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Abstract

Ligand field effects in lanthanide ions compounds have consequences for optical and magnetic spectroscopy. In the analysis of

electron paramagnetic resonance spectra of Gd3þ complexes, a major role is played by the zero field splitting (ZFS), which is a high

order consequence of the ligand field and the spin–orbit coupling. We present a general parameterized method and a computer

program for the study of the excited states of lanthanide complexes. We apply it for the first principles determination of the ZFS of

the [Gd(H2O)8]
3þ aqua ion and the corresponding EPR peak-to-peak width in solution. We calculate the influence of the various

contributions to the effective Hamiltonian on the splitting of the ground state multiplet.

1. Introduction

In recent years considerable amount of work has been

performed studying the properties of paramagnetic

Gadolinium(III) (S ¼ 7=2) in solution. This interest

originates from the strong NMR-relaxation enhance-

ment of neighboring water protons that they induce.
Complexes of Gd3þ are therefore widely used as con-

trast agents in medical magnetic relaxation imaging

(MRI) [1].

To get a better understanding of the influence of the

electron spin relaxation on the 1H-relaxation enhance-

ment a general theory of the relaxation of an S state

paramagnetic metal ion in solution was developed [2,3].

The basic idea in this model is that electron spin relax-
ation of Gd3þ is governed by the combined effects of a

transient zero field splitting (ZFS) and a static ZFS

originating from the mean ligand field of surrounding

atoms. The ZFS Hamiltonian is expressed as a sum of

linear combinations of irreducible rank-k tensor opera-

tors with real coefficients, Bkg, which determine the

magnitude of each contribution [3]. Unfortunately, EPR

in solution does not give access the individual coeffi-

cients Bka (where a designates linearly independent

contributions of decreasing symmetry) but only to pa-

rameters which are the roots of the sum over a of ðBkaÞ2.
To get deeper insight a theoretical calculation of

electronic fine structure is needed. The magnetic and
spectroscopic properties of the lanthanide ions depend

on the f electron structure, which is generally under-

stood in the framework of a model where the f orbitals

are considered shielded from the chemical environment.

In this model the ground and excited states essentially

arise from the electrostatic repulsion between the

f electrons (for a configuration fn where n > 1) and

the spin–orbit coupling with the angular momentum of
the f orbitals (quantum number l ¼ 3). Therefore they

can be conveniently labeled according to their electron

spin S, orbital angular momentum L and total angular

momentum J .
Further splitting of the spectroscopic states under the

influence of the ligand field can be observed in the lu-

minescence spectra, as observed in a number of studies.

The ligand field does also affect the magnetic properties.
The ZFS of the 8S7=2 ground state of the f7 ion Gd3þ is

evident in the solid state [4–6], and its modulation is the
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origin of the electron spin relaxation in solution as de-

scribed in [2,3].

The ligand field effects in lanthanide compounds have

been described in the past using a number of phenom-

enological approaches [7], such as the simple point-
charge model, the angular overlap model (AOM) of

Jørgensen and co-worker [8,9] and more recently the

superposition model [10]. There has been much confu-

sion in the literature between the conventional ligand

field Hamiltonian and the so-called crystal field of the

spin Hamiltonian (i.e., ZFS) due to a similar formalism

and terminology [11]. A rigorous calculation of the

molecular energy levels should help us build an interface
between the two descriptions.

We present here a general method for the ab initio

calculation of the excited states of lanthanide(III)

complexes. In this approach, the complete active space

of the 4fn ! 4fn excitations is used to perform a con-

figuration interaction (CI) calculation in a basis set of

single Slater determinants. Therefore, the method is not

restricted to calculations within a defined SLJ multiplet
and the J -mixing effect of the ligand field can be treated

naturally. The Hamiltonian is calculated using a few

simple parameters that can be either extracted from

experimental data for a semi-empirical calculation or

calculated by standard quantum mechanical methods

for a complete ab initio study. We demonstrate the

applicability of this approach with the example of the

Gd3þ octa aqua ion where the f7 configuration leads to
the largest microstate basis set (3432 single determi-

nants) and the high symmetry of the coordination

polyhedron lends itself to a detailed analysis of the spin

Hamiltonian matrix.

