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Abstract—Following nerve injury in neonatal rats, a large

proportion of motoneurons die, possibly as a consequence

of an increase in vulnerability to the excitotoxic effects of

glutamate. Calcium-dependent glutamate excitotoxicity is

thought to play a significant role not only in injury-induced

motoneuron death, but also in motoneuron degeneration in

diseases such as amyotrophic lateral sclerosis (ALS). Mo-

toneurons are particularly vulnerable to calcium influx follow-

ing glutamate receptor activation, as they lack a number of

calcium binding proteins, such as calbindin-D28k and parval-

bumin. Therefore, it is possible that increasing the ability of

motoneurons to buffer intracellular calcium may protect them

from cell death and prevent the decline in motor function that

usually occurs as a consequence of motoneuron loss. In this

study we have tested this possibility by examining the effect

of neonatal axotomy on motoneuron survival and muscle

force production in normal and transgenic mice that over-

express parvalbumin in their motoneurons.

The sciatic nerve was crushed in one hindlimb of new-

born transgenic and wildtype mice. The effect on motoneuron

survival was assessed 8 weeks later by retrograde labelling

of motoneurons innervating the tibialis anterior muscle. Fol-

lowing nerve injury in wildtype mice, only 20.2% (�2.2,

S.E.M.; n�4) of injured motoneurons survive long term com-

pared with 47.2% (�4.4, S.E.M.; n�4) in parvalbumin over-

expressing mice. Surprisingly, this dramatic increase in mo-

toneuron survival was not reflected in a significant improve-

ment in muscle function, since 8 weeks after injury there was

no improvement in either maximal twitch and tetanic force, or

muscle weights.

Thus, inducing spinal motoneurons to express parvalbu-

min protects a large proportion of motoneurons from injury-

induced cell death, but this is not sufficient to restore muscle

function.
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excitotoxicity.

Developing rat motoneurons are dependent upon interac-

tion with their target muscle for their survival. Following

sciatic nerve injury in neonatal rats a large proportion of

motoneurons dies (Lowrie et al., 1982, 1987). However, by

5 days of age, the same injury results in no motoneuron

death (Lowrie et al., 1982). Using animal models of mo-

toneuron degeneration, we have previously shown that

injured motoneurons are not only more vulnerable to glu-

tamate toxicity (Greensmith et al., 1994a), but can also be

rescued from cell death by treatment with glutamate re-

ceptor antagonists (Greensmith et al., 1994b), suggesting

that glutamate plays a role in injury-induced motoneuron

death. In addition, there is evidence that glutamate is

involved in the death of motoneurons in diseases such as

amyotrophic lateral sclerosis (ALS). ALS is a progressive

neurodegenerative disorder that results in the death of

motoneurons, eventually leading to muscle weakness and

paralysis. Although the cause and mechanism of motoneu-

ron death is not known, it has been hypothesised that the

pathogenesis of motoneuron loss involves glutamate-me-

diated excitotoxicity (Shaw et al., 1997; see Choi, 1988).

Indeed, in ALS patients, the only treatment that has been

shown to have any therapeutic benefit is the anti-glutamate

drug, Riluzole (Bensimon et al., 1994; Lacomblez et al.,

1996). This drug is known to block glutamatergic neuro-

transmission in the CNS by inactivating voltage-dependent

sodium channels on glutamatergic nerve terminals (Doble,

1996).

The particular susceptibility of motoneurons to gluta-

mate-mediated damage may be a consequence of several

factors. Firstly, the density of the �-amino-3-hydroxy-5-

methyl-4-isoxazolepropionate acid (AMPA) subtype of glu-

tamate receptors on motoneurons has been shown to be

high compared with dorsal horn neurons (Vandenberghe

et al., 2000a,b). AMPA receptors that do not contain the

GluR2 subunit are highly permeable to Ca2�, which makes

motoneurons particularly vulnerable to glutamate-medi-

ated damage. Since motoneurons are relatively large cells,

this may result in an unusually high influx of Ca2� into the

cell upon stimulation (Vandenberghe et al., 2000a; Greig et

al., 2000; Van Den Bosch and Robberecht, 2000). Inter-

estingly, it has also been shown that human motoneurons

express atypical Ca2�-permeable AMPA receptors, which

may also contribute to the particular vulnerability of mo-

toneurons to excitotoxicity (Williams et al., 1996; Shaw et

al., 2000). Furthermore, several studies have shown that

motoneurons have a limited ability to buffer intracellular

Ca2� (Palecek et al., 1999). Since glutamate-mediated

excitotoxicity is thought to involve Ca2� accumulation,
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leading to neuronal death (Choi, 1988), the low Ca2�

buffering capacity of motoneurons may render them par-

ticularly vulnerable to Ca2�-mediated cell death. Indeed,

the distribution of the Ca2�-binding proteins parvalbumin

and calbindin-D28k, reflects the selective vulnerability of

motoneurons observed in ALS. In this progressive neuro-

degenerative disorder, motoneurons that do not express

these proteins are particularly vulnerable to Ca2� toxicity

following glutamate receptor activation. In contrast, those

motoneurons that are largely spared in ALS, such as the

oculomotor nuclei and Onuf’s nucleus, express these pro-

teins at high levels. It is possible therefore, that these

motoneurons are potentially protected from Ca2�-induced

cell death by increased Ca2�-buffering properties (Ince et

al., 1993; Alexianu et al., 1994; Elliott and Snider, 1995;

Reiner et al., 1995).

In this study, we have examined the possibility that the

lack of calcium binding proteins may directly contribute to the

death of motoneurons after neonatal nerve injury, by studying

motoneuron survival in transgenic mice that over-express

parvalbumin. These mice have no obvious phenotype, but

over-express parvalbumin in neurons of the CNS as well as

T cells, the thymus and spleen (Van Den Bosch et al., 2002).

Recent results from isolated motoneurons in vitro have

shown that spinal motoneurons from these mice are pro-

tected from the excitotoxic effects of exogenously applied

kainate (Van Den Bosch et al., 2002). In addition, it has also

been shown that parvalbumin over-expression in transgenic

mice alters immune-mediated increases in intracellular Ca2�

(Beers et al., 2001), resulting in a reduction in the increase

of intracellular Ca2� and spontaneous transmitter release

seen after application of ALS immunoglobins when com-

pared with wildtype controls.

In this study, we have examined in vivo, the vulnera-

bility of motoneurons that express parvalbumin to injury-

induced cell death. We have used a well-established ani-

mal model of motoneuron degeneration, in which the pe-

ripheral nerve is injured at birth, resulting in extensive

motoneuron death (Lowrie et al., 1987; Schmalbruch,

1984). The vulnerability of motoneurons to such axotomy-

induced cell death was studied in normal and transgenic

mice that over-express parvalbumin in their motoneurons,

by examining the effect of neonatal sciatic nerve crush on

the survival of motoneurons and muscle force production

in adult animals.

EXPERIMENTAL PROCEDURES

Generation of parvalbumin over-expressing mice

A detailed description of the generation of the parvalbumin over-
expressing mice used in this study has been given elsewhere
(Van Den Bosch et al., 2002). In brief, these mice contain a
transgene consisting of the entire rat parvalbumin coding se-
quence under the control of the mouse Thy-1 promoter (Chang et
al., 1985; Gotz et al., 1995). Mice are kept as a heterozygous line
and are bred to C57BL/6J wildtype mice. Detection of transgenic
mice was carried out by PCR using genomic DNA isolated from
mouse tail biopsies using rat specific parvalbumin cDNA primers,
OL1 5�-CTATATAGGCTCTGACCTCGG-3� and OL2, 5�-
CAGGGCGTGGTCCTTCGCTC-3� as the 5� and 3� primers, re-

spectively, which produce a PCR product of 669 bp. Generally
0.1 �g of genomic DNA was used as a template. PCR conditions
have been described previously (Castillo et al., 1995).

