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Summary 

 

To cope with the daily changes in their environment, in organisms, from cyanobacteria to 

humans, endogenous clocks have evolved that anticipate these changes and synchronize 

physiology and behavior accordingly. In mammals, the central circadian pacemaker is located 

in the suprachiasmatic nuclei (SCN) of the hypothalamus. From there subordinated cellular 

clocks in the peripheral organs are controlled to create the overall rhythm of the organism. 

Circadian rhythms persist in the absence of external time information with near 24h periods, 

hence the term “circadian” from the Latin circa dies meaning “about one day” (Halberg, 

1952). Time signals from the environment (so called Zeitgeber) like light, temperature 

variations, or food intake can phase shift the endogenous oscillator to synchronize the 

organism to geophysical time. 

On the molecular level circadian clocks are built of cellular oscillators. Pacemaker genes like 

Clock, Bmal1, mPer1 and 2, mCry1 and 2 or Casein kinase 1ε are organized in a system of 

transcriptional/ translational feedback loops creating precise, stabilized 24h rhythms. 

In this study we worked with two different model systems. We used transgenic mice (Mus 

musculus) with a targeted disruption of specific genes (mPer1 and 2, mCry1 and 2) or a 

combination of these genes to elucidate their function in the circadian clockwork. In a second 

project we examined the clock of the blind mole rat superspecies (Spalax ehrenbergi). Its 

isolated subterranean habitat, its adaptive visual and neuronal reorganization, and its 

polymorphic activity profile makes Spalax an extremely interesting model organism to study 

the evolution of the clock under special environmental conditions. 

In mice we show that an additional deletion of the mCry2 gene in mPer2 mutants or a deletion 

of mCry1 in mPer1 mutants restores wild-type rhythmicity on the behavioral and the 

molecular level. This indicates that mCry2 acts as a non-allelic suppressor of mPer2 and 

mCry1 of mPer1 in the circadian oscillator. Young mPer1/ mCry2 double mutants display a 

very long free-running period and lose rhythmicity with progressing age while mPer2/ mCry1 

mutants have no functional clock at all. This is accompanied by abnorma l clock gene and 

protein regulation in the SCN and the eye. 

Based on these findings we developed a model for the interaction of the mPer and mCry 

genes in the cellular oscillator providing new insights on how the clock is stabilized and 

integrates external time information at the molecular level. A multiunit complex of mPER and 

mCRY proteins forms the negative limb of the autoregulatory feedback loop controlling the 

periodic activation of clock genes. Specific preferences for homo and heteromeric protein 
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interactions between all mPER and mCRY proteins form a self-stabilizing oscillator at the 

transcriptional level. By deleting one or more of its components, the stability of the 

pacemaker is disturbed and the interaction preferences are altered. If this disturbance exceeds 

the compensation limits of the clock, the oscillation dampens and the animals become 

arrhythmic. 

In Spalax we elucidated the molecular organization of the cellular clockwork by studying 

gene expression. We show that Spalax has a functional circadian clock on the molecular level 

with pacemaker genes like Clock, Bmal1, Per1, 2 and 3 as well as two Crys. The clockwork 

of Spalax is highly similar to other rodents although some properties show specific adaptation 

to its subterranean habitat. 

Our findings suggest that the hypertrophic Harderian gland surrounding the rudimentary and 

visually blind eye of these animals plays a functional role in the circadian system probably 

stabilizing the SCN pacemaker during continuous absence of outside time information. 

Spalax can shift from a nocturnal to a diurnal activity pattern. We found that in nocturnal 

animals the central oscillator is uncoupled from the light driven input pathway indicating a 

specific control of clock entrainment pathways in both activity types. 

 

Taken together this work provides new insights on redundant as well as distinct functions of 

the Per and Cry genes in the molecular mechanism of the circadian clockwork. It 

demonstrates the conservation of the system of autoregulatory feedback loops to stabilize 

circadian rhythmicity as well as highlights the evolutional adaptation of external clock 

regulation to the ecotope of the organism. 
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Zusammenfassung 

 

Um sich optimal an die periodischen Veränderungen ihres Lebensraums im Verlauf des Tages 

anzupassen, besitzen die Lebewesen, von den Purpurbakterien bis zum Menschen, eine innere 

Uhr, die diese Zyklen antizipiert und Stoffwechsel und Verhalten dazu synchronisiert. In 

Säugetieren sitzt der zentrale innere Schrittmacher im Nucleus suprachiasmaticus (SCN) des 

Hypothalamus‘. Von dort werden untergeordnete Uhren in den Organen des Körpers 

kontrolliert, die dann den Gesamtrhythmus des Organismus erzeugen. Auch wenn der Körper 

keine Zeitinformationen mehr von außen erhält, bleiben die zirkadianen Rhythmen stabil mit 

Periodenlängen von ungefähr 24h, daher der Ausdruck „zirkadian“ von dem lateinischen 

circa dies, was soviel heißt wie „ungefähr ein Tag“. Hinweise über die Tageszeit, so genannte 

Zeitgeber, wie Licht, Temperaturveränderungen oder Nahrungsaufnahme können die Phase 

des endogenen Oszillators verschieben, um so den Organismus ständig mit der 

geophysikalischen Zeit zu synchronisieren. 

Auf molekularer Ebene besteht die zirkadiane Uhr aus einzelnen zellulären Oszillatoren. 

Uhrengene wie Clock, Bmal1, mPer1 und 2, mCry1 und 2 sowie Caseinkinase 1ε sind in 

einem System von Transkriptions-/ Translations-Rückkopplungsschleifen organisiert, das 

einen präzisen und stabilen 24h-Rhythmus generiert. 

In der vorliegenden Arbeit haben wir mit zwei unterschiedlichen Modellsystemen gearbeitet. 

Wir benutzten transgene Mäuse (Mus musculus), in deren Erbgut einzelne oder eine 

Kombination bestimmter Gene (mPer1 und 2 sowie mCry1 und 2) gezielt zerstört wurden, um 

deren Funktion im zirkadianen Uhrwerk zu bestimmen. In einem zweiten Projekt 

untersuchten wir die innere Uhr der Blindmaus (Spalax ehrenbergi). Sein isoliertes 

unterirdisches Habitat, eine adaptive visuelle und neuronale Reorganisation sowie sein 

polyphasisches Aktivitätsprofil machen Spalax zu einem äußerst interessanten 

Modellorganismus zum Studium der Entwicklung innerer Uhren unter besonderen 

Umweltbedingungen. 

An Mäusen zeigen wir, dass eine zusätzliche Deletion des mCry2-Gens in mPer2-mutanten 

Tieren sowie eine Deletion von mCry1 in mPer1-Mutanten die wildtyp-artige Rhythmizität 

auf Verhaltens- sowie auf molekularer Ebene wiederherstellt. Dies deutet darauf hin, dass 

mCry2 als nicht-allelischer Suppressor von mPer2 und mCry1 als nicht-allelischer Suppressor 

von mPer1 im zirkadianen Oszillator fungiert. Junge mPer1/ mCry2-Doppelmutanten zeigen 

eine extrem lange Periodenlänge unter Freilaufbedingungen. Sie verlieren ihre Rhythmizität 

jedoch mit fortschreitendem Alter. mPer2/ mCry1-Mutanten dagegen besitzen von Geburt an 
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keine funktionierende innere Uhr. Dies geht einher mit veränderter Uhrengen- und –

proteinregulation im SCN sowie im Auge. 

Auf der Grundlage diese Beobachtungen haben wir ein Modell zur Interaktion der mPer- und 

mCry-Gene im zellulären Oszillator entwickelt. Ein multimerer Komplex aus mPER- und 

mCRY-Proteinen bildet den negativen Arm einer autoregulatorischen Rückkopplungsschleife, 

welche die periodische Aktivierung der Uhrengene kontrolliert. Spezifische Präferenzen für 

homo- und heteromere Interaktionen zwischen allen mPER- und mCRY-Proteinen generieren 

einen selbststabilisierenden Oszillator auf transkriptioneller Ebene. Entfernt man eine oder 

mehrere der Komponenten aus diesem System, wird dessen Stabilität beeinträchtigt und die 

Interaktionspräferenzen werden verändert. Überschreitet diese Störung die 

Kompensationsmöglichkeiten der Uhr, wird die Oszillation gedämpft und die Tiere werden 

arrhythmisch. 

An Spalax untersuchten wir die molekulare Organisation des zellulären Uhrwerks anhand der 

Genexpression. Wir zeigen, dass Spalax eine funktionelle molekulare Uhr besitzt mit 

Uhrengenen wie Clock, Bmal1, Per1, 2 und 3 sowie zwei Crys. Diese ist dem anderer 

Nagetiere sehr ähnlich, zeigt aber eine gewisse Anpassung an sein unterirdisches Habitat. 

Unser Ergebnisse deuten darauf hin, dass die hypertrophe Hardersche Drüse, die das 

rudimentäre und visuell blinde Auge dieser Tiere umgibt, eine funktionelle Rolle im 

zirkadianen System übernommen hat und den Schrittmacher im SCN während andauernder 

Abwesenheit äußerer Zeitinformation stabilisiert. Spalax kann von einem tagaktiven zu einem 

nachtaktiven Verhaltensmuster wechseln. Wir konnten zeigen, dass in nokturnalen Tieren der 

zentrale Oszillator der Uhr vom Lichteinfluss entkoppelt ist, was auf eine spezifische 

Kontrolle der Signalwege zur zeitlichen Synchronisierung der Uhr hindeutet. 

 

Zusammengefasst gewährt diese Arbeit neue Einsichten in die redundanten sowie die 

spezifischen Funktionen der Per- und Cry-Gene im molekularen Mechanismus der 

zirkadianen Uhr. Sie betont die Konservierung des Systems autoregulatorischer 

Rückkopplungsschleifen zur Stabilisierung zirkadianer Rhythmik und zeigt ebenso die 

evolutionäre Adaption der externen Regulation der Uhr an die Lebensbedingungen des 

Organismus. 
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Chapter 1 
 

Introduction 
________________________________________________________________ 

 

 

1.1. The Internal Clock 

 

In 1729, the French astronomer Jean-Jaques Dortous de Mairan discovered that the diurnal 

closing and opening rhythm of Mimosa leaves continues with a nearly 24h (=”circadian”) 

period when these plants are kept isolated from outside time information (so called 

“Zeitgeber”, in this case the sun) in a closed cupboard. This was the birth of modern 

chronobiology, the research on biological rhythms. Circadian rhythmicity has since then not 

only been observed in leaves but at all levels of organization, from the behavior of mammals, 

flies, and single cells down to the activity of enzymes and the transcription of specific genes 

(Pittendrigh, 1993). 

Internal clocks have evolved throughout all phyla and species, from ancient cyanobacteria to 

the modern Homo sapiens (Dunlap, 1999). The purpose of these internal timekeepers is to 

anticipate regular changes in the environment and synchronize the status of the whole 

organism to maximally benefit from the temporal availability of natural resources. The most 

prominent environment-shaping factor of our world is the succession of day and night and the 

easiest way to keep track of it is to monitor the rising and setting of the sun. Although for 

most species – with the exception maybe of photosynthetic organisms – the mere presence or 

absence of light is not an important parameter itself, secondary phenomena like the diurnal or 

nocturnal occurrence of predators, prey, the temperature difference or the varying efficiency 

of certain sensual organs at different times have driven evolution to develop circadian clocks 

(Rensing et al., 2001). 

But why does Mimosa keep on closing and opening its leaves in total darkness? Or: Why do 

we need a self-sustaining clock, when it would be enough to evolve a sensory system for the 

presence or absence of light? The first answer is anticipation. If our body would merely react 

to the presence of light we would lose a certain amount of time every morning when it is 

already bright outside but our physiology is still in transition from "night"-status to "day" or 
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from "inactive" to "active". This is especially true for most animals living at least temporally 

in environments isolated from outside time information, e.g. in caves or buildings (Nevo et 

al., 1982). By anticipating these transitions the organism saves energy because the physiology 

can be prepared in an economic way. Additionally the timed availability of internal resources 

serves to maximally benefit from temporally restricted resources granting an important 

advantage under evolutional pressure. 

The second aspect of the autonomous internal pacemaker points to its role as a synchronizer 

of different physiological aspects of the organism. In order to work efficiently, e.g. using as 

little energy as possible, the activity of the organs responsible for physiological aspects of the 

body has to be temporally organized. The time information given by the circadian oscillator 

serves to harmoniously orchestrate the interplay of the different meta- and catabolic pathways 

by linking them to the central clock (Akhtar et al., 2002; Panda et al., 2002a; Storch et al., 

2002). 

For most organisms light is the prominent Zeitgeber transferring outside time information to 

the internal pacemaker because of its high reliability and easy way of detection. However, 

different Zeitgeber exist like temperature, humidity as well as social factors like stress and 

pheromonal communication and for some species these might be even dominant to the daily 

cycle of the sun (Hastings et al., 1995; see as well Oster et al., below). 
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1.2. Physiological Aspects 

 

In mammals the central circadian clock is located in the suprachiasmatic nuclei of the 

hypothalamus (SCN). Many if not all major phys iological processes of the body are under 

circadian control (Panda et al., 2002a; Storch et al., 2002). The clock coordinates the different 

pathways with regard to the solar cycle via two distinct mechanisms, the endocrine system 

and the direct regulation of the activity of pace setting enzymes (Buijs and Kalsbeek, 2001).  

The SCN directs the endocrine system partly by secretion of melatonin from the pineal and 

partly via the hypothalamus. Several pathways lead from the SCN to the pineal: There is 

innervation via the paraventricular nuclei (PVN), extracerebral pathways including the 

intermediolateral column of the spinal chord (IML) and the superior cervical ganglion (SCG) 

as well as direct signaling (reviewed in Schwartz et al., 2001).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Regulation of the mammalian endocrine 
system by the circadian clock. Grey spheres show 
endocrine glands influenced by the central oscillator 
in the SCN.  
Red waves depict cycling hormonal levels and 
physiological parameters under circadian control 
(modified from http://www.rpi.edu/~hrushw/). 
 

From the pineal, feedback to the SCN is provided by melatonin reception as well as nervous 

signaling in the brain. Melatonin levels are high during the night. It is involved in the 

regulation of the sleep/ wake cycle, influences the pituitary gland (see below) and controls the 

secretion of cortisols in the adrenal gland (Malpaux et al., 2001). The hypothalamus directs 

the daily variation of the body temperature and confers clock signaling to the pituitary gland. 

The pituitary gland releases hormones like GH, prolactin and ACTH and stimulates endocrine 

glands like the thyroid and the gonads which themselves produce a set of additional hormones 

(Goldman, 2001). 

http://www.rpi.edu/~hrushw/
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Recent studies using gene expression profiling in the SCN and peripheral tissues demonstrate 

that the activation of a high number of rate-limiting enzymes of key physiological pathways is 

under circadian control. The set of these genes / enzymes varies from tissue to tissue creating 

an organ specific pattern orchestrated by the central pacemaker (Akhtar et al., 2002; Panda et 

al., 2002a; Storch et al., 2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Global comparison of bi ological processes associated with the genes exhibiting circadian expression 
in liver and heart. The tree (gray dots and connecting paths) represents those categories (dots) in the gene 
ontology hierarchy for biological process that match genes expressed in liver (green) or heart (red) or both 
(yellow). Selected examples of biological process categories are indicated by the following numbers: 1, 
developmental process; 2, death; 3, cell growth and/or maintenance; 4, cell communication; 5, behavior; 6, 
transport; 7, stress response; 8, metabolism; 9, (metabolism) nucleobase/ nucleoside/ nucleotide; 10, 
(metabolism) amino-acid derivative (modified from Storch et al., 2002) 
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1.3. The Internal Clockwork 

 

1.3.1. The Central Oscillator 

 

The master circadian clock of the mammalian organism resides in the suprachiasmatic nuclei 

of the anterior hypothalamus (Klein et al., 1991). It is composed of a few thousand densely 

packed, parvocellular neurons. The pacemaker of the SCN maintains its rhythmicity even in 

the absence of outside time information with a period of nearly but not exactly 24h (hence the 

term "circadian" from lat. "circa" = approximately and "dies" = the day). Generally nocturnal 

species like mice have an internal period (τ) of less, diurnal species like man of more than 24h 

in constant darkness (DD) (see (Pittendrigh and Daan, 1976). Under natural conditions 

however, the clock is not free running but periodically synchronized to the external daycycle. 

Environmental parameters linked to daytime, so called "Zeitgeber", confer time information 

to the central clock and reset its phase to match the external conditions. From the central 

clock, time information is conferred to the body. Subordinated clocks in peripheral organs 

receive information from the SCN via the activation of clock controlled genes ('CCGs'). 

Thereby the whole organism is synchronized with the solar cycle (reviewed in Herzog and 

Tosini, 2001 and Balsalobre, 2002). 

 

 

1.3.2. Clock Input 

 

Neurons in the ventrolateral part of the SCN receive glutamatergic input from the retina via 

the retinohypothalamic tract (RHT) (Moore and Lenn, 1972), neuropeptide Y (NPY) input 

from the intergeniculate leaflet (IGL) of the lateral geniculate nucleus (LGN) via the 

geniculohypothalamic tract (GHT) (Swanson and Cowan, 1975), and serotonergic (5-HT) 

input from the Raphé nuclei (Bosler and Beaudet, 1985; Francois-Bellan and Bosler, 1992). 

Neurons in the dorsomedial part of the SCN receive modest non-photic input from the cortex, 

basal forebrain and the hypothalamus (Moga and Moore, 1997). 

The RHT conveys information about external lighting conditions to the SCN. Non-visual 

photoreceptors in the retina – the specific molecules are unknown, although good candidates 

are opsin based proteins like melanopsin located in the nuclear ganglion cell layer (Berson et 

al., 2002; Gooley et al., 2001; Hattar et al., 2002; Provencio et al., 2002) – activate 

monosynaptic projections to the SCN. Glutamate release at the synaptic terminals of the RHT 
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activate glutamate receptors resulting in a calcium influx in SCN neurons (reviewed in 

(Gillette and Mitchell, 2002)). This leads to an activation of calcium-dependent kinases, 

proteases and transcription factors (Xia et al., 1996). At the begin of the dark phase, light 

exposure causes phase delays (Pittendrigh and Daan, 1976). The downstream actions of 

calcium likely include activation of calmodulin, MAP kinases and PKA leading to a 

phosphorylation of the cAMP responsive element binding protein (CREB) which itself can 

activate mPer transcription via cAMP responsive elements (CRE) in the promoter (Gau et al., 

2002; Gillette and Tischkau, 1999; Obrietan et al., 1998). In the late night light exposure in 

vivo (or glutamate receptor activation in vitro) causes phase advances via the activation of 

nitric oxide synthase (NOS) and cGMP dependent kinase (PKG) resulting in a 

phosphorylation of CREB (Ding et al., 1997; Gau et al., 2002). 

 

 
 
Fig. 3: Photic afferents to the SCN. Light/ dark information is conferred via the retina, the RHT and the 
IGL to the SCN. Main neurotransmitters of the RHT are glutamate and aspartate, while the GHT signals 
via NPY. Serotonergic efferents from the Raphé nuclei negatively modulate photic signaling in the SCN 
(RHT, retinohypothalamic tract; GHT, geniculohypothalamic tract; +, excitator y; -, inhibitory; • , light 
responsive cells; ° cells may not be light-responsive (from Meijer, 1991). 
 

A second pathway of photic signaling is formed by projections from the retina via NPY-

reactive neurons in the IGL (Jacob et al., 1999). NPY levels in the ventrolateral SCN show a 

biphasic diurnal pattern with peaks at both light/ dark and dark/ light transitions. This rhythm 

however, is absent in DD suggesting a mere modulator function of the IGL in the 

responsiveness of the circadian system to light stimuli (Shinohara et al., 1993). 

The serotonergic input from the Raphé nuclei seems to be tightly interlocked with the 

signaling from the retina (Cagampang and Inouye, 1994). Destruction of the 5-HT system 

increases light induced phase-shifts (Bradbury et al., 1997) while administration of the 5-HT 

precursor tryptophane inhibits photic phase shifts during subjective night (Glass et al., 1995). 
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Fig. 4: Calcium mediated signaling to the circadian clock. Elevated calcium levels after nocturnal light 
stimulation activate calcium dependent kinases leading to a phosphorylation of the transcription factor 
CREB which induces mPer gene expression. 
 
 
Apart from light there exist so-called "non-photic" stimuli which are able to reset the 

circadian clock (Hastings et al., 1997). An increase of the activity level in nocturnal animals 

during the inactive period by a dark pulse, forced wheel-running or benzodiazepine injection 

result in large phase advances (Gannon and Rea, 1995; Van Reeth and Turek, 1989; Wickland 

and Turek, 1991). Non-photic phase shifts seem to be mediated by NPY via the IGL (Biello et 

al., 1994; Janik and Mrosovsky, 1994; Maywood et al., 1997). The cellular signal 

transduction cascade of these stimuli is largely unknown. It does not affect CREB 

phosphorylation, but a role for serum cortisol through arousal- induced adrenocortical 

activation has been suggested (Sumova et al., 1994). 

 

 

1.3.3. Clock Output 

 

The projection pattern from the SCN is predominantly ipsilateral consisting of mainly six 

anatomical components of intra- and extra-hypothalamic origin. First there are rostrally 

directed fibers to the preoptic area, namely the anteroventricular periventricular nucleus and 

the anteroventral periventricular nucleus. Secondly there is projection to the paraventricular 

nucleus of the hypothalamus, the dorsomedial nucleus and finally into the posterior 

hypothalamic area and the periaquaeductal gray. A third line of efferent connections project 
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caudally to terminate in the region between the arcuate and the ventromedial nuclei. An 

additional projection is directed into the paraventricular nucleus of the thalamus and the 

paratenial nucleus. A small pathway leads to the intermediate lateral septal nucleus and a last 

one terminates in the intergeniculate leaflet of the lateral geniculate nucleus (Watts, 1991). 