2. Theoretical section

Besides the central potential of the nucleus, the gen-

eral Hamiltonian acting upon atomic metal orbitals may

be written as

ĤH ¼ ĤHER þ ĤHSO þ ĤHLF; ð1Þ
where the three terms correspond to the inter-electron

repulsion, the spin–orbit coupling and the ligand field,

respectively. The matrix elements for each of these

operators can be expressed in a basis of single Slater

determinants jWj ¼ jw1w2w3 � � �wnj where wi is a single-

occupied spin orbital and n is the number of f electrons.
The matrix elements are generally defined in a basis of

spin orbitals and Slater�s rules [12,13] allow a straight-

forward calculation for single determinants.

The number of determinants to consider is

Cn
N ¼ N !

ðN�nÞ!n! for n electrons in N spin orbitals. For f-

orbitals, the number of determinants is between 14 (f1 or

f9) and 3432 (f7). Several physical parameters, defined

later in the text, are also involved in the calculation of the

Hamiltonian matrix elements. All of these parameters

can be calculated quantum mechanically if required.

The respective matrix elements of HER, HSO and HLF

are given next.

hUjĤHERjwi ¼
Xn

g;h;i;j¼1

Aghij
ER huguhjĤHERjwiwji

¼
Xn

g;h;i;j¼1

X
k¼0;2;4;6

Aghij
ERCðk; g; h; i; jÞFk: ð2Þ

The matrix elements of ĤHER can be written as linear

combinations of a limited number of two-electron inte-

grals. For d electrons, these are the three well-known

Racah parameters A, B and C, or Slater–Condon inte-

grals Fk, k ¼ 0; 2; 4. For f electrons, one may use either

the four En parameters of Racah (n ¼ 0; 1; 2; 3), or Sla-
ter–Condon integrals (k ¼ 0; 2; 4; 6). The real coefficients
AER combine the Coulomb and exchange matrix ele-

ments in an orbital basis set according to Slater�s rules.
The Cðk; g; h; i; jÞ are products of the vector coupling

coefficients for real spherical harmonics [14]. Since our

basis set is defined using fn micro-states, it is convenient

to express the electrostatic repulsion matrix elements

using four two-electrons integrals involving f spin

orbitals:

G0 ¼ f x 3x2
��� � y2

��
f x 3x2

�� � y2
����f x 3x2

�� � y2
��

� f x 3x2
�� � y2

���

¼ F0 þ 25F2 þ 9F4 þ 463F6;

G2 ¼ f x 3x2
��� � y2

��
f z y2

�� � z2
����f x 3x2

�� � y2
��

� f z y2
�� � z2

���

¼ 12:5F2 þ 15F4 þ 234:5F6;

G4 ¼ f z y2
��� � z2

��
f z y2

�� � z2
����f z y2

�� � z2
��

� f z y2
�� � z2

���

¼ F0 þ 84F4 þ 288F6;

G6 ¼ f z y2
��� � z2

��
f z y2

�� � z2
����f x 3x2

�� � y2
��
f yz2
� ��

¼ � 27:111F4 þ 162:666F6:

The linear coefficients above can be derived from the

corresponding Clebsch–Gordan series. A sample calcu-

lation on the f2 configuration, using the known energies
of the spectroscopic terms as functions of the Slater–

Condon parameters (see for example Dieke [15]) was

performed to check the calculated coefficients. The two-

electron integrals can be calculated ab initio, or fitted to

experimental data. The overestimation of the Slater–

Condon parameters by Hartree–Fock calculations on

the free ions [16] by some 40% compared to the aqua

ions measurements [17] leads us to prefer the experi-
mental parameters for pragmatic reasons. For compar-

ison purposes, we also calculated the electron repulsion
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parameters G0 to G6 using the ligand field density

functional theory (LFDFT) method [18,19].

