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Abstract We report here studies that integrate data of respi-
ration rate from mouse skeletal muscle in response to leptin and
pharmacological interference with intermediary metabolism,
together with assays for phosphatidylinositol 3-kinase (PI3K)
and AMP-activated protein kinase (AMPK). Our results suggest
that the direct effect of leptin in stimulating thermogenesis in
skeletal muscle is mediated by substrate cycling between de novo
lipogenesis and lipid oxidation, and that this cycle requires both
PI3K and AMPK signaling. This substrate cycling linking
glucose and lipid metabolism to thermogenesis provides a novel
thermogenic mechanism by which leptin protects skeletal muscle
from excessive fat storage and lipotoxicity.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Skeletal muscle, which accounts for 30–40% of body mass in

mammals, is an important site for glucose disposal, lipid oxi-

dation and thermogenesis whose impairments contribute to the

pathogenesis of obesity and type 2 diabetes. It has long been

suspected that these metabolic events are often interdependent

in normal and disease states [1,2], but a mechanistic link be-

tween glucose and lipid metabolism to skeletal muscle ther-

mogenesis is still ill-defined. Leptin, an adipocyte-derived

hormone which is well known for its role in weight regulation,
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has also been shown to protect insulin-sensitive tissues like

skeletal muscle against excessive fat storage that can lead to

functional impairments known as lipotoxicity [3]. The dem-

onstrations that leptin can act directly on skeletal muscle,

specifically via the long form of the leptin receptor (ObRb), to

stimulate glucose utilization [4], lipid oxidation through AMP-

activated protein kinase (AMPK) [5,6] or thermogenesis in a

phosphatidylinositol 3-kinase (PI3K)-dependent manner [7],

have provided the impetus to investigate the mechanisms by

which muscle substrate metabolism and thermogenesis are

interdependent. Although the mechanisms leading to increased

fatty acid oxidation in skeletal muscle in response to leptin

have been described in molecular details [6], those underlying

its effects on thermogenesis are still unknown, amid continuing

controversies concerning the role of novel uncoupling proteins,

UCP2 and UCP3, as effectors of skeletal muscle thermogenesis

[3,8,9]. Furthermore, the mechanism by which glucose and li-

pid metabolism are linked to thermogenesis in response to

leptin’s direct effect on skeletal muscle is unknown. With the

objective of elucidating the mechanisms by which leptin exerts

its direct effect on skeletal muscle thermogenesis, we report

here a study that integrates data of respiration rate from intact

mouse skeletal muscle ex vivo in response to leptin and

pharmacological interference with key control points of in-

termediary metabolism, together with biochemical measure-

ments for PI3K and AMPK signaling.
2. Materials and methods

2.1. Mice and muscle tissue preparations
Intact muscles were obtained from 7 to 8 week old male BALB/

cByJIco mice (Charles River Laboratories, L’Arbresle, France). For ex
vivo calorimetric measurements, soleus and/or extensor digitorum
longus (EDL) muscles were carefully dissected out intact together with
their tendons and freed of loosely attached connective tissue. They were
then placed on a stainless steel frame, at physiological resting length, in
the test chambers of a twin indirect microcalorimeters perifused with
Krebs–Ringer bicarbonate buffer at 30 �C, as described previously [7].

2.2. Measurement of tissue respiration rate
The respiratory rate (MO2) of skeletal muscle was measured by a

method involving repeated O2 uptake determinations, as described by
blished by Elsevier B.V. All rights reserved.
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Barde et al. [10]. The O2 partial pressure of a bubble-free liquid phase
enclosed in a thick-walled Lucite chamber was measured by a Clark O2

electrode connected to a polarographic circuit, whose output voltage is
directly proportional to the O2 partial pressure. At about 10 min in-
tervals, a peristaltic pump partially exchanges the solution for a fresh
one within 2–3 min. All values for MO2 were taken during steady-state
respiration. For each hormone or drug, this corresponded to 90–120
min after administration. The basal steady state MO2 was taken 120–
150 min after placing the muscle preparations in the experimental
chambers.

