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Abstract

The new DFT based ligand field (LF) model is proposed to calculate the g- and A-tensors of [Co(acacen)] that is known to be a

difficult case. The results obtained are compared with the ZORA approach implemented in ADF as well as with the experimental

values. The calculations are in good agreement with the experimental data and demonstrate the ability of the method to reproduce

the large anisotropy typical for this type of complexes. The ligand field – density functional theory method is therefore not simply a

method to calculate multiplet structure, ligand field splittings and UV–Vis transitions, but is also appropriate to compute magnetic

properties.

1. Introduction

A wealth of information is encoded in the electron

paramagnetic resonance (EPR) spectra of a given mole-

cule. The EPR spectroscopy provides unique insights
into the structural and electronic features of both organ-

ic and inorganic paramagnetic compounds. In organic

chemistry, the technique is mostly used to get access to

information about free radicals, since it provides a direct

experimental measure for the distribution of the un-

paired spin density. In the field of inorganic, or bio-

inorganic, chemistry, the method is applied to examine

the splitting of orbital and spin levels and the molecular
symmetry and environment.

Consequently, it is of great interest to compute and

analyze the relevant quantities (g- and A-tensors) of an

EPR spectrum from first principle calculations. Quan-

tum mechanical approaches can offer a valuable support

to experiment, especially when competing interpreta-

tions are possible or quantitative relationships between

observable and structure are sought. The area of theo-

retical and computational chemistry has in the last
couple of years shown an increasing interest in the calcu-

lation of magnetic coupling parameters.

The application of density functional theory (DFT)

to EPR spectroscopy is relatively recent excepting the

pioneering work of Daul and Weber [1] based on multi-

ple-scattering Xa. Schreckenbach and Ziegler [2] have

presented energy derivative calculations for the g-tensor

with the usage of gauge including atomic orbitals
(GIAO). Baerends al. as well as Bruyndonckx [3] have

published results of DFT calculations for the g- and

A-tensors of TiF3 by means of second order perturba-

tion theory [4]. Furthermore, with the recent develop-

ments to include relativistic effects in modern DFT

calculations, spin–orbit (SO) coupling can be taken into

account variationally using the zeroth-order regular

approximation (ZORA) to the Dirac equation [5–8].
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To obtain then the g-tensor, the effect of the external

homogeneous magnetic field has only to be treated with

first-order perturbation theory [9,10].

In this Letter, we present the result of calculations

of the g- and A-tensors components for a transition

metal complex: [Co(acacen)] or N,N 0-ethylenebis(acety-
lacetoneiminato)cobalt(II), as obtained from two meth-

ods: (i) the ligand field – density functional theory

(LFDFT) i.e., a method proposed by Atanasov et al.

[11,12] which is based on a DFT multi-determinants

approach, (ii) directly, by calculating the Zeeman split-

ting of the ground Kramers doublet obtained by using

ZORA calculation and second-order perturbation the-

ory implemented in ADF for the hyperfine interaction
[9,13]. The choice of this complex was motivated by

two reasons: firstly, the [Co(acacen)] complex belongs

to a series of complexes with tetradentate Schiff bases

which received much attention during the last decades

[14,15], largely because of their ability to reversibly

absorb molecular oxygen under certain conditions.

Secondly, it is a planar molecule (ligands are present

only on a square planar environment) so it can be
expected to show a large anisotropy of the ESR

parameters.

In the following sections, a description of the meth-

odological and computational details is given, including

a brief outline of the LFDFT method. We show then,

that with two methods, LFDFT and ZORA, this anisot-

ropy is nicely reproduced. However, an analysis of the

various contributions to the g- and A-tensors is only
possible using the LFDFT method.

2. Methods

2.1. LFDFT: a new way to calculate ESR parameters

Let us assume that we know the complex geometry
from X-ray data or from a geometry optimisation. The

first step consists in a spin-restricted DFT SCF calcula-

tion of the average of configuration (AOC) of the dn

configuration. For [Co(acacen)], it means distributing

the 7 electrons normally present in the d-shell over the

five d-orbitals by occupying each of them by 1.4 elec-

trons. The Kohn–Sham (KS) orbitals, which are con-

structed using this AOC are best suited for a treatment
in which, interelectronic repulsion is approximated by

atomic-like Racah parameters B and C, as it is done in

LF theory. The next step consists in a spin-unrestricted

calculation of the energies of all Slater determinants

(SD) originating from the dn shell, i.e., 120 SDs for d7

TM ions. These SD energies and the KS eigenvectors

with dominant d-character from the AOC calculation

are used in a MATLABATLAB progam to determine the
one- electron 5 · 5 LF matrix hab as well as the Racah

parameters B and C [12]. Finally, we introduce these

parameters as input for a LF program which was origi-

nally dedicated to the calculation of multiplet energies

but extended here to allow us to also calculate variation-

ally the g- and A-tensors. The implementation of these

two calculations is described in the two following

sections.