Surgery

In these experiments mice (C57BL/6J) of both sexes were used.
All efforts were made to minimise animal suffering and the exper-
iments were carried out in accordance with the UK Animals and
Scientific procedures Act 1986. The minimum number of animals
needed to produce reliable data was used. One day after birth
(P1), the mice were anaesthetised using cold anesthesia, and the
sciatic nerve was crushed at the mid-thigh level in one hindlimb.
Following recovery from the anesthesia, the pups were returned to
their mother. For both morphological and physiological assess-
ment of motoneuron survival a comparison was made between
mice that expressed the parvalbumin transgene, and their non-
affected, wildtype littermates.

In order to compare the rate of regeneration of the sciatic
nerve from Thy-1 transgenic and wildtype mice, in some adult
mice, the sciatic nerve was crushed in the mid-thigh region using
blunt Watchmakers’ forceps under halothane anesthesia and ster-
ile conditions. The extent of functional reinnervation of the tibialis
anterior (TA) hindlimb muscles was assessed using physiological
criteria 14 days after injury.

Immunohistochemistry

In order to establish that motoneurons in the parvalbumin over-
expressing transgenic mice did express parvalbumin, spinal cord
sections from mice that carried the transgene and their wildtype
littermates were processed for parvalbumin immunohistochemistry at
different ages ranging from birth to 8 weeks of age. This was to
ensure that parvalbumin was present in motoneurons both at the
time of nerve injury (P1), as well as at the time when the effect of
injury was assessed (8 weeks). The mice were terminally anaesthe-
tised (4% chloral hydrate; 1 ml/100 g body weight, i.p.) and perfused
transcardially with a fixative containing 4% paraformaldehyde. Spinal
cord sections were cut at 10 �m on a cryostat and thaw-mounted
onto gelatinised slides. Sections were blocked using 3% normal goat
serum (Vector Laboratories, Burlingame, CA, USA) for 1 h and after
washing in PBS, a rabbit polyclonal anti-parvalbumin antibody (1:
10,000; Swant, Bellinzona, Switzerland) was applied overnight. The
sections were washed, and a biotinylated goat anti-rabbit antibody
(Vector) was applied for 2 h. The antibody was visualised using the
ABC kit (Vector), using diaminobenzidine.

Retrograde labelling of motoneurons

Following sciatic nerve crush at P1, motoneurons survival was
assessed 8 weeks later by counting the number of retrogradely
labelled motoneurons innervating the TA muscles. Under sterile
conditions and using halothane anesthesia, horseradish peroxi-
dase (HRP; Type VI; Sigma; Poole, UK) was injected into the TA
muscles in both the operated and the unoperated, contralateral
control leg (2 �l/100 g body weight; 15% solution) using a Ham-
ilton microsyringe. Twenty-four hours later the animals were re-
anaesthetized (4% chloral hydrate; 1 ml/100 g body weight, i.p.),
and the animals perfused transcardially with a fixative containing
gluteraldehyde (2.5% in Millonig’s phosphate buffer, pH 7.3). The
spinal cords were removed and postfixed for 2 h in the same
fixative. Following cryoprotection in 30% sucrose in Millonig’s
phosphate buffer, frozen sections were cut at 30 �m. Free-floating
sections were processed for HRP histochemistry using a modified
Hanker-Yates method (Hanker et al., 1977) and lightly counter-
stained with a Nissl stain (gallocyanin; Culling, 1963). The number
of HRP-labelled motoneurons in the operated and contralateral
control ventral horns in each section was counted under a light
microscope. In order to prevent the same cell being counted twice
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in consecutive sections, only those neurons in which the nucleolus
was clearly visible at high magnification were included in the
counts. In addition, the number of surviving motoneurons in the
sciatic motor pool was also quantified by counting Nissl-stained
motoneurons. When assessing the number of motoneurons re-
vealed with the gallocyanin stain, only the large, polygonal neu-
rons with a distinguishable nucleus and nucleolus and clearly
identifiable Nissl structure were counted, as previously described
(White et al., 2000). Since all HRP-labelled motoneurons were
also clearly counterstained with gallocyanin, they were also in-
cluded in the Nissl counts. Motoneurons stained with gallocyanin
were counted in each ventral horn on alternate sections between
the levels of the spinal cord where HRP-labelled motoneurons first
appear and when they were no longer present. Therefore, the
rostro-caudal position of these cells corresponded mainly to the
pool of the common peroneal nerve, but also included motoneu-
rons from other motor pools, for example that of the tibial nerve. In
order to provide an index of motoneuron survival for both the
retrogradely labelled and Nissl stained motoneurons, for each
spinal cord the number of motoneurons on the operated side was
expressed as a percentage of the number on the control side.
Statistical significance was tested using a t-test.