2.3. AMPK Thr172 phosphorylation, PI3K assays and leptin receptor
antibodies

Soleus and EDL muscles were incubated in the presence of leptin
(10 nM) or insulin (100 nM) or AICAR (10 mM) for 15 min, and
then immediately frozen in liquid nitrogen. Frozen muscles were
homogenized and incubated in lysis buffer (20 mM Tris–HCl, 138
mM NaCl, 2.7 mM KCl, 5% (v/v) glycerol, NP-40, and protease
inhibitors) for 15 min. After centrifugation at 13 000 rpm for 15 min,
protein concentration was quantified and the protein extracts were
used for measurement of AMPK Thr172 phosphorylation or PI3K
activity. For AMPK phosphorylation, 200 lg of protein extract was
immunoprecipitated with phospho-AMPKa (Thr172) polyclonal an-
tibodies (Cell Signalling). The samples were then separated on a 10%
Fig. 1. (A) Steady-state respiration rate (MO2) of soleus muscles in the basal s
of PI3K), or during sequential addition of leptin and insulin; Note that addi
IRS2, PY and p85 associated PI3K activity in response to leptin or to insul
addition of araA (a competitive inhibitor of AMPK) and leptin, or during th
MO2 of soleus muscles in the basal state, during sequential addition of A
wortmannin. It is to be noted that addition of etomoxir alone or wortmannin
on MO2, values are means ðn ¼ 5–6Þ, with vertical bars representing standa
measures. Following ANOVA, post hoc pairwise comparisons were made b
significantly different from each other ðP < 0:05Þ; ns¼no significant differen
leptin or between presence and absence of insulin were made between pools o
same animals, and the experiment was replicated three times.
SDS–PAGE gel and blotted on a PVDF membrane that was ana-
lyzed with same phospho-AMPKa (Thr172) polyclonal antibodies.
For PI3K assay, 200 lg of protein extract was immunoprecipitated
either with phosphotyrosine (PY) monoclonal antibody (Cell Sig-
nalling), with p85 rabbit polyclonal antibody (obtained from MP
Wymann laboratory), with insulin receptor substrate 1 (IRS1)
polyclonal antibody (Cell Signalling), or with insulin receptor sub-
strate 2 (IRS2) polyclonal antibody (Upstate). The kinase reaction,
thin-layer chromatography separation and signal detection were
performed as described by Pirola et al. [11]. Western blot analysis
for the ObRb was made using anti-leptin receptor polyclonal anti-
body (Affinity BioReagents Inc).

2.4. Muscle de novo lipogenesis analysis
Pools of four left leg muscles and four right leg muscles from the

same animals were incubated separately in buffer containing 5 mM
glucose supplemented with DD-[14C]-glucose for control and insulin
treatment reactions, respectively. After incubation for 2 h at 30 �C,
muscle lipids were extracted and separated by thin-layer chromatog-
raphy on silica gel developed with hexane:ethylether:acetic acid
80:20:1. 14C-labeled lipid metabolites were detected by phosphor im-
aging and compared with lipid standards, namely: 14C-labeled palmi-
tate and mixture of unlabeled mono-, di-, and tri-oleoylglycerol that
were detected colorimetrically.
tate, during sequential addition of leptin and wortmannin (an inhibitor
tion of insulin alone had no significant effect on basal MO2; (B) IRS1,
in; (C) MO2 of soleus muscles in the basal state, during the sequential
e sequential addition of leptin and the CPT-1 inhibitor, etomoxir; (D)
ICAR and etomoxir, or during sequential addition of AICAR and
alone had no significant effect on basalMO2 (data not shown). For data
rd errors. Significant effects were assessed by ANOVA with repeated
y Tukey’s test and values not sharing the same superscript (a–c) are
ce. For the PI3K assay, comparisons between presence and absence of
f four left leg soleus muscles and four right leg soleus muscles from the
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2.5. Chemicals and drugs
All chemicals were purchased from Fluka (Buchs, Switzerland).