The individual SCN neurons contain different neuropeptides like AVP, VIP, GRP and 

somatostatin (reviewed in (Buijs and Kalsbeek, 2001)). Additionally about 30% of the SCN 

axons contain glutamate or GABA and a peptide transmitter (Castel and Morris, 2000; 

Hermes et al., 1996). The presence of these large number of transmitters in different 

combinations demonstrates the variety in SCN controlled signaling. GABA and AVP are 

essential for transmitting the daytime message of the SCN. GABA itself inhibits melatonin 

secretion from the pineal, which is the main signal of night time to the body. 

The major target of efferent projections from the SCN is the paraventricular nucleus of the 

hypothalamus, an integrative center concerned with neuroendocrine, autonomic and 

behavioral processes (Swanson et al., 1987). It can influence the secretions of the anterior and 

posterior lobes of the pituitary gland as well as descending projections to the brain stem and 

the spinal cord. The PVN additionally controls the secretion of ACTH and thereby 

corticosterone. The extrahypothalamic projections are still poorly described functionally 

(Kalsbeek and Buijs, 2002). 

 

 

 

 

 

 

 

 

 

Fig. 5: Projective targets of the SCN. The SCN uses four important me ans to organize hormonal secretion: 
first, by direct contact with neuroendocrine neurons containing gonadotrophin-releasing hormone 
(GnRH) or corticotrophin-releasing hormone (CRH); second, by contact with neuroendocrine neurons via 
intermediate neurons like those of the medial preoptic nucleus (MPN), the dorsomedial hypothalamic 
nucleus (DMH) or the sub-paraventricular nucleus (sPVN); third, by projections to the autonomic PVN 
(aPVN) to influence the autonomic nervous system, preparing the endocrine organs for the arrival of 
hormones; and fourth, by influencing its own feedback. (from Buijs and Kalsbeek, 2001). 
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1.3.4. SCN Architecture  

 

The suprachiasmatic nuclei are bilaterally paired tiny nuclei located just above the optic 

chiasm (therefore the name). They consist of small neurons, neuropile and glial elements, 

particularly astrocytes (van den Pol et al., 1992). Most neurons of the SCN are GABAergic 

although a large variety of neuropeptides are synthesized throughout the whole nucleus 

(Okamura et al., 1990). So far four different types of SCN neurons have been identified: 

monopolar, radial, simple bipolar, and curly bipolar (Pennartz et al., 1997). The simple 

bipolar cells, which have the highest number of all types, form the efferent projections from 

the nuclei (Pennartz et al., 1998). Axon immunoreactivity for many compounds is higher in 

the nucleus than in adjacent areas of the hypothalamus (Van Den Pol, 1991). The main 

neuroactive substances found in the SCN are reviewed in Moore et al., 2002): 

γ-Amino butergic acid : GABA is the major neurotransmitter within the SCN and in SCN 

efferent projections. Therefore much of the local interaction within the SCN seems to be 

governed by inhibitory circuits. Stimulation of axons projecting into the periventricular region 

indeed results in a general depression of cells in the targeted area (Kow and Pfaff, 1984). 

Gastrin-releasing Peptide: GRP is involved in the hypothalamic control of thermoregulation 

and homeostasis (Brown and Vale, 1979). GRP immunoreactivity is mainly found ventral and 

lateral in the medial part of the nucleus. GRPir neurons are the smallest neurons in the SCN. 

Vasoactive Intestinal Peptide: VIP positive neurons are found in the same area as GRPir cells 

overlapping visual and Raphé afferents. VIPir neurons seem to be located slightly more 

ventral than the GRPir neurons. Together both cells comprise about 39% of all SCN neurons. 

Vasopressin: AVP-containing neurons are found throughout the whole body of the SCN with 

some higher concentration in the dorsomedial part. They comprise about 37% of all SCN 

neurons and co- localize in part with angiotensin II positive cells. 

Calretinin: CALir neurons are found mainly in the dorsolateral part and in adjacent 

hypothalamic areas of the SCN. Their number comes up to 14% of all SCN neurons. 

Somatostatin: SS is well expressed in the shell of the SCN near to the shell/ core border. 

Somatostatin application modulates the firing activity of SCN neurons and depresses activity 

of neurons in the hypothalamic ventromedial nucleus (van den Pol, 1991). 

While serotonin-mediated afferents do not terminate in a specific area of the SCN, photic 

signaling via glutamate and NPY mainly terminates in the ventrolateral part of the nuclei. 

Although there exist several neuronal connections between both nuclei of the SCN (Van Den 

Pol, 1980), both rhythms can be separated as seen in hamsters with a split locomotor activity. 
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In this case the nuclei oscillate in anti-phase (de la Iglesia et al., 2000). Ablation of one of the 

nuclei eliminates the split rhythm (Pickard and Turek, 1983). 

SCN glial cells have mostly been omitted from models of cellular interactions underlying 

circadian rhythms. However, they make up a large part of the total cell number of the SCN. 

Astrocytes in the SCN seem to be metabolically active and show an increase in calcium levels 

on neurotransmitter release in the synaptic cleft indicating intraglial signaling probably 

mediated via GAP junctions upon neurotransmitter stimulation (van den Pol, 1991). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Anatomical organization of the SCN. Indicated are afferent and efferent neuronal projections and 
the major neuroactive substances detected in the core and the shell of the SCN (AVP: arginine 
vasopressin; GABA: γ-amino butyric acid; Glu: glutamate; GRP: gastrin-releasing pe ptide; GHT: 
geniculohypothalamic tract; 5HT: 5-hydroxythryptamine (serotonin); IGL: intergeniculate leaflet; NPY: 
neuropeptide Y; PHI: phospho-histidine; PVN: paraventricular nucleus of the hypothalamus; RHT: 
retinohypothalamic tract; SS: somatostatin; VIP : vasoactive intestinal protein; modified from 
www.aasmnet.org/MEDSleep/ rhythmslides.htm). 
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1.4. The Cellular Clockwork 

 

The dominant role of the SCN in the control of circadian rhythms has been identified by 

lesion experiments in the early seventies (Moore and Eichler, 1972; Stephan and Zucker, 

1972). The origin of its circadian firing rate activity has been traced from small unit 

recordings (Groos and Hendriks, 1982) down to the rhythmicity of single neurons (Welsh et 

al., 1995). Therefore it seems that the rhythmic signal from the SCN is an integration of a 

large population of single cellular clocks connected to each other but each cell has a 

principally self-sustaining rhythm. Chimaeric mice with SCNs composed of two cell types of 

different internal period lengths indeed show a variety of circadian phenotypes with a period 

range depending on the relative number of each cell type in the SCN (Low-Zeddies and 

Takahashi, 2001). On the other hand in Clock mutant mice which become arrhythmic after 

some time in DD, it has been demonstrated that the isolated SCN neurons retain a rhythmic 

firing rate even when the animal has already lost its internal rhythm. Therefore the 

arrhythmicity in these mice seems to be a problem of cell communication rather than a 

breakdown of the cellular clockwork itself (Nakamura et al., 2002). 

With the discovery of the first clock gene period in Drosophila melanogaster (Konopka and 

Benzer, 1971) research started on the molecular aspects of the circadian clock. Until now a 

growing number of clock and clock related genes have been discovered in species throughout 

all phyla. Most of these genes found in animals and fungi are listed in table 1 below. 

The molecular clockwork can be divided into three parts: Input, pacemaker and output. The 

pacemaker genes are important for the maintenance of rhythmicity under constant conditions. 

Their inactivation manifests as altered or disrupted rhythmicity in DD. Mutations or loss of 

input genes uncouples the internal clock from outside time information thereby de-

synchronizing the organism with respect to the solar cycle. Output genes transmit time 

information from the SCN to the body. A loss of an output  gene results in the disruption of 

peripheral rhythms subordinated to the signaling pathway of that gene. Some of these genes 

have partially redundant functions in the internal clockwork. Therefore the disruption of one 

single gene can often be compensated by others making it difficult to define a clear phenotype 

in the single mutant organism. 
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Table 1: Clock genes in animals and fungi (from Cermakian and Sassone-Corsi, 2000) 
 
 

The basic principle underlying all cellular clocks described so far is the transcriptional/ 

translational feedback loop (reviewed in Panda et al., 2002b). In it's simplest form it consists 

of an oscillator gene and its protein product (see Fig 7 below). The activation of the oscillator 

gene results in the production of the corresponding mRNA, which is translocated to the 

endoplasmatic reticulum where its message is translated into the cytoplasmic oscillator 

protein. When the concentration of the oscillator protein in the cytoplasm reaches a certain 

threshold, it re-translocates back into the nucleus where it can interfere with its own 

transcription machinery thereby inhibiting the activation of the oscillator gene. Subsequently 

the oscillator protein levels decrease due to constitutive degradation in the cytoplasm and in 

the nucleus. With the oscillator protein levels the inhibition of the oscillator gene transcription 

is reduced and the cycle starts again. 
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Fig. 7: The principle of the transcriptional/ translational feedback loop (TTL). The activation of an 
oscillator gene leads to the production of oscillator protein. High oscillator protein levels inhibit their own 
transcription resulting in a decrease of oscillator protein and the cycle starts again. 
 

This basic principle seems to be preserved throughout all phyla. Some of the genes involved - 

like the Cryptochromes found in plants, insects, fishes, amphibia and mammals (reviewed in 

Sancar, 2000) - appear in many organisms studied so far. But the role these genes play in the 

clockwork underlies some variation. This has caused confusion in the beginning of molecular 

chronobiology and led to some likely misinterpretations due to inappropriate experimental 

setups (Cermakian et al., 2002; Sangoram et al., 1998; Yagita et al., 2000). In the following 

part I will therefore focus on the mammalian system. Although studies were done 

predominantly in nocturnal rodents like mice, rats and hamsters, the rodent clock believed to 

essentially follow the same organization as the human counterpart. As can be seen in the 

second part of this work, clock gene regulation is indeed highly similar in nocturnal and 

diurnal mammals (Avivi et al., 2001; Avivi et al., 2002). Additionally there are studies 

emerging on clock gene polymorphism and mutations in humans with phenotypes expected 

from the corresponding mouse mutants (Toh et al., 2001). 

Clock was the first clock gene cloned in mammals (King et al., 1997). Clock mutants – 

identified in a chemical mutagenesis screen – show an abnormally long period in constant 

darkness (DD) finally causing arrhythmicity in homozygous animals (Vitaterna et al., 1994). 

CLOCK protein forms heterodimers with BMAL1 (or MOP3). Both proteins contain a PAS 

domain (from per/ arnt/ sim) important for protein/ protein interactions, a motif conserved in 

many proteins involved in the generation of circadian rhythms (Gu et al., 2000; Kay, 1997; 
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Reppert, 1998). Additionally both have a basic helix- loop-helix motif (bHLH) for protein/ 

DNA interaction. The CLOCK/ BMAL1 complex can bind to E-boxes containing the 

nucleotide sequence CACGTG found in the promoter regions of several other clock related 

genes like mPer1, mPer2, mCry1, mCry2, Dbp, AVP among others (Darlington et al., 1998; 

Gekakis et al., 1998; Hogenesch et al., 1998; Jin et al., 1999; Kume et al., 1999). The mutated 

CLOCK protein can still bind BMAL1 but the transcriptional activation of other clock genes 

is deficient (Gekakis et al., 1998). 

BMAL1 and the highly similar BMAL2 (also known as MOP9) can both form heterodimers 

with CLOCK. Together they can drive transcription from E-box elements and are co-

expressed in neurons of the SCN (Gekakis et al., 1998; Hogenesch et al., 1998; Hogenesch et 

al., 2000; Honma et al., 1998; Ikeda et al., 2000; Jin et al., 1999; Ripperger et al., 2000). Mice 

with a targeted deletion in the Bmal1 gene show an impaired entrainment to an LD cycle with 

comparably high activity levels during the day and a variable onset of activity after “lights 

off”. Upon release into constant darkness (DD) the animals immediately become arrhythmic 

indicating a complete disruption of the circadian clockwork. Additionally it was shown that in 

these mutants mPer and Dbp gene expression is not cyclic anymore. Therefore CLOCK alone 

is not sufficient to activate E-box driven transcription nor can MOP9 compensate the loss of 

Bmal1 in these animals (Bunger et al., 2000). 

If the transcriptional activation of clock genes by CLOCK/ BMAL1 is the positive arm of the 

transcriptional/ translational feedback loop the inhibition of CLOCK/ BMAL1 by the 

products of these clock genes constitutes its negative counterpart. 

Both Cryptochromes (mCRY1 and mCRY2) and Period proteins have the ability to inhibit 

CLOCK/ BMAL1 with the CRYs having by far the biggest inhibitory effect in vitro. mCry1 

mRNA levels are cycling with a circadian period while mCry2 transcript shows only slight 

variations throughout the day. mCRY2 protein however, is prominently oscillating in the 

SCN. Both proteins are predominantly localized in the nucleus where they can interfere with 

the CLOCK/ BMAL1 heterodimer (Kume et al., 1999). Mice with a targeted disruption of the 

mCry1 gene show a shortened free-running period (τ) in DD while a loss of mCry2 results in a 

prolonged τ under constant conditions. A simultaneous deletion of both genes however, leads 

to a complete loss of rhythmicity in these animals indicating a complementary but essential 

role for both Cry genes in the TTL of the central pacemaker (van der Horst et al., 1999; 

Vitaterna et al., 1999). 

The transcripts of all three known mPer genes oscillate with a 24h period in the SCN and 

most peripheral tissues (see below; Albrecht et al., 1997b; Shearman et al., 1997; Sun et al., 
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1997; Takumi et al., 1998; Tei et al., 1997; Zylka et al., 1998b). All PER proteins contain 

PAS domains, which seem to play a role in PER/ PER protein interactions (Yagita et al., 

2000). Additionally in vitro studies suggest an interaction between both PER and CRY 

proteins (Griffin et al., 1999; Kume et al., 1999; Yagita et al., 2001). A partial deletion of the 

PAS domain of mPer2 results in a shortened free-running period in homozygous mice. 

Moreover these mice completely lose their rhythm after some time in constant darkness (Bae 

et al., 2001; Zheng et al., 1999). In contrast, mPer1 mutants do not get arrhythmic although 

their free-running period is reduced and destabilized (Bae et al., 2001; Cermakian et al., 2001; 

Zheng et al., 2001). mPer1/ mPer2 double mutants do not show any circadian rhythm in DD 

indicating a complete disruption of the circadian pacemaker (Bae et al., 2001; Zheng et al., 

2001). The deletion of mPer3 has only minor effects on the circadian phenotype in mice. 

Therefore mPer3 seems not to play a role in the central oscillator but may still be part of some 

clock regulated output pathway (Shearman et al., 2000a). 

Low levels of clock gene transcripts in mPer mutant mice lead to the discovery of a second 

role of mPer2 in the TTL: It seems to have a positive influence on Bmal1 transcription 

(Shearman et al., 2000b). In vitro studies indicate that mPER2 as well as mCRY1 and 

mCRY2 can activate Bmal1 promoter driven transcription (Yu et al., 2002). Other studies 

suggest Rev-erbα as a transcriptional inhibitor of Bmal1 that in turn can be inhibited by 

interaction with PER2 (Preitner et al., 2002). This second loop in the central oscillator is 

believed to stabilize the clock to ensure a precise and constant rhythmicity in the absence of 

regular Zeitgeber input (Hastings, 2000). 

A third role of the two mPer genes lies in their transcriptional activation by light. While 

mPer1 expression can be induced throughout the night mPer2 is light sensitive only at the 

beginning of the dark phase (Albrecht et al., 1997b). Thus the mPers seem to form the link 

between the central oscillator and the input pathways to the clock. It has been demonstrated 

that mPer mutant mice show impaired resetting of their activity rhythms in response to 

nocturnal light pulses (Albrecht et al., 2001). While mPer2 mutants have deficiencies in clock 

delaying after a light pulse at the begin of the night, mPer1 mutants are not able to phase 

advance after light exposure before sunrise. This corresponds with  the differential light 

inducibility of both mPer genes by light with mPer2 being light responsive only at the begin 

of the night (Albrecht et al., 1997b).  

The mPer1 promoter contains CRE motifs capable of binding the phosphorylated form of the 

cAMP responsive element binding protein (CREB) (Shigeyoshi et al., 1997) activated by the 

Ca2+ mediated light signaling pathways in the SCN (see above). In addition, the hPer1 
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promoter has been shown to integrate signaling from other second messenger pathways like 

Protein kinase A, C, G and mitogen activated kinases (Akashi and Nishida, 2000; Lee et al., 

1999; Motzkus et al., 2002; Motzkus et al., 2000; Prosser and Gillette, 1989; Sanada et al., 

2000; Schak and Harrington, 1999; Tischkau et al., 2000). Thus the regulated transcription of 

the mPer genes can act as a molecular integrator of cellular signaling to the circadian 

clockwork. 

Some reviews still place mTim, the mammalian homologue of Drosophila timeless, in the 

central oscillator. Though mTim is expressed at low levels in the SCN, it is not rhythmic nor 

does it respond to light as expected from Drosophila (Field et al., 2000; Hastings et al., 1999). 

mTIM does not interact with any mPER protein in vivo (Zylka et al., 1998a) although it co-

immunoprecipitates with mCRY in over-expression studies (Field et al., 2000). Moreover, a 

targeted disruption of mTim results in a defective kidney development resulting in the death of 

homozygous embryos before midgestation. Heterozygous mice show a normal circadian 

phenotype (Gotter et al., 2000). Thus mTim is a developmental gene without substantial 

circadian function (Reppert and Weaver, 2001a).  

Taken together the current understanding of the mammalian TTL works as follows: 

CLOCK/ BMAL1 heterodimer binds to mPer and mCry promoters at the end of the night / 

begin of the day and activates their transcription. In the course of the day mPER and mCRY 

proteins accumulate in the cytoplasm and re-translocate back into the nucleus. There they 

form a multimeric complex that inhibits CLOCK/ BMAL1 activated transcription. 

Additionally mPER2 and/or mCRY1/2 activate Bmal1 transcription. During the night, while 

mPer/ mCry transcription is low, mPER/ mCRY protein levels decrease due to degradation 

(see below) and BMAL1 levels rise. At dawn the critical relation between BMAL1 and 

mPER/ mCRY levels is reached, new active CLOCK/ BMAL1 heterodimers are formed and 

mPer/ mCry transcription is initiated again. 
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Fig. 8: Model of the circadian clockwork within an individual SCN neuron. The CLOCK/ BMAL1 
heterodimer activates mPer and mCry transcription. mPER and mCRY proteins form a multimeric 
complex and inhibit CLOCK/ BMAL1. Both loops are linked by Rev-erb α, which is activated by 
CLOCK/ Bmal1 but inhibits Bmal1 transcription. Casein kinase 1ε phosphorylates the PER proteins 
which ultimately leads to their degradation. For  further explanations see text above. 
 

Additional aspects of the circadian clockwork with special respect to influences of 

photoperiod are discussed below. 

Phosphorylation, proteolysis and the re-translocation into the nucleus of mPER and mCRY 

proteins are likely to be crucial for imparting a 24h time constant to the SCN clockwork (Lee 

et al., 2001; Young and Kay, 2001). One protein kinase which is able to phosphorylate both 

mPER and mCRY proteins and BMAL1 is Casein Kinase 1ε (CK1ε) (Eide et al., 2002; 

Keesler et al., 2000; Lowrey et al., 2000; Vielhaber et al., 2000). The “tau hamster” carrying a 

mutation in the CK1ε gene has a severely shortened free-running period of about 20h 

(Lowrey et al., 2000). Additionally, over-expression experiments suggest a role of CK1ε or 

CK1δ in the nuclear translocation of mPER proteins (Vielhaber et al., 2000). A recent study 

by Yagita and colleagues (Yagita et al., 2002) brings together all the three aspects of post-

translational processing connected to the circadian machinery so far. In an elegant set of cell 

system based experiments the authors suggest a mechanism by which the timed interaction 

between mPER2, mCRY protein and CK1ε regulates the nuclear abundance of an mPER/ 

mCRY complex capable of interacting with the CLOCK/ BMAL1 transcription machinery. 
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They show that mPER2 contains functional nuclear import and export signals allowing the 

protein to shuttle freely between the nucleus and the cytoplasm. In the nucleus mPER2 

interacts with mCRY1 or mCRY2 thereby protecting each other from degradation by the 

proteasome after phosphorylation by CK1ε.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Working model for mCRY-mediated nuclear accumulation of mPER2. mCRY keeps shuttling 
mPER2 in the nucleus and protects it from phosphorylation by CK1 ε  and subsequent degradation by the 
proteasome (taken from (Yagita et al., 2000)). 
 

This corresponds well with the data from mCry1/ mCry2 double mutant mice where mPer 

transcript levels are high but mPER protein cannot be detected (Shearman et al., 2000b) and 

results from a human circadian disease, the familial advanced sleep phase syndrome (FASPS). 