Isometric tension recordings

Eight weeks after birth, both transgenic animals and their unaf-
fected littermates were anaesthetized with chloral hydrate (4%
chloral hydrate; 1 ml/100 g body weight, i.p.), and the TA muscle
in both the operated and contralateral control hindlimbs was pre-
pared for in vivo assessment of their contractile properties.

The distal tendons of the TA muscles in both limbs were
dissected and attached to isometric force transducers (Dynamom-
eter UFI Devices) via silk threads. Both legs were rigidly secured
to the table with pins. The sciatic nerve was dissected free, and all
its branches, apart from the deep peroneal nerve to the TA muscle
were cut. The distal end of the nerve was then stimulated using

bipolar silver electrodes. The length of the muscle was adjusted

until the maximal twitch was produced upon nerve stimulation.

Isometric contractions were elicited by stimulating the motor nerve

using 10 V with a pulse width of 0.02 ms. Tetanic contractions

were elicited by stimulating at 40 and 80 Hz for 550 ms. At the end

of the experiment the TA muscles in both the operated and control

legs were removed and weighed.

In addition, in a number of adult animals, 14 days after the

sciatic nerve had been crushed, the maximal tetanic tension in the

TA muscle elicited by stimulating via the sciatic nerve (indirect

tension) was compared with that elicited by stimulating the end-

plate region of the muscle directly (direct tension). The ratio of the

direct/indirect tetanic tension indicates the extent of functional

innervation of a muscle and in normal muscles this ratio is 1.0.

RESULTS

Parvalbumin over-expressing transgenic mice

Heterozygous animals were mated to C57BL/6J wildtype

mice to obtain heterozygous experimental animals. The

parvalbumin over-expressing mice had no obvious pheno-

type and were not distinguishable from their littermates.

Therefore, in order to identify individuals expressing the

transgene, tail biopsies were taken to provide genomic

DNA. In each litter approximately 40% of the animals

carried the parvalbumin transgene.

In order to examine the expression of parvalbumin in

the spinal cord of these transgenic mice, parvalbumin im-

munoreactivity was examined in animals of different ages,

ranging from P1 to adult. Fig. 1 shows examples of spinal

cord from adult mice expressing the parvalbumin trans-

gene (Thy-PV), as well as littermates that did not express

Fig. 1. The figure shows photomicrographs of cross-sections of the ventral horns of spinal cords from adult (A) wildtype and (B) parvalbumin-

overexpressing transgenic mice (Thy-PV), stained with an anti-parvalbumin antibody. It can be seen that many motoneuron-like cells in the spinal cord

from the parvalbumin transgenic mouse are parvalbumin-immunoreactive (arrows). In contrast, in the wildtype littermates there are no large

motoneuron-like cells stained for parvalbumin. Scale bar�100 �m.
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the transgene (wt). In wildtype mice (Fig. 1a), parvalbumin

staining was not observed in motoneurons within laminae

VIII and IX. Some interneuron-like cells were found to

express parvalbumin, which has previously been reported

in normal animals in other studies (Celio, 1990). An exam-

ple of the pattern of parvalbumin-immunoreactivity in the

parvalbumin over-expressing mice is shown in Fig. 1b.

Here, motoneurons within the ventral horn are seen to

express parvalbumin (Fig. 1b, arrow). This confirms previ-

ous findings (Van Den Bosch et al., 2002) that first de-

scribed the pattern of expression of parvalbumin in these

mice, and demonstrates that parvalbumin expression was

maintained in motoneurons of adult transgenic mice.