The spin–orbit coupling elements are readily calcu-

lated from the individual terms for each spin orbital using

the spin and angular momentum operators L̂Lz; L̂Lx ¼
�

1
2i L̂Lþ þ L̂L�
� �

; L̂Ly ¼ 1
2i L̂Lþ � L̂L�
� �Þ defined in a basis of real

spherical harmonics of order l ¼ 3 for f electrons:

hUjĤHSOjwi ¼ f
Xn

i;j¼1

Aij
SOhui ĵllŝsjwji; ð3Þ

where f is the spin–orbit coupling constant and the

matrix elements hui ĵllŝsjwji are given in Table 1. We can

calculate f ¼ h1r dVdr i from a DFT calculation of the elec-
tronic structure of the free Gd3þ ion.

Finally, the ligand field terms are described by linear

combinations of thematrix elements of the effective ligand

field potential V̂VLF acting upon the f-orbitals. The 7� 7

matrix is reduced to a set of 28 independent matrix ele-

ments by the Hermicity of the ligand field Hamiltonian.

hUjĤHLFjwi ¼
X7

i¼1

Xi

j¼1

Aij
LFhf ijV̂VLFjf ji: ð4Þ

3. Computational section

A computer program implementing Eqs. (2)–(4) was
written in the MATLABATLAB [20] programming language. The

program calculates the matrix elements of the Hamil-

tonian from the following parameters:

1. Four electron repulsion parameters, that can be

Racah or Slater–Condon parameters, which we con-

vert to the four two-electron integrals described

above. The matrix coefficients Cðk; g; h; i; jÞ for an

arbitrary ln configuration are calculated by a stand-
alone MATLABATLAB or FORTRANORTRAN program.

2. The spin–orbit coupling constant.

3. 28 ligand field matrix elements.

The experimental Racah En parameters (0, 5761,

28.02 and 582 cm�1 for n ¼ 0; 1; 2; 3, respectively) and
spin–orbit coupling constant n (1450 cm�1) were taken

from the extensive work of Carnall et al. [17] on the

lanthanide(III) aqua ions.
The f ligand field matrix elements were obtained from

the occupied f spin orbitals energies of [Gd(H2O)8]
3þ as

calculated by the density functional theory (DFT) pro-

gram ADF 2001 [21]. The structure of the complex was

optimized in the D4d symmetry following Schafer and

Daul [22], using an unrestricted triple-zeta basis set with

polarization functions and a relativistic effective core

potential (Gd: Cd core, O: He core). Becke [23] and
Perdew [24] non-local corrections were used. The 7

molecular orbitals with dominant 4f character were

projected onto the reduced basis set of the atomic f or-

bitals and the matrix elements of VLF were calculatedT
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from the Kohn–Sham molecular orbitals energies eKS

and projected coefficients cl ¼ hflj/KSi [18].
V̂VLF ¼ ĈCÊEĈC�1; ð5Þ
so that

hfljV̂VLFjfmi �
X7

i¼1

clicmieKS
i : ð6Þ

Although the Kohn–Sham energies eKS also involve

the electron repulsion, Atanasov and Rauzy [25] ob-

served that the VLF matrix elements calculated from

the full manifold of Slater determinants were essen-

tially the same as those obtained using this simple

method.

The ab initio spin–orbit coupling constant was cal-

culated using the XATOMATOM program [26]. Two-electron
integrals were obtained using the LFDFT method and

SD energies calculated with ADF for the optimized

structure.

The eigenvalues and eigenvectors of the Hamiltonian

were calculated with and without ligand field contribu-

tion, and sorted in ascending order. The total calcula-

tion time for the f7 configuration requires a substantial

amount of memory (1 Gb of RAM and about 3 Gb of
mass storage) but takes only a few of hours on a modern

workstation.