FASPS patients carry a mutation of the hPer2 gene in the region of the CK1ε phosphorylation 

site (Toh et al., 2001). Decreased phosphorylation would lead to higher PER levels in the 

nucleus thereby accelerating the speed of the clock. This is exactly what is seen in FASPS 

patients and in the tau hamster (Jones et al., 1999; Ralph and Menaker, 1988). 
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1.5. Peripheral Clocks 

 

Clock genes are not only expressed in the SCN but appear in several tissues outside the brain 

indicating the existence of peripheral circadian clocks subordinated to the central pacemaker 

of the hypothalamus (for review see Balsalobre, 2002 and Herzog and Tosini, 2001). Analysis 

of clock gene expression in different tissues like liver, kidney, heart or muscle revealed that 

most of their transcript levels indeed show a circadian profile (Balsalobre et al., 1998; Lee et 

al., 2001; McNamara et al., 2001; Nonaka et al., 2001; Oishi et al., 1998; Zylka et al., 1998a). 

Essentially all peripheral organs seem to be capable of generating circadian rhythmicity. 

However, circadian gene expression in peripheral cell types is delayed about 4h when 

compared to the SCN (Balsalobre et al., 1998). The regulative mechanisms of peripheral 

clocks seem identical to those present in the SCN, although a recent study in Clock mutant 

mice suggests a different impact of the Clock mutation on central and peripheral oscillators 

(Oishi et al., 2000). This probably reflects the presence of clock gene homologues in non-

SCN tissues (like NPAS-2 in the forebrain (Reick et al., 2001)), which can compensate for the 

loss or misfunction of some of the “classical” clock genes. 

Additionally peripheral oscillators dampen without continuing stimulation (Balsalobre et al., 

1998). Therefore the clocks of the body need to be regularly synchronized to the master time 

teller of the brain. This synchronization most probably occurs via diffusible factors (Silver et 

al., 1996) – although neural signals seem also important for some outputs (Kalsbeek and 

Buijs, 2002) - probably released via the bloodstream (Oishi et al., 1998). This would explain 

the 4h lag of peripheral clock gene expression. SCN neurons have been shown to directly 

synchronize cultured fibroblasts (Allen et al., 2001). Recent work by Cheng and colleagues 

demonstrates that Prokineticin 2, which is synthesized in the SCN, is essential for the control 

of locomotor activity. PK2 receptors are found in several brain nuclei involved in output 

signaling from the clock. Therefore these nuclei might as well produce the humoral signals 

synchronizing the periphery (Cheng et al., 2002). 

Several candidates exist for timing ligands in the blood. Glucocorticoids induce circadian 

gene expression in fibroblasts and induce phase shifts in liver, kidney and heart (Balsalobre et 

al., 2000a). However, the disruption of the glucocorticoid receptor does not affect circadian 

gene expression in the periphery indicating that glucocorticoids cannot be the only signaling 

compound. Fibroblast rhythmicity can be induced as well by forskolin, adenylate cyclase 

agonists, TPA and calcimycin (Akashi and Nishida, 2000; Balsalobre et al., 2000b; Motzkus 

et al., 2002; Motzkus et al., 2000; Nonaka et al., 2001; Yagita and Okamura, 2000). Retinoids 
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seem to be important for circadian gene expression in the vascular system (McNamara et al., 

2001). But the general mechanism by which peripheral clocks are reset remains unclear. It has 

been shown that during light phase restricted feeding the temperature of mice was affected 

suggesting an impact of body temperature on the resynchronization of peripheral clocks 

(Damiola et al., 2000). Rutter and colleagues (Rutter et al., 2001) show that the redox state of 

the cell influences the efficiency of CLOCK/ BMAL1 driven transcriptional activation. Since 

the cell redox state is affected by metabolism, restricted feeding may thus directly reset 

peripheral clocks through metabolic activity (reviewed in Schibler et al., 2001). 
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1.6. Photoperiodism 

 

1.6.1. Publication: “The Circadian Clock as a Molecular Calendar” 

 

Henrik Oster, Erik Maronde, and Urs Albrecht 

 

Chronobiology International, 19(3), 507-516 (2002) 
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1.7. Aim of this Work 

 

The goal of this project was to further characterize the role of the Period and Cryptochrome 

genes and their interaction in the mammalian circadian clockwork. Although the importance 

of the four genes mPer1, mPer2, mCry1 and mCry2 as components of the central 

transcriptional/ translational feedback loop has convincingly been demonstrated, the exact 

nature of the interactions of these genes and their specific roles in the stabilization and 

maintenance of the cellular oscillator remains to be discovered (Albrecht, 2002; Okamura et 

al., 2002). 

One aspect is the putative redundancy of the mPers and the mCrys in the circadian system. 

Some work has been performed on the distinct role of the two mPer genes (Bae et al., 2001; 

Zheng et al., 2001). However, mCry1 and mCry2 are still believed to be mutually 

exchangeable despite the fact that the corresponding null mutant mice show clearly different 

circadian phenotypes (van der Horst et al., 1999; Vitaterna et al., 1999). 

Another point of debate is the role of the mPers and mCrys in the resetting pathway of the 

clock. While the light inducibility of the mPer genes and resetting deficiencies in the 

corresponding mouse mutants make them likely candidates for the connection between the 

pacemaker and the environment (Albrecht et al., 1997b; Albrecht et al., 2001), it is still not 

clear whether the mCrys are important in light signaling (like their plant and Drosophila 

homologues) or not (Barinaga, 1999; Sancar, 2000). 

Additionally, much of the functional data regarding the circadian system was generated using 

more or less artificial experimental setups. However, it is very difficult to mimic the 

clockwork depending on interactions organized in spatial and temporal manners in vitro. And 

indeed many of the proposed mechanisms were demonstrated to be of no significant relevance 

when it came to in vivo studies using transgenic animals (Gotter et al., 2000; Shearman et al., 

2000a). 

Therefore we chose to study mPer/ mCry interactions directly in the living animal. We 

crossed mPer and mCry mutant mice to produce animals lacking different combinations of the 

genes. This allowed us to assess mPer and mCry functional interaction under physiological 

conditions and deduce the different roles of these genes in the circadian clockwork. 

In the second part we elucidated the molecular circadian clockwork of the blind mole rat 

Spalax ehrenbergi superspecies. Although the circadian behavior of Spalax has been broadly 

examined (Ben-Shlomo et al., 1995; Goldman et al., 1997; Rado and Terkel, 1989; Tobler et 

al., 1998) only sparse work has been performed on the molecular level so far (Negroni et al., 
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1997; Tobler et al., 1998). The total visual blindness of the mole rats with extreme ocular 

degradation (Cooper et al., 1993) makes Spalax a highly interesting system for 

chronobiological studies. Additionally the ability of Spalax to change between a 

predominantly diurnal to a nocturnal activity pattern allowed us to examine differences in the 

clock mechanism of nocturnal and diurnal organisms in one species. 
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Chapter 2 
 

Results 
________________________________________________________________ 

 

 

2.1. Publication: “Disruption of mCry2 restores circadian rhythmicity in 

mPer2 mutant mice” 
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mutant mice” 
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Abstract 

 

The mPer1, mPer2 and mCry1, mCry2 genes play a central role in the molecular mechanism 

driving the central pacemaker of the mammalian circadian clock, located in the 

suprachiasmatic nuclei (SCN) of the hypothalamus. In vitro studies suggest a close 

interaction of all mPER and mCRY proteins. We investigated mPER and mCRY interactions 

in vivo by generating different combinations of mPer/mCry double mutant mice. We 

previously showed that mCry2 acts as a non-allelic suppressor of mPer2 in the core clock 

mechanism. Here we focus on the circadian phenotypes of mPer1/mCry double mutant 

animals and find a decay of the clock with age in mPer1-/-mCry2-/- mice at the behavioural 

and the molecular level. Our findings indicate that complexes consisting of different 

combinations of mPER and mCRY proteins are not redundant in vivo and have different 

potentials in transcriptional regulation in the system of autoregulatory feedback loops driving 

the circadian clock. 
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Introduction 

 

The earth's rotation around the sun has strongly influenced temporal organisation of the 

mammalian organism manifested by near 24 hour rhythms of biological processes 

(Pittendrigh, 1993) including the sleep-wake cycle, energy metabolism, body temperature, 

renal activity and blood pressure. These rhythms are maintained even in the absence of 

external time signals (Zeitgeber). They are driven by a central clock located in the 

suprachiasmatic nuclei (SCN) of the ventral hypothalamus (Ralph et al., 1990; Rusak and 

Zucker, 1979). Since the internal period length generated by this pacemaker is not exactly 24 

hours (hence the term ‘circadian’, from the Latin circa dies which translates to ‘about one 

day’), the clock has to be reset every day by an input pathway synchronising the organism's 

biological processes with geophysical time. This is accomplished by monitoring the daily 

variation in light intensity by photoreceptors in the eye that project directly via the 

retinohypothalamic tract (RHT; Rusak and Zucker, 1979) or indirectly via the intergeniculate 

leaflet (IGL; Jacob et al., 1999) to the SCN. The oscillations generated in the SCN are 

translated into overt rhythms in behaviour and physiology through output pathways that 

probably involve both chemical and electrical signals. These signals are essential for the 

maintenance of overt circadian rhythms, but most cells of peripheral tissues possess a 

functional circadian oscillator with a molecular organisation very similar to that of SCN 

neurons (Balsalobre et al., 1998; Yamazaki et al., 2000). 

 At the molecular level, circadian rhythms are generated by the integration of 

autoregulatory transcriptional/translational feedback loops (TTLs; Albrecht, 2002; Allada et 

al., 2001; Reppert and Weaver, 2002). In the mammalian system, the TTL can be subdivided 

into a positive and a negative limb. The positive limb is constituted by the PAS helix- loop-

helix transcription factors CLOCK and BMAL1 that bind upon heterodimerisation to 

enhancer elements termed E-boxes regulating transcription of Period (mPer) and probably 

also Cryptochrome (mCry) genes. The mPER and mCRY proteins are components of the 

negative limb that attenuate the CLOCK/BMAL1-mediated activation of their own genes and 

hence generate a negative feedback. There is evidence that a mPER/mCRY complex interacts 

directly with the CLOCK/BMAL1 complex bound to chromatin (Lee et al., 2001). A number 

of posttranslational events such as phosphorylation, ubiquitylation, degradation and 

intracellular transport seem to be critical for the generation of oscillations in clock gene 

products and the stabilisation of a 24h period (Kume et al., 1999; Lee et al., 2001; Miyazaki et 

al., 2001; Vielhaber et al., 2001; Yagita et al., 2002; Yagita et al., 2000; Yu et al., 2002). 
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Additionally, the two limbs of the TTL are linked by the nuclear orphan receptor REV-ERBα, 

which is under the influence of mPer and mCry genes and controls transcription of Bmal1 

(Preitner et al., 2002). In mammals three Per genes, mPer1 (Sun et al., 1997; Tei et al., 1997), 

mPer2 (Albrecht et al., 1997; Shearman et al., 1997), and mPer3 (Zylka et al., 1998) and two 

Cry genes, mCry1 and mCry2 (Miyamoto and Sancar, 1998) have been identified. While 

mPer3 seems not to be necessary for the generation of circadian rhythmicity (Shearman et al., 

2000), mPer1, mPer2 and both mCry genes have been demonstrated to play essential roles in 

the central oscillator as well as in the light driven input pathway to the clock (Albrecht et al., 

2001; Bae et al., 2001; Cermakian et al., 2001; van der Horst et al., 1999; Vitaterna et al., 

1999; Zheng et al., 2001; Zheng et al., 1999). 

The molecular mechanism of clock autoregulation has largely been studied in vitro 

(Gekakis et al., 1998; Kume et al., 1999; Miyazaki et al., 2001; Vielhaber et al., 2001; Yagita 

et al., 2002; Yagita et al., 2000; Yu et al., 2002). These studies point to multiple physical 

interactions between all mPER and mCRY proteins. However, the time course of protein 

availability, modification and localisation is difficult to resolve in cell and slice cultures 

(Hamada et al., 2001; Jagota et al., 2000; Lee et al., 2001). To elucidate the functional 

relationship between the mPer and mCry genes in vivo, we started to inactivate different 

combinations of mPer and mCry genes in mice. Disruption of mCry2 restores circadian 

rhythmicity in mPer2 mutant mice, suggesting that mCry2 can act as a non-allelic suppressor 

of mPer2 (Oster et al., 2002b). In contrast, additional inactivation of mCry1 in mPer2 mutant 

animals leads to an immediate loss of circadian rhythmicity (Oster et al., 2002b). 

Here we show that mPer1-/-mCry1-/- mice maintain a functional circadian clock and 

that mPer1-/-mCry2-/- mice initially display circadian rhythmic behaviour and gene expression. 

After a few months however, the rhythm of mPer1-/-mCry2-/- mice breaks down. This loss of 

rhythmicity is accompanied by altered regulation of expression of core clock components. 

Additionally, the light responsiveness of the clock in mPer1-/-mCry2-/- mice is affected at the 

behavioural and molecular levels. Interestingly, this defect seems to have its roots in the 

signal transduction pathway of the ganglion cell layer in the retina. Taken together with 

previous observations, our results indicate that the amount of mPER and mCRY proteins and 

hence the composition of mPER/mCRY complexes are critical for generation and 

maintenance of circadian rhythms. The destabilisation of these complexes in mPer1-/-mCry2-/- 

mice disrupts the ability of the TTL to compensate age-related changes in transcriptional and 

posttranscriptional efficiency resulting in a disruption of the circadian clock in older animals. 
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Results 

 

mPer1 acts as a non-allelic suppressor of mCry1 

 

To begin to understand the in vivo function of the mPer and mCry genes in the clock 

mechanism, we generated mice with disruptions in both the mPer1/mCry1 and mPer1/mCry2 

genes respectively. Mice with a deletion of the mPer1 gene (Zheng et al., 2001) were crossed 

with mCry1-/- or mCry2-/- mice, respectively (van der Horst et al., 1999). The double-

heterozygous offspring was intercrossed to produce wild-type and homozygous mutant 

animals. mPer1-/-mCry1-/- and mPer1-/-mCry2-/- mice (representative genotyping shown in Fig. 

1A) were obtained at the expected Mendelian ratios and were morphologically 

indistinguishable from wild-type animals. The animals appeared normal in fertility, although 

in mPer1/mCry double mutant mice the intervals between two litters seem to increase 

significantly with progressing age (data not shown).  

To determine the influence of inactivation of either the mCry1 or mCry2 gene on 

circadian behaviour of mPer1-/- mice, mutant and wild-type animals were individually housed 

in circadian activity-monitoring chambers (Albrecht and Oster, 2001) for analysis of wheel-

running activity, an accurate measure of circadian rhythmicity. Mice were kept in a 12 hour 

light/ 12 hour dark cycle (LD 12:12, or LD) for several days to establish entrainment, and 

were subsequently kept in constant darkness (DD). Under LD and DD conditions mPer1-/-

mCry1-/- animals displayed activity patterns and expression patterns of clock components 

similar to that of wild-type mice (Fig. 1 B, C and supplemental Fig. 2). Under DD conditions 

mPer1-/-mCry1-/- mutant mice displayed a period length (τ) of 23.7 + 0.2 h (mean + S.D., 

n=15) which is similar to that of wild-type animals (τ = 23.8 + 0.1 h; n=17). Thus an 

additional deletion of mPer1 rescues the short period phenotype of mCry2 deficient mice (van 

der Horst et al., 1999) indicating that mPer1 acts as a non-allelic suppressor of mCry1. 

 

Loss of circadian wheel running activity rhythms in ageing mPer1-/-mCry2-/- double mutant 

mice 

 

mPer1-/-mCry2-/- animals that were between 2 and 6 months old ('young' mPer1-/-

mCry2-/- mice) displayed a diurnal activity pattern like wild-type animals under LD 

conditions. However, onset of activity was delayed and highest activity could be observed in 

the second half of the night (Fig. 1D). Interestingly, mPer1-/-mCry2-/- animals that were more 
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than six months old ('old' mPer1-/-mCry2-/- mice) showed a disturbed diurnal activity pattern 

under LD conditions (Fig. 1F), but a faint 24 hour rhythm could still be detected when 

applying χ2 periodogram analysis (Fig. 1G). Under DD conditions young mPer1-/-mCry2-/- 

mice display a long period (τ) of 25.3 + 0.2 h (mean + S.D., n=14) compared to wild-type 

animals (τ = 23.8 + 0.1 h; n=17) (Fig. 1D and E). In contrast to young mPer1-/-mCry2-/- mice, 

old mPer1-/-mCry2-/- mice were arrhythmic under DD conditions (Fig. 1F and I). The 

transition from a rhythmic to an arrhythmic phenotype, however, did not occur in all animals 

at the same age, but age is correlated with loss of circadian wheel-running activity (Fig. 1H). 

mPer1-/-mCry2-/- mice that are between two and six months old all display circadian activity 

patterns, whereas only about 60 % of animals between six and twelve months of age maintain 

circadian rhythmicity. Interestingly, 87% of the mPer1-/-mCry2-/- mice older than twelve 

months are arrhythmic. We did not observe a comparable age-related loss of rhythmicity in 

wild-type, mPer1-/- and mCry2-/- mice (Fig. 1 H and supplemental Fig. 1). However, we 

cannot completely rule out that arrhythmicity could be observed sometime in ageing single 

mutants as well but the stability of rhythmicity appears dramatically decreased in the double 

knock out context. Following this observation we divided all double mutant animals into two 

groups for use in subsequent experiments. Rhythmic animals are referred to as ‘young mPer1-

/-mCry2-/-‘ and arrhythmic animals are referred to as ‘old mPer1-/-mCry2-/-‘. This does not 

necessarily correspond with the physical age of each individual because all animals used for 

mRNA and protein analyses were between 6 and 12 months old and the onset of 

arrhythmicity does not occur at the same age in every animal. However, since there is a clear 

correlation between age and rhythmicity the average age of ‘old’ animals is higher than of the 

‘young’. 

 

Alterations in expression levels of clock components in ageing mPer1-/-mCry2-/- double 

mutant mice 

 

To investigate whether the loss of circadian rhythmicity in ageing mPer1-/-mCry2-/- mutant 

mice was reflected at the molecular level, we examined the expression patterns of the mPer2, 

mCry1 and Bmal1 genes. Under LD and DD conditions mPer2 mRNA expression in the SCN 

was comparable in young mPer1-/-mCry2-/- mice and wild-type animals with peak levels at 

Zeitgeber time (ZT) or circadian time (CT) 12 (Fig. 2A and B). Interestingly, mPer2 mRNA 

expression was markedly reduced in old mPer1-/-mCry2-/- mice at ZT12 with the diurnal 

expression pattern almost not detectable (Fig. 2A). In the kidney, a similar reduction of 
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mPer2 mRNA expression in old mPer1-/-mCry2-/- mice could be observed with a maximum of 

expression at ZT12 in wild-type animals (Cermakian et al., 2001; Zheng et al., 2001) and 

young mPer1-/-mCry2-/- mice (Fig. 2D and E). Expression patterns of old mPer1-/-mCry2-/- 

mice in DD were not determined because these mice loose circadian rhythm and no circadian 

times can be determined. To justify that the observed changes are related to the double knock 

out status of the animals we looked for mPer2 expression in mPer1-/- and mCry2-/- mice of the 

same age. mPer2 oscillation appeared to be normal in both LD and DD in the single mutants 

with no detectable reduction in the amplitude (supplemental figure 3 A and B). 

To investigate whether the reduced mPer2 mRNA expression in old mPer1-/-mCry2-/- 

mice was manifested at the protein level, we examined the presence of mPER2 protein in the 

SCN by immunohistochemistry. In wild-type and young mPer1-/-mCry2-/- mice protein levels 

are high between ZT12 and ZT18 (Fig. 2C; Field et al., 2000) which is a few hours later than 

mRNA expression (Fig. 2A). In old mPer1-/-mCry2-/- mice however, protein levels are low 

comparable to mRNA expression (Fig. 2A and C). 

There is evidence that mPER1/2 and mCRY1/2 can indirectly activate Bmal1 expression 

(Preitner et al., 2002; Yu et al., 2002) via the inhibition of Rev-Erbα. REV-ERBα protein 

inhibits the transcription of Bmal1 and possibly Clock. On the other hand CLOCK/BMAL1 

protein activates Rev-Erbα expression (Preitner et al., 2002). mPER1/2 and mCRY1/2 

proteins can interfere with CLOCK/BMAL1 mediated transcriptional activation. Therefore 

we investigated the expression pattern of mCry1 and Bmal1 in the SCN. In wild-type, mPer1-/-

, mCry2-/- and young mPer1-/-mCry2-/- mice mCry1 mRNA expression was similar in LD and 

DD with a maximum at ZT12 or CT12, respectively (Fig. 3A, B and supplemental figure 3 C-

F). This is consistent with previous reports on wild-type animals (Okamura et al., 1999). 

Interestingly, mCry1 mRNA expression was normal in old mPer1-/-mCry2-/- mice in LD (Fig. 

3A), which is in marked contrast to the reduced mPer2 mRNA expression in these mice (Fig. 

2A and B). Therefore we examined mCRY1 protein levels in the SCN by 

immunohistochemistry. mCRY1 protein levels were cycling in wild-type animals with peak 

expression between ZT12 and ZT18 (Fig. 3C) as reported previously (Field et al., 2000). 

Similarly, young mPer1-/-mCry2-/- mice displayed cycling expression of mCRY1 protein, but 

the expression levels at ZT0 (24) were notably higher than in wild-type animals (Fig. 3C). 