Recombinant murine leptin was purchased from Insight Biotechnology
Ltd. (Middlesex, UK), Wortmannin and Hydroxy-citrate from Cal-
biochem (Luzern, Switzerland), Cerulenin from Fluka (Buchs, Swit-
zerland), 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)
from Toronto Research Chemicals (TRC, Toronto, Canada) and
Adenine 9-b-DD-arabinofuranoside (araA) from Sigma (St. Louis, MO,
USA). Etomoxir was a generous gift from Prof. W. Langhans (Zurich,
Switzerland).
3. Results

3.1. Requirement for PI3K signaling

Consistent with our previous report [7], leptin (10 nM)

stimulates the respiration rate (MO2) of soleus muscle (by

about 20%), and this effect is abolished by the addition of

wortmannin, an inhibitor of PI3K (Fig. 1A). Since leptin in-

duces associations of PI3K activity to PY residues and to IRS1

and IRS2 in muscle myotubes [12] and in skeletal muscle from

mice injected with leptin [13], we investigate here whether an

increase in PI3K association with these molecules also corre-

lates with the direct effect of leptin on muscle MO2. Using in

vitro kinase assays in ex vivo intact soleus muscles incubated

with leptin, insulin or saline solution as control, we however

found that there is no induction of PY, IRS1, IRS2 and p85

associated PI3K activities in response to leptin, in contrast to
Fig. 2. (A) AMPK phosphorylation and respiration rate (MO2) of soleus and
in EDL muscle the lack of increases in MO2 and in AMPK in response to le
panel also shows that the increase inMO2of EDL muscle from ad libitum fed
(B) data are obtained on EDL muscles from 16 h-fasted mice for MO2 in th
during sequential addition of leptin and etomoxir. All data on MO2 are mean
sharing the same superscript (a, b) are significantly different from each other
or EDL) and four right leg muscles (soleus or EDL) from the same animals w
was replicated three times; For the ObRb assay, comparisons were made betw
of the same animals, and the experiment was also replicated three times.
what is observed in response to insulin (Fig. 1B). Our results

therefore suggest that PI3K requirement for leptin-mediated

thermogenesis in skeletal muscle is independent of an increase

in PI3K association to IRS1, IRS2 and PY as well as to an

increase of p85 associated pool. Considering that the calori-

metric data show that leptin’s stimulation of MO2 in soleus

muscle is PI3K dependent, it is possible that leptin induces

PI3K associations to molecules other than those investigated,

or that leptin does not stimulate PI3K activity in muscle but

that basal levels of PI3K activity (inhibited by wortmannin)

are required to support the direct thermogenic effect of leptin.

Consistent with a role for PI3K in leptin-induced thermogen-

esis in muscle is the finding that insulin, which activates PI3K

signaling in our ex vivo muscle preparations (Fig. 1B), en-

hances the stimulatory effect of leptin onMO2 in soleus muscle

(Fig. 1A). However, since stimulation of PI3K activity by in-

sulin per se failed to produce an increase in MO2 (Fig. 1A), we

conclude that the direct thermogenic effect of leptin in soleus

muscle requires additional signaling pathway(s).
3.2. Requirement for AMPK-ACC-CPT-1 axis and PI3K

signaling

It is now established that leptin can directly stimulate fatty

acid oxidation at the expense of fatty acid storage in soleus

muscle [5], and that this effect is mediated via leptin’s stimu-
EDL muscles from ad libitum fed mice in response to leptin; note that
ptin is not explained by a lower protein expression of the ObRb. This
mice in response to AICAR is inhibited in the presence of wortmannin;
e basal state, during sequential addition of leptin and wortmannin, or
s, with vertical bars representing standard errors ðn ¼ 5–7Þ; values not
ðP < 0:05Þ. For the AMPK assay, pools of four left leg muscles (soleus
ere incubated in the presence or absence of leptin, and the experiment
een pools of four soleus muscles and four EDL muscles from the left leg



Fig. 3. (A) Respiration rate (MO2) of soleus muscle in the basal state,
during addition of leptin, and subsequently after addition of leptin in
buffer in which glucose has been replaced by 2-deoxyglucose; (B)
Phosphor imaging of thin layer chromatography showing conversion
of DD-[14C]-glucose into [14C]-lipids in mouse soleus muscle: lane 3
contains lipids extracted from muscles in control buffer and lane 4
contains lipids extracted from muscles incubated with 100 nM insulin;
lipid standards are as follows: lane 1: 14C-labeled palmitate and lane 2,
mixture of unlabeled mono-(MG), di-(DG) and tri-oleoylglycerol (TG)
that were detected colorimetrically; (C) MO2 in the basal state, during
sequential addition of leptin and OH-citrate, an inhibitor of citrate
lyase, or during sequential addition of leptin and cerulenin, an inhib-
itor of fatty acid synthase. All data are means, with vertical bars
representing standard errors ðn ¼ 6–8Þ; values not sharing the same
superscript (a, b) are significantly different from each other ðP < 0:05Þ.
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lation along the axis of AMPK! acetyl-CoA carboxylase