4. Results

4.1. DFT results

The program XATOMATOM was used to numerically solve

the Kohn–Sham equations for the free Gd3þ ion and

calculate the spin–orbit coupling constant. The resulting

value (1283 cm�1) is consistent with the experimental
value reported by Carnall (1450 cm�1).

The optimized D4d structure is shown in Fig. 1. The

calculated orbital energies around the barycenter are

reported in Table 2.

Following the LFDFT method, the optimized geom-

etry was used to obtain a spin-restricted average of con-

figurations (AOC) and the 3432 Slater determinants

energies were calculated taking advantage of the proven
ADF [21] code. The two-electron integralsG0;G2;G4 and

G6 were fitted to the Slater determinants energies. The

results correspond to the following Racah parameters:

E2 ¼ 4586:6 cm�1, E3 ¼ 34:2 cm�1 and E3 ¼ 767:8 cm�1.

The corresponding value E1 (4:78� 106 cm�1) can be

arbitrarily set to zero since its only effect will be to shift the

multiplet energies by the same amount. These parameters

are in general agreement with those of Carnall (0, 5761,
28.02 and 582 cm�1). One possible origin for the re-

maining discrepancy is the numerical evaluation of inte-

grals in the framework of DFT, which is difficult to

achieve with very high accuracy.

4.2. Excited states energies

The method presented in the theoretical section was

applied to the calculation of the energy levels of the free

Gd3þ ion (ĤH ¼ ĤHER þ ĤHSO, ĤHLF ¼ 0) using the experi-

mental parameters of Carnall. The energies of the first

states up to the 6D multiplet are reported in Table 3 with

their multiplicity and assignment. The multiplicity with
and without spin–orbit coupling is used to perform the

assignment of the generated levels. We can use the ap-

parent splitting of the 8S7=2 free ion ground state, which

should be zero, to estimate the magnitude of the

numerical errors induced by the Hamiltonian diago-

nalization. In our calculation the error is close to

10�2 cm�1.

Turning on the ligand field interaction, most of the
states are split into Kramers doublets. The fundamental
8S multiplet is split into 4 doublets with relative energies

0, 0.03, 0.084 and 0.142 cm�1. The splitting of the ex-

cited states is larger and makes the assignment more

difficult due to a strong overlap between the states

originating from different multiplets. Our ab initio spin–

orbit coupling and electron repulsion parameters lead to

a larger splitting (0, 0.292, 0.657 and 1.129 cm�1). This is
clearly excessive as the experimental splitting of the 8S

Fig. 1. DFT-optimized structure of [Gd(H2O)8]
3þ in the D4d symmetry.

Table 2

f spin orbitals splitting in [Gd(H2O)8]
3þ calculated by NLDA DFT

Representation ADF FO Orbital ml Energy (eV)

e1 F : z2x fxz2 +1 )0.07071
e1 F : z2y fyz2 )1 )0.07071
e3 F : y fyð3x2y2Þ )3 )0.00071
e3 F : x fxðx2 � 3y2Þ +3 )0.00071
b2 F : z3 fz3 0 0.040286

e2 F : xyz fxyz )2 0.051286

e2 F : z fzðy2z2Þ +2 0.051286
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ground state of the Gd3þ aqua ion is between 0.2 and

0.5 cm�1 [2,4,27]. We feel more confident using the semi-

empirical splitting as a basis for further analysis. Unless

otherwise specified, the latter is systematically used in

the following discussion.

4.3. ZFS parameters for the electron spin relaxation in

solution

In D4d symmetry, the ZFS spin Hamiltonian acting

on the S ¼ 7=2 multiplet can be written as [3]:

ĤH ¼
X

k¼2;4;6

BkT̂T k
0 ; ð7Þ

where T̂T k
0 is an spherical spin tensor [28] and Bk is the

corresponding spin Hamiltonian parameter. The T k
0

tensors are diagonal in a basis of jS;mSi spin states.