The elevated expression of mCRY1 protein at ZT0 (24) became even more pronounced in old 

mPer1-/-mCry2-/- mice leading to almost constant high levels of mCRY1 protein throughout 

the 24 hour LD cycle (Fig. 3C). In age matched mPer1-/- and mCry2-/- mice however, mCRY1 

protein cycling was observed (see Suppl Fig. 3) indicating that the abnormal regulation of the 
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mCRY1 protein in old mPer1-/-mCry2-/- mice is due to the inactivation of both mPer1 and 

mCry2. Next, we looked at Bmal1 mRNA expression in the SCN under LD and DD 

conditions. In wild-type and mPer1-/- animals a maximum was seen at ZT and CT 18 

(supplemental figure 3 E and F) as previously observed (Honma et al., 1998). In mCry2-/- 

animals the maximum of Bmal1 expression was slightly delayed (supplemental figure 3 E and 

F). Young mPer1-/-mCry2-/- animals displayed a similar expression pattern, although the levels 

tended to be slightly decreased (Fig. 3D and E). In old mPer1-/-mCry2-/- mice Bmal1 mRNA 

levels were significantly reduced in LD (p< 0.05) (Fig. 3D) which is comparable to the low 

mPer2 mRNA expression observed in old mPer1-/-mCry2-/- animals (Fig. 2A). Taken together 

it seems that mPer2 mRNA levels as well as protein levels are normal in young mPer1-/-

mCry2-/- animals, whereas in old mPer1-/-mCry2-/- mice the amounts are strongly reduced. The 

same was observed for Bmal1 mRNA but not for mCry1 mRNA. However, mCRY1 protein 

levels are constitutively high in old mPer1-/-mCry2-/- mice. 

From the expression data in old mPer1-/-, mCry2-/- and mPer1-/-mCry2-/- mice 

described above it is reasonable to assume that the circadian phenotype observed in mPer1-/-

mCry2-/- mice is a consequence of the simultaneous inactivation of the mPer1 and mCry2 

genes in these animals. Therefore we focussed in the following studies on the comparison 

between wild-type and double mutant animals. 

 

Loss of light inducibility of mPer2 mRNA and effect on delaying the clock phase in mPer1-/-

mCry2-/- mice 

 

As described above, the amplitude of cyclic mPer2 mRNA expression declines with 

progressing age. In addition to CLOCK-BMAL1-driven circadian expression, phase-resetting 

light stimuli are known to induce mPer expression via a cAMP-responsive element in the 

promoter (Motzkus et al., 2000; Travnickova-Bendova et al., 2002). To investigate whether 

ageing affects light inducibility of the mPer2 gene in the SCN of mPer1-/-mCry2-/- mice, we 

applied a 15 minutes nocturnal light pulse at ZT14 to the animals. Wild-type mice displayed a 

significant increase of mPer2 mRNA (Fig. 4A and B) as described previously (Albrecht et al., 

1997). Interestingly, induction of mPer2 mRNA was significantly impaired in young mPer1-/-

mCry2-/- mice compared to wild-type animals (p < 0.05; Fig. 4A and B). This observation was 

even more pronounced in old mPer1-/-mCry2-/- mice (p<0.001; Fig. 4A and B) indicating that 

the light signal transduction pathway might be defective. Therefore we set out to investigate 

light dependent phosphorylation of CREB at position 133 (CREB-Ser133). We found that in 
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wild-type animals phosphorylation at CREB-Ser133 was induced by light (Fig. 4C and D) as 

described previously (von Gall et al., 1998). Young mPer1-/-mCry2-/- animals tended to show 

slightly reduced (but statistically not significant) phosphorylation of CREB-Ser133 (Fig. 4C 

and D). In contrast, old mPer1-/-mCry2-/- mice hardly displayed phosphorylation at CREB-

Ser133 (p<0.001; Fig. 4C and D) suggesting a degeneration of the light input pathway to the 

clock. In a next step we wanted to investigate, whether the observed reduction of mPer2 

mRNA induction and CREB-Ser133 phosphorylation in mPer1-/-mCry2-/- mice had behavioural 

consequences. We monitored wheel-running activity before and after a 15min light pulse at 

ZT14 and 22 as well as at CT14 and 22 and measured the phase shifts (Fig. 4E and F). In 

wild-type animals we observed a phase delay at ZT14 of 82 + 10 min (mean + S.D., n=14) 

and 87.3 + 9.3 min (n=14) at CT 14 and a phase advance of 35 + 6.7 min (n=14) at ZT22 and 

39.3 + 6.7 min (n=14) at CT22. In mPer1-/-mCry2-/- animals only the phase shifts for young 

animals could be determined because old animals are arrhythmic in DD, which precludes 

determination of phase shifts. mPer1-/-mCry1-/- mice delayed their phase at ZT14 similar to 

wild-type animals (86.5 +/- 12min; n=11; Fig 4E). Remarkably, in mPer1-/-mCry2-/- mice 

phase delays at CT14 tended to be reduced (60 + 13 min; with p=0.0539 (n=10) missing the 

criterion of p < 0.05 for significance; Fig. 4F). However, at ZT22 and CT22 phase advances 

in both mPer1/mCry1 (1.3 + 13 min; n=11) and mPer1/mCry2 (7.3 + 10.5 min; n=10) double 

mutant animals were abolished (Fig. 4E and F), which is comparable to the inability of 

mPer1-/- mice to advance clock phase after a 15min light pulse (Albrecht et al., 2001). These 

results suggest that the defect in advancing clock phase is due to a lack of mPer1 in both 

mPer1-/-mCry1-/- and mPer1-/-mCry2-/- mice. The impairment of delaying clock phase in 

mPer1-/-mCry2-/- mice at CT14 is probably due to a reduction of phosphorylation in CREB-

Ser133 and reduced expression of mPer2 mRNA. This is in line with previous findings that 

mPer2 mutant mice are defective in delaying clock phase (Albrecht et al., 2001). 

 

CREB phosphorylation at Ser 133 is decreased in the eye of mPer1-/-mCry2-/- mice 

 

The sloppy onset of wheel running activity in LD and the strong reduction in CREB 

phosphorylation at Ser 133 in the SCN of old mPer1-/-mCry2-/- mice indicated that light 

signalling from the eye to the SCN might be defective. We therefore performed a detailed 

(immuno)histochemical analysis of the retinas from wild-type, mPer1-/-, mCry2-/- and mPer1-/-

mCry2-/- mice, respectively (Fig. 5). Using the Gomori staining procedure we could not detect 

overt morphological differences between wild-type, mPer1-/-, mCry2-/-, young and old mPer1-
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/-mCry2-/- retinas (Fig. 5A). To reveal cell death in the different layers of the retina, we 

performed lipofuscin staining. We did not observe any difference between wild-type, mPer1-/-

, mCry2-/-, young and old mPer1-/-mCry2-/- mice (Fig. 5B), indicating that the retinas of all 

mice were intact. Additionally, we performed lipofuscin as well as Congo red histological 

staining in different regions of the brain with a focus on areas involved in the machinery of 

the circadian clock. We did not detect any amyloid plaques and mPer1-/-mCry2-/- mice did not 

show any differences to wild-type animals (data not shown). Thus, the observed effects of 

ageing are restricted to the functionality of the circadian system and do not originate from 

aberrant development or age-related morphological changes in the retina of mPer1-/-mCry2-/- 

animals. 

Next we investigated phosphorylation of CREB at serine residue 133 in the retina by 

using an anti Ser133 P-CREB antibody (Fig. 5C). In wild-type animals, in the absence of light 

stimuli, Ser133 P-CREB was detected in the inner nuclear layer. A light pulse given at ZT14 

has been shown to result in increased numbers of immunoreactive nuclei in the inner nuclear 

layer and ganglion cell layer (Gau et al., 2002). In mPer1-/-, mCry2-/- and young mPer1-/-

mCry2-/- mice a similar immunoreactivity was seen (Fig. 5C). Old mPer1-/-mCry2-/- animals 

however, displayed a reduced number of immunoreactive nuclei in the inner nuclear layer 

after a light pulse, whereas Ser133 P-CREB staining could hardly be observed in the ganglion 

cell layer (Fig. 5C). This indicates that phosphorylation of serine 133 in CREB is affected in 

the retina of old mPer1-/-mCry2-/- mice. Taken together, these results demonstrate that the 

profound loss of circadian wheel running behaviour of old mPer1-/-mCry2-/- mice under LD 

conditions (Fig. 1F) is due to impaired light signal transduction pathway performance. 
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Discussion 

 

Interaction of clock components has predominantly been investigated in cultured cells, 

transiently (over)expressing clock components and E-box-containing reporter constructs 

(Gekakis et al., 1998; Kume et al., 1999; Yagita et al., 2002; Yagita et al., 2000). Such assays 

revealed that mPER and mCRY proteins can in vitro interact with themselves or each other, 

thereby forming stabilised complexes that influence nuclear transport of clock proteins or 

transcriptional regulation of clock genes. In contrast, it is not known to which extent 

complexes composed of various combinations of mPER and mCRY proteins contribute to 

circadian oscillator performance in vivo. We thus started to conduct genetic experiments by 

crossing mouse strains with inactivated mPer or mCry genes and subsequent analysis of 

circadian behaviour, clock gene and protein expression. We found that mCry2 can act as a 

non-allelic suppressor of mPer2 in the core clock mechanism and hence the presence of only 

mPer1 and mCry1 genes is sufficient to maintain circadian rhythmicity of the clock in vivo 

(Oster et al., 2002b). In this study we investigated the consequences of the absence of mPer1 

in combination with mCry1 or mCry2 on the circadian clock. 

 

 

mPer1-/-mCry1-/- mice display normal circadian rhythmicity but show impaired ability to 

phase advance the clock 

 

Inactivation of mPer1 and mCry1 leads to a behavioural phenotype under LD and DD 

conditions similar to wild-type animals. mPer1-/-mCry1-/- mice display a period length 

comparable to wild-type littermates (Fig 1B, C). In comparison to mCry1-/- mice however, it 

seems that the additional loss of mPer1 in mCry1-/- mice leads to an increase in period length 

to near normal values in DD (23.7 + 0.2 h for mPer1-/-mCry1-/- mice vs. 22.51 + 0.06h for 

Cry1-/- mice). This indicates that the loss of mPer1 rescues the phenotype observed in mCry1-

/- mice and that the mPER2 and mCRY2 proteins seem to be sufficient to maintain a circadian 

rhythm with a period that is comparable to wild-type animals. This is also reflected at the 

molecular level, where mPer2 and Bmal1 mRNA rhythms are comparable to the expression 

patterns in wild-type animals under both LD and DD conditions (see supplemental figure 2). 

Hence it seems that mPer1 is a non-allelic suppressor of mCry1 (or vice versa). Interestingly, 

application of a 15 minute light pulse at ZT22 does not lead to a phase advance as observed in 

wild-type animals (Fig. 4E). This inability of mPer1-/-mCry1-/- mice to advance clock phase is 
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comparable to the defect observed in mPer1-/- animals (Albrecht et al., 2001). It seems that 

only circadian core clock functionality is rescued by an inactivation of mCry1 in mPer1-/- 

mice but not the resetting properties of the clock. This is similar to the observations made in 

mPer2Brdm1mCry2-/- mice, which appear to have a normal circadian rhythm but display a 

defect in delaying clock phase similar to mPer2Brdm1 mice (Oster et al., 2002b). Taken 

together it seems that deletion of mCry1 in mPer1-/- mice and mCry2 in mPer2Brdm1 mice 

rescues circadian phenotype without affecting the light driven resetting mechanism indicating 

that mPER1 interacts predominantly with mCRY1 and mPER2 with mCRY2 in vivo. 

 

Breakdown of the clock in ageing mPer1-/-mCry2-/-mice 

 

Circadian organisation changes with age (Valentinuzzi et al., 1997; Yamazaki et al., 2002). 

Typical changes include decrease in the amplitude of wheel-running activity, fragmentation of 

the activity rhythm, decreased precision in onset of daily activity and alterations in the 

response to the phase-shifting effects of light (Valentinuzzi et al., 1997). Within the SCN 

histological changes have been reported in aged rats and electrical activity rhythms in SCN 

slice cultures have lower amplitude and are less precise than in SCN cultures prepared from 

young animals (Aujard et al., 2001; Satinoff et al., 1993; Watanabe et al., 1995). At the 

molecular level age diminishes the amplitude of Per2 but not Per1 expression in mice 

(Weinert et al., 2001). However in rats similar expression patterns of molecular clock 

components in the SCN of young and old rats have been reported (Asai et al., 2001). The 

above mentioned studies have investigated the effects of ageing on the clock. Here we show 

evidence that a defective clock has an influence on ageing. Inactivation of mPer1 and mCry2 

in mice leads in young mPer1-/-mCry2-/- animals (2-6 months old) to a decreased precision in 

onset of daily activity compared to wild type mice (Fig. 1D, E). Onset of activity is markedly 

delayed with a sharp offset at the dark/light transition probably reflecting masking 

(Mrosovsky, 1999). In ageing mPer1-/-mCry2-/- mice the decreased precision in onset of daily 

activity is even more pronounced (Fig. 1F). Additionally, a fragmentation of the activity 

rhythm is observed under LD conditions and a daily rhythm is barely detectable (Fig. 1G). In 

constant darkness old mPer1-/-mCry2-/- mice do not display a circadian rhythm and the 

amplitude of wheel-running activity is decreased compared to wild type and young mPer1-/-

mCry2-/- mice (Fig. 1F, I). All these phenotypes are not observed in mPer1-/- and mCry2-/- 

single mutant mice (van der Horst et al., 1999; Zheng et al., 2001) (supplemental Fig. 1). 

Interestingly, mPer1-/-mCry2-/- mice display an altered response to the phase-shifting effects of 
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light (see below and Fig. 4). All the above described observations indicate that the clock 

seems to break down in ageing mPer1-/-mCry2-/- mice and, as a consequence, can accelerate 

some aspects of ageing. The breakdown of the circadian rhythm does not occur in all mPer1-/-

mCry2-/- mice at the same time indicating that additional genes or genetic background may 

contribute to the ageing process. However, the percentage of arrhythmic mPer1-/-mCry2-/- 

animals increases with age (Fig. 1H) supporting the notion that the mPer1 and mCry2 genes 

in combination influence some aspects of the ageing process. Most probably transcriptional 

and posttranscriptional fidelity decreases with age and the absence of mPer1 and mCry2 

renders the animal more prone to this infidelity. This view is supported by our observation 

that mPer2 and Bmal1 mRNA levels are strongly reduced in the SCN and in the kidney of old 

mPer1-/-mCry2-/-mice (Figs. 2 and 3D). Additionally, mCRY1 protein levels are elevated (Fig. 

2C) pointing to an impaired degradation pathway of mCRY1. Interestingly, mCry1 mRNA 

cycling is not affected in contrast to mPer2 and Bmal1 transcripts indicating that regulation of 

mCry1 differs from mPer2 and Bmal1 transcriptional regulation. 

 The loss of circadian wheel running behaviour in old mPer1-/-mCry2-/- mice is not a 

gradual process but occurs rapidly within a period of 3 days (see supplemental Fig. 4). This 

probably reflects the bimodality of transcriptional and posttranscriptional processes that are 

likely to act as “on/off” switches lacking intermediate states. Transcription is initiated by 

multimeric protein complexes (Beato, 1996; Freedman, 1999) and hence the components of 

transcriptional complexes have to be orchestrated in order to be present at a specific time and 

place in the cell. It seems that in young mPer1-/-mCry2-/-mice the critical amplitude in the 

level of PER2/CRY1 heterodimers to regulate the clock is just barely reached. With 

progressing age synthesis and processing of these proteins are reduced. The amplitude of 

PER2/CRY1 heterodimer oscillation falls below a critical threshold leading to a deregulation 

of the clock (Fig. 6 B), probably resulting in the uncoordinated cellular and physiological 

events we observe in old mPer1-/-mCry2-/-mice.  

 

Light sensitivity is impaired in ageing mPer1-/-mCry2-/-mice 

 

Old mPer1-/-mCry2-/-mice are very poorly synchronised to the light dark cycle (Fig. 1F). 

Therefore we hypothesised that these animals would be defective in light driven resetting of 

the circadian clock. A light pulse at ZT14 revealed a reduced inducibility of mPer2 in young 

and even more pronounced in old mPer1-/-mCry2-/-mice (Fig. 4 A, B). Therefore we tested 

whether CREB, an essential factor for numerous transcriptional processes, was activated by 
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phosphorylation in response to a light pulse (Motzkus et al., 2000; Travnickova-Bendova et 

al., 2002). CREB phosphorylation was only slightly lowered in young mPer1-/-mCry2-/-mice 

but was significantly impaired in old animals (Fig. 4C, D) indicating a defect in light 

signalling in the SCN of these mice. At the behavioural level we could only measure the 

phase shifts of young mPer1-/-mCry2-/-mice, because old animals immediately became 

arrhythmic in DD (thus precluding the determination of phase shifts). The young mPer1-/-

mCry2-/-mice resemble mPer1-/- animals in that they were not able to advance clock phase 

(Fig. 4F) (Albrecht et al., 2001), suggesting that this anomaly is due to the lack of mPer1. 

Interestingly, phase delays in mPer1-/-mCry2-/- mice were also affected although the criterion 

of significance was barely missed (p= 0.0539). The reduced inducibility of mPer2 by light in 

young mPer1-/-mCry2-/-mice and the reduction in delaying clock phase in those animals is 

consistent with the previous finding that mPer2 mutant mice are defective in delaying clock 

phase (Albrecht et al., 2001).  

 The impaired light response of mPer1-/-mCry2-/-mice might be a consequence of a defect 

in transmitting light information from the eye to the SCN. To test this possibility we looked 

for anatomical malformations in the retina. Neither young nor old mPer1-/-mCry2-/-mice 

displayed overt abnormalities (Fig. 5A) indicating that the animals were not visually blind. 

Cell death as a reason for malfunction of the retina could most possibly be excluded, since 

lipofuscin staining (Fig. 5B) and Congo red staining (data not shown) did not reveal dead 

cells in the retina. Comparable to the SCN however, light dependent phosphorylation of 

CREB at Ser 133 was affected in old mPer1-/-mCry2-/-mice (Fig. 5C). As a consequence light 

perceived by the eye is probably not processed properly to induce a cellular signalling cascade 

coding for the light signal. The reason for the impaired transmission of the light signal is most 

likely not a developmental defect, since young mPer1-/-mCry2-/-mice show phosphorylation of 

CREB at Ser 133. Therefore the defect is probably of transcriptional or posttranscriptional 

nature. For example CREB kinases might be regulated by some clock components. 

Candidates would be mouse homologues of the Drosophila kinase mothers against 

decapentaplegic (Mad). The mouse homologues, termed Madh1 and Madh2, are expressed in 

a circadian manner in the SCN (Panda et al., 2002) suggesting that their transcription is 

influenced by the clock and hence would phosphorylate CREB in a clock dependent manner. 

 

 

The transcriptional potential of mPER and mCRY protein complexes and their temporal 

abundance determines circadian rhythmicity 
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The precise regulation of the circadian oscillator requires an exact choreography of clock 

protein synthesis, interaction and posttranslational modification. The positive limb of 

circadian clock gene activation is influenced by the negative limb, probably through a 

complex consisting of mPER and mCRY proteins (Albrecht, 2002; Okamura et al., 2002). 

Such a mPER/mCRY complex would be composed of those PER and CRY proteins which are 

most abundant at a given time. Figure 6A depicts the temporal abundance of cycling mPer1, 

mPer2, mCry1 and mCry2 mRNA in the SCN illustrating that the amount of mRNA of these 

genes differs with time (Albrecht et al., 1997; Okamura et al., 1999; Reppert and Weaver, 

2002; Yan and Okamura, 2002). Because the clock components of the negative limb (Per and 

Cry) are probably regulating their own transcription, the mRNA cycling is likely to reflect the 

activity of the corresponding proteins. The active forms of PER and CRY proteins seem to be 

cycling with a delay of 4-6 hours compared to mRNA (Field et al., 2000). 

 Interestingly, not all PER/CRY complexes seem to be equally important in vivo (Oster 

et al., 2002b) (this study). mPer2Brdm1mCry2-/- mutant but not mPer2Brdm1mCry1-/- mutant mice 

display circadian rhythmic behaviour, indicating that mPER1/mCRY1 but not 

mPER1/mCRY2 are sufficient to drive the circadian clock (Oster et al., 2002b). Our 

observations presented in this study indicate that mPER2/mCRY2 but - at least in older mice - 

not mPER2/mCRY1 can sustain circadian rhythms. Additionally, mPer1-/-mPer2Brdm1 and 

mCry1-/-mCry2-/- double mutant mice do not show circadian rhythmicity, indicating that 

mPER or mCRY homodimers are not sufficient to maintain circadian rhythmicity. Based on 

these observations we propose abundance and timing of PER/CRY complexes as illustrated in 

figure 6B. According to this model the complexes composed of mPER1/mCRY1 and 

mPER2/mCRY2 would be the most abundant ones with a difference in their maximal 

presence of about 2 hours. The abundance of these complexes is higher than a critical 

threshold level necessary to drive clock regulation (green horizontal line in Fig. 6 B). In 

contrast, mPER1/mCRY2 complexes formed in Per2/Cry1 mutant mice do not reach this 

critical threshold. The reason for this might be that the timing of expression of these two 

proteins is not synchronised and/or the affinity between mPER1 and mCRY2 is low. As a 

consequence Per2/Cry1 mutant mice lose clock function (Oster et al., 2002b). The complex 

formed between mPER2 and mCRY1 seems to just reach the critical threshold necessary for 

clock regulation as illustrated by the circadian wheel-running behaviour of young mPer1-/-

mCry2-/-mice (Fig. 1D, E). However, with the progressing infidelity of transcription in ageing 

mice the presence of this complex falls below the critical threshold level and hence, older 
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mPer1-/-mCry2-/-mice lose circadian wheel-running behaviour (Fig. 1F, I). mPer2Brdm1 mutant 

mice lose circadian rhythmicity after a few days in constant darkness. In these animals only 

functional mPER1/mCRY1 and mPER1/mCRY2 complexes can form, which should in 

principle be able to drive circadian rhythm. This seems to be the case for the first few days in 

constant darkness, but then competition between mCRY1 and mCRY2 for PER1 could lead to 

equal amounts of PER1/CRY1 and PER1/CRY2 complexes. The abundance of each of these 

complexes seems to fall below the threshold critical for normal clock function.  