(ACC)! carnitine palmitoyl transferase-1 (CPT-1) [6]. To test

the role of this axis in leptin-mediated thermogenesis, we in-

vestigated whether pharmacological inhibition of AMPK ac-

tivation or CPT-1 leads to an inhibition of the effect of leptin

on muscle MO2. We show here that prior addition of araA, an

intracellular competitive inhibitor of AMPK [14], prevents

leptin-induced increases in muscle MO2, and that etomoxir, a

CPT-1 inhibitor in muscle [15], blunts the direct effect of leptin

on muscle MO2 (Fig. 1C). To further elucidate the role of the

AMPK-ACC-CPT-1 axis, and to determine whether activation

of AMPK alone is sufficient to increase skeletal muscle ther-

mogenesis, soleus muscles were treated with AICAR, an acti-

vator of AMPK [16]. We show (Fig. 1D) that AICAR

stimulatesMO2 in soleus muscles and that this effect is blocked

not only by etomoxir but also by wortmannin. Taken together,

these data suggest that, in addition to stimulation of AMPK-

ACC-CPT-1 axis, a basal level of PI3K is also necessary for

the direct effects of AICAR and leptin on skeletal muscle

thermogenesis.

Further support that both PI3K signaling and AMPK

activation are necessary for the direct effects of leptin and

AICAR on muscle thermogenesis can be derived from

studies, described below, that utilize either the soleus muscle

and/or the EDL muscle. Since an increase in AMPK activity

in response to leptin was previously reported [6] to occur

only in soleus (a predominantly slow-oxidative fiber type)

but not in EDL (a predominantly fast-glycolytic fiber type),

we investigated whether this muscle-specific activation of

AMPK signaling correlates with leptin-induced thermogene-

sis. We show here that, in contrast to soleus muscle, the

addition of leptin to EDL muscle, whether at the concen-

tration of 10 nM (Fig. 2A) or at 100 nM (data not shown),

does not significantly increase either MO2 or AMPK phos-

phorylation, thereby underscoring the association between

AMPK stimulation and muscle thermogenesis in response to

leptin. Since we found that this lack of EDL responsiveness

to leptin cannot be explained by a lower expression of the

ObRb (Fig. 2A), we postulated that it could be consequential

to post-receptor signaling defect. To test whether the absence

of thermogenic response to leptin in the EDL can be at-

tributed to a lack of AMPK activation, we used AICAR

which has been shown to directly stimulate AMPK activity

in this tissue [6]. The addition of AICAR to EDL muscle

increased MO2 (Fig. 2A), which suggests that the unre-

sponsiveness of EDL to leptin is uniquely due to a lack of

AMPK activation. This AICAR-induced increase in MO2 in

EDL is also inhibited by addition of the PI3K inhibitor,

wortmannin (Fig. 2A), which is consistent with the above

observations in soleus muscle, and further supports the re-

quirement for PI3K activity in the direct effect of AICAR

and leptin on skeletal muscle MO2.

Since during fasting, substrate oxidation in glycolytic mus-

cles shifts from glucose to fatty acids accompanied by elevated

CPT-1 activity, the question arose as to whether EDL could

have the potential to respond to leptin in muscles from fasted

mice. Indeed, in EDL muscles from 16h fasted mice, leptin was

effective in increasing both MO2 and AMPK phosphorylation,

and these increases in MO2 were also found to be inhibited by

the PI3K inhibitor, wortmannin, and by the CPT-1 inhibitor,

etomoxir (Fig. 2B). Taken together, these studies from soleus

and EDL muscles underscore the requirement for basal PI3K
activity and AMPK activation in the direct thermogenic effect

of leptin in skeletal muscle.

