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Abstract

Ligand field splitting energies of lanthanides Ln3+ (Ln = from Ce to Yb) in octahedral environment are calculated using the

Hohenberg–Kohn theorems based orbital-free embedding formalism. The lanthanide cation is described at orbital level whereas

its environment is represented by means of an additional term in the Kohn–Sham-like one-electron equations expressed as an expli-

cit functional of two electron densities: that of the cation and that of the ligands. The calculated splitting energies, which are in good

agreement with the ones derived from experiment, are attributed to two main factors: (i) polarization of the electron density of the

ligands, and; (ii) ion–ligand Pauli repulsion.

1. Introduction

Theoretical modelling of confined systems such as an

atom, an ion, or a molecule in condensed phase, presents

usually a challenging task. The object of primary inter-

est interacts with its microscopic environment which

comprises usually a large number of atoms. Describing

the whole such system at a high-end quantum mechani-

cal level is usually not practical. In the early days of

quantum mechanics, Sommerfeld and Welker [1] put
forward the idea of confining potential (or embedding

potential) to be added to the Hamiltonian of the isolated

subsystem of interest in order to represent its interac-

tions with the environment. The idea of the embedding

potential found a large number of practical implementa-

tions varying in degree of their range of applicability
and the extend of the use of empirical parameters

[2–5]. Crystal field theory can be seen as a particular

version of the embedding strategy in which the environ-

ment of an ion in the crystal lattice is represented only

by its electrostatic field. This simple model proved to

be not sufficiently accurate which resulted in the devel-

opment of the ligand-field theory in which non-electro-

static effects are taken into account. Such effects are
represented using orbital-level representation of the

environment of the ion [6]. The non-electrostatic contri-

butions to the embedding potential for an ion in the

crystal lattice are significant but can be approximated

by a simple empirical overlap dependent term [7] or

more sophisticated empirical ligand pseudopotentials

such as the ones used recently in studies of ligand-field

splitting in lanthanides [8].
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Hohenberg–Kohn theorems [9] provide a general the-

oretical framework to construct the first-principles

based embedding potential [10]. The electron density

of a subsystem (qI) embedded in a given microscopic

environment (qII) can be derived form a constrained

minimization of the total energy bi-functional E[qI,qII]
keeping qII frozen. In this work, a new type of applica-

tion of this formalism is reported-the studies of the elec-

tronic structure of embedded lanthanide ions. It is its

first application to f-elements. Lanthanide chloroelpa-

solites, Cs2NaLnCl6 (Ln = lanthanide) are very suitable

objects for the study of the applicability of the orbital-

free embedding formalism to f-elements owing to the

rich collection of data concerning their properties
[11–13].

The principal objective of this work is the exploration

of a new area of applicability (f-elements) of the devel-

oped approximations to the orbital-free embedding

potential. The second objective of this work is the

assessment of relative importance of various contribu-

tions to the splitting energy, such as electrostatic interac-

tions with not-polarized ligands, electric polarization of
the ligands, and the non-electrostatic overlap-dependent

effects, and orbital interactions.

2. Computational details

The minimization of the total-energy bi-functional

E[qI,qII], where qI and qII correspond to the electron

density of the cation and the ligands, respectively, is per-

formed by means of the Kohn–Sham-like equations [10]

� 1

2
r2 þ V KSCED

eff ½~r; qI; qII�
� �

/ðIÞi ¼ �ðIÞi/ðIÞi; ð1Þ

where qI ¼
P

ij/ðIÞij2 , and V KSCED
eff ½~r; qI; qII� is the sum of

the Kohn–Sham effective potential for the isolated sub-
system [14] ðV KS½~r; qI�Þ and the orbital-free embedding

effective potential given by

V eff
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X
AII
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where T nad
s ½qI; qII� ¼ T s½qI þ qII� � T s½qI� � T s½qII�, the

functionals Exc[q], and Ts[q] are defined in the Kohn–
Sham formalism [14].