 Taken together it seems that PER/CRY complexes have different potentials to regulate 

the circadian clock. In wild type animals theoretically all complexes can form but the 

formation of PER/CRY complexes is probably not random and depends on temporal 

abundance and strength of interaction between the complex forming partners (Fig. 6B). The 

sum of the regulatory potential of PER/CRY complexes over time displays a robust circadian 

cycling as illustrated in figure 6C. The robustness of this cycling is probably ensured by the 

different phasing of the oscillation of the two strong regulatory complexes PER1/CRY1 and 

PER2/CRY2. This notion is supported by theoretical considerations indicating that an overt 

oscillation is stabilised by two oscillators that are slightly out of phase (Glass and Mackey, 

1988; Roenneberg and Merrow, 2001). 

 A model composed of two coupled molecular oscillators has been proposed by Daan 

and coworkers (2001). This model states that mPer1 and mCry1 are part of a morning (M) 

oscillator (comparable to the dark blue curve in Fig. 6B) whereas mPer2 and mCry2 are 

components of an evening (E) oscillator (light blue curve in Fig. 6B). Hence a deletion of the 

M oscillator (inactivation of mPer1 and mCry1) leaves the E oscillator untouched. The E 

oscillator (mPer2 and mCry2) would then drive the circadian clock alone, which would result 

in circadian rhythmicity. This is consistent with our observation that mPer1-/-mCry1-/-mice 

display a circadian rhythm (Fig. 1C). Conversely, an inactivation of the E oscillator (mPer2 

and mCry2) would leave the M oscillator (mPer1 and mCry1) alone to drive the circadian 

clock. In fact, inactivation of both mPer2 and mCry2 leads to normal circadian wheel running 

activity in mice (Oster et al., 2002b), and the rhythm seems to be stable. But what is the 

advantage of having two oscillators when a stable rhythm is observed with only the M or E 

oscillator alone? The answer lies in the adaptation of clock phase to changing environmental 

conditions (e.g. seasonal variation in day length) (Oster et al., 2002a; Steinlechner et al., 

2002). Our results show that deletion of either the putative M or E oscillator results in normal 

circadian rhythmicity, but resetting in these mutant mice is not normal. Mice with inactivated 

mPER2 and mCRY2 proteins display a defect in delaying clock phase in response to a light 
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pulse (Oster et al., 2002b) whereas mPer1-/-mCry1-/-mice are not able to phase advance the 

clock (Fig. 4E). Since these resetting phenotypes are similar to the resetting phenotypes 

observed in mPer2Brdm1 and mPer1-/- single mutant mice respectively, we can conclude that 

both the M and E oscillators have to be intact in order to reset clock phase properly. 

Interestingly, hampering the M and E oscillators by inactivating Per1 and Cry2 or Per2 and 

Cry1 leads to loss of circadian rhythmicity. This takes several months in mPer1-/-mCry2-/- 

mice (Fig. 1H) but is immediate in mPer2Brdm1mCry1-/- animals (Oster et al., 2002b). The 

reason for this difference might be that mPer2 and mCry1 have a greater transcriptional 

potential than mPer1 and mCry2 (see above).  

 Taken together our in vivo studies support a model based on two coupled oscillators 

(Fig. 6). It is reasonable to conclude that not all interactions between PER and CRY proteins 

are equal in vivo. Although these proteins seem to be partially redundant, all of them are 

necessary for a functional circadian clock that can predict time and thereby being adaptable to 

changing environmental conditions. The importance of the PER1/CRY2 complex only 

becomes apparent in mPer1-/-mCry2-/- mice half a year after birth illustrating a connection 

between the clock and aspects of ageing. 
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Materials and Methods  

 

Generation of mPer and mCry mutant mice.  

We crossed mPer1-/- mice (Zheng et al., 2001) with mCry1-/- and mCry2-/- animals (van der 

Horst et al., 1999). The genotype of the offspring was determined by southern blot analysis as 

described (Oster et al., 2002b). Hybridisation probes were for mPer1 as described in (Zheng 

et al., 2001) and for mCry1 and mCry2 as described in (van der Horst et al., 1999). Matching 

wild-type control animals were produced by back-crossing heterozygous animals derived 

form the mPer1-/- and mCry-/- matings to minimise epigenetic effects. However, we can not 

completely rule out such effects and epistatic interactions between different gene clusters that 

could have clouded our observations. 

 

Locomotor activity monitoring and circadian phenotype analysis. 

Mice housing and handling were performed as described (Albrecht and Oster, 2001). For LD-

DD transitions lights were turned off at the end of the light phase and not turned on again the 

next morning. Activity records are double plotted so that each light/dark cycle’s activity is 

shown both to the right and below that of the previous light/dark cycle. Activity is plotted in 

threshold format for 5-minute bins. For activity counting and evaluation we used the 

ClockLab software package (Actimetrics). Rhythmicity and period length were assessed by 

χ2 periodogram analysis and Fourier transformation using mice running in LD or in constant 

darkness for at least 10 days. 

For light induced phase shifts we used the Aschoff Type I (for mPer1-/-mCry1-/- animals) or 

the Type II protocol (for mPer1-/-mCry2-/- animals) as described (Albrecht and Oster, 2001; 

Albrecht et al., 2001). We originally chose Type II protocol because of the convenient set-up 

for high numbers of animals and for comparison with mPer2Brdm1 mice (Albrecht et al., 2001; 

Oster et al., 2002b) which become arrhythmic in constant darkness precluding the 

determination of circadian times. However, the unstable onset of activity of mPer1-/-mCry2-/- 

mice in LD and the long period length of these animals in DD resulted in very high variations 

when determining the phase shifts with Type II protocol. Therefore we repeated the  

experiments using a Type I set-up with animals free running in DD before light 

administration. For Type II protocol animals were entrained to an LD cycle for at least 7 days 

before light administration (15 min bright white light (400 Lux) at ZT14 or ZT22) and 

subsequently released into DD. The phase shift was determined by drawing a line through at 

least 7 consecutive days of onset of activity in LD before the light pulse and in DD after the 
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light pulse as determined by the ClockLab program. The difference between the two lines on 

the day of the light pulse determined the value of the phase shift. For Type I protocol animals 

were kept in DD for at least ten days before the light pulse (at CT14 or CT22 respectively). 

The phase shift was determined by drawing lines through at least 7 consecutive days before 

and after the light pulse using the ClockLab software. The first one or two days following the 

light administration were not used for the calculation since animals were thought to be in 

transition between both states. 

 

 

In situ hybridisation 

Mice were sacrificed by cervical dislocation under ambient light conditions at ZT6 and ZT12 

and under a 15W safety red light at ZT18 and ZT0/24 as well as at CT0/24, 6, 12 and 18. For 

DD conditions animals were kept in the dark for 3 days before decapitation. For light 

induction experiments animals were exposed to a 15min light pulse (400 Lux) at ZT14 and 

killed at ZT15; controls were killed at ZT15 without prior light exposure. Specimen 

preparation, 35S-rUTP labelled riboprobe synthesis and hybridisation steps were performed as 

described (Albrecht et al., 1998). The probe for mPer2 was as described (Albrecht et al., 

1997). The mCry1 and the Bmal1 probes were as described (Oster et al., 2002). Quantification 

was performed by densitometric analysis of autoradiograph films (Amersham Hyperfilm MP) 

as described (Oster et al., 2002b). For each time point three animals were used and three 

sections per SCN were analysed. "Relative mRNA abundance" values were calculated by 

defining the highest value of each experiment as 100%. 

 

Immunohistochemistry 

Animals were killed and tissue prepared as described for in situ hybridisation. Eye lenses 

were removed before cutting. Sections were boiled in 0.01M sodium citrate (pH 6) for 10 min 

to unmask hidden antigen epitopes and processed for immunohistochemical detection using 

the Vectastain Elite ABC system (Vector Laboratories) and diaminobenzidine with nickel 

amplification as chromogenic substrate. Immunostained sections were inspected with an 

Axioplan microscope (Zeiss) and the area of the SCN determined by comparison to Nissl 

stained parallel sections. Semiquantitative analysis for mCRY1, mPER2 and Ser133P-CREB 

immunoreactivity in the SCN was performed using NIH Image program. Images were 

digitised; background staining was used to define a lower threshold. Within the whole area of 

the SCN all cell nuclei exceeding the threshold value were marked. Three sections of the 
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intermediate aspect of the SCN were chosen at random for further analysis. Values presented 

are the mean of three different experiments +/- SD. Primary antibodies against mCRY1 

(Alpha Diagnostics, order number CRY11-A), against CREB (Cell Signalling Technology, 

order number 9192), against CREB, phosphorylated at the residue Ser133 (New England 

Biolabs, order number 9191S), and against mPER2 (Santa Cruz Biotechnology, order number 

sc-7729) were used at dilutions of 1:200, 1:500, 1:1000, and 1:200, respectively. 

 

Northern Blot Analysis 

 

Rhythmic animals were sacrificed at the specified time points. Total RNA from kidney was 

extracted using RNAzol B (WAK Chemie). Northern analysis was performed using 

denaturing formaldehyde gels (Sambrook and Russel, 2001) with subsequent transfer to 

Hybond-N+ membrane (Amersham). For each sample 20 µg of total RNA was used. cDNA 

probes were the same as described for in situ hybridisation. Labelling of probes was done 

using the Rediprime II labelling kit (Pharmacia) incorporating [P32]dCTP to a specific activity 

of 108 cpm/µg. Blots were hybridised using UltraHyb solution (Ambion) containing 100 

µg/ml salmon sperm DNA. The membrane was washed at 60°C in 0.1x SSPE and 0.1 % SDS. 

Subsequently, blots were exposed to phosphoimager plates (Bio-Rad) for 20 hours and signals 

quantified using Quantity One 3.0 software (Bio-Rad). For comparative purposes, the same 

blot was stripped and re-used for hybridisation. The relative level of RNA in each lane was 

determined by hybridisation with mouse Gapdh cDNA. 

 

Histology 

All histological staining was performed as described (Burkett et al., 1993). For Gomori’s 

trichrome staining PFA fixed, paraffin embedded sections were de-waxed, post-fixed with 

Bouin’s fluid at 56°C for 30 min, and nuclei stained with ferric haematoxyline (according to 

Weigert) for 10 min. After washing in water, slides were incubated for 15 min with trichrome 

stain (Chromotrope 2R (0.6% (w/v)) and Light Green (0.3% (w/v)) in 1% (v/v) acetic acid 

and 0.8% (w/v) phosphotungstic acid). After washing with 0.5% acetic acid and 1% (v/v) 

acetic acid/ 0.7% (w/v) phosphotungstic acid, slides were rinsed with water, dehydrated and 

mounted with Canada balsam/ methyl salycilate. 

For lipofuscin staining slides were de-waxed and colorised with 0.75% (w/v) ferric chloride/ 

0.1% (w/v) potassium ferricyanide (Aldrich) for 5 min. After washing with 1% (v/v) acetic 

acid and water, slides were incubated with 1% (w/v) Neutral Red for 3-4 min and 
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subsequently washed with water, de-hydrated and mounted with Dpx mounting media 

(Fluka). All reagents were from Sigma if not stated otherwise. 

 

Statistical analysis 

Statistical analysis of all experiments was performed using GraphPad Prism software 

(GraphPad). Significant differences between groups were determined with one-way ANOVA, 

followed by Bonferroni’s post-test. Values were considered significantly different with 

p<0.05 (*), p<0.01 (**) or p<0.001 (***). 
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Figures 

 

 
Figure 1 Generation of mPer1mCry 
double mutant mice and 
representative locomotor activity 
records. (A) Southern blot analysis 
of wild-type, mPer1 -/-mCry1-/-,and 
mPer1 -/-mCry2-/- tail DNA. The 
mPer1 probe hybridises to a 20kb 
wild-type and a 11.8kb mutant 
fragment of EcoR I digested 
genomic DNA. The mCry1 probe 
detects a 9kb wild-type and a 4kb 
Nco I digested fragment of the 
targeted locus. In mCry2 mutants 
the wild-type allele is detected by 
hybridisation of the probe to a 7kb 
EcoR I fragment whereas the 
mutant allele yields a 3.5kb 
fragment. (B-D, F) Representative 
locomotor activity records of wild-
type (B), mPer1 -/-mCry1-/- (C), young 
mPer1 -/-mCry2-/- (D), and old mPer1 -

/-mCry2-/- (F) animals kept in a 12h 
light 12h dark (LD) cycle and in 
constant darkness (DD; transition 
indicated by the horizontal line). 
Activity is represented by black 
bars and is double-plotted with the 
activity of the following light/dark 
cycle plotted to the right and below 
the previous light/dark cycle. The 
top bar indicates light and dark 
phases in LD. For the first five days 
in DD, wheel rotations per day were 
20,000 + 2,500 (n=17) for wild type 
animals, 21,500 + 7,300 (n=15) for 
mPer1 -/-mCry1-/- mutants, 25,100 + 
6,200 (n=14) for young mPer1 -/-

mCry2-/- mutants, and 17,200 + 
7,900 (n=9) for old mPer1 -/-mCry2-/- 
mutants. (E, G, I) Periodogram 
analysis of young mPer1 -/-mCry2-/- 
animals in DD (E corresponds to 
activity plot in D), and old mPer1 -/-

mCry2-/- animals in LD (G 
corresponds to activity plot in F) 

and DD (I corresponds to activity plot in F). Analysis was performed on 10 consecutive days in LD or DD 
after animals were allowed to adapt 5 days to the new light regimen. The ascending straight line in the 
periodograms represents a statistical significance of p < 0.001 as determined by the ClockLab program. 
(H) Age dependence of rhythmicity in wild-typed (dark grey bar), mPer1 -/- (white bar), mCry2-/- (black 
bar), and mPer1 -/-mCry2-/- (light grey bar) mice. Animals tested were divided into three groups according 
to their age (2-6 months, 6-12months and more than 12 months old). Rhythmicity in DD was determined 
by periodogram analysis. Values on top of each bar indicate total numbers of animals tested per group 
and genotype. 
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Figure 2 mPer2/ mPER2 expression profiles of young and old mPer1 -/-mCry2-/- mice. (A) Diurnal 
expression of mPer2 in the SCN of wild-type (solid line), young mPer1 -/-mCry2-/- (pointed line), and old 
mPer1 -/-mCry2-/- (dashed line) mice in LD. In old double mutants mPer2 cycling is significantly dampened 
(p < 0.05). Black and white bars on x-axis indicate dark and light phase respectively. All data presented 
are mean +/ - S.D. for three different experiments. Right panels show representative micrographs of SCN 
probed with mPer2 antisense probe at time points of minimal (ZT0) and maximal (ZT12) expression. 
Tissue was visualised by Hoechst dye nuclear staining (blue); silver grains are artificially coloured (red) 
for clarification. White bar indicates 200 µm. 
(B) Circadian expression of mPer2 in the SCN of wild-type (solid line) and young mPer1 -/-mCry2-/- (pointed 
line) mice on the fourth day in DD. Grey and black bars on x-axis indicate subjective day and night 
respectively. (C) Diurnal variation of mPER2 immunoreactivity in the SCN of wild-type (solid line), young 
mPer1 -/-mCry2-/- (pointed line), and old mPer1 -/-mCry2-/- (dashed line) mice in LD. Quantification was 
performed by counting immunoreactive nuclei in the area of the SCN. In old double mutants oscillation of 
mPER2 immunoreactivity is significantly dampened (p < 0.05) with medium numbers of immunoreactive 
nuclei. Right panels show representative micrographs of immunostained SCN at time points of minimal 
(ZT0) and maximal (ZT12) immunoreactivity. Black bar indicates 100 µm. (D) Northern analysis of 
diurnal expression of mPer2 in the kidney of wild-type (solid line), young mPer1 -/-mCry2-/- (pointed line), 
and old mPer1 -/-mCry2-/- (dashed line) mice in LD. (E) Representative Northern blot from kidney tissue 
from wild-type (left), young mPer1 -/-mCry2-/- (middle) and old mPer1 -/-mCry2-/- (right) mice sequentially 
hybridised with mPer2  (top row) and Gapdh (bottom row) antisense probe. Black and white bars bellow 
blots indicate dark and light phase respectively. 
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Figure 3 mCry1/ mCRY1 and Bmal1 expression profiles of young and old mPer1 -/-mCry2-/- mice. (A) 
Diurnal expression of mCry1 in the SCN of wild-type (solid line), young mPer1 -/-mCry2-/- (pointed line), and 
old mPer1 -/-mCry2-/- (dashed line) mice in LD. Black and white bars on x-axis indicate dark and light phase 
respectively. All data presented are mean +/ - S.D. for three different experiments. Right panels show 
representative micrographs of SCN probed with mCry1 antisense probe at time points of minimal (ZT0) 
and maximal (ZT12) expression. Tissue was visualised by Hoechst dye nuclear staining (blue); silver 
grains are artificially coloured (red) for clarification. White bar indicates 200µm. (B) Circadian 
expression of mCry1 in the SCN of wild-type (solid line) and young mPer1 -/-mCry2-/- (pointed line) mice on 
the fourth day in DD. Grey and black bars on x-axis indicate subjective day and night respectively. (C) 
Diurnal variation of mCRY1 immunoreactivity in the SCN of wild-type (solid line), young mPer1 -/-mCry2-/- 

(pointed line), and old mPer1 -/-mCry2-/- (dashed line) mice in LD. Quantification was performed by 
counting immunoreactive nuclei in the area of the SCN. In old double mutants oscillation of mCRY1 
immunoreactivity is significantly dampened (p < 0.05) with constantly high numbers of immunoreactive 
nuclei throughout the LD cycle. Right panels show representative micrographs of immunostained SCN at 
time points of minimal (ZT0) and maximal (ZT12) immunoreactivity. White bar indicates 100µm. (D) 
Diurnal expression of Bmal1 mRNA expression in the SCN of wild-type (solid line), young mPer1 -/-mCry2-/- 

(pointed line), and old mPer1 -/-mCry2-/- (dashed line) mice in LD. In old double mutants Bmal1 cycling is 
significantly dampened (p < 0.05). (E) Circadian expression of Bmal1 mRNA in the SCN of wild-type 
(solid line) and young mPer1 -/-mCry2-/- (pointed line) mice on the fourth day in DD. 
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Figure 4 Light responsiveness in the SCN of young and old mPer1 -/-mCry2-/- mice. (A) In situ hybridisation 
analysis of mPer2 light inducibility in the SCN of wild-type (wt, upper row), young mPer1 -/-mCry2-/- 

(middle row), and old mPer1 -/-mCry2-/- mice (lower row). Shown are representative micrographs of SCN 
probed with mPer2 antisense probe with (light) or without light administration (control) at ZT14 (15min 
light pulse, 400Lux; animals were sacrificed one hour later). Tissue was visualised by Hoechst dye nuclear 
staining (blue); silver grains are artificially coloured (red) for clarification. White bar indicates 200µm. 
(B) Quantification of mPer2 induction after a light pulse at Z14. Left panel shows control animals without 
light exposure. Right panel shows relative mPer2  mRNA induction after light exposure (wild-type control 
was set as 1). Data presented are mean +/- S.D. of three different animals each. Statistical significance is 
indicated by asterisks (*, p < 0.05; ***, p < 0.001). (C) Immunohistochemistry analysis of CREB Ser-133 
phosphorylation by light in the SCN of wild-type (wt, upper row), young mPer1 -/-mCry2-/- (middle row), 
and old mPer1 -/-mCry2-/- mice (lower row). Shown are representative micrographs of SCN sections 
immunostained for Ser133P-CREB with (light) or without light administration (control) at ZT14. As a 
control SCN sections for all genotypes were stained for CREB (unphosphorylated) at the same time 
points. (D) Quantification of CREB phosphorylation after a light pulse at ZT14. Panels show numbers of 
Ser133P-CREB immunoreactive nuclei in the SCN with or without light exposure (***, p < 0.001). (E) Light 
induced phase shifts in mPer1 -/-mCry1-/- mice using Aschoff Type II protocol to assess phase shifts. Animals 
were kept for at least 10 days in LD and released into DD after a light pulse at ZT14 or ZT22. Negative 
values indicate phase delays, positive values indicate phase advances. Data presented are mean +/ - S.D. of 
10 to 14 animals (***, p < 0.001). (F) Light induced phase shifts in young mPer1 -/-mCry2-/- mice using 
Aschoff Type I protocol to assess phase shifts. Animals were kept for at least 10 days in DD before a light 
pulse at CT14 or CT22. Data presented are mean +/- S.D. of 10 to 13 animals. 
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Figure 5 Histology and light responsiveness in the retina of wild type, young and old mPer1-/-mCry2-/- 
mice. (A) Gomori trichrome and (B) lipofuscin staining of retinal sections of wild-type (upper row), young 
mPer1-/-mCry2-/- (middle row), and old mPer1-/-mCry2-/- mice (lower row). Retinal layers are indicated on 
the left (PRL, photoreceptor layer; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner 
nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer). (C) Immunohistochemistry analysis 
of light induced CREB Ser-133 phosphorylation in the retina. Left panels show immunostained retinal 
sections of control animals without light exposure right panels of animals 1hr after light exposure 
(400Lux, 15min) at ZT14. (D) Immunohistochemistry analysis for (unphosphorylated) CREB in the retina 
at ZT14. Black bar indicates 10 µm. 
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Figure 6 Working model for PER/CRY driven inhibition of CLOCK/BMAL1. (A) mPer  and mCry  transcripts 
show diurnal / circadian cycling in the SCN. While mPer1 expression peaks between ZT/ CT 4 to 8, mCry1  
and mPer2 mRNA rhythms have their maxima at ZT/ CT10 to ZT/ CT12, respectively (Fig. 2 & 3; see as 
well Oster et al. 2002; Yan et al. 2002; Kume et al. 1999). Note that mCry2 is also expressed in the SCN 
but without a clearly defined rhythm (Kume et al. 1999). Protein peaks are delayed by about 4-6 hours 
with regard to mRNA (Field et al., 2000; King and Takahashi 2000; Reppert and Weaver 2002). (B) 
mPER and mCRY proteins form heterodimeric complexes that form with certain preferences according 
to protein-protein affinity and temporal abundance. The complexes are colour coded with 
mPER1/mCRY1 and mPER2/mCRY2 representing the most abundant ones. The green horizontal line 
indicates a threshold above which a PER/CRY complex is abundant enough to influence CLOCK/BMAL1 
transcription. (C) Time course of the overall inhibitory potential of the mPER/ mCRY heterodimers on 
CLOCK/ BMAL1 activity. The strong inhibition of CLOCK/ BMAL1 during (subjective) night 
corresponds to the low transcriptional activity of (CLOCK/ BMAL1 induced) mPer and mCry genes. 
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2.3. Additional Data 

 

2.3.1. Breeding Statistics 

 

To check if the deletion of certain combinations of mPer and/ or mCry genes has an impact on 

the viability and fertility of the animals we analyzed the data obtained from our breeding 

colonies. In the heterozygous F1 generation we checked if the different genotypes of the F2 

offspring occurred in the expected distribution according to the Mendelian laws of 

inheritance. 