Motoneuron survival following neonatal nerve crush

The effect of neonatal nerve crush on motoneuron survival

was examined 8 weeks after injury. The survival of motoneu-

rons innervating the TA muscle was assessed by counting

the number of retrogradely labelled motoneurons in the op-

erated and control ventral horns of each spinal cord. In addi-

tion, the survival of motoneurons within the sciatic motor pool

was also assessed by counting the number of Nissl-stained

motoneurons, using a method described previously (White et

al., 2000). An example of a spinal cord section from a wild-

type and a transgenic mouse stained for HRP and Nissl, is

shown in Fig. 2. The results are summarised in Table 1,

which shows that following neonatal nerve injury, only 20.2%

(�2.2; S.E.M., n�4) of motoneurons innervating the TA mus-

cle survive in wildtype mice 8 weeks later. However, in parv-

albumin transgenic mice, 47.2% (�4.4; S.E.M., n�4) of op-

erated motoneurons survive. Thus, there is a significant in-

crease in the survival of motoneurons innervating the TA

muscles in the parvalbumin transgenic mice (P�0.001; t-

test). We also assessed the survival of motoneurons within

the sciatic motor pool. As shown in Table 1, in wildtype mice

only 38.9% (�2.2; S.E.M., n�6) of sciatic motoneurons sur-

vived neonatal nerve injury, compared with 60.5% (�3.8;

S.E.M., n�6) in parvalbumin transgenic mice. This increase

in long-term survival of motoneurons is highly significant

(P�0.001; t-test), and reflects the increase in survival of

retrogradely labelled motoneurons, which innervate TA.

Assessment of muscle function following neonatal

nerve injury

Whether the long-term increase in motoneuron survival

observed in the parvalbumin transgenic mice was reflected

in an improvement in muscle function was also examined.

Isometric tension recordings from the TA muscle were

carried out in adult animals in which the sciatic nerve had

been crushed at 1 day of age. A comparison was made

between animals carrying the parvalbumin transgene

(Thy-PV) and unaffected littermates (wt).

Following neonatal nerve injury in wildtype mice, there

is a considerable and permanent reduction in muscle force

and weight. As can be seen in Fig. 3, both the twitch and

maximum tetanic tension of TA muscles on the operated

side was significantly reduced. Thus, in wildtype control

mice the maximum twitch tension was only 37% (�4.5;

S.E.M., n�6) of control and the maximal tetanic tension

was only 40.3% (�6.5; S.E.M., n�6) of its contralateral

control muscle. In the parvalbumin transgenic mice, al-

though significant numbers of motoneurons survived neo-

natal nerve injury, this was not reflected in an improvement

in muscle force. Thus, in the parvalbumin transgenic mice,

the maximal twitch tension of the TA muscle in the oper-

ated leg was only 35.3% (�2.7; S.E.M., n�6) of the con-

tralateral control side and the tetanic tension, 37% (�4.5;

S.E.M., n�6) of control. These results are not significantly

different from the maximum tension elicited from the TA

muscles in the operated leg of the wildtype control animals.

Following assessment of the muscle force, the oper-

ated and control TA muscles were removed and weighed.

The results are summarised in Fig. 3. Following neonatal

nerve crush, there was a significant reduction in muscle

weight, which is evident even in adult animals. Thus, in the

wildtype mice, the TA muscle in the operated leg weighed

only 33% (�2.8; S.E.M., n�6) of the contralateral control

leg. Moreover, there was no difference in the weight of the

TA muscle from the operated leg of the parvalbumin pos-

itive mice, which weighed only 29% (�1.3; S.E.M., n�6) of

the control muscle.

These results show that in parvalbumin over-express-

ing mice there was a dramatic improvement in the number

of motoneurons surviving neonatal nerve injury, compared

with their wildtype littermates. However, this increase in

motoneuron survival was not reflected in an improvement

in the force output of the TA muscle.

Re-innervation of TA muscles following adult nerve

injury

In order to compare the ability of the sciatic nerve from Thy-1

and wildtype animals to re-innervate hindlimb muscles, the

ratio of indirect:direct tetanic tension of operated TA muscles

was calculated. The results show that in wildtype mice, 14

days after adult sciatic nerve crush, reinnervation is almost

complete and the ratio of indirect:direct tension is 0.94

(�0.008; S.E.M., n�3) compared with a ratio of 1.0 in unop-

erated, contralateral control TA muscles. In Thy-1 mice there

was no evidence that reinnervation of the TA muscles was

delayed, and the ration of indirect:direct tension was found to

be 1.04 (�0.02; S.E.M., n�5), indicating that reinnervation of

TA is significantly better in the Thy-1 mice than in wildtype

mice (P�0.036).