2.1.1. Calculation of g-tensor

Spin–orbit coupling cannot be ignored when ions or

molecules contain heavy elements. The effect is not very

large for 1st row transition metal (TM) elements but for

the description of the g-tensor, spin–orbit coupling is

essential since the neglect of this interaction would lead

to an isotropic g-factor equal to 2.0023192.
The nature and origin of spin–orbit coupling have

been discussed in many places [16]. Misetich and Buch

[17] have shown that the spin–orbit Hamiltonian of a

molecule can be reasonably well approximated as

Ĥ SO ¼
X

N ;i

fN~‘N ;i �~si ¼
X

i

~uN ;i �~si; ð1Þ

where fN is the spin–orbit coupling constant of nucleus

N, incorporated into the molecular operator ~uN ;i for

electron i.

In order to carry out a spin–orbit calculation it is nec-

essary to relate the resultant splitting of many electron

states and also the interaction of different states through

spin–orbit coupling to one-electron integrals. This can
be done most conveniently in the basis of micro-states

(Slater determinants) as shown in [18] for the calculation

of multiplets, using Slater�s rules. Indeed the calculation

of matrix elements of one- and two-electron operators

between determinantal N-electron wave functions is

straightforward. In the present case of spin–orbit inter-

action, only one-electron operators are involved. For

TM complexes with light atoms such as carbon, nitro-
gen and oxygen, the spin–orbit coupling on the ligand

can be completely neglected. The methodology we con-

sider in the preceding section is based on LF theory, it is

therefore justified to express the spin–orbit interaction

of the whole d- or f-manifold by a single parameter

fnl, i.e.

hsms; aa j ĤSOjsm0
s; bbi

� fnlhsms; ‘m‘ða; aÞj~l �~sjsm0
s; ‘m

0
‘ðb; bÞi; ð2Þ

where fn‘ ¼ hRn‘j 1r dV
dr jRn‘i and jlmlæ are real spherical

harmonics. In practice fn‘ is evaluated either from the
SO splitting obtained in ZORA or by solving the atomic

Kohn–Sham equation numerically. In the second case

the free ion value has to be reduced in multiplying it

by the average metal population. The calculation of

fn‘ using LFDFT has been described in a recent publica-

tion [19].

The spin–orbit coupling constant was determined by

DFT making a spin orbit caculation on the free ion
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(f = �598 cm�1) and reduced further by the orbital

reduction factor (k = 0.77, cf. Eq. (16)). The ground

state Kramers doublet j0 ± æ is obtained by diagonaliza-

tion of the full configuration interaction matrix:

hSDd
l j ĥLF þ ĝER þ ĥSO j SDd

m i, where hLF and hSO have

been defined previously [12] and where ĝER represents
the electrostatic inter-electronic repulsion [12]. The

g-tensor can be calculated from the equation for the

Zeeman matrix elements h0� j kL̂a þ geŜa j 0�i equating
them with those of the spin-hamiltonian

h� j g �~Seff j �i, i.e.

ð3Þ

or

gaz ¼ h0þ j kL̂a þ geŜa j 0þi � h0� j kL̂a þ geŜa j 0�i;
gax ¼ h0þ j kL̂a þ geŜa j 0�i þ h0� j kL̂a þ geŜa j 0þi;
gay ¼ iðh0� j kL̂a þ geŜa j 0þi � h0þ j kL̂a þ geŜa j 0�iÞ;

ð4Þ

where k is the orbital reduction factor used to scale the

spin–orbit coupling constant of the free ion, a = x, y, z
and ~La and ~Sa are the orbital and spin-angular momen-

tum operators. For n-electrons, we have

L̂a ¼
Xn

i¼1

lia; ð5Þ

Ŝa ¼
Xn

i¼1

sia: ð6Þ

2.1.2. Calculation of A-tensor

The ligand field description of the hyperfine interac-

tion is already well described in the literature [20,21],

but we summarize it briefly here. The interaction be-

tween the nuclear and electrons angular momenta of a

many-electron system is described by the hyperfine cou-
pling Hamiltonian

HHF ¼ D̂HF �~I ; ð7Þ
where D̂HF, the hyperfine coupling operator is given by

Eqs. (8) and (9), summation being carried out over all

electrons (see [20] for more details)