 

 

Fig. 22: Genotypic distribution in the F2 generation of the different mPer/ mCry double mutant strains. 
Shown are the experimental values together with the ideal (expected) numbers (black bars) of different 
genotypes obtained from double heterozygous parents. 
 

With minor variations all F2 genotypic ratios appeared as expected. Differences between ideal 

and experimental values are results of the relatively small number of F1 breedings because the 

colony was set up for breeding efficiency and as soon as homozygous F2 breeding pairs were 

available these were used to replace the F1 generation. 

Once these F2 breeding pairs were established, parents were kept together as long as possible 

to prevent unnecessary genetic drift due to relatively small founder populations. We checked 

homozygous breedings for litter size and frequency. 

There was no significant difference in the litter size for all strains of double and triple mutant 

mice with the exception of the mPer1/2/ mCry1 and the mPer1/ mCry1/2 mutants which never 

bread. mPer1/2/ mCry2 mutants never had more than one litter per mating. 
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Fig. 23: Average litter size of homozygous mPer/ mCry double and triple mutant matings. Values on top 

indicate the absolute number of breeding pairs for each strain. 

 
Fig. 24: Birthday of the first litter after mating setup of homozygous mPer/ mCry double and triple 
mutants. 
 

While there were no significant differences in litter intervals and stability of breeding 

intervals between all fertile strains, wild-type breedings were generally more stable and 

regular but with rather high variations between different matings. 
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Fig. 25: Litter frequency of homozygous mPer/ mCry double and triple mutant matings. 
 

 

Fig. 26: Average number of litters from homozygous mPer/ mCry double and triple mutant matings per 6 
months. 
 

All triple mutant breedings were rather unreliable with small litters, irregular breeding 

intervals and high death numbers after birth. Since the estrous cycle is known to be linked to 

the circadian clock (Alleva et al., 1971) it seems obvious that females with a disrupted 

circadian clock may have difficulties with regard to their fertility. 
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Although the triple mutants generally appeared smaller and less aggressive and a notable 

number of animals showed a tendency to spastic seizures upon arousal the total numbers used 

in this study were insufficient to allow a scientific investigation. 

 

2.3.2. Activity monitoring 

 

Besides the double mutant strains presented in the publications above we generated three 

mPer/ mCry triple mutant strains. The fourth possible combination of triple mutation, mPer1/ 

mCry1/2 was not fertile and probably caused some additional defects we could not examine 

since the F1 matings (8 pairs) did not give enough homozygous offspring. The few animals 

we tested however, were arrhythmic under cons tant conditions (DD, LL) like all the other 

three triple mutant strains. 

Generally, triple mutants run less than their wild-type littermates. They immediately lose their 

rhythm in DD and LL indicating a completely disrupted circadian clockwork. 

 

 
 
(Legend: see next page) 
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Fig. 27: Activity profiles of mPer/ mCry triple mutant mice in LD and DD. Left panels show representative 
actograms of mPer1/2/ mCry1-/- , mPer1/ mCry1/2-/-, mPer1/2/ mCry2-/-, and mPer2/ mCry1/2-/- mice in LD 
and DD (transition indicated by the line below LD). Black and white bars on top indicate light and dark 
phase in LD. Right panels show periodograms of the same animals in DD. The diagonal line depicts 
significance as given by the ClockLab program. 
 

When released into constant light both double and triple mutants generally run less than in LD 

or DD demonstrating the activity suppressing (“masking”) effect of light on nocturnal 

animals. Interestingly, mPer1mCry2-/- mice lost their rhythmicity in LL while at least the 

young animals show a stable rhythm of activity in DD. Even more surprising was the fact that 

in mPer2mCry1 mutant mice rhythmicity could be rescued by high light intensities in LL 

while the animals were totally arrhythmic in DD. One explanation might be the light 

inducibility of mPer1: While in DD mPER1 and mCRY2 protein levels and distribution do 

not overlap spatially and temporally an increased mPer1 expression in LL enables mPER1 

protein to interact with mCRY2. The combination of both is enough to restart the TTL, 

although with a very short period. 
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Fig. 28: Activity profiles of mPer/ mCry double and triple mutant mice in LD and LL. Panels show 
representative actograms of wild-type (A), mPer1/ mCry1-/- (B), ‘young’ mPer1/ mCry2-/- (C), mPer2/ 
mCry1-/- (D), mPer2/ mCry2-/- (E), mPer1/2/ mCry1-/- (F), mPer1/2/ mCry2-/- (G), and mPer2/ mCry1/2-/- mice 
(H) in LD and LL (400Lx bright white light; transition indicated by the line below LD). Black and white 
bars on top indicate light and dark phase in LD. 
 

To further investigate the influence of masking on the wheel running activity, we exposed the 

animals to a 8h shifted LD cycle and monitored the time the animals needed to adapt to the 

new light regimen. While the double mutants needed a few days to adjust the triple mutants 

did not suffer from that “jet lag” like experience but changed their activity patterns 

immediately after the transition. This indicates that the rhythmicity these animals show in LD 

is merely driven by the masking effect of light and not by an endogenous pacemaker. 
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Fig. 29: Activity profiles of mPer/ mCry double and triple mutant mice after a shifted LD cycle. Panels 
show representative actograms of wild-type (A), mCry2-/- (B), mPer1/ mCry1-/- (C), ‘young’ mPer1/ mCry2-/- 
(D), mPer2/ mCry1-/- (E), mPer2/ mCry2-/- (F), mPer1/2/ mCry1-/- (G), mPer1/2/ mCry2-/- (H), and mPer2/ 
mCry1/2-/- mice (I) in LD, LD 8h shifted backwards (indicated by the upper asterisk), and LD 8h shifted 
forwards (indicated by the lower asterisk). Black and white bars on top indicate light and dark phase of 
the first LD cycle. 
 
The table below summarizes the data obtained by the general activity profile analysis of all 

mPer/ mCry double and triple mutant strains in this study. 

 

 
Table 2: Activity profiles of mPer/ mCry double and triple mutant mice in LD. All data are mean +/- SD; 
total numbers used for statistical evaluation are given in the right column. 

Genotype Activity onset Overall Activity Covered Distance relative light phase duration of activity a n
(hours after 'lights off') (rev/day) (km/day) activity (%) (hours)

wild-type 0.29 +/- 0.22 19600 +/- 3000 7.14 3.4 +/- 2.1 7.7 +/- 0.7 10
mPer1mCry1-/- 0.25 +/- 0.34 20600 +/- 6700 7.51 3.2 +/- 3.5 8.2 +/- 0.6 10
mPer1mCry2-/- 5.79 +/- 0.67 17400 +/- 9600 6.34 10.7 +/- 11.3 7.4 +/- 0.3 8
mPer2mCry1-/-  -0.16 +/- 0.35 18000 +/- 3700 6.56 12.5 +/- 5.3 7.6 +/- 0.8 10
mPer2mCry2-/- 0.18 +/- 0.14 18000 +/- 2600 6.56 3.5 +/- 2.9 10.1 +/- 0.5 10
mPer1/2mCry1-/- 0.08 +/- 0.4 4200 +/- 2500 1.53 1.8 +/- 1.8 10.4 +/- 2.0 10
mPer1/2mCry2-/- 0.02 +/- 0.47 6300 +/- 1500 2.30 2.7 +/- 1.1 10.6 +/- 1.5 6
mPer2mCry1/2-/- 0.19 +/- 0.21 4600 +/- 2500 1.68 0.9 +/- 0.6 9.5 +/- 0.4 4
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Table 3: Activity profiles of mPer/ mCry double and triple mutant mice in DD. All data are mean +/- SD; 
total numbers used for statistical evaluation are given in the right column. 
 

 
Table 4: Activity profiles of mPer/ mCry double and triple mutant mice in LL. All data are mean +/- SD; 
total numbers used for statistical evaluation are given in the right column. 
 

In order to investigate the role of the mPer and the mCry genes in the light input pathway to 

the clock we examined phase shifting effects of nocturnal light. For most strains we applied 

the Aschoff Type 2 protocol (see chapter 4) for practical reasons. For mPer1mCry2 mutants 

however, the evaluation of these experiments turned out to be very difficult due to the long 

period of the free running rhythm in DD. Therefore we decided to apply the Type 1 protocol 

to this strain. Since we had to include wild-type animals as reference we could compare 

results from Type 1 and 2 protocols and show that there are no significant differences in the 

values obtained from both protocols. 

 

Genotype period length t Overall Activity Covered Distance duration of activity a n
(hours) (rev/day) (km/day) (hours)

wild-type 23.8 +/- 0.1 20000 +/- 2500 7.29 9.5 +/- 0.4 10
mPer1mCry1-/- 23.7 +/- 0.2 21500 +/- 7300 7.83 10.5 +/- 0.6 7
mPer1mCry2-/- 25.3 +/- 0.2 25100 +/- 6200 9.15 11.4 +/- 0.5 6
mPer2mCry1-/- arrhythmic 16000 +/- 3200 5.83 n.a. 9
mPer2mCry2-/- 23.4 +/- 0.1 18000 +/- 2700 6.56 10.5 +/- 0.4 10
mPer1/2mCry1-/- arrhythmic 4500 +/- 2400 1.64 n.a. 8
mPer1/2mCry2-/- arrhythmic 6800 +/- 1600 2.48 n.a. 6
mPer2mCry1/2-/- arrhythmic 8500 +/- 1800 3.10 n.a. 3

Genotype period length t Overall Activity Covered Distance duration of activity a n
(hours) (rev/day) (km/day) (hours)

wild-type 24.5 +/- 0.2 12300 +/- 3500 4.48 6.5 +/- 0.5 10
mPer1mCry1-/- 26.8 +/- 0.3 10800 +/- 2600 3.94 * 7
mPer1mCry2-/- 24.5 +/- 0.2 13500 +/- 1800 4.92 6.3 +/- 0.6 6
mPer2mCry1-/- 19.9 +/- 0.2 6500 +/- 1400 2.37 10.4 +/- 1.8 9
mPer2mCry2-/- arrhythmic 1900 +/- 1300 0.69 n.a. 5
mPer1/2mCry1-/- arrhythmic 3500 +/- 2300 1.28 n.a. 8
mPer1/2mCry2-/- arrhythmic 1500 +/- 1200 0.55 n.a. 6
mPer2mCry1/2-/- arrhythmic 4200 +/- 1400 1.53 n.a. 3

n.a.: not available
* : activity was too scattered to determine alpha
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Fig. 30: Nocturnal light pulses ph ase shift the rhythm of mPer1/ mCry1 and mPer2/ mCry2 mutant mice. 
Animals were subjected to a 15min light pulse at ZT14 (left panels) or ZT22 (right panels), indicated by 
the green asterisk, before release into DD. Upper row, wild-type; middle row, mPer1/ mCry1, and lower 
row, mPer2/ mCry2 mutants. Black and white bars on top indicate light and dark phases in LD. 
 

The data obtained from the double mutants reflected the results obtained from mPer1 and 

mPer2 single mutants (Albrecht et al., 2001) with mPer1 necessary for light induced phase 

advances and mPer2 for light induced phase delays. This corresponds to the differential 

inducibility of both genes by light at different time points during the night (Albrecht et al., 

1997b). The double mutant data further supports experiments indicating that the mCrys are 

dispensable for light entrainment but have their role in the central TTL of the circadian 

oscillator (Griffin et al., 1999; van der Horst et al., 1999). 
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Fig. 31: Nocturnal light pulses phase shift the rhythm of mPer1/ mCry2 mutant mice. Animals were 
subjected to a 15min light pulse at CT14 (left panels) or CT22 (right panels), indicated by the green 
asterisk, in DD. Upper row, wild-type; lower row, mPer1/ mCry2 mutants. Grey and black bars on top 
indicate subjective night and day of the first day recorded. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 32: Light induced activity phase shifts in mPer/ mCry double mutant mice. Shown are results from 
Aschoff Type 1 (marked with an asterisk) and Type 2 protocols. Left panel shows phase delays after a 
15min light pulse early in the night; right panel shows phase advances after a light pulse in the late night 
(***, p<0.001). 
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2.3.3. Clock gene expression 

 

To see if the disrupted activity rhythm is accompanied by an absence of clock gene oscillation 

in the SCN of mPer/ mCry triple mutants we examined the diurnal expression of mPer2 and 

Bmal1 transcripts in these animals. Surprisingly mPer2 mRNA levels still cycle in all three 

strains but Bmal1 oscillation is blunted below significance. The reason might be that mPer2 

transcription is still reactive to light. So we expect this oscillation to dampen upon release into 

DD. We could not define the transcript levels under constant conditions however, since the 

arrhythmicity of the animals excludes the determination of circadian times. Since the mPer2 

gene was mutated in all three strains examined, the absence of Bmal1 induction is a further 

argument that the truncated mPER2 protein translated in the mPer2Brdm1 mutant has no 

function in the circadian clockwork anymore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33: mPer2 and Bmal1 expression in the SCN of mPer/ mCry triple mutant mice. (A) Diurnal mRNA 
profile of mPer2  in wild-type and mPer/ mCry triple mutant mice. (B) Diurnal mRNA profile of Bmal1 in 
wild-type and mPer/ mCry triple mutant mice. Black and white bars on x-axis indicate dark and light 
phase. 
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To further investigate the role of the truncated mPER2 protein in the mutant clockwork we 

examined mPER2 protein localization in wild-type, mPer2, mPer2/ mCry1 and mPer2/ 

mCry2 mutant mice by immunofluorescence. These four strains represent different 

configurations with regard to the role of mPER2. Wild-type animals are rhythmic and have a 

non-mutated mPER2 protein. mPer2Brdm1 animals become arrhythmic after some time in DD 

and have a mutated mPER2 protein. mPer2Brdm1/ mCry1-/- animals become immediately 

arrhythmic in DD and have a mutated mPER2 protein. mPer2Brdm1/ mCry2-/- animals are 

rhythmic but have a mutated mP ER2 protein. We found mPER2 immunofluorescence 

predominantly in the nucleus in all four strains and at all time points examined.  

 

 

Fig. 34: mPER2 immunofluorescence in the SCN of mPer2/mCry mutant mice. Shown are representative 

micrographs from ZT0 (a-d, e-h) and ZT12 (i-m, n-q) from wild-type (first row), mPer2Brdm1 (second row), 

mPer2Brdm1 mCry2-/- (third row), and mPer2Brdm1 mCry1-/- mice (fourth row). Second and fourth column show 

magnifications of the micrographs to the left. 
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2.3.4. Output genes 

 

In the last set of experiments we examined clock output in double and triple mutant mice. We 

chose AVP and Dbp as two genes with prominent diurnal and circadian oscillation in the SCN 

of wild-type mice. Both genes have been shown to be directly clock controlled (Jin et al., 

1999; Ripperger et al., 2000). However the exact regulation of these genes in the SCN and the 

periphery still needs to be elucidated . 

 

 
 
Fig. 35: AVP expression in mPer/ mCry double mutant mice. (A, B) Diurnal expression profiles of AVP 
transcript in the SCN. Black and white bars indicate dark and light phase. (C, D) Circadian expression of 
AVP transcript in the SCN. Grey and black bars indicate subjective day and night respectively. Data are 
mean +/- SD of three different experiments. 
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Fig. 36: Dbp expression in mPer/ mCry double mutant mice. (A, B) Diurnal expression profiles of Dbp 

transcript in the SCN. Black and white bars indicate dark and light phase. (C, D) Circadian expression of 

Dbp transcript in the SCN. Grey and black bars indicate subjective day and night respectively. Data are 

mean +/- SD of three different experiments. 

 

Fig. 37: AVP and Dbp expression in mPer/ mCry  triple mutant mice. Diurnal expression profiles of AVP 
(A) and Dbp (B) transcript in the SCN. Black and white bars indicate dark and light phase. 
 
AVP and Dbp seem to be differentially influenced by the mPer and mCry genes. While AVP 

expression is low and arrhythmic in Per2 mutants in LD and DD, Dbp levels are still clearly 

cycling (see as well (Albrecht and Oster, 2001)). In the arrhythmic mutants like mPer2mCry1-

/- and the triple mutants output gene rhythms are all blunted and generally low indicating that 

the LD cycle cannot substitute or re- induce clock oscillation to signalize rhythmicity to the 

body.
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In the second project of my Ph.D. thesis I studied the molecular circadian clockwork of the 

blind mole rat Spalax ehrenbergi. This work was performed in collaboration with Dr. Aaron 

Avivi and Prof. Eviatar Nevo from the Institute of Evolution at Haifa University, Mount 

Carmel, Israel. While they performed all the animal work and sequence analysis we focused 

on the analysis of clock gene expression in different conditions and tissues. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 38: Spalax ehrenbergi 

 

The Spalax ehrenbergi superspecies is a family of four actively speciating chromosomal 

subspecies (2n = 52, 54, 58, and 60 (Nevo, 1991)). Spalax is a solitary subterranean herbivore 

that spends more than 95% of his life in underground burrows, rarely coming to the surface. It 

represents an extreme example of natural eye and brain reorganization in mammals (Nevo, 

1999). It is completely blind (Haim et al., 1983), yet the retina of the atrophied subcutaneous 

eye functions in photoentrainment of locomotor activity and thermoregulatory rhythms (Pévet 

et al., 1984; Rado et al., 1991). The eye is surrounded by a extremely hypertrophic Harderian 

gland which plays a role in the integration of photoperiodic changes (Pévet et al., 1984) and 

probably represents an adaptation of the mole rat's circadian system to its specialized ecotope. 

Despite its subterranean habitat and its degenerated visual system Spalax has a functional 

SCN, that can receive light/dark information from the retina via the hypothalamic tract and 

generate circadian rhythmicity (Ben-Shlomo et al., 1995; Nevo et al., 1982; Rado et al., 

1991). 

Another unique feature of Spalax is its polymorphic activity pattern with predominantly 

diurnal as well as predominantly nocturnal active individuals in the same populations (Nevo 
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et al., 1982). Nevertheless, activity rhythms can be entrained to changing light dark cycles in 

the laboratory (Tobler et al., 1998), indicating that the circadian clock of this animals retained 

its sensitivity to light. 

When we started this project only few data was available on the molecular aspects of clocks 

from diurnal animals. Additionally, the ability of Spalax to change its activity pattern from 

nocturnal to diurnal and vice versa offered the opportunity to look for differential mechanisms 

of light entrainment in one species. 
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2.4. Publication: “Biological clock in total darkness: The Clock/MOP3 

circadian system of the blind subterranean mole rat” 

 

Aaron Avivi, Urs Albrecht, Henrik Oster, Alma Joel, Avigdor Beiles, and Eviatar Nevo 

 

Proceedings of the National Academy of Sciences of the USA, 98 (24), 2001 
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2.5. Publication: “Circadian genes in a blind subterranean mammal II:  

Conservation and uniqueness of the three Period homologs in the blind 

subterranean mole rat, Spalax ehrenbergi superspecies” 

 

Aaron Avivi*, Henrik Oster*, Alma Joel, Avigdor Beiles, Urs Albrecht, and Eviatar 

Nevo 

 

* these authors contributed equally to this work 

 

Proceedings of the National Academy of Sciences of the USA, 99 (18), 2002 
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2.6. Publication: “A Switch from Diurnal to Nocturnal Activity in the Mole Rat 

Spalax Ehrenbergi Superspecies is Accompanied by an Uncoupling of the 

Light Input and the Circadian Clock” 

 

Henrik Oster*, Aaron Avivi*, Alma Joel, Urs Albrecht, and Eviatar Nevo 

 
* these authors contributed equally to this work 

 

Current Biology, Vol. 12, 1919-1922, November 19, 2002 
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Additional Data 

 

To conclude the work on the central circadian clock of Spalax we examined sCry1 and 2 

expression in the SCN, the Harderian gland and the eye. From a Spalax brain cDNA library 

Dr. Avivi extracted two different fragments for both sCry genes. We looked for daily 

expression profiles with different probes for all four fragments by in situ hybridization.  