Therefore, the eigenvalues of this spin Hamiltonian

(which we can identify with the eight lower energies of

our CI calculation) are linear combinations of the Bk

parameters. Following perturbation theory, we can as-

sume that the second order term B2T 2
0 dominates the

effect and write the following set of linear equations:

8:5732B2þ25:0998B4þ20:7255B6þC¼ 0:142 cm�1;

1:2247B2�46:6139B4�103:6274B6þC¼ 0:084 cm�1;

�3:6742B2�10:7571B4þ186:5293B6þC¼ 0:032 cm�1;

�6:1237B2þ32:2712B4�103:6274B6þC¼ 0 cm�1;

ð8Þ
where the numerical coefficients are functions of S and

mS readily obtained from the tensor definitions of

Buckmaster et al. [28]. Solving this set of linear equa-

tions leads to the values reported in Table 4.
The calculation of the EPR peak-to-peak width,

representative of the transverse spin relaxation rate, can

be performed using these parameters (in this case

ak ¼ jBkj) and a second rotational correlation time of

35 ps [27]. At room temperature and 9.425 GHz mi-
crovawe frequency (X-band EPR, where rotational

modulation of the ZFS essentially determines the elec-

tron spin relaxation), we obtain a peak-to-peak width

DHpp ¼ 26 G.

5. Discussion

The calculated geometry (Fig. 1) seems reasonable.

The Gd–O distance (2.471 �AA) is similar to the reported,

2.4–2.6 �AA, experimental [29] and theoretical values

[22,30]. Using the same method (GGA DFT), Schafer

and Daul [22] obtained 2.52 �AA, significantly longer than

our result. GGA was known to produce too long bonds

when metals where involved. The improved basis sets in

recent versions of ADF appear to solve this problem.
The calculated energies of the ER/SO multiplets

(Table 2) are in semi-quantitative agreement with the

experimental optical data of Carnall et al. [17]. However

the energy calculations of Carnall also included config-

uration interaction terms [31–33] such as 4f n ! 4fn�15s1

or 4fn�15d1 excitations that are not taken into account

in our present work. Our Hamiltonian spans the whole

active space of the f n configurations and it is expected
that our DFT calculation (correlation effects) of the li-

gand field parameters will approximately represent the

contribution of these extra terms.

The total splitting of the 8S fundamental multiplet

(0.142 cm�1) agrees in magnitude with the experimental

EPR data in the solid state [4] (0.25 cm�1) and in

aqueous solution [2,27] (0.38–0.46 cm�1). However, it

appears too low compared with the experimental results.
We performed several subsequent calculations to

study the influence of the three interactions on the rel-

ative energies of the lower eight eigenstates of the

Hamiltonian. The results are reported in Tables 5–7,

together with the detailed results obtained by Bleaney

and co-worker [4] for Gd3þ doped into a solid lantha-

num ethylsulfate matrix.

The effect of the spin–orbit coupling (Table 5) is ra-
ther important. The total splitting of the multiplet is

50% larger (0.2149 instead of 0.142 cm�1) with a 10%

increase of the coupling constant. The splitting in this

case is actually in significantly better agreement with the

values of Bleaney. However, the SO coupling constant

should not be seen as the only source of error here, as

even n ¼ 1600 cm�1 would lead to an excessive spin–

orbit splitting of the excited states [34].