~HHF ¼ P
Xn

i¼1

ð~li þ 1

7
~ai � j~siÞ �~I ð8Þ

and

~ai ¼ 4~si � ð~li �~siÞ~li �~lið~li �~siÞ: ð9Þ
The first term corresponds to the interaction of the

nuclear spin with the orbital angular momentum of

the electron, the second term to the interaction of the

nuclear spin with the electronic spin and the last term

is the Fermi contact term. P in Eq. (8) is the electron–

nuclear dipolar coupling constant defined as

P ¼ gebcN�hhr�3i3d; ð10Þ
where cN is the giromagnetic ratio of the nucleus N (for

Co: cN = 0.63171 · 104 G�1) [22], b the bohr magneton

and Ær�3æ3d the expectation value of the 1/r3 operator over

the 3d wavefunction. The parameter j is related with the

Fermi hyperfine coupling constant aF (ge = 2.0023)

aF ¼ 8p
3
gebcN�h

X

i

qi"ð0Þ � qi#ð0Þ
� � ð11Þ

as

j ¼ � aF
P
: ð12Þ

Direct substitution yields

j ¼ � 8p
3

X

i

qi"ð0Þ � qi#ð0Þ
� � 1

hr�3i3d
ð13Þ

with cN in G�1, P in cm�1 and Ær�1æ3d in atomic units, we

have explicitly

P ¼ gecN � 332:5258� 10�9 � hr�3i3d: ð14Þ
Finally, the A-tensor can be calculated, similarly to

the g-tensor, from the aforementioned ground Kramers

doublet j0±æ evaluating the hyperfine matrix elements
h0� j Dhf

a j 0�i as
Aaz ¼ h0þ j Dhf

a j 0þi � h0� j Dhf
a j 0�i;

Aax ¼ h0þ j Dhf
a j 0�i þ h0� j Dhf

a j 0þi;
Aay ¼ i h0� j Dhf

a j 0þi � h0þ j Dhf
a j 0�i� �

;

ð15Þ

where a = x, y, z and k is the orbital reduction factor

used to scale the spin–orbit coupling constant of the free

ion. k is determined by

k ¼

P2lþ1

i¼1

P2lþ1

l¼1

cði; lÞ2

2lþ 1
¼ 0:77; ð16Þ

where l = 2, i and l are running, respectively, over the d-

AO�s and MO�s with dominant d-character, c(i, l) being
the contribution of the ith AO to the lth MO

considered.

We now consider the numerical evaluations of P and

j which are used in the calculation of the A-tensor
components.

The value of P has been calculated using TZP expo-

nents given by the ADF data base and a numerical
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integration resulting to Ær�3æ3d = 5.83 cm�3 for the free

ion: Co2+. The corresponding value: P = 245 · 10�4

cm�1 has been further reduced according to Eq. (16)

to P = 188 · 10�4 cm�1.

The value of aF needed to obtain j (Eq. (12)) is more

subtle to evaluate and deserves a bit of explanation. In
fact there is no Fermi interaction within dn configura-

tion. However, the analysis of the hyperfine structure

of supposedly d-electrons clearly requires an isotropic

contribution denoted here as aF. This term has two

well-known contributions: (i) the spin polarization of

the closed jnsæ shells through the unpaired electron occu-

pying the ground Kramers-doublet and (ii) the direct

admixture of j4sæ into the ground Kramers doublet
through spin–orbit coupling with the low-lying

jd1
z2 ; A1i excited state that is contaminated by orbital

interaction with j4sæ of Co because of the low symmetry

of [Co(acacen)]. Indeed, this mixing amounts to 4%.

The first contribution to aF is easily obtained using

the DENSFENSF utility program of ADF to compute

qi›(0) � qifl(0) (Eq. (11)) from an all-electron spin-

polarized KS-calculation of [Co(acacen)]. The second
contribution to aF is obtained from the weight of all

SD that contain dz2 present in the ground Kramers dou-

blet. The resulting parameters aF = �28 · 10�4 and

P = 188 · 10�4 cm�1 lead to j = 0.147, which was used

in the calculation of the A-tensor. Table 1 summarizes

all non-empirically determined parameters used in the

calculation of the ESR and multiplet fine structure.