The two probes for sCry1 were named 5’ and 3’-probe since they aligned to the 5’ and 3’ 

region of the corresponding mouse gene. The two probes for sCry2 were named ‘S’ (for 

‘short’) and ‘L’ (for ‘long’) because of the different lengths of the two fragments extracted 

from the cDNA library. 

 

 
Fig. 52: Daily sCry expression profiles in the SCN, the Harderian gland and the eye. Shown are in situ 
hybridization data for sCry1 (left columns) and sCry2 (right columns) in the SCN (upper row), the 
Harderian gland (middle row), and the eye (bottom row). Data are mean +/- SD of three different 
experiments. Asterisks indicate significant differences between highest and lowest value (unpaired 
ANOVA, p < 0.05). 
 

While only the 5’ probe of sCry1 showed a diurnal oscillation, the 3’ probe showed stable 

expression throughout the day. This might indicate a post-transcriptional modification of the 

mRNA with the 5’ part but not the 3’ (more stable) part used for circadian function in the 

central TTL. sCry2 transcripts did not cycle prominently as expected from other rodents 
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(Vitaterna et al., 1999). Interesting however, is the rather high level of the ‘S’ probe signal 

with a significant double peak at the light/ dark and dark/ light transitions in the eye. One 

might speculate about a role of the ‘S’ fragment in light reception like it is still proposed for 

the mammalian Crys (Sancar, 2000; Thresher et al., 1998) while the ‘L’ fragment serves in 

the central oscillator. This would reflect the situation in zebrafish, where some of the Cry 

genes act as photoreceptors while others drive the feedback of the TTL (Kobayashi et al., 

2000).
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Chapter 3 
 

Conclusion and Perspectives 
________________________________________________________________ 

 

 

Most of the interpretations that arise from the work presented here have been elaborated in the 

included publications. Therefore I will focus in this part on some comprehensive conclusions 

drawn from the phenotypical data derived from the mPer/ mCry double mutants with special 

regard to the free-running period lengths in DD. I will introduce a new model emphasizing the 

repressive action of the mPER and mCRY proteins in the TTL as a variation of the limit cycle 

model suggested in the second double mutant publication (chapter 2.2.). 

On the mixed genetic background we used for the double mutants we generated several 

 

 

Fig. 53: Free running period lengths of clock mutant mice (from the mixed genetic background used in 
this study) in DD. Data presented are mean +/- SD; total numbers of animals used are given below the x-
axis; significance was determined by one way ANOVA followed by Bonferroni post-test (**, p< 0.01; ***, 
p< 0.001). 
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different mutant lines of which five were rhythmic for at least some time in DD. Four of these 

lines showed a period length significantly different from that of the corresponding wild-type 

controls (see figure 53). 

From the current understanding of the central circadian oscillator (see chapter 1.4.) a major 

role of the PER and CRY proteins is to form a multi-protein complex which interacts with the 

CLOCK/ BMAL1 transcriptional activator thereby inhibiting the transcription of their own 

genes. If one or more of the PER and/ or CRY proteins are removed from this complex by 

genetic disruption of the corresponding gene loci, the overall activity of the remaining 

complex is changed. 

If we define the efficiency of the PER/ CRY protein complex by its ability to accelerate the 

pace of the oscillator (by its efficiency to inhibit transcription of CLOCK/ BMAL1 induced 

genes), all components of this complex contribute to the overall potential of the Cluster. The 

easiest way to separately define the contributions of the single PER and CRY proteins is to 

assign ‘accelerator potentials’ (APs) to each gene/ protein with the sum of all four single unit 

potentials being the overall accelerator potential of the multimeric complex.  This overall 

accelerator potential (OAP) determines the pace of the central oscillator under constant 

conditions measured as the internal period τ. A high overall accelerator potential speeds up 

the clock resulting in a short period length (like in mCry1 mutants) while a low OAP 

decelerates the clock which corresponds to a long τ in DD (like in mCry2 mutants). To have a 

measure of the OAPs we subtracted the experimentally defined mutant free-running period 

from that of the wild-type. This results in positive values for mutants with a shortened τ and 

negative values for mutants with a longer τ as given in the table below (termed "experimental 

accelerator potentials" or EAPs). 

 

 
Tab. 6: Period lengths and EAPs of clock gene mutant mice from this study. Internal period length τ was 
determined as described (chapter 4.1.3.3.3.). Experimental accelerator potentials (ERPs) were calculated 
as the difference between mutant and wild-type τ. Only mice of the mixed genetic background that was 
used throughout this study are shown. 
 

 

 

mutant τ in DD (in hours) experimental accelerator potential (in min) 
wild-type 23.8 0 

mPer2 22.1 102 
mPer1/ mCry1 23.7 6 
mPer1/ mCry2 25.3 -90 
mPer2/ mCry2 23.4 24 

mCry2 24.1 -18 
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From the assumptions above one can derive formulas to calculate theoretically expected 

OAPs (theoretical overall activator potentials; TAPs) from the single APs. For the mutants 

examined in this study the formulas to calculate the TAPs would be: 

 

wild-type: (RPPer1 + RPPer2 + RPCry1 + RPCry2) 

mPer2 mutant: (RPPer1 + RPCry1 + RPCry2) 

mPer1/ mCry1 mutant: (RPPer2 + RPCry2) 

mPer1/ mCry2 mutant: (RPPer2 + RPCry1) 

mPer2/ mCry2 mutant: (RPPer1 + RPCry1) 

mCry2 mutant: (RPPer1 + RPPer2 + RPCry1) 

 

To calculate optimized accelerator potentials for the single genes/ proteins we determined a 

regression error (RE) with RE as the square root of the sum of the squares of the differences 

comparing the TAPs to the EAPs in all mutant strains.  

 

RE = (TAP − EAP) 2∑
forall differentstrains

 

 

We now assigned random values for the single gene/ protein APs, calculated the TAPs and 

subsequently RE. Now we applied the Solver routine of the Excel program (Microsoft) using 

a Newton regression algorithm to minimize RE by changing the values for the single gene/ 

protein accelerator potentials. After 100 iterations the values were as follows: 

 

gene/ protein optimized accelerator potential. 
mPer1 62,50 
mPer2 -51,00 
mCry1 -39,00 
mCry2 47,00 

 
 
Tab. 7: Optimized accelerator potentials (APs) for Per and Cry genes/ proteins after Newton regression 
using the Solver routine of the Excel program (100 iterations). 
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If we applied these optimized APs to the different mutants using the formulas given above we 

get the following theoretical overall accelerator potentials (TAPs): 

 

Mutant optimized TAPs EAPs Difference 
wild-type 19,5 0 -19,5 
mPer2-/- 70,5 80 9,5 

mPer1mCry1-/- -4,0 6 10,0 
mPer1mCry2-/- -90,0 -90 0,0 
mPer2mCry2-/- 23,5 24 0,5 

mCry2-/- -27,5 -18 9,5 
 

Tab. 8: Optimized theoretical overall accelerator potentials for clock mutants used in this study. The 

difference between optimized TAPs and the experimental results (EAPs) visualizes the quality of the 

iteration. 

 

From the regression we get a clearly defined ranking of accelerator potentials (APs) with 

mPer1 and mCry2 as the most potent accelerator – a fact reflected in the mCry2 mutant, 

which shows the longest τ of all single mutants (van der Horst et al., 1999; Vitaterna et al., 

1999) – followed by mCry1 with mPer2 being the weakest accelerator. This was expected 

from the short free running period of the mPer2Brdm1 mutant in DD (Zheng et al., 1999). 

To compare our model with results from other groups we applied the obtained TAPs to 

different clock gene mutants previously published: 

 

Mutant Source EAPs Difference 
mCry1-/- v.d. Horst et al., 1999 76 17,50 
mCry2-/- " -52 -24,50 
mCry1-/- Vitaterna et al., 1999 41 -17,50 
mCry2-/- " -61 -33,50 
mPer1-/- Zheng et al., 2001 66 109,00 
mPer2-/- ", 1999 96 25,50 
mPer1-/- Bae et al., 2001 32 75,00 
mPer2-/- " 10 -60,50 
mPer1-/- Cermakian et al., 2001 35 78,00 

 

Tab. 9: Comparison between calculated (TAP) and experimental determined accelerator potentials (EAP) 

from the literature 

 

As expected, the differences between theoretical and experimental results are higher than in 

our own studies. However, most of the free-running periods are comparable to the predictions 

from the model. For example the predicted τ of the mCry1 mutant lies exactly between the 

two values published before (van der Horst et al., 1999; Vitaterna et al., 1999). The same is 

true for the mCry2 mutant, where the published mutants (van der Horst et al., 1999; Vitaterna 
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et al., 1999) both have longer period lengths than predicted but our own mCry2 mutant shows 

a shorter τ. Again, in the mPer2 mutant the predicted value is located between two different 

versions of published data (Bae et al., 2001; Zheng et al., 1999).  

The only mutation the model completely fails to predict is mPer1. This is somehow expected 

since mPer1 single mutants show a normal or slightly shortened τ (Bae et al., 2001; 

Cermakian et al., 2001; Zheng et al., 2001) while we could show that an additional mutation 

of mPer1 in mCry1 or mCry2 mutants leads to an elongation of the internal period. This may 

as well reflect the posttranslational role of mPER1 protein in the circadian pacemaker which 

cannot be taken into consideration by a simple model of accelerator potentials (Bae et al., 

2001; Lee et al., 2001; Zheng et al., 2001). 

But what happens in the mPer2, the mPer2/mCry1 and the mPer1/mCry2 mutants which 

become arrhythmic immediately or after some time in DD? Calculating the TAPs for these 

three strains we get very high or very low values (71, 110 and –90min respectively) indicating 

corresponding short or long internal periods respectively. If the circadian clockwork functions 

as a stabilized oscillator the disturbance introduced by the deletion of these genes in the 

negative component of the TTL might overwhelm the compensation capacities of the 

clockwork. With the loss of stability the oscillation dampens and ultimately reaches 

equilibrium or arrhythmicity. 

Taken together we demonstrate in this work that the finely tuned interaction of both Per and 

Cry genes creates a stabilized negative branch of the transcriptional/ translational feedback 

loop at the heart of the circadian pacemaker. Although there is some redundancy in these 

components when looking at mere rhythmicity, every gene has its specific function in the 

whole clock mechanism. Together they ensure the stability and adaptivity the internal 

pacemaker needs to serve as a reliable time-teller and synchronizer for the complex 

mammalian organism. 

With the discovery of Rev-Erbα as the transcription factor controlling Bmal1 expression 

(Preitner et al., 2002) most of the genes which are supposed to be necessary to build up the 

mammalian cellular clockwork have been discovered. Some questions remain on the physical 

interactions of the clock proteins and  especially their spatio-temporal organization. Novel 

animal models like transgenic mice carrying reporter genes tagged to clock controlled 

promoters will probably help to elucidate the exact time course of clock organization in the 

living animal (Wilsbacher et al., 2002). 

With the discovery of peripheral oscillators and the identification of clock gene relatives in 

several tissues outside the hypothalamus much work has been spent on these body clocks and 



                                                                                                                                    Conclusion and Perspectives 

 - 130 -  

their connections to the SCN (reviewed in Balsalobre, 2002). Although some signaling 

candidates have been discovered like glucocorticoids (Balsalobre et al., 2000a), retinoids 

(McNamara et al., 2001) or Prokineticin 2 (Cheng et al., 2002), the pathway by which the 

SCN synchronizes the body to the environment is still not clear. 

The quest for these signaling molecules and the properties of the peripheral clocks organizing 

the metabolism of the body will most probably be the main focus of molecular chronobiology 

in the upcoming years. It will offer us the pharmacological tools to manipulate these 

oscillators thereby providing new strategies for the treatment of diseases caused or 

complicated by desynchronization or misentrainment of circadian clocks. 
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Chapter 4 
 

Material and Methods 
________________________________________________________________ 

 

 

4.1. Animal Handling and Breeding 

 

All animal work was performed according to the guidelines of the Bundestierschutzgesetz 

(BGBl. I  S. 1105, ber. S. 1818, Abschnitt 2 (§2+3) 5 (§7-9) and 8(§11) for Hannover and the 

Schweizer Tierschutzgesetz (TSchG, SR455, Abschnitt 2 (Art. 5 und 7), 5 (Art. 11) and 6 

(Art. 12-19) for Fribourg. 

 

4.1.1. Mouse Strains 

 

Colony founders for the mPer/mCry multiple mutant lines came from two different genetic 

backgrounds. We started with mPer1-/- and homozygous mPer2Brdm2 mice carrying a targeted 

gene from a 129S5/S7 genomic library in a C57BL/6 background (Zheng et al., 2001; Zheng 

et al., 1999) and mCry1+/-/mCry2+/- heterozygous mice carrying a targeted gene from a 

Ola129 derived genomic library in a C57BL/6 background (van der Horst et al., 1999). While 

in the mPer1, the mCry1 and the mCry2 targeting vectors almost all of the translated coding 

sequence was deleted the Per2Brdm2 mutants lack a major part of their PAS domain responsible 

for protein protein interaction resulting in a truncated non-functioning protein (Oster et al., 

2002; Zheng et al., 1999). 
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Fig. 54: Targeted disruption of the Per  and Cry genes (a) Genomic structure of the murine mPer1 gene, the 
targeting vector, and the predicted structure of the targeted allele. Exons are indicated by vertical black 
bars with the first and last exons numbered. WT, wild-type; R, EcoRI; Hprt, hypoxanthine 
phosphoribosyltransferase gene; TK, Herpes Simplex Virus thymidine kinase gene. A 1.6 kb 3' external 
probe that detects a 20 kb wild-type EcoRI fragment and an 11.8 kb mutant EcoRI fragment were used to 
detect targeted ES cell clones and to genotype test mutant mice. (b) Genomic structure of a portion of the 
mouse mPer2 gene, the targeting vector and the predicted structure of the targeted allele. H, HindIII; B, 
Bam HI; Neo, neomycin resistance gene. Figure 1 Targeted disruption of the cry  genes and generation of 
Cry-deficient mice. (c) Physical map of the wild-type Cry1 locus, the targeting construct and the disrupted 
Cry1 locus. Exons are indicated by black filled boxes. Note that the use of PCR-derived genomic DNA does 
not allow proper exon numbering. The probe used for screening homologous recombinants and 
genotyping mice, localized external to the construct, is represented by a gray box. Primers used for RNA 
analysis by RT-long-range PCR are depicted as black arrowheads. (d) Physical map of the wild-type Cry2  
locus, the targeting construct and the disrupted Cry2 locus (from van der Horst et al., 1999; Zheng et al., 
2001; Zheng et al., 1999). 
 

4.1.2. Mouse Breeding 

 

Mice were bred in BioZone ventilated caging systems (Cage Model CA20, VR Classic TM, 

BioZone, Margate, UK) in Hannover and in filter top open cages (Type 2 Polycarbonate Cage 

with top wiring, Tecniplast, Italy) in custom made racks in Fribourg in a 12h Light 12h dark 

cycle. Matings were normally setup as pairs or triples with rotation of the females in a one to 

two week turn during the expansion of the colonies. Litters were weaned three to four weeks 

after birth and separated for their gender. Store cages held up to 6 animals. Genotype was 

determined by Southern Blot Hybridization with genomic DNA extracted from tail tissue 

before weaning. 
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4.1.3. Activity Monitoring 

 

4.1.3.1. Facilities and General Guidelines 

 

Animals were housed individually in transparent plastic cages (Tecniplast 1155M) that were 

equipped with a steel running wheel of 115 mm in diameter (Trixie 6083, Trixie GmbH, 

Germany). The axis of the wheel was equipped with a plastic disc holding a small magnet 

(article number 34.6401300702, Fehrenkemper Magnetsysteme, Germany). The magnet opens 

and closes a magnetic switch (Reed-Relais 60, Conrad Electronic, Germany) upon rotation of 

the running wheel. The switch was connected to a computer that counts the revolutions of the 

wheel (using the Activity Counting System Program, Simon Fraser University, Burnaby, 

Canada in Hannover and ClockLab, Actimetrics, Austin St. Evanston, USA in Fribourg). 

Twelve cages of this type were placed in one isolation cabinet (custom made, length = 180cm; 

height = 54cm; depth = 69cm). Running data analysis was performed using the Circadia 

Program (Simon Fraser University) in Hannover and ClockLab plug- in for MatLab (The 

Mathworks, Natick, USA) in Fribourg (Albrecht and Foster, 2002). 

Mice used for activity monitoring were generally 2 to 6 month old males (except stated 

otherwise). An equal number of wild-type controls was included in each isolation chamber. 

Animals were provided food and water ad libitum at all times. Cages were changed every 

three to four weeks at the beginning of the activity phase to minimize phase shifts induced by 

a new environment (Mrosovsky, 1996). 
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4.1.3.2. Publication: “The Circadian Clock and Behavior” 

 

Urs Albrecht and Henrik Oster 

 

Behavioural Brain Research 125 (2001) 
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4.1.3.3. Experiments 

 

4.1.3.3.1. Light/ Dark (LD) Cycle Entrainment 

 

Animals were kept in a 12h light (250-300 Lx bright white light)/ 12h dark cycle (“Lights on” 

= ZT0 at 7:00 in summer and 6:00 in winter; “Lights off” = ZT12 at 19:00 and 18:00 

respectively) for three to five weeks (LD12:12). After one week of training activity profiles 

were taken for characterizing the entrainment of the animals. We studied the following 

criteria: 

a. Activity onset: A minimum of 100 wheel revolutions per 5min bin after a minimum of 

240min of rest. The average was taken for 7 consecutive days after one week of 

adaptation. 

b. Overall activity: average number of wheel evolutions and approximate covered 

distance in 24h 

c. Night time activity: like b. but only during the dark phase 

d. Day time activity: like b. but only during the light phase 

e. Activity phase (α): time between onset and offset of activity 

 

4.1.3.3.2. Shifted LD Cycles 

 

After entrainment to an LD12:12 cycle for at least 10 days lights were not turned on at 7:00/ 

6:00 the next day but 8h later (15:00/ 14:00). From there a shifted light cycle was presented to 

the animals (“Lights on” = ZT0 at 15:00 in summer and 14:00 in winter; “Lights off” = ZT12 

at 3:00 and 2:00 respectively). We measured the number of days needed for an animal to 

adapt to the new LD cycle by looking at the onset of activity. After another 10 days the LD 

cycle was shifted back again (with a long night at the transition, e.g. “lights off” at 3:00/ 2:00 

and “lights on” at 7:00/ 6:00 on the following day. 
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4.1.3.3.3. Free Running in Constant Darkness 

 

After entrainment to an LD12:12 cycle for at least 10 days lights were not turned on again at 

the following morning and animals were kept in constant darkness for several weeks (DD). 

We studied the following criteria: 

a. Internal period (τ): Length of a subjective day determined by the time points of 

activity onset on two consecutive days. The average was taken from at least 7 

consecutive days of stable rhythmicity in DD. 

b. Overall activity: average number of wheel evolutions and approximate covered 

distance in 24h 

c. Activity phase (α): time between onset and offset of activity 

 

4.1.3.3.4. Free Running in Constant Light 

 

Activity monitoring in constant light (LL) was performed like described for DD. In some 

experiments increasing light intensities were applied (as given in the diagrams). Therefore 

isolation boxes were equipped with dimmable halogen lamps (one for each cage). Light 

intensity was measured with a Luxmeter (Testo, Germany) and averaged for all cages 

(deviations were less than 10% in all cases). 

 

4.1.3.3.5. Phase Shifting Experiments 

 

Two different protocols were used for determining light induced phase shifts (Pittendrigh and 

Daan, 1976). For Type 1 mice were kept in DD for at least 10 days before a 15min Light 

pulse (300Lx) was applied to every single animal at CT14 (2 subjective hours after activity 

onset) or at CT22 (10 subjective hours after activity onset). For that the animals were removed 

from the isolation box and placed under a fluorescent light after replacing the lid of the cage 

with an empty wiring lid to ensure equal illumination of the whole cage area. The phase shift 

was determined by fitting a line through the onsets of activity before and after the light pulse 

with ignoring the first days after the treatment when the clock is still in transition. The 

difference between the two lines at the day after the pulse depicts the phase shift. Phase delays 

count as negative while phase advances count as positive phase shifts. 

For the Type 2 protocol mice were kept in LD 12:12 for at least 10 days. A nocturnal light 

pulse (at ZT14 or at ZT22) was applied for 15min to all animals in one chamber and the lights 
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remained turned off on the following days. Two lines were drawn through the onsets of 

activity before and after the light pulse. The line after the light treatment was elongated to the 

day of the pulse. The difference between the two lines was determined. The same procedure 

was performed with control animals by applying the same LD/ DD schedule without the light 

pulse. The difference between treated and control animals was determined as the phase shift. 

These values are generally very similar to the ones obtained with a Type 1 experiment with 

slightly smaller numbers. An advantage of Type 2 are the easy and efficient treatment of 

many animals of different strains since no τ has to be taken into consideration for the timing 

of the light pulse and the animals need not to be removed from the isolation chamber for 

illumination. Additionally this protocol is applicable to mutants which eventually become 

arrhythmic in DD like the mPer2Brdm1 mutant used in this work or the Clock mutant (Vitaterna 

et al., 1994). 

 

4.1.4. Cross Breeding 

 

mCry1+/-/ mCry2+/- animals were crossed with mPer1-/- and homozygous mPer2Brdm1 animals 

respectively. From the f1 offspring mPer/ mCry double heterozygous animals (e.g. mPer1+/-/ 

mCry1+/-) were selected and cross-bread to yield double mutants and corresponding wild-type 

animals in the f2 generation. 