Table 3

Energy and degeneracy of the first eigenstates of the Hamiltonian (free

ion)

Multiplicity Energy (� 103 cm�1) Assignment

8 0.00 8S7=2

8 31.18 6P7=2

6 31.75 6P5=2

4 32.32 6P3=2

8 33.65 6I7=2
10 34.01 6I9=2
18 34.22 6I17=2
12 34.31 6I11=2
14 34.49 6I13=2
16 34.50 6I15=2
10 38.36 6D9=2

2 39.22 6D1=2

8 39.36 6D7=2

4 39.48 6D3=2

6 39.64 6D5=2

Table 4

ZFS parameters assuming a dominant second order contribution

k Bk (cm�1) Bk (� 1010 s�1) ak (� 1010 s�1)

2 0.0095 0.1791 0.1791

4 )0.0002 )0.0038 0.0038

6 0 0 0
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Electron repulsion acts in the opposite direction

(Table 6). A 10% reduction of the Racah parameters

leads to a 15% larger splitting. However, unlike the ex-

cited states, the ground state seems less sensitive to the

exact intensity of the electron–electron repulsion than to

the ligand field and spin–orbit terms.

It is easily seen that the SO and ER parameters can

affect the ground state splitting in opposite directions.
However, a more complex interplay of the SO coupling

constant and the three ER parameters is apparent in our

full ab initio calculation. The lower SO coupling con-

stant compared with the experimental parameters

should lead to a smaller splitting, but the final splitting is

one order of magnitude larger than with Carnall�s SO

and ER parameters. Our linear variation of the ER

parameters cannot reproduce such a behavior, and it is
not clear which parameters (n;G2;G4 or G6) plays the

most significant role in this large splitting.

Obviously the intensity of the ligand field plays a

generally positive role in the magnitude of the effect

since no splitting occurs without it (free ion case).

Nevertheless, we observe that the influence of the ligand

field is not monotonous (Table 7).

The calculated X-band EPR peak-to-peak width

(26 G) is too small by one order of magnitude (150–700

G depending on the temperature in aqueous solutions of

Gd3þ [2]). Since the electron spin relaxation rates de-

pend on the square of the magnitude parameters ak, any
discrepancy in the ground state splitting is amplified in

the calculation of the EPR line width. One could also

imagine that the assumption of a dominant second order

term in the ZFS Hamiltonian is not valid for the Gd3þ

aqua ion. Indeed, the analysis of EPR spectra in aque-

ous solution shows important fourth and sixth order

contributions [2,27], which are marginal in our results

(Table 4). Finally, our calculations are based on a gas
phase optimized structure, which could differ from the

true structure in solution. The so-called static ZFS

contribution to relaxation represents the effect of rota-

tional diffusion on the fine structure associated with the

time-averaged coordination polyhedron. At a finite

temperature, fluctuations of the structure will also take

place, due to vibrations and collisions solvent molecules.

These time-dependent structural fluctuations are the
origin of the transient ZFS. If our ideal D4d symmetry

does not correspond to the average structure, the theo-

retical ZFS is not directly comparable to the static ZFS

in solution. A complete study will require a full geom-

etry optimization without symmetry constraints, as well

as a systematic exploration of the potential energy sur-

face. Solvation effects on the optimized structure may

also be important.