DISCUSSION

In this study we have examined the effect of an increase in

Ca2�-buffering capacity of motoneurons on their survival,

using a well-established injury model of motoneuron de-

generation. Our results show that expression of parvalbu-

min in motoneurons can protect these cells from injury-

induced cell death. Thus, in parvalbumin over-expressing

mice, significantly more injured motoneurons survived long

term following neonatal sciatic nerve crush, compared with

motoneuron survival in littermate control mice. This repre-

sents a considerable improvement in the survival of mo-

toneurons, and is likely to be a consequence of the im-
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Fig. 2. The figure shows photomicrographs of cross-sections of the lumbar region of the spinal cord from adult mice, in which the sciatic nerve was

crushed on one side at P1. Following nerve crush at birth, motoneuron survival was assessed 8 weeks later, by retrograde labelling with HRP of

motoneurons innervating the TA muscles in both the operated and control hindlimbs as well as staining of motoneurons in the sciatic motor pool with

gallocyanin. For identification the control dorsal horn has been marked with a fine micro-pin. An example of a spinal cord section from a wildtype mouse

is shown in (a), where it can be seen that there are fewer HRP-labelled (arrow) motoneurons in the operated ventral horn (b) compared with the control

ventral horn (c). There are also significantly fewer Nissl-stained motoneurons in the sciatic motor pool in the operated side. An example of a spinal

cord section from a parvalbumin over-expressing littermate is shown in (d). It can be seen that significantly more HRP-labelled (arrows) as well as Nissl

stained motoneurons are present in the operated ventral horn of Thy-PV mice (e), than in the operated side of wildtype mice (b). (Scale bars a,

d�200 �m; b, c, e, f�50 �m).
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proved Ca2� buffering capacity of motoneurons that ex-

press parvalbumin. In these transgenic mice, parvalbumin

over-expression is found in the CNS, kidney, thymus and

spleen, as well as motoneurons (Van Den Bosch et al.,

2002). We have confirmed previous findings, which show

that parvalbumin is not normally expressed in motoneu-

rons of wildtype mice (Celio, 1990). However, in parvalbu-

min transgenic mice, parvalbumin was expressed in large

cells, presumably motoneurons, in the ventral horn (see

Fig. 1).

Peripheral nerve injury during a critical period of early

postnatal development has previously been shown to result

in extensive death of motoneurons both in the rat (Romanes,

1946; Lowrie et al., 1987) and the mouse (Pollin et al., 1991).

However, the same injury at 5 days of age results in no

motoneuron death (Lowrie et al., 1982). This motoneuron

degeneration is likely to be mediated via the excitatory neu-

rotransmitter glutamate (see Williams et al., 1996). Indeed,

we have previously shown that injured motoneurons are

more vulnerable to glutamate toxicity (Greensmith et al.,

1994a), and can be permanently rescued from injury-induced

cell death by treatment with glutamate antagonists (Mentis et

al., 1993; Greensmith et al., 1994b), with a corresponding

improvement in muscle force (Mentis et al., 1993).

Since the activation of glutamate receptors ultimately

leads to the influx of Ca2� into the motoneuron, the ability of

the motoneuron to handle Ca2� may be important in de-

termining the response to stimulation (see Choi, 1992).

One important factor that may play a role in determining

this response is the Ca2� buffering capacity of the cell (see

Shaw and Ince, 1997). Motoneurons have a relatively low

endogenous Ca2�-buffering capacity compared with other

neuronal populations (Lips and Keller, 1998, 1999; Pa-

lecek et al., 1999) as determined by both quantitative

analysis of endogenous Ca2� buffering capacity and im-

munocytochemical techniques. Furthermore, disruptions

of Ca2� homeostasis are associated with neuronal degen-

eration within the CNS. In particular different motoneuron

populations show a selective vulnerability to glutamate-

and Ca2�-mediated neuronal damage (Choi 1988; Roth-

stein and Kuncl, 1995; Krieger et al., 1996). Although

Ca2�-binding proteins such as parvalbumin and calbindin-

D28k do not appear to be expressed by the majority of

motoneurons (Alexianu et al., 1994; Ince et al., 1993),

those motoneurons that are largely spared in ALS, such as

the oculomotor nuclei and Onuf’s nucleus, express these

proteins at high levels, and are therefore potentially pro-

tected by their Ca2�-binding properties (Ince et al., 1993;

