defined and
continuously differentiable over UD. Let us also introduce the function:

V ðS; x1; . . . ; xnÞ ¼
Z S

S�r

F ðsÞ � F ðS�
r Þ

W ðsÞ ds�
Xr�1

i¼1

Z xi

X i

dx
xGiðxÞ þ

Xn
i¼r

Z xi

0

dx
ðX i � xÞGiðxÞ ;

where S�
r is determined by W ðS�

r Þ ¼ Q�AS�rPr�1

i¼1
X i

. Since AST
r�1 þ W T

r�1

Pr�1

i¼1X i 6Q6AST
r þ W T

r

Pr�1

i¼1X i

hold, we have ST
r�1 6 S�

r 6 ST
r .

V is clearly well defined and continuously differentiable over UD and we show that it is a
Lyapunov function for system (1) over UD. For every c > 0, the subset Xc of UD defined by

Xc ¼ fðS; x1; . . . ; xnÞ 2 UD j S > 0; 0 < xi 6X i; i ¼ 1; . . . ; r � 1; 06 xi < X i;

i ¼ r; . . . ; n and V ðS; x1; . . . ; xnÞ6 cg:
First, we show that Xc is a compact subset of Rnþ1. On the one hand, Xc is bounded since for

points (S,x1; . . . ;xn) 2 UD, V!1 if S! 1. On the other hand, for points in UD, V! 1 if
S! 0 or xi ! 0 (for 1 6 i 6 r � 1) or xi ! Xi (for r 6 i 6 n). Thus every limit point
(~S;~x1; . . . ;~xn) of Xc satisfies ~S > 0, ~xi > 0 (for 1 6 i 6 r � 1) and ~xi > X i (for r 6 i 6 n). The con-
tinuity of V entails that every limit point of Xc belongs to the latter proving that this set is also
closed and hence compact.

A straightforward computation provides:

_V ðS; x1; . . . ; xnÞ ¼ F ðSÞ � F ðS�
r Þ

W ðSÞ Q� AS �W ðSÞ
Xr�1

i¼1

X i

 !
�
Xr�1

i¼1

ðX i � xiÞðF ðS�
r Þ � F T

i Þ

þ
Xn
i¼r

xiðF ðS�
r Þ � F T

i Þ;

and we now discuss the sign of _V over Xc. Consequently of ST
r�1 6 S�

r 6 ST
r together with the strict

monotonicity of F, the second and the third terms in the right-hand member of the preceding
equation are non-positive over Xc. Moreover, the definition of S�

r shows that it is a zero
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HðSÞ ¼ Q� AS � W ðSÞPr�1

i¼1X i. Since
dH
dS ¼ �A� dW

dS

Pr�1

i¼1X i < 0, H(S) is positive over ½0; S�
r Þ and

negative over ðS�
r ;1Þ. Consequently, F ðSÞ�F ðS�r Þ

W ðSÞ HðSÞ is non-positive over (0,1) and thus _V 6 0 over
Xc. We conclude that Xc is invariant for our differential system and that V is a Lyapunov function
over the preceding set. It is important to note that, because V goes to +1 as its argument tends to
the boundary of D, every path starting in D�can be imbedded into some Xc for a suitable choice of
c. According to LaSalle�s theorem [64,65], every such solution converges to the largest invariant
subset MXc

of EXc ¼ fy 2 Xc; _V ðyÞ ¼ 0g.
We distinguish three subcases:

(1) If AST
r�1 þW T

r�1

Pr�1
i¼1X i < Q < AST

r þ W T
r

Pr�1
i¼1X i, then ST

r�1 < S�
r < ST

r and the preceding con-
siderations about _V entail:

MXc ¼ EXc ¼ fðS�
r ;X 1; . . . ;X r�1; 0; . . . ; 0Þg;

(2) If Q ¼ AST
r�1 þ W T

r�1

Pr�1

i¼1X i, then S�
r ¼ ST

r�1 and for the same reasons as above we get:

EXc ¼ fðS�
r ;X 1; . . . ;X r�2; xr�1; 0; . . . ; 0Þ j xr�1 2 ð0;X r�1�g:

We consider a solution of system (1) with initial condition in the largest invariant subset MXc

of EXc
. Clearly, _xið0Þ ¼ 0 for i = 1, . . ., r � 2, r, . . .,n and, as a consequence of invariance,

_Sð0Þ ¼ 0. Since Sð0Þ ¼ ST
r�1, _xr�1ð0Þ ¼ 0 and the starting point is thus a fixed point. Moreover,

Q ¼ AST
r�1 þ W T

r�1

Pr�1

i¼1X i and therefore _Sð0Þ ¼ W T
r�1ðX r�1 � xr�1ð0ÞÞ entailing xr � 1(0) =

Xr � 1. We conclude:

MXc ¼ fðS�
r ;X 1; . . . ;X r�1; 0; . . . ; 0Þg:

(3) If Q ¼ AST
r þ W T

r

Pr�1

i¼1X i, then S�
r ¼ ST

r and a reasoning similar to the preceding one provides
EXc ¼ fðS�

r ;X 1; . . . ;X r�1; xr; 0; . . . ; 0Þ j xr 2 ½0; X rÞg and since _Sð0Þ ¼ �W T
r xrð0Þ ¼ 0, we

conclude:

MXc ¼ fðS�
r ;X 1; . . . ;X r�1; 0; . . . ; 0Þg:

All three configurations (1)–(3) lead toMXc ¼ fðS�r ;X 1; . . . ;X r�1; 0; . . . ; 0Þg and thus, according
to LaSalle�s theorem [64,65], we have:

SðtÞ !t!1
S�
r ; xiðtÞ !t!1

X i; 16 i6 r � 1 and xiðtÞ !t!1
0; r6 i6 n;

for every solution of system (1) with initial condition in the interior of D.
For the proof of the other points (i), (ii), (iv) and (v), we replace respectively the preceding

Lyapunov function by:

(i) V ðS; x1; . . . ; xnÞ ¼
R S
S�
1

F ðsÞ�F ðS�
1
Þ

W ðsÞ dsþPn
i¼1

R xi
0

dx
ðX i�xÞGiðxÞ ;

(ii) V ðS; x1; . . . ; xnÞ ¼
R S
ST
1

F ðsÞ�F T
1

W ðsÞ dsþ R x1
x�
1

ðx�x�
1
Þdx

xðX 1�xÞG1ðxÞ þ
Pn

i¼2

R xi
0

dx
ðX i�xÞGiðxÞ ;

(iv) V ðS; x1; . . . ; xnÞ ¼
R S
STr

F ðsÞ�F ðSTr Þ
W ðsÞ ds

Pr�1
i¼1

R xi
X i

dx
xGiðxÞ þ

R xr
x�r

ðx�x�r Þ dx
xðXr�xÞGrðxÞ þ

Pn
i¼rþ1

R xi
0

dx
ðX i�xÞGiðxÞ ;

(v) V ðS; x1; . . . ; xnÞ ¼
R S
S�nþ1

F ðsÞ�F ðS�nþ1
Þ

W ðsÞ ds�Pn
i¼1

R xi
X i

dx
xGiðxÞ

and repeat the same argumentation.
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Obviously, the case ST1 ¼ ST2 ¼ � � � ¼ STn is singular in the parameter space and thus not
basically relevant from a physiological viewpoint. We would nevertheless like to point out that
convergence of the solutions of our differential system can be established by using the Frobenius
integrability theorem and that the argument can be found in [48]. We do not discuss it here since it
requires a very different approach. h

The simulation (Fig. 1) illustrates the behaviour of the system with biologically reasonable
parameters.