Table 5

Influence of the spin–orbit coupling on the ZFS

Reference Bleaney 0.5 SO 0.9 SO 1.1 SO 1.5 SO

0.000 0 0.0000 0.0000 0.0000 0.0000

0.000 0 0.0000 0.0001 0.0001 0.0001

0.032 0.049 0.0044 0.0205 0.0481 0.1670

0.032 0.049 0.0044 0.0205 0.0482 0.1670

0.084 0.132 0.0049 0.0500 0.1310 0.5173

0.084 0.132 0.0049 0.0500 0.1311 0.5175

0.142 0.245 0.0169 0.0886 0.2148 0.7595

0.142 0.245 0.0169 0.0887 0.2149 0.7596

Table 6

Influence of the electrostatic repulsion on the ZFS

Reference Bleaney 0.5 ER 0.9 ER 1.1 ER 1.5 ER

0.000 0 0.0000 0.0000 0.0000 0.0000

0.000 0 0.0002 0.0001 0.0001 0.0001

0.032 0.049 0.1888 0.0417 0.0264 0.0191

0.032 0.049 0.1889 0.0417 0.0264 0.0191

0.084 0.132 0.9267 0.1127 0.0667 0.0442

0.084 0.132 0.9267 0.1129 0.0668 0.0443

0.142 0.245 1.0634 0.1757 0.1214 0.0958

0.142 0.245 1.0636 0.1757 0.1215 0.0959

Table 7

Influence of the ligand field magnitude on the ZFS

Reference Bleaney 0.5 LF 0.9 LF 1.1 LF 1.5 LF 1.6 LF 1.8 LF 2 LF

0.000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.000 0 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

0.032 0.049 0.0344 0.0348 0.0283 0.0441 0.0740 0.1433 0.2253

0.032 0.049 0.0344 0.0348 0.0284 0.0442 0.0741 0.1434 0.2254

0.084 0.132 0.0922 0.0919 0.0721 0.0510 0.1017 0.2148 0.3494

0.084 0.132 0.0923 0.0920 0.0722 0.0511 0.1017 0.2149 0.3494

0.142 0.245 0.1738 0.1611 0.1162 0.0531 0.1089 0.2440 0.4050

0.142 0.245 0.1738 0.1612 0.1162 0.0531 0.1090 0.2441 0.4051
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6. Conclusion

We have developed a general method for the ab initio

study of the electronic fine structure of lanthanide(III)

complexes. This versatile method involves a configura-
tion interaction calculation within the complete active

space of the 4f n configurations, based on a limited

number of parameters that can be either calculated

quantum mechanically or extracted from experimental

results.

We implemented our method in a computer program.

The approach proved to be quite affordable using the

currently available hardware. We applied it for the de-
termination of the 8S7=2 ground state splitting (ZFS) of

the [Gd(H2O)8]
3þ aqua ion. Ligand field parameters

were derived from a DFT calculation, and spin–orbit

and electron repulsion parameters were obtained either

from the literature or from an ab initio calculation. We

used our results to calculate the X-band EPR peak-to-

peak width in solution, based on a model of rotational

modulation.
When experimental parameters are used for the spin–

orbit coupling and electron repulsion, the calculated

ZFS magnitude agrees with the experimental EPR data

in the solid state and in solution. However, the full non-

empirical calculation underestimates the effect some-

how. The error is more severe for the EPR peak-to-peak

width that is one order of magnitude lower than the

observed value. We used our program to study the in-
fluence of the various Hamiltonian contributions (elec-

trostatic repulsion, spin–orbit coupling and ligand field)

on the final ground state splitting. We observed that the

spin–orbit coupling constant had a positive correlation

with the ZFS, whereas increasing the electrostatic re-

pulsion (Racah/Slater–Condon parameters) decreases

the ZFS. It is more difficult to discuss the correlation

between the ligand field and the ZFS as our analysis
shows a non-monotonous behavior.

Although the calculated spin–orbit coupling constant

and Racah parameters were similar to the reported ex-

perimental values, the full ab initio parameters (SO, ER

and LF) lead to a significant overestimation of the

ground state splitting.

With the availability of our fine structure calculation

program, various future developments can be envisaged
using the general framework presented here. A full

quantum mechanical calculation of the electrostatic, li-

gand field and spin–orbit parameters obviously im-

proves the predictive value of the method. Since our first

results in this respect were not accurate enough, more

work is required in order to assess the suitability of

different theoretical methods and basis sets for our

purpose. The addition of further terms (for example the
interaction with higher excited configurations) can be

necessary for the accurate treatment of some systems,

eg., Eu2þ. Using a perturbative approach would allow

such an improvement without a dramatic increase of the

computational cost. In order to better compare our re-

sults with the experimental data, a convenient way to

project our eigenstates onto the jS;mSi basis set used in

the spin Hamiltonian formalism will also be necessary
for future studies.
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