Alexianu et al., 1994; Elliott and Snider, 1995; Reiner et al.,

1995). Accordingly, loading vulnerable motoneurons with

exogenous Ca2� buffers or up-regulating the expression of

intrinsic buffers has been suggested as a possible strategy

to protect vulnerable motoneurons against neurodegen-

eration (Alexianu et al., 1994). This approach has recently

been tested in a line of parvalbumin over-expressing trans-

genic mice in which it has been found that parvalbumin

expression rescues vulnerable motoneurons from im-

mune-mediated increases in intracellular Ca2� (Beers et

al., 2001). Furthermore, these authors found that parval-

bumin expression rescued motoneurons in an animal

model of familial ALS. Thus, when parvalbumin transgenic

mice are crossed with mutant SOD1 transgenic mice, there

is a significant delay in the onset of the disease (Beers et

Table 1. Motoneuron survival following nerve crush at birth in parvalbumin over-expressing (Thy-PV) and wildtype mice (wt)

Mean number of motoneurons

wt Thy-PV

Operated
ventral horn

Control
ventral horn

% Op/con Operated
ventral horn

Control
ventral horn

% Op/con

HRP, n�4 35.5�3.1 176.8�4 20.2�2.2 70.3�11.9 146.3�13.1 47.2�4.4

Nissl, n�6 179.8�16.7 457.5�26.9 38.9�2.2 258.2�24.2 423.5�19.4 60.5�3.8

The number of HRP and gallocyanin-stained motoneurons was counted on the operated and control sides of each spinal cord. As an index of

motoneuron survival, for each spinal cord, the number of motoneurons present on the operated side was expressed as a percentage of the number

on the contralateral control side (% op/con). All values are mean�S.E.M.
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Fig. 3. The bar diagram summarises the results showing the effect of

neonatal nerve injury (P1) on twitch and tetanic force as well as weight

of TA muscles from parvalbumin over-expressing transgenic mice

(Thy-PV) and their wildtype (wt) littermates, 8 weeks after injury. The

results from TA muscles on the operated side are expressed as a

percentage of the control side. The maximal twitch tension was elicited

by stimulating the motor nerve using a pulse width of 0.02 and the

maximal tetanic tension (MTT) was elicited by stimulating at 80 Hz for

550 ms. For each parameter assessed there is no significant differ-

ence between the values obtained for the wildtype compared with the

parvalbumin-overexpressing mice.
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al., 2001). In addition, another study has shown that in

parvalbumin over-expressing mice, motoneurons in culture

are less susceptible to kainate-induced, Ca2�-dependant

excitotoxicity (Van Den Bosch et al., 2002). Taken together

with the results of the present study, these results provide

direct evidence that parvalbumin can have a neuroprotec-

tive effect on motoneurons in a variety of models of mo-

toneuron degeneration.

In the present study, we have established that motoneu-

rons induced to express parvalbumin are less vulnerable to

injury-induced cell death. However, although more motoneu-

rons survive neonatal axotomy in the parvalbumin transgenic

mice, this is not reflected in an improvement in muscle func-

tion in these animals. Although this finding is counter-intuitive,

there are several possible explanations for this discrepancy.