Both V KS½~r; qI� and V eff
emb½~r; qI; qII� do not depend on

the orbitals but only on the electron densities of the

two subsystems. They are, therefore, orbital-free. It is

worthwhile to notice that the orbital-free embedding

formalism can be seen as a particular application of

the subsystem-based formulation of density functional

theory [15] for two subsystems which might be described

using different levels of approximation. Applying the

orbital-free embedding formalism to derive f-level split-

ting energies can be also seen as a non-empirical realiza-

tion of the original ideas of Schäffer and Jørgensen [17]

developed further by Urland [18].
Gradient-dependent functionals approximating

T nad
s ½qI; qII� and Exc½q� make it possible to study only

such systems for which the overlap between qI and qII
is small [19]. See [16] for review of recent applications.

In this work, we use the approximate functionals which

were chosen based on dedicated studies concerning

T nad
s ½qI; qII� [19] and the whole bi-functional E[qI,qII]

[20].
Fig. 1 represents the investigated system comprising

an octahedral arrangement of the lanthanide cation

and its ligands (Oh symmetry). The lanthanide–ligand

distances derived from ab initio (CASSCF or CASPT2)

cluster calculations [21] were used.

The principal results were obtained using qII minimiz-

ing the total-energy bi-functional E[qI,qII] in Eq. (2) in

the �freeze-and-thaw� cycle of iterations [22]. This density
is labeled as relaxed qII throughout this work. Relativis-

tic scalar ZORA [23], all electron calculations were per-

formed using the ZORA triple-f STO set plus one

polarization function [24]. The van Leeuwen–Baerends

(LB94) exchange-correlation potential [25] was used to

Fig. 1. Schematic view on the environment of studied lanthanide

cations. Each Ln3+ is hexacoordinated to six Cl� ions. The second

coordinations sphere comprises eight Cs+ ions at the corners of the

cube. The third coordination sphere comprises six Na+ ions occupying

the vertices of the octahedron.
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approximate the exchange-correlation component of

V KS½~r; qI� in Eq. (1). This choice was motivated by the

fact that the ligands are negatively charged and such sys-
tems are not well described by means of Kohn–Sham

equations applying local and semi-local functionals.

The computer code performing orbital-free embedding

calculations (Eqs. (1) and (2)) based on the ADF pack-

age (version 2003.01) was used [26].

The ligand field splitting parameters D1 and D2 ana-

lyzed throughout this work are also defined in Fig. 2.

They were calculated for average-of-configuration
(AOC) in which each f-orbital was partially occupied

(occupation number n/7 for a given fn configuration).

Table 1 collects data concerning the geometry and the

electronic configuration for each lanthanide cation.

The experimental ligand field parameters D1 and D1 were

taken from [11].

3. Results and discussion

Fig. 3 shows our principal results obtained using

relaxed qII in Eq. (2). In the whole series, the calculated

values of the parameter D1 are in a very good agreement

with experiment. The experimental values decrease

almost mono-tonically in the whole series from 380

cm�1 (Ce) to 220 cm�1 (Yb). The dependence of calcu-
lated D1 on the number of f-electrons is, however,

smoother than that deduced from experimental data.

The average and the maximal deviation from experi-

mental data amount to 30 and 100 cm�1 (Sm), respec-

tively. These rather small discrepancies between these

two sets of parameters can be attributed to various fac-

tors (see the discussion later). Fig. 3 shows that the cal-

culated and experimental values of D2 are also in a

rather good agreement.The average and the maximal
deviation from experimental data amount to 185 and

320 cm�1 (Sm), respectively. As in the case of D1 the

dependence of calculated values of D2 on the number

of f-electrons is smoother than that deduced from exper-

imental data. For D2, however, the calculated values

underestimate the experimental results by about 200

cm�1. In the following section, the factors which might

contribute to the discrepancies between the ligand-field
parameters deduced from experimental data and that

calculated in this work are discussed.

The discrepancy between the experimental and cal-

culated data might originate either from: (a) the intrin-

sic error of the applied exchange-correlation functional

which could lead to different errors of the orbital-ener-

gies of different symmetry (see the detailed analysis of

this issue in [28]); (b) the errors in the applied approx-
imate embedding effective potential leading to a not

adequate description of the cation–ligand Pauli repul-

a2u
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Δ2

Fig. 2. The f-orbital levels of Ln3+ in the octahedral environment.