5. Discussion

5.1. Limitations of the model

A significant simplification in our model is that we have neglected most biological effects of the
low affinity neurotrophin receptor, taking account only of its role in depleting extracellular NGF
by endocytosis. The roles of this receptor and its relationship to the p75NTR protein are multiple
and complex, and currently controversial [39]. When functioning as low affinity receptor, its bind-
ing of NGF or other neurotrophins causes their endocytosis and retrograde transport, and the
initiation of several different signaling pathways that can promote both neuronal survival and
neuronal death [38]. In addition, p75NTR can interact with trkA to enhance its activation by

0
1

2 x1

0
1

2
3

4
x2

0

1

2

3

4

5

S

X X X X X
O

0.5
1

1.5

Fig. 1. Solutions of system (1) W(S) = F(S) = BS/(K + S), for five different initial conditions, namely (1.5,1,0.5),

(1.5,1,1), (1.5,1,2), (1.5,1,3), (1.5,1,3.5); A = 0.25, B = 10�11, K = 2, Gi(x) = 2, i = 1, 2, X1 = 2, X2 = 4, ST
1 ¼ 1, ST

2 ¼ 2,

Q = 0.5 with the units [t] = 10 h, [S] = 10�11 M, [xi] = [Xi] = 1, [K] = 10�11 M, ½Q� ¼ 10�11 M
10 h

, ½A� ¼ 1
10 h

, [B] = M.
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NGF [67] and acting on its own can bind pro-NGF (but not NGF) with high affinity [39]. While
the existence of these effects has been clearly demonstrated in several parts of the nervous system,
and while the genetic deletion of p75NTR has been shown to affect the outgrowth of sensory
axons [68], and to lead to a loss of 50% of the neurons of dorsal root ganglia [69], current knowl-
edge is not yet sufficient for these interactions to be modeled mathematically. For example, it is
not clear whether the effects of p75NTR deletion on sensory neurons result from the absence
of p75NTR in those neurons, or in Schwann cells, whose migration is likewise affected [68]. How-
ever, this simplification in our model may not be a serious defect, because the levels of NGF in the
skin at the times of interaxonal competition are believed to be in the concentration range of the
high affinity receptor (KdL � 10�11 M), too low to affect the low affinity receptor (KdL � 10�9 M).
This remains uncertain, however, because the published measurements of NGF concentration,
40–80 pg/mg protein in whisker pads of mouse embryos [23], corresponding to about (3–6)
10�12 M, refer to average values, and the concentrations in the extracellular space available to
axon terminals are unknown.

Another simplification is that we have assumed each axon, or axon branch, to be an independ-
ent entity. It is unknown whether this is true, but several computational studies have shown that
interaction (by intracellular signals?) between an axon�s branches could seriously affect the out-
come [49,70].

5.2. Implications of this study

Most previous attempts at modeling interaxonal competition were intended to explain the
loss of polyneuronal innervation at sites such as the neuromuscular junction [49,70,71]. The
winner-takes-all behavior of such models, or �competitive exclusion�, well reflects certain situa-
tions, but, as mentioned in the Introduction, other situations exist where multiple innervation of
a small region can persist, and it turns out to be quite difficult to devise models of this. The
present one is a modification of one of the competitive exclusion models [47], but obtains the
persistence of multiple innervation by setting a limit to the growth of each axon. We extend
and generalize the earlier mathematical analysis in which the fittest axon became so strong that
it eliminated all the others. Our model predicts that with low levels of NGF production, only a
single axon will persist in a touch dome (as in the former model), but that with higher levels
several will persist, as appears to be the case in transgenic mice overexpressing NGF in the skin
[46].

Other recent models of interaxonal competition have obtained the persistence of multiple
innervation in several ways. This can be achieved by postulating that the axons depend on more
than one trophic factor or are spatially separated [72]. In a special case of one of the competitive
exclusion models, several axons can coexist if the concentration of trophic factor for zero growth
is the same in each but lower than for all the other axons [47]. In other models, axonal coexist-
ence results, as in the present paper, from their reaching a maximal growth limit. Thus, two
models of Van Ooyen and Willshaw [73,74], imply an upper bound on the number of receptors
per axon and on the rate at which trophic factor receptors can be inserted. A maximal growth
limit is likewise inherent in some computer simulations of Elliott and Shadbolt (see Fig. 2 of
Ref. [75]).
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