3.3. Requirement for glucose and de novo lipogenesis

Our findings using the CPT-1 inhibitor etomoxir (Figs. 1C

and 2B) show that fatty acid entry into the mitochondrial b-
oxidation is necessary for the thermogenic effect of leptin in

muscle. Since leptin can also stimulate glucose uptake and

metabolism in soleus muscle [4], we investigated whether glu-

cose metabolism is also necessary for the thermogenic response

to leptin. We show here (Fig. 3A) that the direct effect of leptin

on MO2 in soleus muscle is inhibited by the replacement of

glucose in the perifusion medium with 2-deoxyglucose, a glu-

cose analog whose metabolism stops after its phosphorylation

by hexokinase, thereby indicating that leptin-induced ther-

mogenesis in muscle requires not only fatty acid oxidation but

also glucose metabolism. These data, together with the fact

that PI3K – which in addition to controlling glucose uptake

and its conversion to lipids (i.e., de novo lipogenesis) in several

cell types [17] – is also required for muscle thermogenesis in

response to leptin, led us to test the following hypothesis,

namely that de novo lipogenesis can occur in skeletal muscle

and, in response to leptin, glucose will first be converted to

lipids before being oxidized in muscle mitochondria. This

would generate an energy dissipating ‘futile’ cycle that can be

an effector of the thermogenic effects of leptin.
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We show here that incubation of our muscle preparations in

buffer containing 14C-labeled glucose resulted in the produc-

tion of 14C-labeled lipids corresponding to free fatty acids,

diacylglycerol and triacylglycerol when analyzed by thin-layer

chromatography (Fig. 3B), and that insulin increased the

synthesis of lipids from glucose in soleus muscle, and to a lesser

extent in EDL muscles (data not shown). This experiment

demonstrates that de novo lipogenesis can occur in skeletal

muscle and that it can be induced by insulin, as in the liver and

adipose tissue [17]. To know whether de novo lipogenesis is

necessary for leptin-induced thermogenesis in skeletal muscle,

we tested whether leptin-induced increases in MO2 in the so-

leus muscle are inhibited by the addition of inhibitors of key

control points in the conversion of glucose to lipids. We show

here that OH-citrate, which inhibits the enzyme citrate lyase,

or cerulenin, an inhibitor of fatty acid synthase, can blunt the

leptin induction of MO2 in soleus muscle (Fig. 3C). Taken

together, these data indicate that both glucose metabolism and

de novo lipogenesis are required for the direct thermogenic

effect of leptin in skeletal muscle.
AcetylCoA

Fatty acids

Krebs cycle

Fig. 4. Model illustrating an energy-dissipating ‘futile’ substrate cy-
cling between de novo lipogenesis and lipid oxidation, orchestrated by
PI3K and AMPK signaling, in skeletal muscle (see text for details).
TG: triglycerides; CPT-1: carnitine palmitoyl transferase-1; ACC: ac-
etyl-CoA carboxylase.
4. Discussion

Here, we show that the direct effect of leptin on skeletal

muscle thermogenesis requires both de novo lipogenesis and

lipid oxidation, as well as both AMPK and PI3K signaling.

These results suggest that the direct stimulatory effect of leptin

on thermogenesis in skeletal muscle is dependent upon sub-

strate cycling between de novo lipogenesis and lipid oxidation.

It is postulated that in this substrate cycle, which underscores

the interdependency between glucose metabolism, lipid oxi-

dation and thermogenesis, acetyl-CoA produced from glucose

and fatty acid oxidation will overload the Krebs cycle (Fig. 4).

This will result in excess mitochondrial citrate which, in the

cytoplasm, will exert an allosteric activation of the enzyme

ACC and at the same time, under the action of citrate lyase,

will provide acetyl-CoA to ACC for the synthesis of malonyl-

CoA. The latter will serve as the main substrate for fatty acid

synthase, thereby producing a new pool of fatty acids. Glucose

plays a central role in this cycle as a source of acetyl-CoA,

Krebs cycle intermediates and NADPH molecules, which are

required for the synthesis of free fatty acids. It might also

function as a stimulator of de novo lipogenesis, based upon the

recent demonstration [18] in rat muscle satellite cells that

glucose, even in the absence of insulin, stimulates sterol regu-

latory element binding protein-1c (SREBP-1c) gene expression

as well as key genes encoding glycolytic and lipogenic enzymes,

leading to an increased lipogenic flux and intracellular lipid

accumulation. The latter study [18] also provides direct evi-

dence that de novo lipogenesis can occur in skeletal muscle

cells.