Following nerve crush injury there is a period of denervation

of the muscle as the axons of those motoneurons that survive

re-grow to innervate the target. Even in the adult, where there

is no loss of motoneurons following nerve injury (Vanden

Noven et al., 1993), prolonged denervation can result in

incomplete recovery of muscle function (Gordon and Fu,

1997), although the shorter the period of denervation, the

more complete the recovery of the muscle. Following neona-

tal nerve injury, which results in extensive motoneuron death,

muscles never fully recover even after reinnervation (Lowrie

et al., 1982, 1987; Lowrie and Vrbová, 1984; Albani et al.,

1988; Murali et al., 1996). After neonatal nerve crush in rats,

regenerating axons reach the muscles earlier than in the

adult (Murali et al., 1996). Despite this, reinnervated fast

muscles become weaker due to the loss of muscle fibers and

a proportion of the endplates disintegrate. Fast muscles be-

come more fatigue resistant (Lowrie et al., 1982, 1987; Low-

rie and Vrbová, 1984) and the organisation of the motor unit

is altered (Albani et al., 1988), although this may be largely

due to the loss of motoneurons. It has been suggested that

following nerve injury, the period for which the muscle is

isolated from the motoneuron, retards the differentiation of

the muscle (Lowrie and Vrbová, 1984). During this period of

disconnection, motoneurons are still receiving central con-

nexions and continue to develop. Upon reinnervation the

muscle fibers may not be mature enough to withstand the

pattern of activity imposed upon them by the more mature

motoneuron, resulting in further damage to the muscle fibers.

This may be particularly true of fast muscles such as TA.

Thus, it is clear that neonatal nerve injury can have long-

lasting deleterious effects on the target muscle.

In the present study, we examined the possibility that

the poor recovery of muscle function observed following

nerve injury in Thy-1 mice was a consequence of a pro-

longed period of denervation of the muscles, due to a delay

in axonal regeneration. However, it was only possible to

carry out these physiological experiments in adult mice

following adult nerve injury. The results showed that in

Thy-1 mice, over-expression of parvalbumin had no effect

on the ability of injured motoneurons to regenerate, since

reinnervation of TA 14 days after injury was in fact signif-

icantly better than that observed in wildtype mice. How-

ever, these experiments were carried out in adult mice, in

which motoneurons are known to respond very differently

to injury than developing motoneurons. Most importantly,

adult motoneurons do not die following injury to their pe-

ripheral nerve, although the same insult in neonatal ani-

mals results in extensive motoneuron degeneration, and

those that survive are permanently altered.

Therefore, it remains possible that regeneration in devel-

oping Thy-1 mice following nerve injury is slower than normal,

and this may explain the poor recovery of muscle force de-

spite increased motoneuron survival observed in these mice.

Thus, in Thy-1 mice, the increased Ca2� buffering capacity

of parvalbumin-expressing motoneurons may alter the

spatiotemporal aspects of Ca2� transients, thereby directly

affecting the ability of motoneurons to synthesis proteins

required for axonal growth. Following nerve injury the up-

regulation in the expression of many of the proteins asso-

ciated with growth, such as tubulin, actin and GAP-43 is

mediated by Ca2� through various second messenger

systems (Meiri et al., 1998; Soderling et al., 2001). Increas-

ing the intracellular Ca2�-buffering capacity by inducing

parvalbumin expression, may alter the shape of Ca2� tran-

sients, and may therefore have an effect on the ability of

the motoneuron to respond to injury by increasing the

expression of such growth-associated proteins. This, in

turn, could result in reduced or delayed reinnervation. In

fast-twitch muscles of transgenic mice in which parvalbu-

min is knocked out, it has been shown that the initial decay

of calcium transients after short (20 ms) stimulation pulses

was significantly slower compared with normal parvalbu-

min-containing muscles (Schwaller et al., 1999). At the

morphological level, the mitochondrial volume in fast-

twitch muscles of PV�/� mice was almost doubled com-

pared with muscles of wildtype mice (Chen et al., 2001).

Thus, altered parvalbumin expression is possibly linked

with the regulation of the synthesis of mitochondrial pro-

teins. Whether parvalbumin over-expression in the trans-

genic mice examined in this study induces similar mecha-

nisms in developing motoneurons, which are necessary for

the regulation of growth-associated proteins is currently

being investigated.

In conclusion, the results of this study show that inducing

motoneurons to express the calcium binding protein parval-

bumin, renders them less susceptible to the effects of neo-

natal nerve injury. However, there was not a significant im-

provement in muscle function, illustrating the fact that even

though motoneurons in the spinal cord may be spared, the

effect of denervation on the target muscle is also vitally

important.
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