2.2. Spin–orbit ZORA approach

We use the ZORA implementation available in the

ADF code to calculate g- and A-tensors in order to com-

pare the results with those from LFDFT and with exper-

iment. This method, developed by van Lenthe et al.

[9,13], uses GIAO, where the g- and A-tensors are calcu-

lated in a spin–orbit relativistic calculation using ZORA

Hamiltonian with a spin restricted wavefunction.

3. Computational details

The DFT calculations were performed with the
Amsterdam density functional (ADF) program package

(release 2003.01) [23]. Both the local density approxima-

tion (LDA) and the generalized gradient approximation

(GGA) for exchange-correlation functionals were used.

The LDA was applied with the Vosko, Wilk, and Nusair

functional [24] and the GGA by using the exchange-

correlation Perdew–Wang 91 functional [25]. The atoms

were described by a triple-f Slater type orbital (STO) ba-
sis sets plus one polarization function and the frozen

core (FC) approximation was used up to 3p for cobalt

and up to 1s for carbon, nitrogen and oxygen for the

g-tensor calculation and the LFDFT calculations. For

the calculation of A-tensor, we used all electrons basis

sets.

The geometry of the complex has been adopted from

X-ray crystallographic data determined by Cariati et al.
[26]. Since the deviation from C2v symmetry is not signif-

icant we have chosen to impose this symmetry in our

calculations. The coordinate system of Co(acacen)

which by convention, has always been used to discuss

this type of complexes is shown in Fig. 1. In this way

the molecule belongs actually to the point group

C2v(x), with x as the principal symmetry axis instead

of the more conventional z-axis. The d-orbitals have
hereby the following symmetry labels: dz2 and dx2�y2 ,

a1; dxy,b2; dxz, b1; dyz, a2. In the ADF calculations an-

other orientation has been adopted (x 0, y 0, z 0: Fig. 1)

with twofold axis along z. However, results have been

always converted back to the traditional one (x, y, z).

4. Results and discussion

The Co(acacen) with a d7-configuration for CoII has

low-spin S = 1/2 ground state. It shows a large anisot-

ropy of both the g- and A-tensors (Tables 3 and 4) re-

lated to the low (C2v) symmetry of the Co2+

coordination centers. A MO-diagram comprising MO�s
dominated by the 3d-atomic orbitals (Fig. 2) shows the

typical splitting for square planar coordination with
the r-antibonding dxy(b2)-orbital, separated by about

27.4 kK from the weaker r� dz2 , the in-plane p–dx2�y2

(both of a1 symmetry) and the p out-of-plane yz (a2)

and xz (b1) orbitals. The latter ones are much less sepa-

rated in energy, covering a narrow range of energies (7.4

kK), as shown in Fig. 2. The dxz and dyz p-orbitals

Table 1

All non-empirically determined parameters used in the calculation of

the ESR parameters and multiplet fine structure

Racah�s parameters B 512 ± 53 cm �1

C 3118 ± 225 cm �1

Ligand field

matrix elements

Æx 0y 0jhLFjx 0y0æ �1071 ± 407 cm�1

Æy 0z 0jhLFjy0z0æ 6308 ± 407 cm�1

Æz 02jhLFjz 02æ 5052 ± 407 cm�1

Æx 02 � y 02jhLFjx 02 � y 02æ 3731 ± 407 cm�1

Æz 02jhLFjx 02 � y02æ 2771 ± 407 cm�1

Æx 0z 0jhLFjx 0z 0æ �24003 ± 407 cm�1

Spin–orbit

coupling constant

f 460 cm�1

Orbital reduction

factor

k 0.77

Electron-nuclear

dipolar coupling

constant

P 188 · 10�4 cm�1

j 0.147

The mean square deviation between fitted and calculated (DFT) SD-

energies is equal to 246 cm�1.
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which are degenerate in a square planar complex (eg,

D4h symmetry) are found in [Co(acacen)] to be consider-

ably split (7.0 kK), this being responsible for large

in-plane anisotropy of the main values of the g- and

A-tensors. The underlying cause of this large splitting

can be understood in the context of the molecular orbi-

tal model. Restricting to the highest occupied p (a2)
(HOMO) and lowest unoccupied p*(b1) (LUMO) ligand

orbitals, we notice that the corresponding 3d-orbitals

with the same symmetry, dyz (dxz) become destabilized

(stabilized) by the interplay of p-donation (p-back dona-

tion). The consequences of this anisotropic p-bonding
effects have been accounted for in refined LF models,

such as the phase coupling concept of Ceulemans et al.