AMPK and PI3K signaling could orchestrate this ‘futile’

cycle between de novo fatty acid synthesis and fatty acid

oxidation. On the one hand, activation of AMPK, by phos-

phorylating ACC, will counterbalance the stimulatory action

of citrate on ACC to result in reduced malonyl-CoA con-

centration, disinhibition of CPT-1 and increased fatty acid

oxidation, which in turn will lead to the production of acetyl-

CoA and consequently overloading of the Krebs cycle. On

the other hand, PI3K activity (basal or insulin-stimulated)
will increase glucose entry and allow the excess citrate to

enter pathways leading to the synthesis of fatty acids. This

would occur despite AMPK-induced reduction in malonyl-

CoA, since it is known that full phosphorylation of ACC by

AMPK results in an inhibition of ACC activities only by 50–

60% [19,20]. Such partial inhibition of ACC is expected to

redirect the flux of acetyl-CoA and malonyl-CoA towards

fatty acid oxidation, but would still allow substantial rate of

fatty acid synthesis, particularly in the presence of high levels

of citrate.

This substrate cycling between de novo lipogenesis and

lipid oxidation therefore constitutes a thermogenic effector in

skeletal muscle. Theoretically, the synthesis of one molecule

of palmitic acid from acetyl-CoA and its re-oxidation to

acetyl-CoA would cost at least 14 molecules of ATP. The

evidence supporting the existence of this substrate cycling as

a thermogenic effector in muscle rests upon our data on

metabolic labeling in intact skeletal muscle showing the oc-

currence of de novo lipogenesis (Fig. 3B), and upon our

calorimetric data showing that the direct thermogenic effects

of leptin in skeletal muscle are inhibited by interference with

key control points in this flux of substrates (Fig. 4), namely:

(i) with glucose metabolism using 2-deoxyglucose, (ii) with

the conversion of citrate to acetyl-CoA using OH-citrate, an

inhibitor of citrate lyase, (iii) with the conversion of malo-

nyl-CoA to fatty acids using cerulenin, an inhibitor of fatty

acid synthase, and (iv) with entry of fatty acid into mito-

chondrial b-oxidation pathway using etomoxir, an inhibitor

of CPT-1.
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Furthermore, evidence that the rate of this substrate cycle

could be orchestrated by PI3K and AMPK signaling rests

upon our data here showing that: (a) leptin-mediated ther-

mogenesis requires CPT-1 which is the final effector of the

leptin-AMPK-ACC-CPT-1 axis, (b) the thermogenic effect of

leptin is inhibited by pharmacological inhibition of AMPK

activation, (c) a strong correlation exists between AMPK ac-

tivation and thermogenesis in soleus and/or EDL muscles in

response to leptin, (d) the thermogenic effects of leptin is in-

hibited by the PI3K inhibitor, wortmannin, and (e) insulin, a

stimulator of PI3K activity, potentiates the thermogenic effects

of leptin on skeletal muscle and induces de novo lipogenesis as

shown from our metabolic labeling experiments. In fact, a dual

requirement for AMPK and PI3K signaling is strongly sup-

ported by our findings that the administration of insulin alone

does not stimulate muscle thermogenesis (Fig. 1A), and that

the activation of AMPK by AICAR leads to an increase in

thermogenesis that is abolished by the PI3K inhibitor wort-

mannin (Fig. 1D).

This energy dissipating substrate cycling linking glucose and

lipid metabolism to thermogenesis provides a novel molecular

mechanism by which leptin protects the skeletal muscle from

ectopic fat storage and lipotoxicity. Although the increase in

muscle metabolic rate induced by leptin (about 20%) may not,

a priori, be considered to be large, it must be emphasized that

peripheral resistance to this thermogenic effect of leptin can,

over time, lead to the accumulation of intramyocellular lipids

or lipid moieties, which even in modest amounts, can lead to

insulin resistance and lipotoxicity [3]. Approaches that en-

hance this energy-dissipating substrate cycle in skeletal muscle

may thus have therapeutic value for obesity and type 2 dia-

betes.
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