Table 1

Electronic configuration of the lanthanide ions and the Ln–Cl bond lengths used in the calculations: athe sum of the ionic radii and bthe ab initio

optimized bond length

Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+

f-Shell occupation f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

Ionic radiia 2.82 2.8 2.793 2.78 2.768 2.757 2.748 2.733 2.722 2.711 2.7 2.69 2. 678

CASPT2/AIMPb 2.682 2.666 2.656 2.642 2.631 2.630 2.609 2.595 2.584 2.571 2.567 2. 556 2.544

a Sum of ionic radii [r(Ln3+) + r(Cl�)] from [27].
b CASPT2 values of d(Ln3+–Cl�) from [21].
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Fig. 3. Ligand field splitting parameters (D1 and D2) in the octahed-

rally coordinated lanthanide ions: the splitting energies calculated

using effective embedding potential of Eq. (2) and relaxed qII and the

observed splitting energies. Calculations were made at the ab initio

optimized ion–ligand distances taken from the literature. Solid and

dotted lines are used to guide the eye for experimental [11] and

calculated results,respectively. Circles and stars indicate D1 and D2,

respectively.The estimated error bars of experimental parameters are

not shown because they are of the size of the applied symbols.

3



sion; (c) the use of AOC to derive the orbital energies;

(d) inadequacies of our model (its size and geometry).

The most striking feature is a rather uniform underes-

timation of D2 suggesting a common origin. We attri-

bute this underestimation to the redistribution of the

electron density qII corresponding to some ligand-
to-cation charge transfer. Such an effect was neglected

in our calculations in which qII was localized on the

ligands. The transfer of charge density would increase

the levels of the orbitals because it would cause the in-

crease of the repulsive non-additive kinetic energy com-

ponent of the effective embedding potential. The

remaining discrepancies (the lack of peaks in the theo-

retical curves) could be attributed also to the other fac-
tors. In particular, using AOC might lead to two types

of errors. One related to orbital relaxation and another

to the different errors in the energies of t1u, t2u and a2u
orbitals derived from calculations using approximate

exchange-correlation potential. As far as the orbital

relaxation is concerned, they were estimated previously

and amount to only 1–2% of the excitation energy [29].

The model-related factors, such as the assumed geom-
etry of the investigated systems and the long-range

effects (the contributions due to atoms beyond the sec-

ond coordination shell) might also contribute to the

apparent discrepancy. The geometry of the lanthanide

centers in chloroelpasolite crystals, Cs2NaLnCl6, can-

not be obtained in direct measurements. Unfortunately,

even a small change in the lanthanide–ligand bond

length results in a large change in the optical parame-
ters of the embedded cation (dependence as 1=dn

Ln–Cl

with n = 5–6). To estimate the magnitude of the possi-

ble effect of the geometry, the ligand-field parameters

were recalculated using the sum-of-ionic-radii geome-

tries instead of ab initio optimized geometries [21].

The change of the geometry does not affect signifi-

cantly our results. The maximal effect occurs for Ce,

where D1 changes from 478 to 391 cm�1 and for Nd,
where D2 changes from 763 to 626 cm�1. The effect

of beyond-the-second-coordination-shell atoms can be

determined in a straightforward manner. The electro-

static potential generated by 142 point charges was

added to the external potential in Eq. (2). The charges

were chosen to reproduce the electric field correspond-

ing to the infinite system (Madelung potential). Adding

this field, however, did not result in any noticeable ef-
fect on the calculated parameters.

Five simplified methods to describe the environment,

which can be seen as approximations to the full orbital-

free embedding potential discussed so far, are analyzed

below:

(A) Point charge embedding. The environment of the

ion comprising a set of point charges representing
the nearest neighbors of the lanthanide cation in

the crystal: six negative charges (qCl = �1e), eight

positive charges (qCs = +1e), and six positive

charges (qNa = +1e). This model can be seen as a

simplification of Eq. (2) in which all non-electro-

static terms are neglected and the terms represent-

ing Coulomb interactions are approximated by a

truncated multicenter multipole expansion.
(B) Electrostatics-only embedding with not-polarized

qII. (i.e. calculated by means of Kohn-Sham equa-

tions for the isolated ligands.) In this model, the

Coulomb interactions are calculated exactly for a

given qII but all non-electrostatic terms in Eq. (2)

are neglected.