For mPer/ mCry triple mutants homozygous animals from two double mutant strains sharing 

one mutation were chosen (e.g. for mPer1/ mCry1/ mCry2 mutants we started with mPer1-/-

/mCry1-/- and mPer1-/-/ mCry2-/- mice). The double heterozygous f1 offspring was intercrossed 

to yield the desired triple mutant strain in the f2 generation. As wild-type controls we chose 

the same animals as used for the double mutants (depicted “PC-WT”). 
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Fig. 57: Breeding schemes for double and triple mutant mice. (a) Breeding scheme for mPer1/ mCry1 
mutants (b) breeding scheme for mPer1/ mCry1/ mCry2 mutants. 
 

4.1.5. Spalax Strains 

 

All animal work with Spalax was performed in collaboration with Dr. Aaron Avivi at the 

Institute of Evolution, University of Haifa, Israel. For the work on sClock and sMOP3 we 

used brain tissue, eyes and Harderian glands from Spalax S. judaei (2n= 60) and Spalax S. 

galili (2n= 52). For the studies on the sPers and the sCrys we used only Spalax S. judaei (2n= 

60). Animals were trapped in the field, kept under specific lighting conditions in the lab and 

sacrificed at the depicted time points. We received fixed and dehydrated tissue for in situ 

Hybridization. 
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4.2. Molecular Biological Experiments 

 

4.2.1. Genotyping 

 

4.2.1.1. DNA Templates 

 

The mPer2 probe hybridizes to a 12kb wild-type and a 10kb mutant fragment of BamH I 

digested genomic DNA. The mCry1 probe detects a 9kb wild-type and a 4kb Nco I digested 

fragment of the targeted locus. In mCry2 mutants the wild-type allele is detected by 

hybridization of the probe to a 7kb EcoR I fragment whereas the mutant allele yields a 3.5kb 

fragment. For further descriptions see (van der Horst et al., 1999; Zheng et al., 2001; Zheng et 

al., 1999). 

 

4.2.1.2. Probe Preparation 

 

Templates for southern probes were as described for mPer1-/- (Zheng et al., 2001), mPer2Brdm1 

(Zheng et al., 1999) and for mCry1-/- and mCry2-/- (van der Horst et al., 1999). Probes were 

labeled with 32P-dCTP (NEN, Boston, USA) using the Rediprime II Random Prime Labeling 

Kit (Amersham Pharmacia, Little Chalfont, UK). Unincorporated nucleotides were removed 

with ProbeQuant G-50 Micro Columns (Amersham Pharmacia). Incorporation efficiency was 

assessed by measuring the activity of the probe with a liquid scintillation counter (Canberra 

Packard, Zürich, Switzerland). 

 

4.2.1.3. DNA Extraction 

 

Tail tips (~1cm) taken at the age of weaning (3-4 weeks) were used as tissue samples with a 

sharp scalpel blade or scissors. Excessive bleeding was stopped by holding a flamed blade 

briefly to the truncated tail. Tips were digested in a roller bottle over night at 55-60°C in 

500µl of 100mM Tris/HCl, 5mM EDTA, 200mM NaCl, 0.2% SDS, 100µg/ml Proteinase K 

(pH 8.5). Genomic DNA was precipitated with Ethanol. The cloudy DNA was transferred to a 

new tube using a pipette tip and washed once with 70% Ethanol and 100% Ethanol before 

drying. The pellet was then dissolved in 50µl TE buffer (10mM Tris/ HCl, 1mM EDTA, pH 

7.5) and stored at 4°C. 
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4.2.1.4. Southern Blotting and Hybridization 

 

• start with 10µg genomic DNA in TE buffer  

• + water up to 20µl 

• + 2.5µl 10x restriction enzyme buffer (New England Biolabs, Boston, USA) 

• + 2.5µl (50U) restriction enzyme (EcoRI for Per1 and Cry2, BamH1 for Per2, Not1 for 

Cry1, all from NEB) 

Incubation ON at 37°C 

• + 5µl 6x DNA Loading Buffer (0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene 

cyanol FF, 30% (v/v) glycerol) 

mix gently with the pipette tip to avoid shearing of the genomic DNA 

• load samples on a 0.7% agarose gel (no ethidium bromide!) in a Gibco Sunrise 

electrophoresis chamber (Invitrogen, San Diego, USA) 

• run at 60V (~ 6-8h) until the bromophenol blue band hits the next loading slot row 

• cut gel and mark orientation 

• incubate gel for 10min in 0.05‰ ethidium bromide in TE buffer 

• photograph gel on a UV screen (Vilber Lourmat, Marne Le Valée, France) 

• partly hydrolyze the DNA in 0.25M hydrochloric acid (exactly 2x 5min!) 

• denature in 0.4M sodium hydroxide (20min) 

• assemble blotting chamber (from bottom to top: 0.4M sodium hydroxide for transfer, 

blotting paper, gel (turn upside down for better transfer efficiency), blotting membrane 

(Hybond+, NEN), blotting paper, paper towels, weight) and leave ON 

• disassemble chamber, mark membrane and cross- link (Stratagene Linker, Stratagene, La 

Jolla, USA) 

• wash 2x with water and put into hybridization bottle 

• add appropriate volume of hybridization buffer (QuikHyb, Stratagene) and rotate at 68°C 

(minimum 20min) prior to hybridization 

• denature probe and hybridize 1h at 68° 

• remove excess buffer and wash three times with 2xSSC (0.3M sodium chloride, 0.03M 

sodium citrate, pH 7), 0.1% SDS 

• wash 2x 15min with 2xSSC, 0.1% SDS at RT 

• wash 2x 20min with 0.1xSSC, 0.1%SDS at 60-63°C in a shaking water bath 
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• wrap membrane with Saran and expose on film (-80°C with enhancer screen (Amersham 

Pharmacia)) ON 

 

4.2.2. RNA Blotting 

 

4.2.2.1. cDNA Templates 

 

The probes for mPer1 and mPer2 were as described (Albrecht et al., 1997b). The mPer1 

probe corresponds to nucleotides 1 to 619 (GenBank accession number AF022992). The 

mPer2 probe was made from a cDNA corresponding to nucleotides 229–768 (AF036893). 

The mPer2 probe is located outside the region deleted in the mutant. The c-Fos probe was 

made from a mouse cDNA whose nucleotide sequence corresponds to amino acid positions 

237–332. The AVP probe was made from a cDNA corresponding to nucleotides 1 to 480 

(GenBank M88354). The mCry1 probe was made from a cDNA corresponding to nucleotides 

190-771 (accession number AB000777) and the Bmal1 probe corresponding to nucleotides 

654-1290 (accession number AF015953).  

cDNA was obtained by RT-PCR from brain total RNA (for preparation see below) using 

Superscript II (Gibco/ Invitrogen) and Taq Polymerase (Qiagen, Hilden, Germany) and 

standard protocols (Sambrook and Russel, 2001). PCR product was cloned into pCR II Topo 

vector using TOPO TA Cloning Kit (Invitrogen). Single colonies were picked and grown in 

LB medium (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) sodium chloride, 0.1 

mg/ml ampicillin) for Maxi preparation of plasmid DNA using QIAfilter Plasmid Maxi Kit 

(Qiagen). Inserts were cut from the vector with EcoRI and extracted from an agarose gel (1%, 

with ethidium) using QIAEX II Gel Extraction Kit (Qiagen). 

 

 

4.2.2.2. Probe Preparation 

 

See probe preparation for genotyping (4.2.1.2.). 

 

4.2.2.3. RNA Purification 

 

Animals were killed by cervical dislocation and tis sue removed and transferred into RNAzol 

B (WAK Chemie, Bad Soden, Germany; ~1ml per 0.25g of tissue) on ice. After 
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homogenization (Polytron PT 1200, Kinematica, Littau, Switzerland) 1/10 volumes 

chloroform was added and mixed before incubation on ice for 5min. After centrifugation 

(15min, 13k rpm, 4°C) supernatant was transferred to a fresh tube and RNA precipitated with 

an equal volume of 2-Propanol (15min on ice). Total RNA pellets were stored at –80°C under 

50% 2-Propanol and dissolved in water before use. For mRNA preparation we used Oligotex 

mRNA Kit (Qiagen) according to the protocol of the manufacturer. 

To remove excess glycogen from liver total RNA pellets were washed in 4M lithium chloride 

before use. 

 

4.2.2.4. Northern Blotting and Hybridization 

 
 

• start with 20µg total RNA or up to 10µg mRNA in 5µl water 

• + 2.2µl 5x Running Buffer (0.1M MOPS (pH 7), 25mM sodium acetate, 5mM EDTA) 

+ 3.9µl 37% (w/v) formaldehyde 

+ 11.1µl formamide 

+ 2.2µl 6x RNA Loading Buffer (see DNA Loading Buffer but without xylene cyanol FF) 

• incubation for 15min at 65°C 

• load samples on a 1% agarose gel (no ethidium!) containing formaldehyde (see 

(Sambrook and Russel, 2001)) 

• run at 10-15V (ON) until the bromophenol blue band hits the end of the gel 

• cut gel and mark orientation 

• incubate gel for 5min in water 

• partly hydrolyze the RNA in 50mM sodium hydroxide, 10mM sodium chloride (45min) 

• neutralize in 0.1M Tris/HCl (pH 7.5) for 45min 

• equilibrate gel in 20xSSC (see above) for 1h 

• assemble blotting chamber (from bottom to top: 10xSSC for transfer, blotting paper, gel 

(turn upside down for better transfer efficiency), blotting membrane (Hybond+, NEN), 

blotting paper, paper towels, weight) and leave ON 

• disassemble chamber, mark membrane and UV crosslink 

• wash 2x with water and put into hybridization bottle 

• add appropriate volume of hybridization buffer (QuikHyb, Stratagene or UltraHyb, 

Ambion, Austin, USA) and rotate at 68°C (QuikHyb, minimum 20min) or 42°C 

(UltraHyb, 1-2h) prior to hybridization 
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• denature probe and hybridize 1-2h at 68° (QuikHyb) or at 42°C (UltraHyb) 

• remove excess buffer and wash three times with 2xSSC, 0.1% SDS 

• wash 20min with 2xSSC, 0.1% SDS at RT 

• wash 2x 20min with 0.1xSSC, 0.1%SDS at 60°C in a shaking water bath 

• wrap membrane with Saran and expose on film (-80°C with enhancer screen (Amersham 

Pharmacia)) or on phosphoimager screen. 

 

4.2.2.5. Quantification 

 

Exposed phosphoimager plates (Bio-Rad, Hercules, USA) were scanned with a 

phosphoimager (Bio-Rad) and quantified using Quantity One V3.0 software (Bio-Rad). 

 

4.2.3. In situ Hybridization 

 

In situ Hybridization was performed according to Albrecht et al., 1997a. 

 

4.2.3.1. cDNA Templates 

 

For most templates see 4.2.2.1. The c-Fos probe was made from a mouse cDNA whose 

nucleotide sequence corresponds to amino acid positions 237–332. The AVP probe was made 

from a cDNA corresponding to nucleotides 1 to 480 (GenBank M88354). 

 

4.2.3.2. Probe Preparation 

 
35S-UTP (NEN) labeled RNA probes were made using RNA Transcription Kit (Stratagene) 

with T7, T3 or SP6 RNA polymerases (Stratagene, NEB and Promega, Madison, USA). 1µg 

linearized plasmid template was used in a 30µl setup sufficient for 24 slides according to the 

manufacturer’s protocol. 

Incorporation was determined by liquid scintillation and probes were diluted to 2-6M cpm per 

slide in HybMix (25% (v/v formamide, 0.3M NaCl, 20mM Tris/HCl (pH 8), 5mM EDTA, 

10% (w/v) dextrane sulfate, 0.02% Ficoll, 0.02% BSA, 0.02% polyvinylpyrolidone, 0.5mg/ml 

yeast RNA, 0.1M DTT, 250µM αS-ATP). 
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4.2.3.3. Tissue Preparation 

 

Either paraffin embedded or frozen tissue was used. For paraffin embedding animals were 

killed by cervical dislocation, tissue was removed and immersion fixed in 4% 

paraformaldehyde (PFA) in PBS (pH 7.4) at 4°C for 12-18h. Tissues were then dehydrated 

with ethanol (30, 50, 70 and 100%, 3h each at 4°C) and transferred to xylene. Xylene was 

changed once and replaced by 50% xylene/ 50% paraffin and 3x paraffin at 60°C before 

pouring the samples in embedding forms. Tissues were cut on the following day or later using 

a microtome (R. Jung, Hamburg, Germany) at 7µm thickness and stored at RT before use. 

For cryo-sections tissue was shock frozen in liquid nitrogen, cut embedded in TissueTek 

(Sakura Finetec, Zoeterwoude, The Netherlands) on a cryostat (Leica Microsystems, Wetzlar, 

Germany) at 20µm thickness and stored at –80°C before use. 

 

4.2.3.4. Hybridization 

 

All de-waxing steps were performed with paraffin embedded sections in Tissue Tek II cuvette 

racks (Sakura Finetec,). 

 

• 2x Histoclear (Vogel, Giessen, Germany) 10min 

• 2x 100% Ethanol 2min 

• re-hydrate with ethanol 20s each (95/80/70/50/30%) 

• 0.9% sodium chloride 5min 

• PBS 5min 

• 4% PFA (pH7.4 in PBS) 20min 

• 2x PBS 5min 

• Proteinase K (20µg/ml in 50mM Tris/HCl, 5mM EDTA pH8.5) 5min 

• PBS 5min 

• 4% PFA pH7.4 20min 

• acetylation in 0.1M Triethanolamine/HCl pH8: add 600µl acetic anhydride on 250ml; stir 

3min; add another 600µl acetic anhydride and stir 7min 

• PBS 5min 

• 0.9% sodium chloride 5min 

• de-hydrate with ethanol 20sec each (30/50/70/80/95/100%) 
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• let slides air-dry at a RNase-free place 

Frozen sections were fixed in PFA and treated like paraffin sections subsequently. 

Hybridization was performed in humidified chambers (5x SSC, 50% (v/v) formamide) in a 

hybridization oven ON at 55-58°C. Probe was put on the slides and spread over the whole 

area using a pipette tip before covering with a cover slip. Post-hybridization was performed in 

Tissue Tek II cuvettes (Sakura Finetec). 

 

• Removal Wash: 30min in 5xSSC/ 20mM mercaptoethanol (ME) at 64°C in a shaking 

water bath; after 10min cover slips were removed using forceps 

• 2xSSC/ 50% formamide/ 40mM ME 30min at 64°C 

• 3x NTE (50mM sodium chloride, 10mM Tris/ HCl, 5mM EDTA, pH 8) 15min at 37°C 

• RNase A (20µg/ml in NTE) 30min at 37°C 

• NTE 15min at 37°C 

• 2xSSC/ 50% formamide/ 40mM ME 30min at 64°C 

• 2xSSC 15min at RT 

• 0,1xSSC 15min 

• de-hydration with ethanol 30sec each (30/60/80% EtOH/ 0.3M ammonium acetate, 

95/100/100% EtOH) 

• let slides air-dry before exposure to film or coating with liquid film (Kodak) 

 

4.2.3.5. Quantification 

 

Exposed films were scanned with a flatbed scanner (Hewlett Packard, Palo Alto, USA). SCN 

cut outs were selected using Adobe PhotoShop (Adobe, San Jose, USA) and analyzed 

densitometrically with NIH Image 1.62 (National Institutes of Health, USA). Three sections 

per brain were used and background subtracted from adjacent hypothalamic areas on the same 

slide. Measurements from different animals/ experiments were combined for statistical 

analysis performed with GraphPad Prism software (GraphPad Software, San Diego, USA). 
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4.3. Immunological Experiments 

 

4.3.1. Immunohistochemistry and –fluorescence 

 

4.3.1.1. Antibodies 

 

Antigen / Antibody Company Catalog Number Working dilution 
Rabbit-αPER2 (mouse) Alpha Diagnostics PER21-A 1:200 
Rabbit-αCRY1 (mouse) Alpha Diagnostics CRY11-A 1:200 
Rabbit-αCREB (mouse) Cell Signalling Tech 9192S 1:500 
Rabbit-αP133-CREB (mouse) New England Biolabs 9191S 1:500 
Biotinylated Goat-αIgG (rabbit) Vector Laboratories PK6101 1:200 
 
Tab. 10: Used Antibodies and Dilutions. 
 

The secondary antibodies were included in the Vectastain Elite Kit used for all 

immunostaining protocols (Vector Laboratories, Burlingame, USA). 

 

4.3.1.2. Tissue Preparation 

 

Tissue was prepared as described for in situ hybridization (4.2.2.3.). 

 

4.3.1.3. Immunohistochemistry 

 

• 2x  10min  xylene 

•     2min  ethanol 

•   re-hydration with ethanol (100/70/50/30%) 20sec each 

•     2min  water 

•   10min  3% (v/v) hydrogen peroxide in methanol 

• 3x    2min  water 

•     2min  0,01M sodium citrate (pH6) 

•  10min  boiling in citrate (s.a.) 

•   10min  cool down 

•   2min  TNT (0.1M Tris/ HCl pH 7.5, 150mM sodium chloride, 0.05% Tween20); put 

slides in flow chambers (Rediflow, Tecan, Durham, USA) 

• 2x    2min  TNT 
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•      1h  normal goat serum (Vectastain Kit, in TNT) 

•   1st antibody ON at RT (in TNT; store horizontally in a humidified chamber) 

• 3x    5min  TNT 

•   2nd antibody 1h at RT (Vectastain Kit, in TNT) 

• 3x    5min  TNT 

• 1h AB-Complex (Vectastain Kit, in TNT) RT 

• 3x    5min  TNT 

• 10min  Ni/DAB (1g nickel ammonium sulfate;17.5mg diaminobenzidine/HCl (both 

from Fluka, Germany) in 100ml 0.1M sodium acetate (pH 6) 

• add 100µl 30% H2O2; incubate for 5min 

• 3x    5min  TNT 

• 2x  20sec water 

• air dry 

• apply cover slips with Canada Balsam 

 

4.3.1.4. Immunofluorescence 

 

All steps for immunofluorescence follow the immunohistochemistry protocol up to the 

incubation with the AB-Complex. Further protocol as follows: 

 

• 3x   5min  TNT 

• 20min  Tyramide-Fluoresceine in NEN amplification buffer (Tyramide Amplification 

Kit, NEN) 

• 3x   5min  TNT  

• dehydrate with ethanol 20sec each (30/50/70/100% ethanol) 

• 2min xylene 

• mount coverslips with DPX (Fluka, Germany) 
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4.3.1.5. Quantification 

 

Semiquantitative analysis of immunohistochemistry was performed with NIH Image software 

1.62 (National Institutes of Health). In selected slice areas positively stained nuclei were 

counted after thresholding. Three slices per SCN of similar regions were selected and the 

average value determined. Values from multiple experiments were taken for statistical 

analysis with GraphPad Prism software (GraphPad Software). 

 

4.4. Histological Experiments 

 

4.4.1. Nissl Staining 

 

To visualize cell nuclei in brain and eye slices samples were stained with Cresyl Violet 

according to Nissl: 

Slides were de-waxed and re-hydrated and subsequently colorised 5min in Cresyl Violet 

(0.15g in 250ml 0.3M sodium acetate buffer, pH 5.5, 60°C). After de-hydration slides were 

incubated in xylene and coverslips mounted with DPX. 

 

4.4.2. Gomori’s Trichrome Staining 

 

Slides were de-waxed and re-hydrated and post- fixated in Bouin’s Fluid (70% (v/v) saturated 

picric acid, 10% (w/v) formaldehyde and 5% (v/v) acetic acid) for 30min at 56°C (. After 

washing with water slides were stained for 15-20min with Trichrome Stain (0.6% (w/v) 

Chromotrope 2R, 0.3% (w/v) Light Green, 1% (v/v) acetic acid and 0.8% (w/v) 

phosphotungstic acid). Subsequently samples were washed with 0.5% (v/v) acetic acid for 

2min and 1% (v/v) acetic acid containing 0.7% (w/v) phosphotungstic acid if the staining was 

still too dark. After that slides were de-hydrated, incubated in xylene and coverslips were 

mounted with DPX. 

 

4.4.3.  Lipofuscin Staining 

 

Slides were de-waxed and re-hydrated with decreasing concentrations of ethanol. After a brief 

rinsing in distilled water they were incubated for 5min in 0.75% (w/v) ferric chloride/ 0.1% 
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(w/v) potassium ferricyanide. Subsequently they were transferred to 1% (v/v) acetic acid 

(5min), washed in distilled water (10min) and colonized with neutral red (1% (w/v) for 

3.5min. After another wash with distilled water slides were de-hydrated in increasing ethanol 

concentrations. After incubation with xylene coverslips were applied using DPX embedding 

medium. 

 

4.4.4.  Congo Red Staining 

 

Congo red staining was performed using Accustain Amyloid Stain, Congo Red (Sigma 

Diagnostics, St. Louis, USA). Slides were de-waxed and re-hydrated with decreasing 

concentrations of ethanol. After a brief rinsing in distilled water they were incubated for 

10min in Mayer’s hematoxylin. Subsequently slides were incubated for 5min in distilled 

water, for 20min in 0.01% (w/v) sodium hydroxide in saturated sodium chloride solution, and 

for 20min in 0.01% (w/v) sodium hydroxide, 0.2% (w/v) Congo red in 80% saturated sodium 

chloride solution. After that slides were washed three times (1min each) with ethanol and two 

times with xylene. Coverslips were applied using DPX embedding medium. 
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