[27–29], quantifying an early idea of Orgel [30]. How-

ever, quantitatively, a large number of ill defined model

parameters had to be introduced in order to account for

this effect. Our LFDFT results lend full support of the p-
anisotropy, as reflected by the calculated LF transitions

(Table 2) and the calculated g- and A-tensors (Tables 3
and 4). With 7 electrons on the closely spaced a2, a1,b1
and a1-orbitals we have a jd1

yz;
2A2i ground state. Mix-

ing with excited states via spin–orbit coupling then leads

to the observed anisotropic g- and A-tensors. These are

given in Tables 3 and 4, where we also include results of

ZORA spin–orbit calculations. Both the ZORA and the

LFDFT show largest values for gxx and Axx. However,

finer details in the g-tensor anisotropy, in particular the
gzz > gyy relationship are better reproduced by the

LFDFT method. As far as the overall agreement be-

tween theoretical and experimental A-tensor compo-

nents goes, both the ZORA and the LFDFT

calculations are of comparable moderate quality. How-

ever, we must keep in mind that experimental values of

Axx, Ayy and Azz are less accurately determined. Thus,

coordination to more distant atoms in the solid seems
to make important contributions [15]. However, this is

beyond the scope of the present study. Finally, we

should mention that models of g and A-tensors,

Fig. 1. The axial coordinates of the system in the discussion (x, y, z) and in the ADF calculations (x0, y 0, z 0) are represented above.

Table 2

Multiplet splitting energies determined by the LFDFT method using

GGA functional and frozen core approximation and compared to

experiment (in cm�1)

LFDFT Exp.

2A2 0.0 –
2A1 4665 –
2B1 7036 4000
2A1 10885 8000
4B1 13021 –
4A1 12835 –
4B1 14694 –

Table 3

g-Tensor values of [Co(acacen)] determined by spin–orbit restricted spin–orbit ZORA calculation and the LFDFT approaches and compared to a set

of experimental data

ZORA LFDFT GGA EXP [15]

LDA GGA A B

gxx 2.85 2.76 3.21 2.80 2.92/3.26

gyy 1.89 1.93 1.87 1.94 1.90( ± 0.03)

gzz 1.91 1.92 1.87 2.11 2.00( ± 0.02)

giso 2.22 2.20 2.28 2.32

LFDFT column A corresponds to the two states model: 97% jd1yzd2xy ;2A2i þ 3% jd1z2d2xy ;2A1i; and column B to the full calculation. For the

expermimental data, we give a range of values because of a strong dependency upon the host lattice. giso represents the isotropic g-value,

giso = (gxx + gyy + gzz)/3.
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confined to one or two excited states (resulting in two-

state model jd1
yz;

2A2i � jd1
z2 ;

2A1i [15], or three state
model jd1

yz;
2A2i � jd1

z2 ;
2A1i� j d1

xz;
2B1i [28,29],

respectively), reflect essential features of the physical ori-

gin of the anisotropy. In Tables 3 and 4 we list the re-

sults from a consideration using a two-state model.

The overall features are reasonably reproduced using

this simplified approach. However, our present calcula-

tion enables a more detailed description of the experi-

mental findings, particularly the difference between gyy
and gzz for the g-tensor, and important contributions

to Axx from other excited states, ignored by the two or
three states models are taken into account.

5. Conclusions

In this work, we have extended our LFDFT ap-

proach with ESR fine structures, demonstrating that

the model works, even in such complicated situations
as the Co(acacen) complex. No doubt, the method can

be refined including anisotropic covalent reduction

factors and anisotropic spin–orbit coupling and inter-

electronic repulsion. A practicable scheme for aniso-

tropic spin–orbit coupling has been published [19].

However we have found that calculating all these quan-

tities using an average-of-configuration concept, thus

introducing non-empirical atomic like B, C and f
parameters and further, a single overall parameter k-in

order to account for covalent reduction is a reasonable

approximation, capable of describing electronic transi-

tions and multiplet fine structures.
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