(C) Electrostatics-only embedding with pre-polarized

qII. (i.e. calculated by means of Kohn-Sham equa-
tions for the ligands in the presence of a +3a point

charge mimicking the cation.) In this model, the

Coulomb interactions are calculated exactly for a

given qII but all non-electrostatic terms Eq. (2)

are neglected.

(D) Eq. (2) embedding with not-polarized qII.
(E) Eq. (2) embedding with pre-polarized qII.

Table 2 collects all the results obtainedusing the simpli-

fied models (A–E). The results shown in Fig. 3 are also gi-

ven for comparison. For simplified embedding potentials

A and D, the splitting energies are almost the same. The

calculated splitting energies, underestimate significantly

(by the factor of 2–3) the experimental ones. It indicates,

that other factors must be taken into account. Compari-

son between the results obtained using the embedding
potential of Eq. (2) with two different qII, either relaxed
or not-polarized (effective potential D), shows that the

polarization of the environment (ligands) plays a key role

in determining the magnitude of the splitting energies.

Allowing the ligands to become polarized by the cation re-

sults in a significant increase of the magnitude of the split-

ting energies and brings them close to experimental

values. The results collected in Table 2 show clearly that
the overlap-dependent terms are indispensable in the

embedding potential. Without them the environment

induced shifts of f-levels are quantitatively (models A,

D) and qualitatively (reverse ordering of levels, models

C, B) wrong. The results derived using relaxed qII and
pre-polarized qII in Eq. (2) are very similar. They differ

by less than 30 cm�1. This indicates a possible additional

saving in the overall time of computations because the
�freeze-and-thaw� cycle can be avoided.

For the systems considered in this work (lanthanide

cation and its ligands), the conventional supermolecule

Kohn–Sham calculations are possible. Unfortunately,

the splitting energies derived from such calculations

are not satisfactory [30]. The numerical results derived

from embedding calculations are clearly superior to that

derived from supermolecular Kohn–Sham results for the
whole system. We attribute the superiority of the embed-

ding results to the fact that the Kohn–Sham orbitals
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derived using local or semi-local approximations to the

exchange-correlation potential mix too strongly the

f-orbitals of lanthanides with the orbitals of the ligands

[31]. Opposite to the supermolecule Kohn–Sham

calculations, the orbital-level description is restricted

to a selected subsystem in the orbital-free embedding

calculations. The artificial over-estimation of covalency

in Kohn–Sham calculations using current exchange-cor-
relation functionals is, therefore, less pronounced in the

subsystem-based calculations.

4. Conclusions

The numerical values of the splitting energies derived

from the orbital-free effective embedding potential of

Eq. (2) and approximated using the relevant gradient-

dependent density functional [20] describes rather accu-

rately (with the relative error of less than 20%) the effect

of the ligand on the f-orbital levels. The reported study
is the first one in which the approximations to the over-

lap-dependent terms in the orbital-free embedding effec-

tive potential used so far only for s-, p- and d- elements

is applied to f-elements.

Despite the well known fact that lanthanide–ligand

bonds have ionic character in such systems, the detailed

analysis shows that a quantitative description of the

f-level splitting energy results not from simple electro-
static interactions between the ion and the not-polarized

ligands but from two dominant effects:one associated

with the strong polarization of the ligands by the cation

and the other originating from the repulsive interactions

between overlapping electron densities of the cation and

its ligands. Neglecting either of these effects worsens

qualitatively the accuracy of the calculated ligand-field

splitting parameters. In particular, the electrostatic

interactions between the lanthanide cation and the

not-polarized ligands lead to splitting energies which

are 2–3 times too small.
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to be published.

[31] M. Atanasov, C.A. Daul, H.U. Güdel, in: J. Leszczynski (Ed.),
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